1 /* hash - hashing table processing.
2 
3    Copyright (C) 1998-2004, 2006-2007, 2009-2012 Free Software Foundation, Inc.
4 
5    Written by Jim Meyering, 1992.
6 
7    This program is free software: you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* A generic hash table package.  */
21 
22 /* Define USE_OBSTACK to 1 if you want the allocator to use obstacks instead
23    of malloc.  If you change USE_OBSTACK, you have to recompile!  */
24 
25 #include <config.h>
26 
27 #include "hash.h"
28 
29 #include "bitrotate.h"
30 #include "xalloc-oversized.h"
31 
32 #include <stdint.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 
36 #if USE_OBSTACK
37 # include "obstack.h"
38 # ifndef obstack_chunk_alloc
39 #  define obstack_chunk_alloc malloc
40 # endif
41 # ifndef obstack_chunk_free
42 #  define obstack_chunk_free free
43 # endif
44 #endif
45 
46 struct hash_entry
47   {
48     void *data;
49     struct hash_entry *next;
50   };
51 
52 struct hash_table
53   {
54     /* The array of buckets starts at BUCKET and extends to BUCKET_LIMIT-1,
55        for a possibility of N_BUCKETS.  Among those, N_BUCKETS_USED buckets
56        are not empty, there are N_ENTRIES active entries in the table.  */
57     struct hash_entry *bucket;
58     struct hash_entry const *bucket_limit;
59     size_t n_buckets;
60     size_t n_buckets_used;
61     size_t n_entries;
62 
63     /* Tuning arguments, kept in a physically separate structure.  */
64     const Hash_tuning *tuning;
65 
66     /* Three functions are given to 'hash_initialize', see the documentation
67        block for this function.  In a word, HASHER randomizes a user entry
68        into a number up from 0 up to some maximum minus 1; COMPARATOR returns
69        true if two user entries compare equally; and DATA_FREER is the cleanup
70        function for a user entry.  */
71     Hash_hasher hasher;
72     Hash_comparator comparator;
73     Hash_data_freer data_freer;
74 
75     /* A linked list of freed struct hash_entry structs.  */
76     struct hash_entry *free_entry_list;
77 
78 #if USE_OBSTACK
79     /* Whenever obstacks are used, it is possible to allocate all overflowed
80        entries into a single stack, so they all can be freed in a single
81        operation.  It is not clear if the speedup is worth the trouble.  */
82     struct obstack entry_stack;
83 #endif
84   };
85 
86 /* A hash table contains many internal entries, each holding a pointer to
87    some user-provided data (also called a user entry).  An entry indistinctly
88    refers to both the internal entry and its associated user entry.  A user
89    entry contents may be hashed by a randomization function (the hashing
90    function, or just "hasher" for short) into a number (or "slot") between 0
91    and the current table size.  At each slot position in the hash table,
92    starts a linked chain of entries for which the user data all hash to this
93    slot.  A bucket is the collection of all entries hashing to the same slot.
94 
95    A good "hasher" function will distribute entries rather evenly in buckets.
96    In the ideal case, the length of each bucket is roughly the number of
97    entries divided by the table size.  Finding the slot for a data is usually
98    done in constant time by the "hasher", and the later finding of a precise
99    entry is linear in time with the size of the bucket.  Consequently, a
100    larger hash table size (that is, a larger number of buckets) is prone to
101    yielding shorter chains, *given* the "hasher" function behaves properly.
102 
103    Long buckets slow down the lookup algorithm.  One might use big hash table
104    sizes in hope to reduce the average length of buckets, but this might
105    become inordinate, as unused slots in the hash table take some space.  The
106    best bet is to make sure you are using a good "hasher" function (beware
107    that those are not that easy to write! :-), and to use a table size
108    larger than the actual number of entries.  */
109 
110 /* If an insertion makes the ratio of nonempty buckets to table size larger
111    than the growth threshold (a number between 0.0 and 1.0), then increase
112    the table size by multiplying by the growth factor (a number greater than
113    1.0).  The growth threshold defaults to 0.8, and the growth factor
114    defaults to 1.414, meaning that the table will have doubled its size
115    every second time 80% of the buckets get used.  */
116 #define DEFAULT_GROWTH_THRESHOLD 0.8f
117 #define DEFAULT_GROWTH_FACTOR 1.414f
118 
119 /* If a deletion empties a bucket and causes the ratio of used buckets to
120    table size to become smaller than the shrink threshold (a number between
121    0.0 and 1.0), then shrink the table by multiplying by the shrink factor (a
122    number greater than the shrink threshold but smaller than 1.0).  The shrink
123    threshold and factor default to 0.0 and 1.0, meaning that the table never
124    shrinks.  */
125 #define DEFAULT_SHRINK_THRESHOLD 0.0f
126 #define DEFAULT_SHRINK_FACTOR 1.0f
127 
128 /* Use this to initialize or reset a TUNING structure to
129    some sensible values. */
130 static const Hash_tuning default_tuning =
131   {
132     DEFAULT_SHRINK_THRESHOLD,
133     DEFAULT_SHRINK_FACTOR,
134     DEFAULT_GROWTH_THRESHOLD,
135     DEFAULT_GROWTH_FACTOR,
136     false
137   };
138 
139 /* Information and lookup.  */
140 
141 /* The following few functions provide information about the overall hash
