1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .eb
28 .estate
29 .lb
30 .popsection
31 .previous
32 .psr
33 .pushsection
34 - labels are wrong if automatic alignment is introduced
35 (e.g., checkout the second real10 definition in test-data.s)
36 - DV-related stuff:
37 <reg>.safe_across_calls and any other DV-related directives I don't
38 have documentation for.
39 verify mod-sched-brs reads/writes are checked/marked (and other
40 notes)
41
42 */
43
44 #include "as.h"
45 #include "safe-ctype.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52 #include "bfdver.h"
53 #include <time.h>
54
55 #ifdef HAVE_LIMITS_H
56 #include <limits.h>
57 #endif
58
59 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
60
61 /* Some systems define MIN in, e.g., param.h. */
62 #undef MIN
63 #define MIN(a,b) ((a) < (b) ? (a) : (b))
64
65 #define NUM_SLOTS 4
66 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
67 #define CURR_SLOT md.slot[md.curr_slot]
68
69 #define O_pseudo_fixup (O_max + 1)
70
71 enum special_section
72 {
73 /* IA-64 ABI section pseudo-ops. */
74 SPECIAL_SECTION_BSS = 0,
75 SPECIAL_SECTION_SBSS,
76 SPECIAL_SECTION_SDATA,
77 SPECIAL_SECTION_RODATA,
78 SPECIAL_SECTION_COMMENT,
79 SPECIAL_SECTION_UNWIND,
80 SPECIAL_SECTION_UNWIND_INFO,
81 /* HPUX specific section pseudo-ops. */
82 SPECIAL_SECTION_INIT_ARRAY,
83 SPECIAL_SECTION_FINI_ARRAY,
84 };
85
86 enum reloc_func
87 {
88 FUNC_DTP_MODULE,
89 FUNC_DTP_RELATIVE,
90 FUNC_FPTR_RELATIVE,
91 FUNC_GP_RELATIVE,
92 FUNC_LT_RELATIVE,
93 FUNC_LT_RELATIVE_X,
94 FUNC_PC_RELATIVE,
95 FUNC_PLT_RELATIVE,
96 FUNC_SEC_RELATIVE,
97 FUNC_SEG_RELATIVE,
98 FUNC_TP_RELATIVE,
99 FUNC_LTV_RELATIVE,
100 FUNC_LT_FPTR_RELATIVE,
101 FUNC_LT_DTP_MODULE,
102 FUNC_LT_DTP_RELATIVE,
103 FUNC_LT_TP_RELATIVE,
104 FUNC_IPLT_RELOC,
105 #ifdef TE_VMS
106 FUNC_SLOTCOUNT_RELOC,
107 #endif
108 };
109
110 enum reg_symbol
111 {
112 REG_GR = 0,
113 REG_FR = (REG_GR + 128),
114 REG_AR = (REG_FR + 128),
115 REG_CR = (REG_AR + 128),
116 REG_DAHR = (REG_CR + 128),
117 REG_P = (REG_DAHR + 8),
118 REG_BR = (REG_P + 64),
119 REG_IP = (REG_BR + 8),
120 REG_CFM,
121 REG_PR,
122 REG_PR_ROT,
123 REG_PSR,
124 REG_PSR_L,
125 REG_PSR_UM,
126 /* The following are pseudo-registers for use by gas only. */
127 IND_CPUID,
128 IND_DBR,
129 IND_DTR,
130 IND_ITR,
131 IND_IBR,
132 IND_MSR,
133 IND_PKR,
134 IND_PMC,
135 IND_PMD,
136 IND_DAHR,
137 IND_RR,
138 /* The following pseudo-registers are used for unwind directives only: */
139 REG_PSP,
140 REG_PRIUNAT,
141 REG_NUM
142 };
143
144 enum dynreg_type
145 {
146 DYNREG_GR = 0, /* dynamic general purpose register */
147 DYNREG_FR, /* dynamic floating point register */
148 DYNREG_PR, /* dynamic predicate register */
149 DYNREG_NUM_TYPES
150 };
151
152 enum operand_match_result
153 {
154 OPERAND_MATCH,
155 OPERAND_OUT_OF_RANGE,
156 OPERAND_MISMATCH
157 };
158
159 /* On the ia64, we can't know the address of a text label until the
160 instructions are packed into a bundle. To handle this, we keep
161 track of the list of labels that appear in front of each
162 instruction. */
163 struct label_fix
164 {
165 struct label_fix *next;
166 struct symbol *sym;
167 bfd_boolean dw2_mark_labels;
168 };
169
170 #ifdef TE_VMS
171 /* An internally used relocation. */
172 #define DUMMY_RELOC_IA64_SLOTCOUNT (BFD_RELOC_UNUSED + 1)
173 #endif
174
175 /* This is the endianness of the current section. */
176 extern int target_big_endian;
177
178 /* This is the default endianness. */
179 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
180
181 void (*ia64_number_to_chars) (char *, valueT, int);
182
183 static void ia64_float_to_chars_bigendian (char *, LITTLENUM_TYPE *, int);
184 static void ia64_float_to_chars_littleendian (char *, LITTLENUM_TYPE *, int);
185
186 static void (*ia64_float_to_chars) (char *, LITTLENUM_TYPE *, int);
187
188 static struct hash_control *alias_hash;
189 static struct hash_control *alias_name_hash;
190 static struct hash_control *secalias_hash;
191 static struct hash_control *secalias_name_hash;
192
193 /* List of chars besides those in app.c:symbol_chars that can start an
194 operand. Used to prevent the scrubber eating vital white-space. */
195 const char ia64_symbol_chars[] = "@?";
196
197 /* Characters which always start a comment. */
198 const char comment_chars[] = "";
199
200 /* Characters which start a comment at the beginning of a line. */
201 const char line_comment_chars[] = "#";
202
203 /* Characters which may be used to separate multiple commands on a
204 single line. */
205 const char line_separator_chars[] = ";{}";
206
207 /* Characters which are used to indicate an exponent in a floating
208 point number. */
209 const char EXP_CHARS[] = "eE";
210
211 /* Characters which mean that a number is a floating point constant,
212 as in 0d1.0. */
213 const char FLT_CHARS[] = "rRsSfFdDxXpP";
214
215 /* ia64-specific option processing: */
216
217 const char *md_shortopts = "m:N:x::";
218
219 struct option md_longopts[] =
220 {
221 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
222 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
223 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
224 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
225 };
226
227 size_t md_longopts_size = sizeof (md_longopts);
228
229 static struct
230 {
231 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
232 struct hash_control *reg_hash; /* register name hash table */
233 struct hash_control *dynreg_hash; /* dynamic register hash table */
234 struct hash_control *const_hash; /* constant hash table */
235 struct hash_control *entry_hash; /* code entry hint hash table */
236
237 /* If X_op is != O_absent, the registername for the instruction's
238 qualifying predicate. If NULL, p0 is assumed for instructions
239 that are predictable. */
240 expressionS qp;
241
242 /* Optimize for which CPU. */
243 enum
244 {
245 itanium1,
246 itanium2
247 } tune;
248
249 /* What to do when hint.b is used. */
250 enum
251 {
252 hint_b_error,
253 hint_b_warning,
254 hint_b_ok
255 } hint_b;
256
257 unsigned int
258 manual_bundling : 1,
259 debug_dv: 1,
260 detect_dv: 1,
261 explicit_mode : 1, /* which mode we're in */
262 default_explicit_mode : 1, /* which mode is the default */
263 mode_explicitly_set : 1, /* was the current mode explicitly set? */
264 auto_align : 1,
265 keep_pending_output : 1;
266
267 /* What to do when something is wrong with unwind directives. */
268 enum
269 {
270 unwind_check_warning,
271 unwind_check_error
272 } unwind_check;
273
274 /* Each bundle consists of up to three instructions. We keep
275 track of four most recent instructions so we can correctly set
276 the end_of_insn_group for the last instruction in a bundle. */
277 int curr_slot;
278 int num_slots_in_use;
279 struct slot
280 {
281 unsigned int
282 end_of_insn_group : 1,
283 manual_bundling_on : 1,
284 manual_bundling_off : 1,
285 loc_directive_seen : 1;
286 signed char user_template; /* user-selected template, if any */
287 unsigned char qp_regno; /* qualifying predicate */
288 /* This duplicates a good fraction of "struct fix" but we
289 can't use a "struct fix" instead since we can't call
290 fix_new_exp() until we know the address of the instruction. */
291 int num_fixups;
292 struct insn_fix
293 {
294 bfd_reloc_code_real_type code;
295 enum ia64_opnd opnd; /* type of operand in need of fix */
296 unsigned int is_pcrel : 1; /* is operand pc-relative? */
297 expressionS expr; /* the value to be inserted */
298 }
299 fixup[2]; /* at most two fixups per insn */
300 struct ia64_opcode *idesc;
301 struct label_fix *label_fixups;
302 struct label_fix *tag_fixups;
303 struct unw_rec_list *unwind_record; /* Unwind directive. */
304 expressionS opnd[6];
305 char *src_file;
306 unsigned int src_line;
307 struct dwarf2_line_info debug_line;
308 }
309 slot[NUM_SLOTS];
310
311 segT last_text_seg;
312
313 struct dynreg
314 {
315 struct dynreg *next; /* next dynamic register */
316 const char *name;
317 unsigned short base; /* the base register number */
318 unsigned short num_regs; /* # of registers in this set */
319 }
320 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
321
322 flagword flags; /* ELF-header flags */
323
324 struct mem_offset {
325 unsigned hint:1; /* is this hint currently valid? */
326 bfd_vma offset; /* mem.offset offset */
327 bfd_vma base; /* mem.offset base */
328 } mem_offset;
329
330 int path; /* number of alt. entry points seen */
331 const char **entry_labels; /* labels of all alternate paths in
332 the current DV-checking block. */
333 int maxpaths; /* size currently allocated for
334 entry_labels */
335
336 int pointer_size; /* size in bytes of a pointer */
337 int pointer_size_shift; /* shift size of a pointer for alignment */
338
339 symbolS *indregsym[IND_RR - IND_CPUID + 1];
340 }
341 md;
342
343 /* These are not const, because they are modified to MMI for non-itanium1
344 targets below. */
345 /* MFI bundle of nops. */
346 static unsigned char le_nop[16] =
347 {
348 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
349 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
350 };
351 /* MFI bundle of nops with stop-bit. */
352 static unsigned char le_nop_stop[16] =
353 {
354 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
355 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
356 };
357
358 /* application registers: */
359
360 #define AR_K0 0
361 #define AR_K7 7
362 #define AR_RSC 16
363 #define AR_BSP 17
364 #define AR_BSPSTORE 18
365 #define AR_RNAT 19
366 #define AR_FCR 21
367 #define AR_EFLAG 24
368 #define AR_CSD 25
369 #define AR_SSD 26
370 #define AR_CFLG 27
371 #define AR_FSR 28
372 #define AR_FIR 29
373 #define AR_FDR 30
374 #define AR_CCV 32
375 #define AR_UNAT 36
376 #define AR_FPSR 40
377 #define AR_ITC 44
378 #define AR_RUC 45
379 #define AR_PFS 64
380 #define AR_LC 65
381 #define AR_EC 66
382
383 static const struct
384 {
385 const char *name;
386 unsigned int regnum;
387 }
388 ar[] =
389 {
390 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
391 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
392 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
393 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
394 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
395 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
396 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
397 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
398 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
399 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
400 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
401 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
402 {"ar.ruc", AR_RUC}, {"ar.pfs", AR_PFS},
403 {"ar.lc", AR_LC}, {"ar.ec", AR_EC},
404 };
405
406 /* control registers: */
407
408 #define CR_DCR 0
409 #define CR_ITM 1
410 #define CR_IVA 2
411 #define CR_PTA 8
412 #define CR_GPTA 9
413 #define CR_IPSR 16
414 #define CR_ISR 17
415 #define CR_IIP 19
416 #define CR_IFA 20
417 #define CR_ITIR 21
418 #define CR_IIPA 22
419 #define CR_IFS 23
420 #define CR_IIM 24
421 #define CR_IHA 25
422 #define CR_IIB0 26
423 #define CR_IIB1 27
424 #define CR_LID 64
425 #define CR_IVR 65
426 #define CR_TPR 66
427 #define CR_EOI 67
428 #define CR_IRR0 68
429 #define CR_IRR3 71
430 #define CR_ITV 72
431 #define CR_PMV 73
432 #define CR_CMCV 74
433 #define CR_LRR0 80
434 #define CR_LRR1 81
435
436 static const struct
437 {
438 const char *name;
439 unsigned int regnum;
440 }
441 cr[] =
442 {
443 {"cr.dcr", CR_DCR},
444 {"cr.itm", CR_ITM},
445 {"cr.iva", CR_IVA},
446 {"cr.pta", CR_PTA},
447 {"cr.gpta", CR_GPTA},
448 {"cr.ipsr", CR_IPSR},
449 {"cr.isr", CR_ISR},
450 {"cr.iip", CR_IIP},
451 {"cr.ifa", CR_IFA},
452 {"cr.itir", CR_ITIR},
453 {"cr.iipa", CR_IIPA},
454 {"cr.ifs", CR_IFS},
455 {"cr.iim", CR_IIM},
456 {"cr.iha", CR_IHA},
457 {"cr.iib0", CR_IIB0},
458 {"cr.iib1", CR_IIB1},
459 {"cr.lid", CR_LID},
460 {"cr.ivr", CR_IVR},
461 {"cr.tpr", CR_TPR},
462 {"cr.eoi", CR_EOI},
463 {"cr.irr0", CR_IRR0},
464 {"cr.irr1", CR_IRR0 + 1},
465 {"cr.irr2", CR_IRR0 + 2},
466 {"cr.irr3", CR_IRR3},
467 {"cr.itv", CR_ITV},
468 {"cr.pmv", CR_PMV},
469 {"cr.cmcv", CR_CMCV},
470 {"cr.lrr0", CR_LRR0},
471 {"cr.lrr1", CR_LRR1}
472 };
473
474 #define PSR_MFL 4
475 #define PSR_IC 13
476 #define PSR_DFL 18
477 #define PSR_CPL 32
478
479 static const struct const_desc
480 {
481 const char *name;
482 valueT value;
483 }
484 const_bits[] =
485 {
486 /* PSR constant masks: */
487
488 /* 0: reserved */
489 {"psr.be", ((valueT) 1) << 1},
490 {"psr.up", ((valueT) 1) << 2},
491 {"psr.ac", ((valueT) 1) << 3},
492 {"psr.mfl", ((valueT) 1) << 4},
493 {"psr.mfh", ((valueT) 1) << 5},
494 /* 6-12: reserved */
495 {"psr.ic", ((valueT) 1) << 13},
496 {"psr.i", ((valueT) 1) << 14},
497 {"psr.pk", ((valueT) 1) << 15},
498 /* 16: reserved */
499 {"psr.dt", ((valueT) 1) << 17},
500 {"psr.dfl", ((valueT) 1) << 18},
501 {"psr.dfh", ((valueT) 1) << 19},
502 {"psr.sp", ((valueT) 1) << 20},
503 {"psr.pp", ((valueT) 1) << 21},
504 {"psr.di", ((valueT) 1) << 22},
505 {"psr.si", ((valueT) 1) << 23},
506 {"psr.db", ((valueT) 1) << 24},
507 {"psr.lp", ((valueT) 1) << 25},
508 {"psr.tb", ((valueT) 1) << 26},
509 {"psr.rt", ((valueT) 1) << 27},
510 /* 28-31: reserved */
511 /* 32-33: cpl (current privilege level) */
512 {"psr.is", ((valueT) 1) << 34},
513 {"psr.mc", ((valueT) 1) << 35},
514 {"psr.it", ((valueT) 1) << 36},
515 {"psr.id", ((valueT) 1) << 37},
516 {"psr.da", ((valueT) 1) << 38},
517 {"psr.dd", ((valueT) 1) << 39},
518 {"psr.ss", ((valueT) 1) << 40},
519 /* 41-42: ri (restart instruction) */
520 {"psr.ed", ((valueT) 1) << 43},
521 {"psr.bn", ((valueT) 1) << 44},
522 };
523
524 /* indirect register-sets/memory: */
525
526 static const struct
527 {
528 const char *name;
529 unsigned int regnum;
530 }
531 indirect_reg[] =
532 {
533 { "CPUID", IND_CPUID },
534 { "cpuid", IND_CPUID },
535 { "dbr", IND_DBR },
536 { "dtr", IND_DTR },
537 { "itr", IND_ITR },
538 { "ibr", IND_IBR },
539 { "msr", IND_MSR },
540 { "pkr", IND_PKR },
541 { "pmc", IND_PMC },
542 { "pmd", IND_PMD },
543 { "dahr", IND_DAHR },
544 { "rr", IND_RR },
545 };
546
547 /* Pseudo functions used to indicate relocation types (these functions
548 start with an at sign (@). */
549 static struct
550 {
551 const char *name;
552 enum pseudo_type
553 {
554 PSEUDO_FUNC_NONE,
555 PSEUDO_FUNC_RELOC,
556 PSEUDO_FUNC_CONST,
557 PSEUDO_FUNC_REG,
558 PSEUDO_FUNC_FLOAT
559 }
560 type;
561 union
562 {
563 unsigned long ival;
564 symbolS *sym;
565 }
566 u;
567 }
568 pseudo_func[] =
569 {
570 /* reloc pseudo functions (these must come first!): */
571 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
572 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
573 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
574 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
575 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
576 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
577 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
578 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
579 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
580 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
581 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
582 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
583 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
584 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
585 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
586 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
587 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
588 #ifdef TE_VMS
589 { "slotcount", PSEUDO_FUNC_RELOC, { 0 } },
590 #endif
591
592 /* mbtype4 constants: */
593 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
594 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
595 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
596 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
597 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
598
599 /* fclass constants: */
600 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
601 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
602 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
603 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
604 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
605 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
606 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
607 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
608 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
609
610 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
611
612 /* hint constants: */
613 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
614 { "priority", PSEUDO_FUNC_CONST, { 0x1 } },
615
616 /* tf constants: */
617 { "clz", PSEUDO_FUNC_CONST, { 32 } },
618 { "mpy", PSEUDO_FUNC_CONST, { 33 } },
619 { "datahints", PSEUDO_FUNC_CONST, { 34 } },
620
621 /* unwind-related constants: */
622 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
623 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
624 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
625 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_GNU } },
626 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
627 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
628 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
629
630 /* unwind-related registers: */
631 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
632 };
633
634 /* 41-bit nop opcodes (one per unit): */
635 static const bfd_vma nop[IA64_NUM_UNITS] =
636 {
637 0x0000000000LL, /* NIL => break 0 */
638 0x0008000000LL, /* I-unit nop */
639 0x0008000000LL, /* M-unit nop */
640 0x4000000000LL, /* B-unit nop */
641 0x0008000000LL, /* F-unit nop */
642 0x0000000000LL, /* L-"unit" nop immediate */
643 0x0008000000LL, /* X-unit nop */
644 };
645
646 /* Can't be `const' as it's passed to input routines (which have the
647 habit of setting temporary sentinels. */
648 static char special_section_name[][20] =
649 {
650 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
651 {".IA_64.unwind"}, {".IA_64.unwind_info"},
652 {".init_array"}, {".fini_array"}
653 };
654
655 /* The best template for a particular sequence of up to three
656 instructions: */
657 #define N IA64_NUM_TYPES
658 static unsigned char best_template[N][N][N];
659 #undef N
660
661 /* Resource dependencies currently in effect */
662 static struct rsrc {
663 int depind; /* dependency index */
664 const struct ia64_dependency *dependency; /* actual dependency */
665 unsigned specific:1, /* is this a specific bit/regno? */
666 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
667 int index; /* specific regno/bit within dependency */
668 int note; /* optional qualifying note (0 if none) */
669 #define STATE_NONE 0
670 #define STATE_STOP 1
671 #define STATE_SRLZ 2
672 int insn_srlz; /* current insn serialization state */
673 int data_srlz; /* current data serialization state */
674 int qp_regno; /* qualifying predicate for this usage */
675 char *file; /* what file marked this dependency */
676 unsigned int line; /* what line marked this dependency */
677 struct mem_offset mem_offset; /* optional memory offset hint */
678 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
679 int path; /* corresponding code entry index */
680 } *regdeps = NULL;
681 static int regdepslen = 0;
682 static int regdepstotlen = 0;
683 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
684 static const char *dv_sem[] = { "none", "implied", "impliedf",
685 "data", "instr", "specific", "stop", "other" };
686 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
687
688 /* Current state of PR mutexation */
689 static struct qpmutex {
690 valueT prmask;
691 int path;
692 } *qp_mutexes = NULL; /* QP mutex bitmasks */
693 static int qp_mutexeslen = 0;
694 static int qp_mutexestotlen = 0;
695 static valueT qp_safe_across_calls = 0;
696
697 /* Current state of PR implications */
698 static struct qp_imply {
699 unsigned p1:6;
700 unsigned p2:6;
701 unsigned p2_branched:1;
702 int path;
703 } *qp_implies = NULL;
704 static int qp_implieslen = 0;
705 static int qp_impliestotlen = 0;
706
707 /* Keep track of static GR values so that indirect register usage can
708 sometimes be tracked. */
709 static struct gr {
710 unsigned known:1;
711 int path;
712 valueT value;
713 } gr_values[128] = {
714 {
715 1,
716 #ifdef INT_MAX
717 INT_MAX,
718 #else
719 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
720 #endif
721 0
722 }
723 };
724
725 /* Remember the alignment frag. */
726 static fragS *align_frag;
727
728 /* These are the routines required to output the various types of
729 unwind records. */
730
731 /* A slot_number is a frag address plus the slot index (0-2). We use the
732 frag address here so that if there is a section switch in the middle of
733 a function, then instructions emitted to a different section are not
734 counted. Since there may be more than one frag for a function, this
735 means we also need to keep track of which frag this address belongs to
736 so we can compute inter-frag distances. This also nicely solves the
737 problem with nops emitted for align directives, which can't easily be
738 counted, but can easily be derived from frag sizes. */
739
740 typedef struct unw_rec_list {
741 unwind_record r;
742 unsigned long slot_number;
743 fragS *slot_frag;
744 struct unw_rec_list *next;
745 } unw_rec_list;
746
747 #define SLOT_NUM_NOT_SET (unsigned)-1
748
749 /* Linked list of saved prologue counts. A very poor
750 implementation of a map from label numbers to prologue counts. */
751 typedef struct label_prologue_count
752 {
753 struct label_prologue_count *next;
754 unsigned long label_number;
755 unsigned int prologue_count;
756 } label_prologue_count;
757
758 typedef struct proc_pending
759 {
760 symbolS *sym;
761 struct proc_pending *next;
762 } proc_pending;
763
764 static struct
765 {
766 /* Maintain a list of unwind entries for the current function. */
767 unw_rec_list *list;
768 unw_rec_list *tail;
769