142    table organization: the number of entries, number of buckets and maximum
143    length of buckets.  */
144 
145 /* Return the number of buckets in the hash table.  The table size, the total
146    number of buckets (used plus unused), or the maximum number of slots, are
147    the same quantity.  */
148 
149 size_t
hash_get_n_buckets(const Hash_table * table)150 hash_get_n_buckets (const Hash_table *table)
151 {
152   return table->n_buckets;
153 }
154 
155 /* Return the number of slots in use (non-empty buckets).  */
156 
157 size_t
hash_get_n_buckets_used(const Hash_table * table)158 hash_get_n_buckets_used (const Hash_table *table)
159 {
160   return table->n_buckets_used;
161 }
162 
163 /* Return the number of active entries.  */
164 
165 size_t
hash_get_n_entries(const Hash_table * table)166 hash_get_n_entries (const Hash_table *table)
167 {
168   return table->n_entries;
169 }
170 
171 /* Return the length of the longest chain (bucket).  */
172 
173 size_t
hash_get_max_bucket_length(const Hash_table * table)174 hash_get_max_bucket_length (const Hash_table *table)
175 {
176   struct hash_entry const *bucket;
177   size_t max_bucket_length = 0;
178 
179   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
180     {
181       if (bucket->data)
182         {
183           struct hash_entry const *cursor = bucket;
184           size_t bucket_length = 1;
185 
186           while (cursor = cursor->next, cursor)
187             bucket_length++;
188 
189           if (bucket_length > max_bucket_length)
190             max_bucket_length = bucket_length;
191         }
192     }
193 
194   return max_bucket_length;
195 }
196 
197 /* Do a mild validation of a hash table, by traversing it and checking two
198    statistics.  */
199 
200 bool
hash_table_ok(const Hash_table * table)201 hash_table_ok (const Hash_table *table)
202 {
203   struct hash_entry const *bucket;
204   size_t n_buckets_used = 0;
205   size_t n_entries = 0;
206 
207   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
208     {
209       if (bucket->data)
210         {
211           struct hash_entry const *cursor = bucket;
212 
213           /* Count bucket head.  */
214           n_buckets_used++;
215           n_entries++;
216 
217           /* Count bucket overflow.  */
218           while (cursor = cursor->next, cursor)
219             n_entries++;
220         }
221     }
222 
223   if (n_buckets_used == table->n_buckets_used && n_entries == table->n_entries)
224     return true;
225 
226   return false;
227 }
228 
229 void
hash_print_statistics(const Hash_table * table,FILE * stream)230 hash_print_statistics (const Hash_table *table, FILE *stream)
231 {
232   size_t n_entries = hash_get_n_entries (table);
233   size_t n_buckets = hash_get_n_buckets (table);
234   size_t n_buckets_used = hash_get_n_buckets_used (table);
235   size_t max_bucket_length = hash_get_max_bucket_length (table);
236 
237   fprintf (stream, "# entries:         %lu\n", (unsigned long int) n_entries);
238   fprintf (stream, "# buckets:         %lu\n", (unsigned long int) n_buckets);
239   fprintf (stream, "# buckets used:    %lu (%.2f%%)\n",
240            (unsigned long int) n_buckets_used,
241            (100.0 * n_buckets_used) / n_buckets);
242   fprintf (stream, "max bucket length: %lu\n",
243            (unsigned long int) max_bucket_length);
244 }
245 
246 /* Hash KEY and return a pointer to the selected bucket.
247    If TABLE->hasher misbehaves, abort.  */
248 static struct hash_entry *
safe_hasher(const Hash_table * table,const void * key)249 safe_hasher (const Hash_table *table, const void *key)
250 {
251   size_t n = table->hasher (key, table->n_buckets);
252   if (! (n < table->n_buckets))
253     abort ();
254   return table->bucket + n;
255 }
256 
257 /* If ENTRY matches an entry already in the hash table, return the
258    entry from the table.  Otherwise, return NULL.  */
259 
260 void *
hash_lookup(const Hash_table * table,const void * entry)261 hash_lookup (const Hash_table *table, const void *entry)
262 {
263   struct hash_entry const *bucket = safe_hasher (table, entry);
264   struct hash_entry const *cursor;
265 
266   if (bucket->data == NULL)
267     return NULL;
268 
269   for (cursor = bucket; cursor; cursor = cursor->next)
270     if (entry == cursor->data || table->comparator (entry, cursor->data))
271       return cursor->data;
272 
273   return NULL;
274 }
275 
276 /* Walking.  */
277 
278 /* The functions in this page traverse the hash table and process the
279    contained entries.  For the traversal to work properly, the hash table
280    should not be resized nor modified while any particular entry is being
281    processed.  In particular, entries should not be added, and an entry
282    may be removed only if there is no shrink threshold and the entry being
283    removed has already been passed to hash_get_next.  */
284 
285 /* Return the first data in the table, or NULL if the table is empty.  */
286 
287 void *
hash_get_first(const Hash_table * table)288 hash_get_first (const Hash_table *table)
289 {
290   struct hash_entry const *bucket;
291 
292   if (table->n_entries == 0)
293     return NULL;
294 
295   for (bucket = table->bucket; ; bucket++)
296     if (! (bucket < table->bucket_limit))
297       abort ();
298     else if (bucket->data)
299       return bucket->data;
300 }
301 
302 /* Return the user data for the entry following ENTRY, where ENTRY has been
303    returned by a previous call to either 'hash_get_first' or 'hash_get_next'.
304    Return NULL if there are no more entries.  */
305 
306 void *
hash_get_next(const Hash_table * table,const void * entry)307 hash_get_next (const Hash_table *table, const void *entry)
308 {
309   struct hash_entry const *bucket = safe_hasher (table, entry);
310   struct hash_entry const *cursor;
311 
312   /* Find next entry in the same bucket.  */
313   cursor = bucket;
314   do
315     {
316       if (cursor->data == entry && cursor->next)
317         return cursor->next->data;
318       cursor = cursor->next;
319     }
320   while (cursor != NULL);
321 
322   /* Find first entry in any subsequent bucket.  */
323   while (++bucket < table->bucket_limit)
324     if (bucket->data)
325       return bucket->data;
326 
327   /* None found.  */
328   return NULL;
329 }
330 
331 /* Fill BUFFER with pointers to active user entries in the hash table, then
332    return the number of pointers copied.  Do not copy more than BUFFER_SIZE
333    pointers.  */
334 
335 size_t
hash_get_entries(const Hash_table * table,void ** buffer,size_t buffer_size)336 hash_get_entries (const Hash_table *table, void **buffer,
337                   size_t buffer_size)
338 {
339   size_t counter = 0;
340   struct hash_entry const *bucket;
341   struct hash_entry const *cursor;
342 
343   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
344     {
345       if (bucket->data)
346         {
347           for (cursor = bucket; cursor; cursor = cursor->next)
348             {
349               if (counter >= buffer_size)
350                 return counter;
351               buffer[counter++] = cursor->data;
352             }
353         }
354     }
355 
356   return counter;
357 }
358 
359 /* Call a PROCESSOR function for each entry of a hash table, and return the
360    number of entries for which the processor function returned success.  A
361    pointer to some PROCESSOR_DATA which will be made available to each call to
362    the processor function.  The PROCESSOR accepts two arguments: the first is
363    the user entry being walked into, the second is the value of PROCESSOR_DATA
364    as received.  The walking continue for as long as the PROCESSOR function
365    returns nonzero.  When it returns zero, the walking is interrupted.  */
366 
367 size_t
hash_do_for_each(const Hash_table * table,Hash_processor processor,void * processor_data)368 hash_do_for_each (const Hash_table *table, Hash_processor processor,
369                   void *processor_data)
370 {
371   size_t counter = 0;
372   struct hash_entry const *bucket;
373   struct hash_entry const *cursor;
374 
375   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
376     {
377       if (bucket->data)
378         {
379           for (cursor = bucket; cursor; cursor = cursor->next)
380             {
381               if (! processor (cursor->data, processor_data))
382                 return counter;
383               counter++;
384             }
385         }
386     }
387 
388   return counter;
389 }
390 
391 /* Allocation and clean-up.  */
392 
393 /* Return a hash index for a NUL-terminated STRING between 0 and N_BUCKETS-1.
394    This is a convenience routine for constructing other hashing functions.  */
395 
396 #if USE_DIFF_HASH
397 
398 /* About hashings, Paul Eggert writes to me (FP), on 1994-01-01: "Please see
399    B. J. McKenzie, R. Harries & T. Bell, Selecting a hashing algorithm,
400    Software--practice & experience 20, 2 (Feb 1990), 209-224.  Good hash
401    algorithms tend to be domain-specific, so what's good for [diffutils'] io.c
402    may not be good for your application."  */
403 
404 size_t
hash_string(const char * string,size_t n_buckets)405 hash_string (const char *string, size_t n_buckets)
406 {
407 # define HASH_ONE_CHAR(Value, Byte) \
408   ((Byte) + rotl_sz (Value, 7))
409 
410   size_t value = 0;
411   unsigned char ch;
412 
413   for (; (ch = *string); string++)
414     value = HASH_ONE_CHAR (value, ch);
415   return value % n_buckets;
416 
417 # undef HASH_ONE_CHAR
418 }
419 
420 #else /* not USE_DIFF_HASH */
421 
422 /* This one comes from 'recode', and performs a bit better than the above as
423    per a few experiments.  It is inspired from a hashing routine found in the
424    very old Cyber 'snoop', itself written in typical Greg Mansfield style.
425    (By the way, what happened to this excellent man?  Is he still alive?)  */
426 
427 size_t
hash_string(const char * string,size_t n_buckets)428 hash_string (const char *string, size_t n_buckets)
429 {
430   size_t value = 0;
431   unsigned char ch;
432 
433   for (; (ch = *string); string++)
434     value = (value * 31 + ch) % n_buckets;
435   return value;
436 }
437 
438 #endif /* not USE_DIFF_HASH */
439 
440 /* Return true if CANDIDATE is a prime number.  CANDIDATE should be an odd
441    number at least equal to 11.  */
442 
443 static bool _GL_ATTRIBUTE_CONST
is_prime(size_t candidate)444 is_prime (size_t candidate)
445 {
446   size_t divisor = 3;
447   size_t square = divisor * divisor;
448 
449   while (square < candidate && (candidate % divisor))
450     {
451       divisor++;
452       square += 4 * divisor;
453       divisor++;
454     }
455 
456   return (candidate % divisor ? true : false);
457 }
458 
459 /* Round a given CANDIDATE number up to the nearest prime, and return that
460    prime.  Primes lower than 10 are merely skipped.  */
461 
462 static size_t _GL_ATTRIBUTE_CONST
next_prime(size_t candidate)463 next_prime (size_t candidate)
464 {
465   /* Skip small primes.  */
466   if (candidate < 10)
467     candidate = 10;
468 
469   /* Make it definitely odd.  */
470   candidate |= 1;
471 
472   while (SIZE_MAX != candidate && !is_prime (candidate))
473     candidate += 2;
474 
475   return candidate;
476 }
477 
478 void
hash_reset_tuning(Hash_tuning * tuning)479 hash_reset_tuning (Hash_tuning *tuning)
480 {
481   *tuning = default_tuning;
482 }
483 
484 /* If the user passes a NULL hasher, we hash the raw pointer.  */
485 static size_t
raw_hasher(const void * data,size_t n)486 raw_hasher (const void *data, size_t n)
487 {
488   /* When hashing unique pointers, it is often the case that they were
489      generated by malloc and thus have the property that the low-order
490      bits are 0.  As this tends to give poorer performance with small
491      tables, we rotate the pointer value before performing division,
492      in an attempt to improve hash quality.  */
493   size_t val = rotr_sz ((size_t) data, 3);
494   return val % n;
495 }
496 
497 /* If the user passes a NULL comparator, we use pointer comparison.  */
498 static bool
raw_comparator(const void * a,const void * b)499 raw_comparator (const void *a, const void *b)
500 {
501   return a == b;
502 }
503 
504 
505 /* For the given hash TABLE, check the user supplied tuning structure for
506    reasonable values, and return true if there is no gross error with it.