770 /* Any unwind entries that should be attached to the current slot
771 that an insn is being constructed for. */
772 unw_rec_list *current_entry;
773
774 /* These are used to create the unwind table entry for this function. */
775 proc_pending proc_pending;
776 symbolS *info; /* pointer to unwind info */
777 symbolS *personality_routine;
778 segT saved_text_seg;
779 subsegT saved_text_subseg;
780 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
781
782 /* TRUE if processing unwind directives in a prologue region. */
783 unsigned int prologue : 1;
784 unsigned int prologue_mask : 4;
785 unsigned int prologue_gr : 7;
786 unsigned int body : 1;
787 unsigned int insn : 1;
788 unsigned int prologue_count; /* number of .prologues seen so far */
789 /* Prologue counts at previous .label_state directives. */
790 struct label_prologue_count * saved_prologue_counts;
791
792 /* List of split up .save-s. */
793 unw_p_record *pending_saves;
794 } unwind;
795
796 /* The input value is a negated offset from psp, and specifies an address
797 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
798 must add 16 and divide by 4 to get the encoded value. */
799
800 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
801
802 typedef void (*vbyte_func) (int, char *, char *);
803
804 /* Forward declarations: */
805 static void dot_alias (int);
806 static int parse_operand_and_eval (expressionS *, int);
807 static void emit_one_bundle (void);
808 static bfd_reloc_code_real_type ia64_gen_real_reloc_type (struct symbol *,
809 bfd_reloc_code_real_type);
810 static void insn_group_break (int, int, int);
811 static void add_qp_mutex (valueT);
812 static void add_qp_imply (int, int);
813 static void clear_qp_mutex (valueT);
814 static void clear_qp_implies (valueT, valueT);
815 static void print_dependency (const char *, int);
816 static void instruction_serialization (void);
817 static void data_serialization (void);
818 static void output_R3_format (vbyte_func, unw_record_type, unsigned long);
819 static void output_B3_format (vbyte_func, unsigned long, unsigned long);
820 static void output_B4_format (vbyte_func, unw_record_type, unsigned long);
821 static void free_saved_prologue_counts (void);
822
823 /* Determine if application register REGNUM resides only in the integer
824 unit (as opposed to the memory unit). */
825 static int
ar_is_only_in_integer_unit(int reg)826 ar_is_only_in_integer_unit (int reg)
827 {
828 reg -= REG_AR;
829 return reg >= 64 && reg <= 111;
830 }
831
832 /* Determine if application register REGNUM resides only in the memory
833 unit (as opposed to the integer unit). */
834 static int
ar_is_only_in_memory_unit(int reg)835 ar_is_only_in_memory_unit (int reg)
836 {
837 reg -= REG_AR;
838 return reg >= 0 && reg <= 47;
839 }
840
841 /* Switch to section NAME and create section if necessary. It's
842 rather ugly that we have to manipulate input_line_pointer but I
843 don't see any other way to accomplish the same thing without
844 changing obj-elf.c (which may be the Right Thing, in the end). */
845 static void
set_section(char * name)846 set_section (char *name)
847 {
848 char *saved_input_line_pointer;
849
850 saved_input_line_pointer = input_line_pointer;
851 input_line_pointer = name;
852 obj_elf_section (0);
853 input_line_pointer = saved_input_line_pointer;
854 }
855
856 /* Map 's' to SHF_IA_64_SHORT. */
857
858 bfd_vma
ia64_elf_section_letter(int letter,char ** ptr_msg)859 ia64_elf_section_letter (int letter, char **ptr_msg)
860 {
861 if (letter == 's')
862 return SHF_IA_64_SHORT;
863 else if (letter == 'o')
864 return SHF_LINK_ORDER;
865 #ifdef TE_VMS
866 else if (letter == 'O')
867 return SHF_IA_64_VMS_OVERLAID;
868 else if (letter == 'g')
869 return SHF_IA_64_VMS_GLOBAL;
870 #endif
871
872 *ptr_msg = _("bad .section directive: want a,o,s,w,x,M,S,G,T in string");
873 return -1;
874 }
875
876 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
877
878 flagword
ia64_elf_section_flags(flagword flags,bfd_vma attr,int type ATTRIBUTE_UNUSED)879 ia64_elf_section_flags (flagword flags,
880 bfd_vma attr,
881 int type ATTRIBUTE_UNUSED)
882 {
883 if (attr & SHF_IA_64_SHORT)
884 flags |= SEC_SMALL_DATA;
885 return flags;
886 }
887
888 int
ia64_elf_section_type(const char * str,size_t len)889 ia64_elf_section_type (const char *str, size_t len)
890 {
891 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
892
893 if (STREQ (ELF_STRING_ia64_unwind_info))
894 return SHT_PROGBITS;
895
896 if (STREQ (ELF_STRING_ia64_unwind_info_once))
897 return SHT_PROGBITS;
898
899 if (STREQ (ELF_STRING_ia64_unwind))
900 return SHT_IA_64_UNWIND;
901
902 if (STREQ (ELF_STRING_ia64_unwind_once))
903 return SHT_IA_64_UNWIND;
904
905 if (STREQ ("unwind"))
906 return SHT_IA_64_UNWIND;
907
908 return -1;
909 #undef STREQ
910 }
911
912 static unsigned int
set_regstack(unsigned int ins,unsigned int locs,unsigned int outs,unsigned int rots)913 set_regstack (unsigned int ins,
914 unsigned int locs,
915 unsigned int outs,
916 unsigned int rots)
917 {
918 /* Size of frame. */
919 unsigned int sof;
920
921 sof = ins + locs + outs;
922 if (sof > 96)
923 {
924 as_bad (_("Size of frame exceeds maximum of 96 registers"));
925 return 0;
926 }
927 if (rots > sof)
928 {
929 as_warn (_("Size of rotating registers exceeds frame size"));
930 return 0;
931 }
932 md.in.base = REG_GR + 32;
933 md.loc.base = md.in.base + ins;
934 md.out.base = md.loc.base + locs;
935
936 md.in.num_regs = ins;
937 md.loc.num_regs = locs;
938 md.out.num_regs = outs;
939 md.rot.num_regs = rots;
940 return sof;
941 }
942
943 void
ia64_flush_insns(void)944 ia64_flush_insns (void)
945 {
946 struct label_fix *lfix;
947 segT saved_seg;
948 subsegT saved_subseg;
949 unw_rec_list *ptr;
950 bfd_boolean mark;
951
952 if (!md.last_text_seg)
953 return;
954
955 saved_seg = now_seg;
956 saved_subseg = now_subseg;
957
958 subseg_set (md.last_text_seg, 0);
959
960 while (md.num_slots_in_use > 0)
961 emit_one_bundle (); /* force out queued instructions */
962
963 /* In case there are labels following the last instruction, resolve
964 those now. */
965 mark = FALSE;
966 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
967 {
968 symbol_set_value_now (lfix->sym);
969 mark |= lfix->dw2_mark_labels;
970 }
971 if (mark)
972 {
973 dwarf2_where (&CURR_SLOT.debug_line);
974 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
975 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
976 dwarf2_consume_line_info ();
977 }
978 CURR_SLOT.label_fixups = 0;
979
980 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
981 symbol_set_value_now (lfix->sym);
982 CURR_SLOT.tag_fixups = 0;
983
984 /* In case there are unwind directives following the last instruction,
985 resolve those now. We only handle prologue, body, and endp directives
986 here. Give an error for others. */
987 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
988 {
989 switch (ptr->r.type)
990 {
991 case prologue:
992 case prologue_gr:
993 case body:
994 case endp:
995 ptr->slot_number = (unsigned long) frag_more (0);
996 ptr->slot_frag = frag_now;
997 break;
998
999 /* Allow any record which doesn't have a "t" field (i.e.,
1000 doesn't relate to a particular instruction). */
1001 case unwabi:
1002 case br_gr:
1003 case copy_state:
1004 case fr_mem:
1005 case frgr_mem:
1006 case gr_gr:
1007 case gr_mem:
1008 case label_state:
1009 case rp_br:
1010 case spill_base:
1011 case spill_mask:
1012 /* nothing */
1013 break;
1014
1015 default:
1016 as_bad (_("Unwind directive not followed by an instruction."));
1017 break;
1018 }
1019 }
1020 unwind.current_entry = NULL;
1021
1022 subseg_set (saved_seg, saved_subseg);
1023
1024 if (md.qp.X_op == O_register)
1025 as_bad (_("qualifying predicate not followed by instruction"));
1026 }
1027
1028 static void
ia64_do_align(int nbytes)1029 ia64_do_align (int nbytes)
1030 {
1031 char *saved_input_line_pointer = input_line_pointer;
1032
1033 input_line_pointer = "";
1034 s_align_bytes (nbytes);
1035 input_line_pointer = saved_input_line_pointer;
1036 }
1037
1038 void
ia64_cons_align(int nbytes)1039 ia64_cons_align (int nbytes)
1040 {
1041 if (md.auto_align)
1042 {
1043 char *saved_input_line_pointer = input_line_pointer;
1044 input_line_pointer = "";
1045 s_align_bytes (nbytes);
1046 input_line_pointer = saved_input_line_pointer;
1047 }
1048 }
1049
1050 #ifdef TE_VMS
1051
1052 /* .vms_common section, symbol, size, alignment */
1053
1054 static void
obj_elf_vms_common(int ignore ATTRIBUTE_UNUSED)1055 obj_elf_vms_common (int ignore ATTRIBUTE_UNUSED)
1056 {
1057 char *sec_name;
1058 char *sym_name;
1059 char c;
1060 offsetT size;
1061 offsetT cur_size;
1062 offsetT temp;
1063 symbolS *symbolP;
1064 segT current_seg = now_seg;
1065 subsegT current_subseg = now_subseg;
1066 offsetT log_align;
1067
1068 /* Section name. */
1069 sec_name = obj_elf_section_name ();
1070 if (sec_name == NULL)
1071 return;
1072
1073 /* Symbol name. */
1074 SKIP_WHITESPACE ();
1075 if (*input_line_pointer == ',')
1076 {
1077 input_line_pointer++;
1078 SKIP_WHITESPACE ();
1079 }
1080 else
1081 {
1082 as_bad (_("expected ',' after section name"));
1083 ignore_rest_of_line ();
1084 return;
1085 }
1086
1087 sym_name = input_line_pointer;
1088 c = get_symbol_end ();
1089
1090 if (input_line_pointer == sym_name)
1091 {
1092 *input_line_pointer = c;
1093 as_bad (_("expected symbol name"));
1094 ignore_rest_of_line ();
1095 return;
1096 }
1097
1098 symbolP = symbol_find_or_make (sym_name);
1099 *input_line_pointer = c;
1100
1101 if ((S_IS_DEFINED (symbolP) || symbol_equated_p (symbolP))
1102 && !S_IS_COMMON (symbolP))
1103 {
1104 as_bad (_("Ignoring attempt to re-define symbol"));
1105 ignore_rest_of_line ();
1106 return;
1107 }
1108
1109 /* Symbol size. */
1110 SKIP_WHITESPACE ();
1111 if (*input_line_pointer == ',')
1112 {
1113 input_line_pointer++;
1114 SKIP_WHITESPACE ();
1115 }
1116 else
1117 {
1118 as_bad (_("expected ',' after symbol name"));
1119 ignore_rest_of_line ();
1120 return;
1121 }
1122
1123 temp = get_absolute_expression ();
1124 size = temp;
1125 size &= ((offsetT) 2 << (stdoutput->arch_info->bits_per_address - 1)) - 1;
1126 if (temp != size)
1127 {
1128 as_warn (_("size (%ld) out of range, ignored"), (long) temp);
1129 ignore_rest_of_line ();
1130 return;
1131 }
1132
1133 /* Alignment. */
1134 SKIP_WHITESPACE ();
1135 if (*input_line_pointer == ',')
1136 {
1137 input_line_pointer++;
1138 SKIP_WHITESPACE ();
1139 }
1140 else
1141 {
1142 as_bad (_("expected ',' after symbol size"));
1143 ignore_rest_of_line ();
1144 return;
1145 }
1146
1147 log_align = get_absolute_expression ();
1148
1149 demand_empty_rest_of_line ();
1150
1151 obj_elf_change_section
1152 (sec_name, SHT_NOBITS,
1153 SHF_ALLOC | SHF_WRITE | SHF_IA_64_VMS_OVERLAID | SHF_IA_64_VMS_GLOBAL,
1154 0, NULL, 1, 0);
1155
1156 S_SET_VALUE (symbolP, 0);
1157 S_SET_SIZE (symbolP, size);
1158 S_SET_EXTERNAL (symbolP);
1159 S_SET_SEGMENT (symbolP, now_seg);
1160
1161 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
1162
1163 record_alignment (now_seg, log_align);
1164