507    Otherwise, definitively reset the TUNING field to some acceptable default
508    in the hash table (that is, the user loses the right of further modifying
509    tuning arguments), and return false.  */
510 
511 static bool
check_tuning(Hash_table * table)512 check_tuning (Hash_table *table)
513 {
514   const Hash_tuning *tuning = table->tuning;
515   float epsilon;
516   if (tuning == &default_tuning)
517     return true;
518 
519   /* Be a bit stricter than mathematics would require, so that
520      rounding errors in size calculations do not cause allocations to
521      fail to grow or shrink as they should.  The smallest allocation
522      is 11 (due to next_prime's algorithm), so an epsilon of 0.1
523      should be good enough.  */
524   epsilon = 0.1f;
525 
526   if (epsilon < tuning->growth_threshold
527       && tuning->growth_threshold < 1 - epsilon
528       && 1 + epsilon < tuning->growth_factor
529       && 0 <= tuning->shrink_threshold
530       && tuning->shrink_threshold + epsilon < tuning->shrink_factor
531       && tuning->shrink_factor <= 1
532       && tuning->shrink_threshold + epsilon < tuning->growth_threshold)
533     return true;
534 
535   table->tuning = &default_tuning;
536   return false;
537 }
538 
539 /* Compute the size of the bucket array for the given CANDIDATE and
540    TUNING, or return 0 if there is no possible way to allocate that
541    many entries.  */
542 
543 static size_t _GL_ATTRIBUTE_PURE
compute_bucket_size(size_t candidate,const Hash_tuning * tuning)544 compute_bucket_size (size_t candidate, const Hash_tuning *tuning)
545 {
546   if (!tuning->is_n_buckets)
547     {
548       float new_candidate = candidate / tuning->growth_threshold;
549       if (SIZE_MAX <= new_candidate)
550         return 0;
551       candidate = new_candidate;
552     }
553   candidate = next_prime (candidate);
554   if (xalloc_oversized (candidate, sizeof (struct hash_entry *)))
555     return 0;
556   return candidate;
557 }
558 
559 /* Allocate and return a new hash table, or NULL upon failure.  The initial
560    number of buckets is automatically selected so as to _guarantee_ that you
561    may insert at least CANDIDATE different user entries before any growth of
562    the hash table size occurs.  So, if have a reasonably tight a-priori upper
563    bound on the number of entries you intend to insert in the hash table, you
564    may save some table memory and insertion time, by specifying it here.  If
565    the IS_N_BUCKETS field of the TUNING structure is true, the CANDIDATE
566    argument has its meaning changed to the wanted number of buckets.
567 
568    TUNING points to a structure of user-supplied values, in case some fine
569    tuning is wanted over the default behavior of the hasher.  If TUNING is
570    NULL, the default tuning parameters are used instead.  If TUNING is
571    provided but the values requested are out of bounds or might cause
572    rounding errors, return NULL.
573 
574    The user-supplied HASHER function, when not NULL, accepts two
575    arguments ENTRY and TABLE_SIZE.  It computes, by hashing ENTRY contents, a
576    slot number for that entry which should be in the range 0..TABLE_SIZE-1.
577    This slot number is then returned.
578 
579    The user-supplied COMPARATOR function, when not NULL, accepts two
580    arguments pointing to user data, it then returns true for a pair of entries
581    that compare equal, or false otherwise.  This function is internally called
582    on entries which are already known to hash to the same bucket index,
583    but which are distinct pointers.
584 
585    The user-supplied DATA_FREER function, when not NULL, may be later called
586    with the user data as an argument, just before the entry containing the
587    data gets freed.  This happens from within 'hash_free' or 'hash_clear'.
588    You should specify this function only if you want these functions to free
589    all of your 'data' data.  This is typically the case when your data is
590    simply an auxiliary struct that you have malloc'd to aggregate several
591    values.  */
592 
593 Hash_table *
hash_initialize(size_t candidate,const Hash_tuning * tuning,Hash_hasher hasher,Hash_comparator comparator,Hash_data_freer data_freer)594 hash_initialize (size_t candidate, const Hash_tuning *tuning,
595                  Hash_hasher hasher, Hash_comparator comparator,
596                  Hash_data_freer data_freer)
597 {
598   Hash_table *table;
599 
600   if (hasher == NULL)
601     hasher = raw_hasher;
602   if (comparator == NULL)
603     comparator = raw_comparator;
604 
605   table = malloc (sizeof *table);
606   if (table == NULL)
607     return NULL;
608 
609   if (!tuning)
610     tuning = &default_tuning;
611   table->tuning = tuning;
612   if (!check_tuning (table))
613     {
614       /* Fail if the tuning options are invalid.  This is the only occasion
615          when the user gets some feedback about it.  Once the table is created,
616          if the user provides invalid tuning options, we silently revert to
617          using the defaults, and ignore further request to change the tuning
618          options.  */
619       goto fail;
620     }
621 
622   table->n_buckets = compute_bucket_size (candidate, tuning);
623   if (!table->n_buckets)
624     goto fail;
625 
626   table->bucket = calloc (table->n_buckets, sizeof *table->bucket);
627   if (table->bucket == NULL)
628     goto fail;
629   table->bucket_limit = table->bucket + table->n_buckets;
630   table->n_buckets_used = 0;
631   table->n_entries = 0;
632 
633   table->hasher = hasher;
634   table->comparator = comparator;
635   table->data_freer = data_freer;
636 
637   table->free_entry_list = NULL;
638 #if USE_OBSTACK
639   obstack_init (&table->entry_stack);
640 #endif
641   return table;
642 
643  fail:
644   free (table);
645   return NULL;
646 }
647 
648 /* Make all buckets empty, placing any chained entries on the free list.
649    Apply the user-specified function data_freer (if any) to the datas of any
650    affected entries.  */
651 
652 void
hash_clear(Hash_table * table)653 hash_clear (Hash_table *table)
654 {
655   struct hash_entry *bucket;
656 
657   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
658     {
659       if (bucket->data)
660         {
661           struct hash_entry *cursor;
662           struct hash_entry *next;
663 
664           /* Free the bucket overflow.  */
665           for (cursor = bucket->next; cursor; cursor = next)
666             {
667               if (table->data_freer)
668                 table->data_freer (cursor->data);
669               cursor->data = NULL;
670 
671               next = cursor->next;
672               /* Relinking is done one entry at a time, as it is to be expected
673                  that overflows are either rare or short.  */
674               cursor->next = table->free_entry_list;
675               table->free_entry_list = cursor;
676             }
677 
678           /* Free the bucket head.  */
679           if (table->data_freer)
680             table->data_freer (bucket->data);
681           bucket->data = NULL;
682           bucket->next = NULL;
683         }
684     }
685 
686   table->n_buckets_used = 0;
687   table->n_entries = 0;
688 }
689 
690 /* Reclaim all storage associated with a hash table.  If a data_freer
691    function has been supplied by the user when the hash table was created,
692    this function applies it to the data of each entry before freeing that
693    entry.  */
694 
695 void
hash_free(Hash_table * table)696 hash_free (Hash_table *table)
697 {
698   struct hash_entry *bucket;
699   struct hash_entry *cursor;
700   struct hash_entry *next;
701 
702   /* Call the user data_freer function.  */
703   if (table->data_freer && table->n_entries)
704     {
705       for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
706         {
707           if (bucket->data)
708             {
709               for (cursor = bucket; cursor; cursor = cursor->next)
710                 table->data_freer (cursor->data);
711             }
712         }
713     }
714 
715 #if USE_OBSTACK
716 
717   obstack_free (&table->entry_stack, NULL);
718 
719 #else
720 
721   /* Free all bucket overflowed entries.  */
722   for (bucket = table->bucket; bucket < table->bucket_limit; bucket++)
723     {
724       for (cursor = bucket->next; cursor; cursor = next)
725         {
726           next = cursor->next;
727           free (cursor);
728         }
729     }
730 
731   /* Also reclaim the internal list of previously freed entries.  */
732   for (cursor = table->free_entry_list; cursor; cursor = next)
733     {
734       next = cursor->next;
735       free (cursor);
736     }
737 
738 #endif
739 
740   /* Free the remainder of the hash table structure.  */
741   free (table->bucket);
742   free (table);
743 }
744 
745 /* Insertion and deletion.  */
746 
747 /* Get a new hash entry for a bucket overflow, possibly by recycling a
748    previously freed one.  If this is not possible, allocate a new one.  */
749 
750 static struct hash_entry *
allocate_entry(Hash_table * table)751 allocate_entry (Hash_table *table)
752 {
753   struct hash_entry *new;
754 
755   if (table->free_entry_list)
756     {
757       new = table->free_entry_list;
758       table->free_entry_list = new->next;
759     }
760   else
761     {
762 #if USE_OBSTACK
763       new = obstack_alloc (&table->entry_stack, sizeof *new);
764 #else
765       new = malloc (sizeof *new);
766 #endif
767     }
768 
769   return new;
770 }
771 
772 /* Free a hash entry which was part of some bucket overflow,
773    saving it for later recycling.  */
774 
775 static void
free_entry(Hash_table * table,struct hash_entry * entry)776 free_entry (Hash_table *table, struct hash_entry *entry)
777 {
778   entry->data = NULL;
779   entry->next = table->free_entry_list;
780   table->free_entry_list = entry;
781 }
782 
783 /* This private function is used to help with insertion and deletion.  When
784    ENTRY matches an entry in the table, return a pointer to the corresponding
785    user data and set *BUCKET_HEAD to the head of the selected bucket.