1165 cur_size = bfd_section_size (stdoutput, now_seg);
1166 if ((int) size > cur_size)
1167 {
1168 char *pfrag
1169 = frag_var (rs_fill, 1, 1, (relax_substateT)0, NULL,
1170 (valueT)size - (valueT)cur_size, NULL);
1171 *pfrag = 0;
1172 bfd_section_size (stdoutput, now_seg) = size;
1173 }
1174
1175 /* Switch back to current segment. */
1176 subseg_set (current_seg, current_subseg);
1177
1178 #ifdef md_elf_section_change_hook
1179 md_elf_section_change_hook ();
1180 #endif
1181 }
1182
1183 #endif /* TE_VMS */
1184
1185 /* Output COUNT bytes to a memory location. */
1186 static char *vbyte_mem_ptr = NULL;
1187
1188 static void
output_vbyte_mem(int count,char * ptr,char * comment ATTRIBUTE_UNUSED)1189 output_vbyte_mem (int count, char *ptr, char *comment ATTRIBUTE_UNUSED)
1190 {
1191 int x;
1192 if (vbyte_mem_ptr == NULL)
1193 abort ();
1194
1195 if (count == 0)
1196 return;
1197 for (x = 0; x < count; x++)
1198 *(vbyte_mem_ptr++) = ptr[x];
1199 }
1200
1201 /* Count the number of bytes required for records. */
1202 static int vbyte_count = 0;
1203 static void
count_output(int count,char * ptr ATTRIBUTE_UNUSED,char * comment ATTRIBUTE_UNUSED)1204 count_output (int count,
1205 char *ptr ATTRIBUTE_UNUSED,
1206 char *comment ATTRIBUTE_UNUSED)
1207 {
1208 vbyte_count += count;
1209 }
1210
1211 static void
output_R1_format(vbyte_func f,unw_record_type rtype,int rlen)1212 output_R1_format (vbyte_func f, unw_record_type rtype, int rlen)
1213 {
1214 int r = 0;
1215 char byte;
1216 if (rlen > 0x1f)
1217 {
1218 output_R3_format (f, rtype, rlen);
1219 return;
1220 }
1221
1222 if (rtype == body)
1223 r = 1;
1224 else if (rtype != prologue)
1225 as_bad (_("record type is not valid"));
1226
1227 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1228 (*f) (1, &byte, NULL);
1229 }
1230
1231 static void
output_R2_format(vbyte_func f,int mask,int grsave,unsigned long rlen)1232 output_R2_format (vbyte_func f, int mask, int grsave, unsigned long rlen)
1233 {
1234 char bytes[20];
1235 int count = 2;
1236 mask = (mask & 0x0f);
1237 grsave = (grsave & 0x7f);
1238
1239 bytes[0] = (UNW_R2 | (mask >> 1));
1240 bytes[1] = (((mask & 0x01) << 7) | grsave);
1241 count += output_leb128 (bytes + 2, rlen, 0);
1242 (*f) (count, bytes, NULL);
1243 }
1244
1245 static void
output_R3_format(vbyte_func f,unw_record_type rtype,unsigned long rlen)1246 output_R3_format (vbyte_func f, unw_record_type rtype, unsigned long rlen)
1247 {
1248 int r = 0, count;
1249 char bytes[20];
1250 if (rlen <= 0x1f)
1251 {
1252 output_R1_format (f, rtype, rlen);
1253 return;
1254 }
1255
1256 if (rtype == body)
1257 r = 1;
1258 else if (rtype != prologue)
1259 as_bad (_("record type is not valid"));
1260 bytes[0] = (UNW_R3 | r);
1261 count = output_leb128 (bytes + 1, rlen, 0);
1262 (*f) (count + 1, bytes, NULL);
1263 }
1264
1265 static void
output_P1_format(vbyte_func f,int brmask)1266 output_P1_format (vbyte_func f, int brmask)
1267 {
1268 char byte;
1269 byte = UNW_P1 | (brmask & 0x1f);
1270 (*f) (1, &byte, NULL);
1271 }
1272
1273 static void
output_P2_format(vbyte_func f,int brmask,int gr)1274 output_P2_format (vbyte_func f, int brmask, int gr)
1275 {
1276 char bytes[2];
1277 brmask = (brmask & 0x1f);
1278 bytes[0] = UNW_P2 | (brmask >> 1);
1279 bytes[1] = (((brmask & 1) << 7) | gr);
1280 (*f) (2, bytes, NULL);
1281 }
1282
1283 static void
output_P3_format(vbyte_func f,unw_record_type rtype,int reg)1284 output_P3_format (vbyte_func f, unw_record_type rtype, int reg)
1285 {
1286 char bytes[2];
1287 int r = 0;
1288 reg = (reg & 0x7f);
1289 switch (rtype)
1290 {
1291 case psp_gr:
1292 r = 0;
1293 break;
1294 case rp_gr:
1295 r = 1;
1296 break;
1297 case pfs_gr:
1298 r = 2;
1299 break;
1300 case preds_gr:
1301 r = 3;
1302 break;
1303 case unat_gr:
1304 r = 4;
1305 break;
1306 case lc_gr:
1307 r = 5;
1308 break;
1309 case rp_br:
1310 r = 6;
1311 break;
1312 case rnat_gr:
1313 r = 7;
1314 break;
1315 case bsp_gr:
1316 r = 8;
1317 break;
1318 case bspstore_gr:
1319 r = 9;
1320 break;
1321 case fpsr_gr:
1322 r = 10;
1323 break;
1324 case priunat_gr:
1325 r = 11;
1326 break;
1327 default:
1328 as_bad (_("Invalid record type for P3 format."));
1329 }
1330 bytes[0] = (UNW_P3 | (r >> 1));
1331 bytes[1] = (((r & 1) << 7) | reg);
1332 (*f) (2, bytes, NULL);
1333 }
1334
1335 static void
output_P4_format(vbyte_func f,unsigned char * imask,unsigned long imask_size)1336 output_P4_format (vbyte_func f, unsigned char *imask, unsigned long imask_size)
1337 {
1338 imask[0] = UNW_P4;
1339 (*f) (imask_size, (char *) imask, NULL);
1340 }
1341
1342 static void
output_P5_format(vbyte_func f,int grmask,unsigned long frmask)1343 output_P5_format (vbyte_func f, int grmask, unsigned long frmask)
1344 {
1345 char bytes[4];
1346 grmask = (grmask & 0x0f);
1347
1348 bytes[0] = UNW_P5;
1349 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1350 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1351 bytes[3] = (frmask & 0x000000ff);
1352 (*f) (4, bytes, NULL);
1353 }
1354
1355 static void
output_P6_format(vbyte_func f,unw_record_type rtype,int rmask)1356 output_P6_format (vbyte_func f, unw_record_type rtype, int rmask)
1357 {
1358 char byte;
1359 int r = 0;
1360
1361 if (rtype == gr_mem)
1362 r = 1;
1363 else if (rtype != fr_mem)
1364 as_bad (_("Invalid record type for format P6"));
1365 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1366 (*f) (1, &byte, NULL);
1367 }
1368
1369 static void
output_P7_format(vbyte_func f,unw_record_type rtype,unsigned long w1,unsigned long w2)1370 output_P7_format (vbyte_func f,
1371 unw_record_type rtype,
1372 unsigned long w1,
1373 unsigned long w2)
1374 {
1375 char bytes[20];
1376 int count = 1;
1377 int r = 0;
1378 count += output_leb128 (bytes + 1, w1, 0);
1379 switch (rtype)
1380 {
1381 case mem_stack_f:
1382 r = 0;
1383 count += output_leb128 (bytes + count, w2 >> 4, 0);
1384 break;
1385 case mem_stack_v:
1386 r = 1;
1387 break;
1388 case spill_base:
1389 r = 2;
1390 break;
1391 case psp_sprel:
1392 r = 3;
1393 break;
1394 case rp_when:
1395 r = 4;
1396 break;
1397 case rp_psprel:
1398 r = 5;
1399 break;
1400 case pfs_when:
1401 r = 6;
1402 break;
1403 case pfs_psprel:
1404 r = 7;
1405 break;
1406 case preds_when:
1407 r = 8;
1408 break;
1409 case preds_psprel:
1410 r = 9;
1411 break;
1412 case lc_when:
1413 r = 10;
1414 break;
1415 case lc_psprel:
1416 r = 11;
1417 break;
1418 case unat_when:
1419 r = 12;
1420 break;
1421 case unat_psprel:
1422 r = 13;
1423 break;
1424 case fpsr_when:
1425 r = 14;
1426 break;
1427 case fpsr_psprel:
1428 r = 15;
1429 break;
1430 default:
1431 break;
1432 }
1433 bytes[0] = (UNW_P7 | r);
1434 (*f) (count, bytes, NULL);
1435 }
1436
1437 static void
output_P8_format(vbyte_func f,unw_record_type rtype,unsigned long t)1438 output_P8_format (vbyte_func f, unw_record_type rtype, unsigned long t)
1439 {
1440 char bytes[20];
1441 int r = 0;
1442 int count = 2;
1443 bytes[0] = UNW_P8;
1444 switch (rtype)
1445 {
1446 case rp_sprel:
1447 r = 1;
1448 break;
1449 case pfs_sprel:
1450 r = 2;
1451 break;
1452 case preds_sprel:
1453 r = 3;
1454 break;
1455 case lc_sprel:
1456 r = 4;
1457 break;
1458 case unat_sprel:
1459 r = 5;
1460 break;
1461 case fpsr_sprel:
1462 r = 6;
1463 break;
1464 case bsp_when:
1465 r = 7;
1466 break;
1467 case bsp_psprel:
1468 r = 8;
1469 break;
1470 case bsp_sprel:
1471 r = 9;
1472 break;
1473 case bspstore_when:
1474 r = 10;
1475 break;
1476 case bspstore_psprel:
1477 r = 11;
1478 break;
1479 case bspstore_sprel:
1480 r = 12;
1481 break;
1482 case rnat_when:
1483 r = 13;
1484 break;
1485 case rnat_psprel:
1486 r = 14;
1487 break;
1488 case rnat_sprel:
1489 r = 15;
1490 break;
1491 case priunat_when_gr:
1492 r = 16;
1493 break;
1494 case priunat_psprel:
1495 r = 17;
1496 break;
1497 case priunat_sprel:
1498 r = 18;
1499 break;
1500 case priunat_when_mem:
1501 r = 19;
1502 break;
1503 default:
1504 break;
1505 }
1506 bytes[1] = r;
1507 count += output_leb128 (bytes + 2, t, 0);
1508 (*f) (count, bytes, NULL);
1509 }
1510
1511 static void
output_P9_format(vbyte_func f,int grmask,int gr)1512 output_P9_format (vbyte_func f, int grmask, int gr)
1513 {
1514 char bytes[3];
1515 bytes[0] = UNW_P9;
1516 bytes[1] = (grmask & 0x0f);
1517 bytes[2] = (gr & 0x7f);
1518 (*f) (3, bytes, NULL);
1519 }
1520
1521 static void
output_P10_format(vbyte_func f,int abi,int context)1522 output_P10_format (vbyte_func f, int abi, int context)
1523 {
1524 char bytes[3];
1525 bytes[0] = UNW_P10;
1526 bytes[1] = (abi & 0xff);
1527 bytes[2] = (context & 0xff);
1528 (*f) (3, bytes, NULL);
1529 }
1530
1531 static void
output_B1_format(vbyte_func f,unw_record_type rtype,unsigned long label)1532 output_B1_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1533 {
1534 char byte;
1535 int r = 0;
1536 if (label > 0x1f)
1537 {
1538 output_B4_format (f, rtype, label);
1539 return;
1540 }
1541 if (rtype == copy_state)
1542 r = 1;
1543 else if (rtype != label_state)
1544 as_bad (_("Invalid record type for format B1"));
1545
1546 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1547 (*f) (1, &byte, NULL);
1548 }
1549
1550 static void
output_B2_format(vbyte_func f,unsigned long ecount,unsigned long t)1551 output_B2_format (vbyte_func f, unsigned long ecount, unsigned long t)
1552 {
1553 char bytes[20];
1554 int count = 1;
1555 if (ecount > 0x1f)
1556 {
1557 output_B3_format (f, ecount, t);
1558 return;
1559 }
1560 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1561 count += output_leb128 (bytes + 1, t, 0);
1562 (*f) (count, bytes, NULL);
1563 }
1564
1565 static void
output_B3_format(vbyte_func f,unsigned long ecount,unsigned long t)1566 output_B3_format (vbyte_func f, unsigned long ecount, unsigned long t)
1567 {
1568 char bytes[20];
1569 int count = 1;
1570 if (ecount <= 0x1f)
1571 {
1572 output_B2_format (f, ecount, t);
1573 return;
1574 }
1575 bytes[0] = UNW_B3;
1576 count += output_leb128 (bytes + 1, t, 0);
1577 count += output_leb128 (bytes + count, ecount, 0);
1578 (*f) (count, bytes, NULL);
1579 }
1580
1581 static void
output_B4_format(vbyte_func f,unw_record_type rtype,unsigned long label)1582 output_B4_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1583 {
1584 char bytes[20];
1585 int r = 0;
1586 int count = 1;
1587 if (label <= 0x1f)
1588 {
1589 output_B1_format (f, rtype, label);
1590 return;
1591 }
1592
1593 if (rtype == copy_state)
1594 r = 1;
1595 else if (rtype != label_state)
1596 as_bad (_("Invalid record type for format B1"));
1597
1598 bytes[0] = (UNW_B4 | (r << 3));
1599 count += output_leb128 (bytes + 1, label, 0);
1600 (*f) (count, bytes, NULL);
1601 }
1602
1603 static char
format_ab_reg(int ab,int reg)1604 format_ab_reg (int ab, int reg)
1605 {
1606 int ret;
1607 ab = (ab & 3);
1608 reg = (reg & 0x1f);
1609 ret = (ab << 5) | reg;
1610 return ret;
1611 }
1612
1613 static void
output_X1_format(vbyte_func f,unw_record_type rtype,int ab,int reg,unsigned long t,unsigned long w1)1614 output_X1_format (vbyte_func f,
1615 unw_record_type rtype,
1616 int ab,
1617 int reg,
1618 unsigned long t,
1619 unsigned long w1)
1620 {
1621 char bytes[20];
1622 int r = 0;
1623 int count = 2;
1624 bytes[0] = UNW_X1;
1625
1626 if (rtype == spill_sprel)
1627 r = 1;
1628 else if (rtype != spill_psprel)
1629 as_bad (_("Invalid record type for format X1"));
1630 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1631 count += output_leb128 (bytes + 2, t, 0);
1632 count += output_leb128 (bytes + count, w1, 0);
1633 (*f) (count, bytes, NULL);
1634 }
1635
1636 static void
output_X2_format(vbyte_func f,int ab,int reg,int x,int y,int treg,unsigned long t)1637 output_X2_format (vbyte_func f,
1638 int ab,
1639 int reg,
1640 int x,
1641 int y,
1642 int treg,
1643 unsigned long t)
1644 {
1645 char bytes[20];
1646 int count = 3;
1647 bytes[0] = UNW_X2;
1648 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1649 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1650 count += output_leb128 (bytes + 3, t, 0);
1651 (*f) (count, bytes, NULL);
1652 }
1653
1654 static void
output_X3_format(vbyte_func f,unw_record_type rtype,int qp,int ab,int reg,unsigned long t,unsigned long w1)1655 output_X3_format (vbyte_func f,
1656 unw_record_type rtype,
1657 int qp,
1658 int ab,
1659 int reg,
1660 unsigned long t,
1661 unsigned long w1)
1662 {
1663 char bytes[20];
1664 int r = 0;
1665 int count = 3;
1666 bytes[0] = UNW_X3;
1667
1668 if (rtype == spill_sprel_p)
1669 r = 1;
1670 else if (rtype != spill_psprel_p)
1671 as_bad (_("Invalid record type for format X3"));
1672 bytes[1] = ((r << 7) | (qp & 0x3f));
1673 bytes[2] = format_ab_reg (ab, reg);
1674 count += output_leb128 (bytes + 3, t, 0);
1675 count += output_leb128 (bytes + count, w1, 0);
1676 (*f) (count, bytes, NULL);
1677 }
1678
1679 static void
output_X4_format(vbyte_func f,int qp,int ab,int reg,int x,int y,int treg,unsigned long t)1680 output_X4_format (vbyte_func f,
1681 int qp,
1682 int ab,
1683 int reg,
1684 int x,
1685 int y,
1686 int treg,
1687 unsigned long t)
1688 {
1689 char bytes[20];
1690 int count = 4;
1691 bytes[0] = UNW_X4;
1692 bytes[1] = (qp & 0x3f);
1693 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1694 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1695 count += output_leb128 (bytes + 4, t, 0);
1696 (*f) (count, bytes, NULL);
1697 }
1698
1699 /* This function checks whether there are any outstanding .save-s and
1700 discards them if so. */
1701
1702 static void
check_pending_save(void)1703 check_pending_save (void)
1704 {
1705 if (unwind.pending_saves)
1706 {
1707 unw_rec_list *cur, *prev;
1708
1709 as_warn (_("Previous .save incomplete"));
1710 for (cur = unwind.list, prev = NULL; cur; )
1711 if (&cur->r.record.p == unwind.pending_saves)
1712 {
1713 if (prev)
1714 prev->next = cur->next;
1715 else
1716 unwind.list = cur->next;
1717 if (cur == unwind.tail)
1718 unwind.tail = prev;
1719 if (cur == unwind.current_entry)
1720 unwind.current_entry = cur->next;
1721 /* Don't free the first discarded record, it's being used as
1722 terminator for (currently) br_gr and gr_gr processing, and
1723 also prevents leaving a dangling pointer to it in its
1724 predecessor. */
1725 cur->r.record.p.grmask = 0;
1726 cur->r.record.p.brmask = 0;
1727 cur->r.record.p.frmask = 0;
1728 prev = cur->r.record.p.next;
1729 cur->r.record.p.next = NULL;
1730 cur = prev;
1731 break;
1732 }
1733 else
1734 {
1735 prev = cur;
1736 cur = cur->next;
1737 }
1738 while (cur)
1739 {
1740 prev = cur;
1741 cur = cur->r.record.p.next;
1742 free (prev);
1743 }
1744 unwind.pending_saves = NULL;
1745 }
1746 }
1747
1748 /* This function allocates a record list structure, and initializes fields. */
1749
1750 static unw_rec_list *
alloc_record(unw_record_type t)1751 alloc_record (unw_record_type t)
1752 {
1753 unw_rec_list *ptr;
1754 ptr = xmalloc (sizeof (*ptr));
1755 memset (ptr, 0, sizeof (*ptr));
1756 ptr->slot_number = SLOT_NUM_NOT_SET;
1757 ptr->r.type = t;
1758 return ptr;
1759 }
1760
1761 /* Dummy unwind record used for calculating the length of the last prologue or
1762 body region. */
1763
1764 static unw_rec_list *
output_endp(void)1765 output_endp (void)
1766 {
1767 unw_rec_list *ptr = alloc_record (endp);
1768 return ptr;
1769 }
1770
1771 static unw_rec_list *
output_prologue(void)1772 output_prologue (void)
1773 {
1774 unw_rec_list *ptr = alloc_record (prologue);
1775 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1776 return ptr;
1777 }
1778
1779 static unw_rec_list *
output_prologue_gr(unsigned int saved_mask,unsigned int reg)1780 output_prologue_gr (unsigned int saved_mask, unsigned int reg)
1781 {
1782 unw_rec_list *ptr = alloc_record (prologue_gr);
1783 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1784 ptr->r.record.r.grmask = saved_mask;
1785 ptr->r.record.r.grsave = reg;
1786 return ptr;
1787 }
1788
1789 static unw_rec_list *
output_body(void)1790 output_body (void)
1791 {
1792 unw_rec_list *ptr = alloc_record (body);
1793 return ptr;
1794 }
1795
1796 static unw_rec_list *
output_mem_stack_f(unsigned int size)1797 output_mem_stack_f (unsigned int size)
1798 {
1799 unw_rec_list *ptr = alloc_record (mem_stack_f);
1800 ptr->r.record.p.size = size;
1801 return ptr;
1802 }
1803
1804 static unw_rec_list *
output_mem_stack_v(void)1805 output_mem_stack_v (void)
1806 {
1807 unw_rec_list *ptr = alloc_record (mem_stack_v);
1808 return ptr;
1809 }
1810
1811 static unw_rec_list *
output_psp_gr(unsigned int gr)1812 output_psp_gr (unsigned int gr)
1813 {
1814 unw_rec_list *ptr = alloc_record (psp_gr);
1815 ptr->r.record.p.r.gr = gr;
1816 return ptr;
1817 }
1818
1819 static unw_rec_list *
output_psp_sprel(unsigned int offset)1820 output_psp_sprel (unsigned int offset)
1821 {
1822 unw_rec_list *ptr = alloc_record (psp_sprel);
1823 ptr->r.record.p.off.sp = offset / 4;
1824 return ptr;
1825 }
1826
1827 static unw_rec_list *
output_rp_when(void)1828 output_rp_when (void)
1829 {
1830 unw_rec_list *ptr = alloc_record (rp_when);
1831 return ptr;
1832 }
1833
1834 static unw_rec_list *
output_rp_gr(unsigned int gr)1835 output_rp_gr (unsigned int gr)
1836 {
1837 unw_rec_list *ptr = alloc_record (rp_gr);
1838 ptr->r.record.p.r.gr = gr;
1839 return ptr;
1840 }
1841
1842 static unw_rec_list *
output_rp_br(unsigned int br)1843 output_rp_br (unsigned int br)
1844 {
1845 unw_rec_list *ptr = alloc_record (rp_br);
1846 ptr->r.record.p.r.br = br;
1847 return ptr;
1848 }
1849
1850 static unw_rec_list *
output_rp_psprel(unsigned int offset)1851 output_rp_psprel (unsigned int offset)
1852 {
1853 unw_rec_list *ptr = alloc_record (rp_psprel);
1854 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1855 return ptr;
1856 }
1857
1858 static unw_rec_list *
output_rp_sprel(unsigned int offset)1859 output_rp_sprel (unsigned int offset)
1860 {
1861 unw_rec_list *ptr = alloc_record (rp_sprel);
1862 ptr->r.record.p.off.sp = offset / 4;
1863 return ptr;
1864 }
1865
1866 static unw_rec_list *
output_pfs_when(void)1867 output_pfs_when (void)
1868 {
1869 unw_rec_list *ptr = alloc_record (pfs_when);
1870 return ptr;
1871 }
1872
1873 static unw_rec_list *
output_pfs_gr(unsigned int gr)1874 output_pfs_gr (unsigned int gr)
1875 {
1876 unw_rec_list *ptr = alloc_record (pfs_gr);
1877 ptr->r.record.p.r.gr = gr;
1878 return ptr;
1879 }
1880
1881 static unw_rec_list *
output_pfs_psprel(unsigned int offset)1882 output_pfs_psprel (unsigned int offset)
1883 {
1884 unw_rec_list *ptr = alloc_record (pfs_psprel);
1885 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1886 return ptr;
1887 }
1888
1889 static unw_rec_list *
output_pfs_sprel(unsigned int offset)1890 output_pfs_sprel (unsigned int offset)
1891 {
1892 unw_rec_list *ptr = alloc_record (pfs_sprel);
1893 ptr->r.record.p.off.sp = offset / 4;
1894 return ptr;
1895 }
1896
1897 static unw_rec_list *
output_preds_when(void)1898 output_preds_when (void)
1899 {
1900 unw_rec_list *ptr = alloc_record (preds_when);
1901 return ptr;
1902 }
1903
1904 static unw_rec_list *
output_preds_gr(unsigned int gr)1905 output_preds_gr (unsigned int gr)
1906 {
1907 unw_rec_list *ptr = alloc_record (preds_gr);
1908 ptr->r.record.p.r.gr = gr;
1909 return ptr;
1910 }
1911
1912 static unw_rec_list *
output_preds_psprel(unsigned int offset)1913 output_preds_psprel (unsigned int offset)
1914 {
1915 unw_rec_list *ptr = alloc_record (preds_psprel);
1916 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1917 return ptr;
1918 }
1919
1920 static unw_rec_list *
output_preds_sprel(unsigned int offset)1921 output_preds_sprel (unsigned int offset)
1922 {
1923 unw_rec_list *ptr = alloc_record (preds_sprel);
1924 ptr->r.record.p.off.sp = offset / 4;
1925 return ptr;
1926 }
1927
1928 static unw_rec_list *
output_fr_mem(unsigned int mask)1929 output_fr_mem (unsigned int mask)
1930 {
1931 unw_rec_list *ptr = alloc_record (fr_mem);
1932 unw_rec_list *cur = ptr;
1933
1934 ptr->r.record.p.frmask = mask;
1935 unwind.pending_saves = &ptr->r.record.p;
1936 for (;;)
1937 {
1938 unw_rec_list *prev = cur;
1939
1940 /* Clear least significant set bit. */
1941 mask &= ~(mask & (~mask + 1));
1942 if (!mask)
1943 return ptr;
1944 cur = alloc_record (fr_mem);
1945 cur->r.record.p.frmask = mask;
1946 /* Retain only least significant bit. */
1947 prev->r.record.p.frmask ^= mask;
1948 prev->r.record.p.next = cur;
1949 }
1950 }
1951
1952 static unw_rec_list *
output_frgr_mem(unsigned int gr_mask,unsigned int fr_mask)1953 output_frgr_mem (unsigned int gr_mask, unsigned int fr_mask)
1954 {
1955 unw_rec_list *ptr = alloc_record (frgr_mem);
1956 unw_rec_list *cur = ptr;
1957
1958 unwind.pending_saves = &cur->r.record.p;
1959 cur->r.record.p.frmask = fr_mask;
1960 while (fr_mask)
1961 {
1962 unw_rec_list *prev = cur;
1963
1964 /* Clear least significant set bit. */
1965 fr_mask &= ~(fr_mask & (~fr_mask + 1));
1966 if (!gr_mask && !fr_mask)
1967 return ptr;
1968 cur = alloc_record (frgr_mem);
1969 cur->r.record.p.frmask = fr_mask;
1970 /* Retain only least significant bit. */
1971 prev->r.record.p.frmask ^= fr_mask;
1972 prev->r.record.p.next = cur;
1973 }
1974 cur->r.record.p.grmask = gr_mask;
1975 for (;;)
1976 {
1977 unw_rec_list *prev = cur;
1978
1979 /* Clear least significant set bit. */
1980 gr_mask &= ~(gr_mask & (~gr_mask + 1));
1981 if (!gr_mask)
1982 return ptr;
1983 cur = alloc_record (frgr_mem);
1984 cur->r.record.p.grmask = gr_mask;
1985 /* Retain only least significant bit. */
1986 prev->r.record.p.grmask ^= gr_mask;
1987 prev->r.record.p.next = cur;
1988 }
1989 }
1990
1991 static unw_rec_list *
output_gr_gr(unsigned int mask,unsigned int reg)1992 output_gr_gr (unsigned int mask, unsigned int reg)
1993 {
1994 unw_rec_list *ptr = alloc_record (gr_gr);
1995 unw_rec_list *cur = ptr;
1996
1997 ptr->r.record.p.grmask = mask;
1998 ptr->r.record.p.r.gr = reg;
1999 unwind.pending_saves = &ptr->r.record.p;
2000 for (;;)
2001 {
2002 unw_rec_list *prev = cur;
2003
2004 /* Clear least significant set bit. */
2005 mask &= ~(mask & (~mask + 1));
2006 if (!mask)
2007 return ptr;
2008 cur = alloc_record (gr_gr);
2009 cur->r.record.p.grmask = mask;
2010 /* Indicate this record shouldn't be output. */
2011 cur->r.record.p.r.gr = REG_NUM;
2012 /* Retain only least significant bit. */
2013 prev->r.record.p.grmask ^= mask;