786    Otherwise, return NULL.  When DELETE is true and ENTRY matches an entry in
787    the table, unlink the matching entry.  */
788 
789 static void *
hash_find_entry(Hash_table * table,const void * entry,struct hash_entry ** bucket_head,bool delete)790 hash_find_entry (Hash_table *table, const void *entry,
791                  struct hash_entry **bucket_head, bool delete)
792 {
793   struct hash_entry *bucket = safe_hasher (table, entry);
794   struct hash_entry *cursor;
795 
796   *bucket_head = bucket;
797 
798   /* Test for empty bucket.  */
799   if (bucket->data == NULL)
800     return NULL;
801 
802   /* See if the entry is the first in the bucket.  */
803   if (entry == bucket->data || table->comparator (entry, bucket->data))
804     {
805       void *data = bucket->data;
806 
807       if (delete)
808         {
809           if (bucket->next)
810             {
811               struct hash_entry *next = bucket->next;
812 
813               /* Bump the first overflow entry into the bucket head, then save
814                  the previous first overflow entry for later recycling.  */
815               *bucket = *next;
816               free_entry (table, next);
817             }
818           else
819             {
820               bucket->data = NULL;
821             }
822         }
823 
824       return data;
825     }
826 
827   /* Scan the bucket overflow.  */
828   for (cursor = bucket; cursor->next; cursor = cursor->next)
829     {
830       if (entry == cursor->next->data
831           || table->comparator (entry, cursor->next->data))
832         {
833           void *data = cursor->next->data;
834 
835           if (delete)
836             {
837               struct hash_entry *next = cursor->next;
838 
839               /* Unlink the entry to delete, then save the freed entry for later
840                  recycling.  */
841               cursor->next = next->next;
842               free_entry (table, next);
843             }
844 
845           return data;
846         }
847     }
848 
849   /* No entry found.  */
850   return NULL;
851 }
852 
853 /* Internal helper, to move entries from SRC to DST.  Both tables must
854    share the same free entry list.  If SAFE, only move overflow
855    entries, saving bucket heads for later, so that no allocations will
856    occur.  Return false if the free entry list is exhausted and an
857    allocation fails.  */
858 
859 static bool
transfer_entries(Hash_table * dst,Hash_table * src,bool safe)860 transfer_entries (Hash_table *dst, Hash_table *src, bool safe)
861 {
862   struct hash_entry *bucket;
863   struct hash_entry *cursor;
864   struct hash_entry *next;
865   for (bucket = src->bucket; bucket < src->bucket_limit; bucket++)
866     if (bucket->data)
867       {
868         void *data;
869         struct hash_entry *new_bucket;
870 
871         /* Within each bucket, transfer overflow entries first and
872            then the bucket head, to minimize memory pressure.  After
873            all, the only time we might allocate is when moving the
874            bucket head, but moving overflow entries first may create
875            free entries that can be recycled by the time we finally
876            get to the bucket head.  */
877         for (cursor = bucket->next; cursor; cursor = next)
878           {
879             data = cursor->data;
880             new_bucket = safe_hasher (dst, data);
881 
882             next = cursor->next;
883 
884             if (new_bucket->data)
885               {
886                 /* Merely relink an existing entry, when moving from a
887                    bucket overflow into a bucket overflow.  */
888                 cursor->next = new_bucket->next;
889                 new_bucket->next = cursor;
890               }
891             else
892               {
893                 /* Free an existing entry, when moving from a bucket
894                    overflow into a bucket header.  */
895                 new_bucket->data = data;
896                 dst->n_buckets_used++;
897                 free_entry (dst, cursor);
898               }
899           }
900         /* Now move the bucket head.  Be sure that if we fail due to
901            allocation failure that the src table is in a consistent
902            state.  */
903         data = bucket->data;
904         bucket->next = NULL;
905         if (safe)
906           continue;
907         new_bucket = safe_hasher (dst, data);
908 
909         if (new_bucket->data)
910           {
911             /* Allocate or recycle an entry, when moving from a bucket
912                header into a bucket overflow.  */
913             struct hash_entry *new_entry = allocate_entry (dst);
914 
915             if (new_entry == NULL)
916               return false;
917 
918             new_entry->data = data;
919             new_entry->next = new_bucket->next;
920             new_bucket->next = new_entry;
921           }
922         else
923           {
924             /* Move from one bucket header to another.  */
925             new_bucket->data = data;
926             dst->n_buckets_used++;
927           }
928         bucket->data = NULL;
929         src->n_buckets_used--;
930       }
931   return true;
932 }
933 
934 /* For an already existing hash table, change the number of buckets through
935    specifying CANDIDATE.  The contents of the hash table are preserved.  The
936    new number of buckets is automatically selected so as to _guarantee_ that
937    the table may receive at least CANDIDATE different user entries, including
938    those already in the table, before any other growth of the hash table size
939    occurs.  If TUNING->IS_N_BUCKETS is true, then CANDIDATE specifies the
940    exact number of buckets desired.  Return true iff the rehash succeeded.  */
941 
942 bool
hash_rehash(Hash_table * table,size_t candidate)943 hash_rehash (Hash_table *table, size_t candidate)
944 {
945   Hash_table storage;
946   Hash_table *new_table;
947   size_t new_size = compute_bucket_size (candidate, table->tuning);
948 
949   if (!new_size)
950     return false;
951   if (new_size == table->n_buckets)
952     return true;
953   new_table = &storage;
954   new_table->bucket = calloc (new_size, sizeof *new_table->bucket);
955   if (new_table->bucket == NULL)
956     return false;
957   new_table->n_buckets = new_size;
958   new_table->bucket_limit = new_table->bucket + new_size;
959   new_table->n_buckets_used = 0;
960   new_table->n_entries = 0;
961   new_table->tuning = table->tuning;
962   new_table->hasher = table->hasher;
963   new_table->comparator = table->comparator;
964   new_table->data_freer = table->data_freer;
965 
966   /* In order for the transfer to successfully complete, we need
967      additional overflow entries when distinct buckets in the old
968      table collide into a common bucket in the new table.  The worst
969      case possible is a hasher that gives a good spread with the old
970      size, but returns a constant with the new size; if we were to
971      guarantee table->n_buckets_used-1 free entries in advance, then
972      the transfer would be guaranteed to not allocate memory.
973      However, for large tables, a guarantee of no further allocation
974      introduces a lot of extra memory pressure, all for an unlikely
975      corner case (most rehashes reduce, rather than increase, the
976      number of overflow entries needed).  So, we instead ensure that
977      the transfer process can be reversed if we hit a memory
978      allocation failure mid-transfer.  */
979 
980   /* Merely reuse the extra old space into the new table.  */
981 #if USE_OBSTACK
982   new_table->entry_stack = table->entry_stack;
983 #endif
984   new_table->free_entry_list = table->free_entry_list;
985 
986   if (transfer_entries (new_table, table, false))
987     {
988       /* Entries transferred successfully; tie up the loose ends.  */
989       free (table->bucket);
990       table->bucket = new_table->bucket;
991       table->bucket_limit = new_table->bucket_limit;
992       table->n_buckets = new_table->n_buckets;
993       table->n_buckets_used = new_table->n_buckets_used;
994       table->free_entry_list = new_table->free_entry_list;
995       /* table->n_entries and table->entry_stack already hold their value.  */
996       return true;
997     }
998 
999   /* We've allocated new_table->bucket (and possibly some entries),
1000      exhausted the free list, and moved some but not all entries into
1001      new_table.  We must undo the partial move before returning
1002      failure.  The only way to get into this situation is if new_table
1003      uses fewer buckets than the old table, so we will reclaim some
1004      free entries as overflows in the new table are put back into
1005      distinct buckets in the old table.
1006 
1007      There are some pathological cases where a single pass through the
1008      table requires more intermediate overflow entries than using two
1009      passes.  Two passes give worse cache performance and takes
1010      longer, but at this point, we're already out of memory, so slow
1011      and safe is better than failure.  */
1012   table->free_entry_list = new_table->free_entry_list;
1013   if (! (transfer_entries (table, new_table, true)
1014          && transfer_entries (table, new_table, false)))
1015     abort ();
1016   /* table->n_entries already holds its value.  */
1017   free (new_table->bucket);
1018   return false;
1019 }
1020 
1021 /* Insert ENTRY into hash TABLE if there is not already a matching entry.
1022 
1023    Return -1 upon memory allocation failure.
1024    Return 1 if insertion succeeded.
1025    Return 0 if there is already a matching entry in the table,
1026    and in that case, if MATCHED_ENT is non-NULL, set *MATCHED_ENT
1027    to that entry.
1028 
1029    This interface is easier to use than hash_insert when you must
1030    distinguish between the latter two cases.  More importantly,
1031    hash_insert is unusable for some types of ENTRY values.  When using
1032    hash_insert, the only way to distinguish those cases is to compare
1033    the return value and ENTRY.  That works only when you can have two
1034    different ENTRY values that point to data that compares "equal".  Thus,
1035    when the ENTRY value is a simple scalar, you must use
1036    hash_insert_if_absent.  ENTRY must not be NULL.  */
1037 int
hash_insert_if_absent(Hash_table * table,void const * entry,void const ** matched_ent)1038 hash_insert_if_absent (Hash_table *table, void const *entry,
1039                        void const **matched_ent)
1040 {
1041   void *data;
1042   struct hash_entry *bucket;
1043 
1044   /* The caller cannot insert a NULL entry, since hash_lookup returns NULL
1045      to indicate "not found", and hash_find_entry uses "bucket->data == NULL"
1046      to indicate an empty bucket.  */
1047   if (! entry)
1048     abort ();
1049 
1050   /* If there's a matching entry already in the table, return that.  */
1051   if ((data = hash_find_entry (table, entry, &bucket, false)) != NULL)
1052     {
1053       if (matched_ent)
1054         *matched_ent = data;
1055       return 0;
1056     }
1057 
1058   /* If the growth threshold of the buckets in use has been reached, increase
1059      the table size and rehash.  There's no point in checking the number of
1060      entries:  if the hashing function is ill-conditioned, rehashing is not
1061      likely to improve it.  */
1062 
1063   if (table->n_buckets_used
1064       > table->tuning->growth_threshold * table->n_buckets)
1065     {
1066       /* Check more fully, before starting real work.  If tuning arguments
1067          became invalid, the second check will rely on proper defaults.  */
1068       check_tuning (table);
1069       if (table->n_buckets_used
1070           > table->tuning->growth_threshold * table->n_buckets)
1071         {
1072           const Hash_tuning *tuning = table->tuning;
1073           float candidate =
1074             (tuning->is_n_buckets
1075              ? (table->n_buckets * tuning->growth_factor)
1076              : (table->n_buckets * tuning->growth_factor
1077                 * tuning->growth_threshold));
1078 
1079           if (SIZE_MAX <= candidate)
1080             return -1;
1081 
1082           /* If the rehash fails, arrange to return NULL.  */
1083           if (!hash_rehash (table, candidate))
1084             return -1;
1085 
1086           /* Update the bucket we are interested in.  */
1087           if (hash_find_entry (table, entry, &bucket, false) != NULL)
1088             abort ();
1089         }
1090     }
1091 
1092   /* ENTRY is not matched, it should be inserted.  */
1093 
1094   if (bucket->data)
1095     {
1096       struct hash_entry *new_entry = allocate_entry (table);
1097 
1098       if (new_entry == NULL)
1099         return -1;
1100 
1101       /* Add ENTRY in the overflow of the bucket.  */
1102 
1103       new_entry->data = (void *) entry;
1104       new_entry->next = bucket->next;
1105       bucket->next = new_entry;
1106       table->n_entries++;
1107       return 1;
1108     }
1109 
1110   /* Add ENTRY right in the bucket head.  */
1111 
1112   bucket->data = (void *) entry;
1113   table->n_entries++;
1114   table->n_buckets_used++;
1115 
1116   return 1;
1117 }
1118 
1119 /* hash_insert0 is the deprecated name for hash_insert_if_absent.