2014 prev->r.record.p.next = cur;
2015 }
2016 }
2017
2018 static unw_rec_list *
output_gr_mem(unsigned int mask)2019 output_gr_mem (unsigned int mask)
2020 {
2021 unw_rec_list *ptr = alloc_record (gr_mem);
2022 unw_rec_list *cur = ptr;
2023
2024 ptr->r.record.p.grmask = mask;
2025 unwind.pending_saves = &ptr->r.record.p;
2026 for (;;)
2027 {
2028 unw_rec_list *prev = cur;
2029
2030 /* Clear least significant set bit. */
2031 mask &= ~(mask & (~mask + 1));
2032 if (!mask)
2033 return ptr;
2034 cur = alloc_record (gr_mem);
2035 cur->r.record.p.grmask = mask;
2036 /* Retain only least significant bit. */
2037 prev->r.record.p.grmask ^= mask;
2038 prev->r.record.p.next = cur;
2039 }
2040 }
2041
2042 static unw_rec_list *
output_br_mem(unsigned int mask)2043 output_br_mem (unsigned int mask)
2044 {
2045 unw_rec_list *ptr = alloc_record (br_mem);
2046 unw_rec_list *cur = ptr;
2047
2048 ptr->r.record.p.brmask = mask;
2049 unwind.pending_saves = &ptr->r.record.p;
2050 for (;;)
2051 {
2052 unw_rec_list *prev = cur;
2053
2054 /* Clear least significant set bit. */
2055 mask &= ~(mask & (~mask + 1));
2056 if (!mask)
2057 return ptr;
2058 cur = alloc_record (br_mem);
2059 cur->r.record.p.brmask = mask;
2060 /* Retain only least significant bit. */
2061 prev->r.record.p.brmask ^= mask;
2062 prev->r.record.p.next = cur;
2063 }
2064 }
2065
2066 static unw_rec_list *
output_br_gr(unsigned int mask,unsigned int reg)2067 output_br_gr (unsigned int mask, unsigned int reg)
2068 {
2069 unw_rec_list *ptr = alloc_record (br_gr);
2070 unw_rec_list *cur = ptr;
2071
2072 ptr->r.record.p.brmask = mask;
2073 ptr->r.record.p.r.gr = reg;
2074 unwind.pending_saves = &ptr->r.record.p;
2075 for (;;)
2076 {
2077 unw_rec_list *prev = cur;
2078
2079 /* Clear least significant set bit. */
2080 mask &= ~(mask & (~mask + 1));
2081 if (!mask)
2082 return ptr;
2083 cur = alloc_record (br_gr);
2084 cur->r.record.p.brmask = mask;
2085 /* Indicate this record shouldn't be output. */
2086 cur->r.record.p.r.gr = REG_NUM;
2087 /* Retain only least significant bit. */
2088 prev->r.record.p.brmask ^= mask;
2089 prev->r.record.p.next = cur;
2090 }
2091 }
2092
2093 static unw_rec_list *
output_spill_base(unsigned int offset)2094 output_spill_base (unsigned int offset)
2095 {
2096 unw_rec_list *ptr = alloc_record (spill_base);
2097 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2098 return ptr;
2099 }
2100
2101 static unw_rec_list *
output_unat_when(void)2102 output_unat_when (void)
2103 {
2104 unw_rec_list *ptr = alloc_record (unat_when);
2105 return ptr;
2106 }
2107
2108 static unw_rec_list *
output_unat_gr(unsigned int gr)2109 output_unat_gr (unsigned int gr)
2110 {
2111 unw_rec_list *ptr = alloc_record (unat_gr);
2112 ptr->r.record.p.r.gr = gr;
2113 return ptr;
2114 }
2115
2116 static unw_rec_list *
output_unat_psprel(unsigned int offset)2117 output_unat_psprel (unsigned int offset)
2118 {
2119 unw_rec_list *ptr = alloc_record (unat_psprel);
2120 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2121 return ptr;
2122 }
2123
2124 static unw_rec_list *
output_unat_sprel(unsigned int offset)2125 output_unat_sprel (unsigned int offset)
2126 {
2127 unw_rec_list *ptr = alloc_record (unat_sprel);
2128 ptr->r.record.p.off.sp = offset / 4;
2129 return ptr;
2130 }
2131
2132 static unw_rec_list *
output_lc_when(void)2133 output_lc_when (void)
2134 {
2135 unw_rec_list *ptr = alloc_record (lc_when);
2136 return ptr;
2137 }
2138
2139 static unw_rec_list *
output_lc_gr(unsigned int gr)2140 output_lc_gr (unsigned int gr)
2141 {
2142 unw_rec_list *ptr = alloc_record (lc_gr);
2143 ptr->r.record.p.r.gr = gr;
2144 return ptr;
2145 }
2146
2147 static unw_rec_list *
output_lc_psprel(unsigned int offset)2148 output_lc_psprel (unsigned int offset)
2149 {
2150 unw_rec_list *ptr = alloc_record (lc_psprel);
2151 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2152 return ptr;
2153 }
2154
2155 static unw_rec_list *
output_lc_sprel(unsigned int offset)2156 output_lc_sprel (unsigned int offset)
2157 {
2158 unw_rec_list *ptr = alloc_record (lc_sprel);
2159 ptr->r.record.p.off.sp = offset / 4;
2160 return ptr;
2161 }
2162
2163 static unw_rec_list *
output_fpsr_when(void)2164 output_fpsr_when (void)
2165 {
2166 unw_rec_list *ptr = alloc_record (fpsr_when);
2167 return ptr;
2168 }
2169
2170 static unw_rec_list *
output_fpsr_gr(unsigned int gr)2171 output_fpsr_gr (unsigned int gr)
2172 {
2173 unw_rec_list *ptr = alloc_record (fpsr_gr);
2174 ptr->r.record.p.r.gr = gr;
2175 return ptr;
2176 }
2177
2178 static unw_rec_list *
output_fpsr_psprel(unsigned int offset)2179 output_fpsr_psprel (unsigned int offset)
2180 {
2181 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2182 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2183 return ptr;
2184 }
2185
2186 static unw_rec_list *
output_fpsr_sprel(unsigned int offset)2187 output_fpsr_sprel (unsigned int offset)
2188 {
2189 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2190 ptr->r.record.p.off.sp = offset / 4;
2191 return ptr;
2192 }
2193
2194 static unw_rec_list *
output_priunat_when_gr(void)2195 output_priunat_when_gr (void)
2196 {
2197 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2198 return ptr;
2199 }
2200
2201 static unw_rec_list *
output_priunat_when_mem(void)2202 output_priunat_when_mem (void)
2203 {
2204 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2205 return ptr;
2206 }
2207
2208 static unw_rec_list *
output_priunat_gr(unsigned int gr)2209 output_priunat_gr (unsigned int gr)
2210 {
2211 unw_rec_list *ptr = alloc_record (priunat_gr);
2212 ptr->r.record.p.r.gr = gr;
2213 return ptr;
2214 }
2215
2216 static unw_rec_list *
output_priunat_psprel(unsigned int offset)2217 output_priunat_psprel (unsigned int offset)
2218 {
2219 unw_rec_list *ptr = alloc_record (priunat_psprel);
2220 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2221 return ptr;
2222 }
2223
2224 static unw_rec_list *
output_priunat_sprel(unsigned int offset)2225 output_priunat_sprel (unsigned int offset)
2226 {
2227 unw_rec_list *ptr = alloc_record (priunat_sprel);
2228 ptr->r.record.p.off.sp = offset / 4;
2229 return ptr;
2230 }
2231
2232 static unw_rec_list *
output_bsp_when(void)2233 output_bsp_when (void)
2234 {
2235 unw_rec_list *ptr = alloc_record (bsp_when);
2236 return ptr;
2237 }
2238
2239 static unw_rec_list *
output_bsp_gr(unsigned int gr)2240 output_bsp_gr (unsigned int gr)
2241 {
2242 unw_rec_list *ptr = alloc_record (bsp_gr);
2243 ptr->r.record.p.r.gr = gr;
2244 return ptr;
2245 }
2246
2247 static unw_rec_list *
output_bsp_psprel(unsigned int offset)2248 output_bsp_psprel (unsigned int offset)
2249 {
2250 unw_rec_list *ptr = alloc_record (bsp_psprel);
2251 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2252 return ptr;
2253 }
2254
2255 static unw_rec_list *
output_bsp_sprel(unsigned int offset)2256 output_bsp_sprel (unsigned int offset)
2257 {
2258 unw_rec_list *ptr = alloc_record (bsp_sprel);
2259 ptr->r.record.p.off.sp = offset / 4;
2260 return ptr;
2261 }
2262
2263 static unw_rec_list *
output_bspstore_when(void)2264 output_bspstore_when (void)
2265 {
2266 unw_rec_list *ptr = alloc_record (bspstore_when);
2267 return ptr;
2268 }
2269
2270 static unw_rec_list *
output_bspstore_gr(unsigned int gr)2271 output_bspstore_gr (unsigned int gr)
2272 {
2273 unw_rec_list *ptr = alloc_record (bspstore_gr);
2274 ptr->r.record.p.r.gr = gr;
2275 return ptr;
2276 }
2277
2278 static unw_rec_list *
output_bspstore_psprel(unsigned int offset)2279 output_bspstore_psprel (unsigned int offset)
2280 {
2281 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2282 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2283 return ptr;
2284 }
2285
2286 static unw_rec_list *
output_bspstore_sprel(unsigned int offset)2287 output_bspstore_sprel (unsigned int offset)
2288 {
2289 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2290 ptr->r.record.p.off.sp = offset / 4;
2291 return ptr;
2292 }
2293
2294 static unw_rec_list *
output_rnat_when(void)2295 output_rnat_when (void)
2296 {
2297 unw_rec_list *ptr = alloc_record (rnat_when);
2298 return ptr;
2299 }
2300
2301 static unw_rec_list *
output_rnat_gr(unsigned int gr)2302 output_rnat_gr (unsigned int gr)
2303 {
2304 unw_rec_list *ptr = alloc_record (rnat_gr);
2305 ptr->r.record.p.r.gr = gr;
2306 return ptr;
2307 }
2308
2309 static unw_rec_list *
output_rnat_psprel(unsigned int offset)2310 output_rnat_psprel (unsigned int offset)
2311 {
2312 unw_rec_list *ptr = alloc_record (rnat_psprel);
2313 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2314 return ptr;
2315 }
2316
2317 static unw_rec_list *
output_rnat_sprel(unsigned int offset)2318 output_rnat_sprel (unsigned int offset)
2319 {
2320 unw_rec_list *ptr = alloc_record (rnat_sprel);
2321 ptr->r.record.p.off.sp = offset / 4;
2322 return ptr;
2323 }
2324
2325 static unw_rec_list *
output_unwabi(unsigned long abi,unsigned long context)2326 output_unwabi (unsigned long abi, unsigned long context)
2327 {
2328 unw_rec_list *ptr = alloc_record (unwabi);
2329 ptr->r.record.p.abi = abi;
2330 ptr->r.record.p.context = context;
2331 return ptr;
2332 }
2333
2334 static unw_rec_list *
output_epilogue(unsigned long ecount)2335 output_epilogue (unsigned long ecount)
2336 {
2337 unw_rec_list *ptr = alloc_record (epilogue);
2338 ptr->r.record.b.ecount = ecount;
2339 return ptr;
2340 }
2341
2342 static unw_rec_list *
output_label_state(unsigned long label)2343 output_label_state (unsigned long label)
2344 {
2345 unw_rec_list *ptr = alloc_record (label_state);
2346 ptr->r.record.b.label = label;
2347 return ptr;
2348 }
2349
2350 static unw_rec_list *
output_copy_state(unsigned long label)2351 output_copy_state (unsigned long label)
2352 {
2353 unw_rec_list *ptr = alloc_record (copy_state);
2354 ptr->r.record.b.label = label;
2355 return ptr;
2356 }
2357
2358 static unw_rec_list *
output_spill_psprel(unsigned int ab,unsigned int reg,unsigned int offset,unsigned int predicate)2359 output_spill_psprel (unsigned int ab,
2360 unsigned int reg,
2361 unsigned int offset,
2362 unsigned int predicate)
2363 {
2364 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2365 ptr->r.record.x.ab = ab;
2366 ptr->r.record.x.reg = reg;
2367 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2368 ptr->r.record.x.qp = predicate;
2369 return ptr;
2370 }
2371
2372 static unw_rec_list *
output_spill_sprel(unsigned int ab,unsigned int reg,unsigned int offset,unsigned int predicate)2373 output_spill_sprel (unsigned int ab,
2374 unsigned int reg,
2375 unsigned int offset,
2376 unsigned int predicate)
2377 {
2378 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2379 ptr->r.record.x.ab = ab;
2380 ptr->r.record.x.reg = reg;
2381 ptr->r.record.x.where.spoff = offset / 4;
2382 ptr->r.record.x.qp = predicate;
2383 return ptr;
2384 }
2385
2386 static unw_rec_list *
output_spill_reg(unsigned int ab,unsigned int reg,unsigned int targ_reg,unsigned int xy,unsigned int predicate)2387 output_spill_reg (unsigned int ab,
2388 unsigned int reg,
2389 unsigned int targ_reg,
2390 unsigned int xy,
2391 unsigned int predicate)
2392 {
2393 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2394 ptr->r.record.x.ab = ab;
2395 ptr->r.record.x.reg = reg;
2396 ptr->r.record.x.where.reg = targ_reg;
2397 ptr->r.record.x.xy = xy;
2398 ptr->r.record.x.qp = predicate;
2399 return ptr;
2400 }
2401
2402 /* Given a unw_rec_list process the correct format with the
2403 specified function. */
2404
2405 static void
process_one_record(unw_rec_list * ptr,vbyte_func f)2406 process_one_record (unw_rec_list *ptr, vbyte_func f)
2407 {
2408 unsigned int fr_mask, gr_mask;
2409
2410 switch (ptr->r.type)
2411 {
2412 /* This is a dummy record that takes up no space in the output. */
2413 case endp:
2414 break;
2415
2416 case gr_mem:
2417 case fr_mem:
2418 case br_mem:
2419 case frgr_mem:
2420 /* These are taken care of by prologue/prologue_gr. */
2421 break;
2422
2423 case prologue_gr:
2424 case prologue:
2425 if (ptr->r.type == prologue_gr)
2426 output_R2_format (f, ptr->r.record.r.grmask,
2427 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2428 else
2429 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2430
2431 /* Output descriptor(s) for union of register spills (if any). */
2432 gr_mask = ptr->r.record.r.mask.gr_mem;
2433 fr_mask = ptr->r.record.r.mask.fr_mem;
2434 if (fr_mask)
2435 {
2436 if ((fr_mask & ~0xfUL) == 0)
2437 output_P6_format (f, fr_mem, fr_mask);
2438 else
2439 {
2440 output_P5_format (f, gr_mask, fr_mask);
2441 gr_mask = 0;
2442 }
2443 }
2444 if (gr_mask)
2445 output_P6_format (f, gr_mem, gr_mask);
2446 if (ptr->r.record.r.mask.br_mem)
2447 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2448
2449 /* output imask descriptor if necessary: */
2450 if (ptr->r.record.r.mask.i)
2451 output_P4_format (f, ptr->r.record.r.mask.i,
2452 ptr->r.record.r.imask_size);
2453 break;
2454
2455 case body:
2456 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2457 break;
2458 case mem_stack_f:
2459 case mem_stack_v:
2460 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2461 ptr->r.record.p.size);
2462 break;
2463 case psp_gr:
2464 case rp_gr:
2465 case pfs_gr:
2466 case preds_gr:
2467 case unat_gr:
2468 case lc_gr:
2469 case fpsr_gr:
2470 case priunat_gr:
2471 case bsp_gr:
2472 case bspstore_gr:
2473 case rnat_gr:
2474 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2475 break;
2476 case rp_br:
2477 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2478 break;
2479 case psp_sprel:
2480 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2481 break;
2482 case rp_when:
2483 case pfs_when:
2484 case preds_when:
2485 case unat_when:
2486 case lc_when:
2487 case fpsr_when:
2488 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2489 break;
2490 case rp_psprel:
2491 case pfs_psprel:
2492 case preds_psprel:
2493 case unat_psprel:
2494 case lc_psprel:
2495 case fpsr_psprel:
2496 case spill_base:
2497 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2498 break;
2499 case rp_sprel:
2500 case pfs_sprel:
2501 case preds_sprel:
2502 case unat_sprel:
2503 case lc_sprel:
2504 case fpsr_sprel:
2505 case priunat_sprel:
2506 case bsp_sprel:
2507 case bspstore_sprel:
2508 case rnat_sprel:
2509 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2510 break;
2511 case gr_gr:
2512 if (ptr->r.record.p.r.gr < REG_NUM)
2513 {
2514 const unw_rec_list *cur = ptr;
2515
2516 gr_mask = cur->r.record.p.grmask;
2517 while ((cur = cur->r.record.p.next) != NULL)
2518 gr_mask |= cur->r.record.p.grmask;
2519 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2520 }
2521 break;
2522 case br_gr:
2523 if (ptr->r.record.p.r.gr < REG_NUM)
2524 {
2525 const unw_rec_list *cur = ptr;
2526
2527 gr_mask = cur->r.record.p.brmask;
2528 while ((cur = cur->r.record.p.next) != NULL)
2529 gr_mask |= cur->r.record.p.brmask;
2530 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2531 }
2532 break;
2533 case spill_mask:
2534 as_bad (_("spill_mask record unimplemented."));
2535 break;
2536 case priunat_when_gr:
2537 case priunat_when_mem:
2538 case bsp_when:
2539 case bspstore_when:
2540 case rnat_when:
2541 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2542 break;
2543 case priunat_psprel:
2544 case bsp_psprel:
2545 case bspstore_psprel:
2546 case rnat_psprel:
2547 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2548 break;
2549 case unwabi:
2550 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2551 break;
2552 case epilogue:
2553 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2554 break;
2555 case label_state:
2556 case copy_state:
2557 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2558 break;
2559 case spill_psprel:
2560 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2561 ptr->r.record.x.reg, ptr->r.record.x.t,
2562 ptr->r.record.x.where.pspoff);
2563 break;
2564 case spill_sprel:
2565 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2566 ptr->r.record.x.reg, ptr->r.record.x.t,
2567 ptr->r.record.x.where.spoff);
2568 break;
2569 case spill_reg:
2570 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2571 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2572 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2573 break;
2574 case spill_psprel_p:
2575 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2576 ptr->r.record.x.ab, ptr->r.record.x.reg,
2577 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2578 break;
2579 case spill_sprel_p:
2580 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2581 ptr->r.record.x.ab, ptr->r.record.x.reg,
2582 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2583 break;
2584 case spill_reg_p:
2585 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2586 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2587 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2588 ptr->r.record.x.t);
2589 break;
2590 default:
2591 as_bad (_("record_type_not_valid"));
2592 break;
2593 }
2594 }
2595
2596 /* Given a unw_rec_list list, process all the records with
2597 the specified function. */
2598 static void
process_unw_records(unw_rec_list * list,vbyte_func f)2599 process_unw_records (unw_rec_list *list, vbyte_func f)
2600 {
2601 unw_rec_list *ptr;
2602 for (ptr = list; ptr; ptr = ptr->next)
2603 process_one_record (ptr, f);
2604 }
2605
2606 /* Determine the size of a record list in bytes. */
2607 static int
calc_record_size(unw_rec_list * list)2608 calc_record_size (unw_rec_list *list)
2609 {
2610 vbyte_count = 0;
2611 process_unw_records (list, count_output);
2612 return vbyte_count;
2613 }
2614
2615 /* Return the number of bits set in the input value.
2616 Perhaps this has a better place... */
2617 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2618 # define popcount __builtin_popcount
2619 #else
2620 static int
popcount(unsigned x)2621 popcount (unsigned x)
2622 {
2623 static const unsigned char popcnt[16] =
2624 {
2625 0, 1, 1, 2,
2626 1, 2, 2, 3,
2627 1, 2, 2, 3,
2628 2, 3, 3, 4
2629 };
2630
2631 if (x < NELEMS (popcnt))
2632 return popcnt[x];
2633 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2634 }
2635 #endif
2636
2637 /* Update IMASK bitmask to reflect the fact that one or more registers
2638 of type TYPE are saved starting at instruction with index T. If N
2639 bits are set in REGMASK, it is assumed that instructions T through
2640 T+N-1 save these registers.
2641
2642 TYPE values:
2643 0: no save
2644 1: instruction saves next fp reg
2645 2: instruction saves next general reg
2646 3: instruction saves next branch reg */
2647 static void
set_imask(unw_rec_list * region,unsigned long regmask,unsigned long t,unsigned int type)2648 set_imask (unw_rec_list *region,
2649 unsigned long regmask,
2650 unsigned long t,
2651 unsigned int type)
2652 {
2653 unsigned char *imask;
2654 unsigned long imask_size;
2655 unsigned int i;
2656 int pos;
2657
2658 imask = region->r.record.r.mask.i;
2659 imask_size = region->r.record.r.imask_size;
2660 if (!imask)
2661 {
2662 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2663 imask = xmalloc (imask_size);
2664 memset (imask, 0, imask_size);
2665
2666 region->r.record.r.imask_size = imask_size;
2667 region->r.record.r.mask.i = imask;
2668 }
2669
2670 i = (t / 4) + 1;
2671 pos = 2 * (3 - t % 4);
2672 while (regmask)
2673 {
2674 if (i >= imask_size)
2675 {
2676 as_bad (_("Ignoring attempt to spill beyond end of region"));
2677 return;
2678 }
2679
2680 imask[i] |= (type & 0x3) << pos;
2681
2682 regmask &= (regmask - 1);
2683 pos -= 2;
2684 if (pos < 0)
2685 {
2686 pos = 0;
2687 ++i;
2688 }
2689 }
2690 }
2691
2692 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2693 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2694 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2695 for frag sizes. */
2696
2697 static unsigned long
slot_index(unsigned long slot_addr,fragS * slot_frag,unsigned long first_addr,fragS * first_frag,int before_relax)2698 slot_index (unsigned long slot_addr,
2699 fragS *slot_frag,
2700 unsigned long first_addr,
2701 fragS *first_frag,
2702 int before_relax)
2703 {
2704 unsigned long s_index = 0;
2705
2706 /* First time we are called, the initial address and frag are invalid. */
2707 if (first_addr == 0)
2708 return 0;
2709
2710 /* If the two addresses are in different frags, then we need to add in
2711 the remaining size of this frag, and then the entire size of intermediate
2712 frags. */
2713 while (slot_frag != first_frag)
2714 {
2715 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2716
2717 if (! before_relax)
2718 {
2719 /* We can get the final addresses only during and after
2720 relaxation. */
2721 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2722 s_index += 3 * ((first_frag->fr_next->fr_address
2723 - first_frag->fr_address
2724 - first_frag->fr_fix) >> 4);
2725 }
2726 else
2727 /* We don't know what the final addresses will be. We try our
2728 best to estimate. */
2729 switch (first_frag->fr_type)
2730 {
2731 default:
2732 break;
2733
2734 case rs_space:
2735 as_fatal (_("Only constant space allocation is supported"));
2736 break;
2737
2738 case rs_align:
2739 case rs_align_code:
2740 case rs_align_test:
2741 /* Take alignment into account. Assume the worst case
2742 before relaxation. */
2743 s_index += 3 * ((1 << first_frag->fr_offset) >> 4);
2744 break;
2745
2746 case rs_org:
2747 if (first_frag->fr_symbol)
2748 {
2749 as_fatal (_("Only constant offsets are supported"));
2750 break;
2751 }
2752 case rs_fill:
2753 s_index += 3 * (first_frag->fr_offset >> 4);
2754 break;
2755 }
2756
2757 /* Add in the full size of the frag converted to instruction slots. */
2758 s_index += 3 * (first_frag->fr_fix >> 4);
2759 /* Subtract away the initial part before first_addr. */
2760 s_index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2761 + ((first_addr & 0x3) - (start_addr & 0x3)));
2762
2763 /* Move to the beginning of the next frag. */
2764 first_frag = first_frag->fr_next;
2765 first_addr = (unsigned long) &first_frag->fr_literal;
2766
2767 /* This can happen if there is section switching in the middle of a
2768 function, causing the frag chain for the function to be broken.