1120    .  */
1121 int
hash_insert0(Hash_table * table,void const * entry,void const ** matched_ent)1122 hash_insert0 (Hash_table *table, void const *entry, void const **matched_ent)
1123 {
1124   return hash_insert_if_absent (table, entry, matched_ent);
1125 }
1126 
1127 /* If ENTRY matches an entry already in the hash table, return the pointer
1128    to the entry from the table.  Otherwise, insert ENTRY and return ENTRY.
1129    Return NULL if the storage required for insertion cannot be allocated.
1130    This implementation does not support duplicate entries or insertion of
1131    NULL.  */
1132 
1133 void *
hash_insert(Hash_table * table,void const * entry)1134 hash_insert (Hash_table *table, void const *entry)
1135 {
1136   void const *matched_ent;
1137   int err = hash_insert_if_absent (table, entry, &matched_ent);
1138   return (err == -1
1139           ? NULL
1140           : (void *) (err == 0 ? matched_ent : entry));
1141 }
1142 
1143 /* If ENTRY is already in the table, remove it and return the just-deleted
1144    data (the user may want to deallocate its storage).  If ENTRY is not in the
1145    table, don't modify the table and return NULL.  */
1146 
1147 void *
hash_delete(Hash_table * table,const void * entry)1148 hash_delete (Hash_table *table, const void *entry)
1149 {
1150   void *data;
1151   struct hash_entry *bucket;
1152 
1153   data = hash_find_entry (table, entry, &bucket, true);
1154   if (!data)
1155     return NULL;
1156 
1157   table->n_entries--;
1158   if (!bucket->data)
1159     {
1160       table->n_buckets_used--;
1161 
1162       /* If the shrink threshold of the buckets in use has been reached,
1163          rehash into a smaller table.  */
1164 
1165       if (table->n_buckets_used
1166           < table->tuning->shrink_threshold * table->n_buckets)
1167         {
1168           /* Check more fully, before starting real work.  If tuning arguments
1169              became invalid, the second check will rely on proper defaults.  */
1170           check_tuning (table);
1171           if (table->n_buckets_used
1172               < table->tuning->shrink_threshold * table->n_buckets)
1173             {
1174               const Hash_tuning *tuning = table->tuning;
1175               size_t candidate =
1176                 (tuning->is_n_buckets
1177                  ? table->n_buckets * tuning->shrink_factor
1178                  : (table->n_buckets * tuning->shrink_factor
1179                     * tuning->growth_threshold));
1180 
1181               if (!hash_rehash (table, candidate))
1182                 {
1183                   /* Failure to allocate memory in an attempt to
1184                      shrink the table is not fatal.  But since memory
1185                      is low, we can at least be kind and free any
1186                      spare entries, rather than keeping them tied up
1187                      in the free entry list.  */
1188 #if ! USE_OBSTACK
1189                   struct hash_entry *cursor = table->free_entry_list;
1190                   struct hash_entry *next;
1191                   while (cursor)
1192                     {
1193                       next = cursor->next;
1194                       free (cursor);
1195                       cursor = next;
1196                     }
1197                   table->free_entry_list = NULL;
1198 #endif
1199                 }
1200             }
1201         }
1202     }
1203 
1204   return data;
1205 }
1206 
1207 /* Testing.  */
1208 
1209 #if TESTING
1210 
1211 void
hash_print(const Hash_table * table)1212 hash_print (const Hash_table *table)
1213 {
1214   struct hash_entry *bucket = (struct hash_entry *) table->bucket;
1215 
1216   for ( ; bucket < table->bucket_limit; bucket++)
1217     {
1218       struct hash_entry *cursor;
1219 
1220       if (bucket)
1221         printf ("%lu:\n", (unsigned long int) (bucket - table->bucket));
1222 
1223       for (cursor = bucket; cursor; cursor = cursor->next)
1224         {
1225           char const *s = cursor->data;
1226           /* FIXME */
1227           if (s)
1228             printf ("  %s\n", s);
1229         }
1230     }
1231 }
1232 
1233 #endif /* TESTING */
1234