2769 It is too difficult to recover safely from this problem, so we just
2770 exit with an error. */
2771 if (first_frag == NULL)
2772 as_fatal (_("Section switching in code is not supported."));
2773 }
2774
2775 /* Add in the used part of the last frag. */
2776 s_index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2777 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2778 return s_index;
2779 }
2780
2781 /* Optimize unwind record directives. */
2782
2783 static unw_rec_list *
optimize_unw_records(unw_rec_list * list)2784 optimize_unw_records (unw_rec_list *list)
2785 {
2786 if (!list)
2787 return NULL;
2788
2789 /* If the only unwind record is ".prologue" or ".prologue" followed
2790 by ".body", then we can optimize the unwind directives away. */
2791 if (list->r.type == prologue
2792 && (list->next->r.type == endp
2793 || (list->next->r.type == body && list->next->next->r.type == endp)))
2794 return NULL;
2795
2796 return list;
2797 }
2798
2799 /* Given a complete record list, process any records which have
2800 unresolved fields, (ie length counts for a prologue). After
2801 this has been run, all necessary information should be available
2802 within each record to generate an image. */
2803
2804 static void
fixup_unw_records(unw_rec_list * list,int before_relax)2805 fixup_unw_records (unw_rec_list *list, int before_relax)
2806 {
2807 unw_rec_list *ptr, *region = 0;
2808 unsigned long first_addr = 0, rlen = 0, t;
2809 fragS *first_frag = 0;
2810
2811 for (ptr = list; ptr; ptr = ptr->next)
2812 {
2813 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2814 as_bad (_(" Insn slot not set in unwind record."));
2815 t = slot_index (ptr->slot_number, ptr->slot_frag,
2816 first_addr, first_frag, before_relax);
2817 switch (ptr->r.type)
2818 {
2819 case prologue:
2820 case prologue_gr:
2821 case body:
2822 {
2823 unw_rec_list *last;
2824 int size;
2825 unsigned long last_addr = 0;
2826 fragS *last_frag = NULL;
2827
2828 first_addr = ptr->slot_number;
2829 first_frag = ptr->slot_frag;
2830 /* Find either the next body/prologue start, or the end of
2831 the function, and determine the size of the region. */
2832 for (last = ptr->next; last != NULL; last = last->next)
2833 if (last->r.type == prologue || last->r.type == prologue_gr
2834 || last->r.type == body || last->r.type == endp)
2835 {
2836 last_addr = last->slot_number;
2837 last_frag = last->slot_frag;
2838 break;
2839 }
2840 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2841 before_relax);
2842 rlen = ptr->r.record.r.rlen = size;
2843 if (ptr->r.type == body)
2844 /* End of region. */
2845 region = 0;
2846 else
2847 region = ptr;
2848 break;
2849 }
2850 case epilogue:
2851 if (t < rlen)
2852 ptr->r.record.b.t = rlen - 1 - t;
2853 else
2854 /* This happens when a memory-stack-less procedure uses a
2855 ".restore sp" directive at the end of a region to pop
2856 the frame state. */
2857 ptr->r.record.b.t = 0;
2858 break;
2859
2860 case mem_stack_f:
2861 case mem_stack_v:
2862 case rp_when:
2863 case pfs_when:
2864 case preds_when:
2865 case unat_when:
2866 case lc_when:
2867 case fpsr_when:
2868 case priunat_when_gr:
2869 case priunat_when_mem:
2870 case bsp_when:
2871 case bspstore_when:
2872 case rnat_when:
2873 ptr->r.record.p.t = t;
2874 break;
2875
2876 case spill_reg:
2877 case spill_sprel:
2878 case spill_psprel:
2879 case spill_reg_p:
2880 case spill_sprel_p:
2881 case spill_psprel_p:
2882 ptr->r.record.x.t = t;
2883 break;
2884
2885 case frgr_mem:
2886 if (!region)
2887 {
2888 as_bad (_("frgr_mem record before region record!"));
2889 return;
2890 }
2891 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2892 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2893 set_imask (region, ptr->r.record.p.frmask, t, 1);
2894 set_imask (region, ptr->r.record.p.grmask, t, 2);
2895 break;
2896 case fr_mem:
2897 if (!region)
2898 {
2899 as_bad (_("fr_mem record before region record!"));
2900 return;
2901 }
2902 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2903 set_imask (region, ptr->r.record.p.frmask, t, 1);
2904 break;
2905 case gr_mem:
2906 if (!region)
2907 {
2908 as_bad (_("gr_mem record before region record!"));
2909 return;
2910 }
2911 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2912 set_imask (region, ptr->r.record.p.grmask, t, 2);
2913 break;
2914 case br_mem:
2915 if (!region)
2916 {
2917 as_bad (_("br_mem record before region record!"));
2918 return;
2919 }
2920 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2921 set_imask (region, ptr->r.record.p.brmask, t, 3);
2922 break;
2923
2924 case gr_gr:
2925 if (!region)
2926 {
2927 as_bad (_("gr_gr record before region record!"));
2928 return;
2929 }
2930 set_imask (region, ptr->r.record.p.grmask, t, 2);
2931 break;
2932 case br_gr:
2933 if (!region)
2934 {
2935 as_bad (_("br_gr record before region record!"));
2936 return;
2937 }
2938 set_imask (region, ptr->r.record.p.brmask, t, 3);
2939 break;
2940
2941 default:
2942 break;
2943 }
2944 }
2945 }
2946
2947 /* Estimate the size of a frag before relaxing. We only have one type of frag
2948 to handle here, which is the unwind info frag. */
2949
2950 int
ia64_estimate_size_before_relax(fragS * frag,asection * segtype ATTRIBUTE_UNUSED)2951 ia64_estimate_size_before_relax (fragS *frag,
2952 asection *segtype ATTRIBUTE_UNUSED)
2953 {
2954 unw_rec_list *list;
2955 int len, size, pad;
2956
2957 /* ??? This code is identical to the first part of ia64_convert_frag. */
2958 list = (unw_rec_list *) frag->fr_opcode;
2959 fixup_unw_records (list, 0);
2960
2961 len = calc_record_size (list);
2962 /* pad to pointer-size boundary. */
2963 pad = len % md.pointer_size;
2964 if (pad != 0)
2965 len += md.pointer_size - pad;
2966 /* Add 8 for the header. */
2967 size = len + 8;
2968 /* Add a pointer for the personality offset. */
2969 if (frag->fr_offset)
2970 size += md.pointer_size;
2971
2972 /* fr_var carries the max_chars that we created the fragment with.
2973 We must, of course, have allocated enough memory earlier. */
2974 gas_assert (frag->fr_var >= size);
2975
2976 return frag->fr_fix + size;
2977 }
2978
2979 /* This function converts a rs_machine_dependent variant frag into a
2980 normal fill frag with the unwind image from the record list. */
2981 void
ia64_convert_frag(fragS * frag)2982 ia64_convert_frag (fragS *frag)
2983 {
2984 unw_rec_list *list;
2985 int len, size, pad;
2986 valueT flag_value;
2987
2988 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2989 list = (unw_rec_list *) frag->fr_opcode;
2990 fixup_unw_records (list, 0);
2991
2992 len = calc_record_size (list);
2993 /* pad to pointer-size boundary. */
2994 pad = len % md.pointer_size;
2995 if (pad != 0)
2996 len += md.pointer_size - pad;
2997 /* Add 8 for the header. */
2998 size = len + 8;
2999 /* Add a pointer for the personality offset. */
3000 if (frag->fr_offset)
3001 size += md.pointer_size;
3002
3003 /* fr_var carries the max_chars that we created the fragment with.
3004 We must, of course, have allocated enough memory earlier. */
3005 gas_assert (frag->fr_var >= size);
3006
3007 /* Initialize the header area. fr_offset is initialized with
3008 unwind.personality_routine. */
3009 if (frag->fr_offset)
3010 {
3011 if (md.flags & EF_IA_64_ABI64)
3012 flag_value = (bfd_vma) 3 << 32;
3013 else
3014 /* 32-bit unwind info block. */
3015 flag_value = (bfd_vma) 0x1003 << 32;
3016 }
3017 else
3018 flag_value = 0;
3019
3020 md_number_to_chars (frag->fr_literal,
3021 (((bfd_vma) 1 << 48) /* Version. */
3022 | flag_value /* U & E handler flags. */
3023 | (len / md.pointer_size)), /* Length. */
3024 8);
3025
3026 /* Skip the header. */
3027 vbyte_mem_ptr = frag->fr_literal + 8;
3028 process_unw_records (list, output_vbyte_mem);
3029
3030 /* Fill the padding bytes with zeros. */
3031 if (pad != 0)
3032 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3033 md.pointer_size - pad);
3034 /* Fill the unwind personality with zeros. */
3035 if (frag->fr_offset)
3036 md_number_to_chars (frag->fr_literal + size - md.pointer_size, 0,
3037 md.pointer_size);
3038
3039 frag->fr_fix += size;
3040 frag->fr_type = rs_fill;
3041 frag->fr_var = 0;
3042 frag->fr_offset = 0;
3043 }
3044
3045 static int
parse_predicate_and_operand(expressionS * e,unsigned * qp,const char * po)3046 parse_predicate_and_operand (expressionS *e, unsigned *qp, const char *po)
3047 {
3048 int sep = parse_operand_and_eval (e, ',');
3049
3050 *qp = e->X_add_number - REG_P;
3051 if (e->X_op != O_register || *qp > 63)
3052 {
3053 as_bad (_("First operand to .%s must be a predicate"), po);
3054 *qp = 0;
3055 }
3056 else if (*qp == 0)
3057 as_warn (_("Pointless use of p0 as first operand to .%s"), po);
3058 if (sep == ',')
3059 sep = parse_operand_and_eval (e, ',');
3060 else
3061 e->X_op = O_absent;
3062 return sep;
3063 }
3064
3065 static void
convert_expr_to_ab_reg(const expressionS * e,unsigned int * ab,unsigned int * regp,const char * po,int n)3066 convert_expr_to_ab_reg (const expressionS *e,
3067 unsigned int *ab,
3068 unsigned int *regp,
3069 const char *po,
3070 int n)
3071 {
3072 unsigned int reg = e->X_add_number;
3073
3074 *ab = *regp = 0; /* Anything valid is good here. */
3075
3076 if (e->X_op != O_register)
3077 reg = REG_GR; /* Anything invalid is good here. */
3078
3079 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3080 {
3081 *ab = 0;
3082 *regp = reg - REG_GR;
3083 }
3084 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3085 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3086 {
3087 *ab = 1;
3088 *regp = reg - REG_FR;
3089 }
3090 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3091 {
3092 *ab = 2;
3093 *regp = reg - REG_BR;
3094 }
3095 else
3096 {
3097 *ab = 3;
3098 switch (reg)
3099 {
3100 case REG_PR: *regp = 0; break;
3101 case REG_PSP: *regp = 1; break;
3102 case REG_PRIUNAT: *regp = 2; break;
3103 case REG_BR + 0: *regp = 3; break;
3104 case REG_AR + AR_BSP: *regp = 4; break;
3105 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3106 case REG_AR + AR_RNAT: *regp = 6; break;
3107 case REG_AR + AR_UNAT: *regp = 7; break;
3108 case REG_AR + AR_FPSR: *regp = 8; break;
3109 case REG_AR + AR_PFS: *regp = 9; break;
3110 case REG_AR + AR_LC: *regp = 10; break;
3111
3112 default:
3113 as_bad (_("Operand %d to .%s must be a preserved register"), n, po);
3114 break;
3115 }
3116 }
3117 }
3118
3119 static void
convert_expr_to_xy_reg(const expressionS * e,unsigned int * xy,unsigned int * regp,const char * po,int n)3120 convert_expr_to_xy_reg (const expressionS *e,
3121 unsigned int *xy,
3122 unsigned int *regp,
3123 const char *po,
3124 int n)
3125 {
3126 unsigned int reg = e->X_add_number;
3127
3128 *xy = *regp = 0; /* Anything valid is good here. */
3129
3130 if (e->X_op != O_register)
3131 reg = REG_GR; /* Anything invalid is good here. */
3132
3133 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3134 {
3135 *xy = 0;
3136 *regp = reg - REG_GR;
3137 }
3138 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3139 {
3140 *xy = 1;
3141 *regp = reg - REG_FR;
3142 }
3143 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3144 {
3145 *xy = 2;
3146 *regp = reg - REG_BR;
3147 }
3148 else
3149 as_bad (_("Operand %d to .%s must be a writable register"), n, po);
3150 }
3151
3152 static void
dot_align(int arg)3153 dot_align (int arg)
3154 {
3155 /* The current frag is an alignment frag. */
3156 align_frag = frag_now;
3157 s_align_bytes (arg);
3158 }
3159
3160 static void
dot_radix(int dummy ATTRIBUTE_UNUSED)3161 dot_radix (int dummy ATTRIBUTE_UNUSED)
3162 {
3163 char *radix;
3164 int ch;
3165
3166 SKIP_WHITESPACE ();
3167
3168 if (is_it_end_of_statement ())
3169 return;
3170 radix = input_line_pointer;
3171 ch = get_symbol_end ();
3172 ia64_canonicalize_symbol_name (radix);
3173 if (strcasecmp (radix, "C"))
3174 as_bad (_("Radix `%s' unsupported or invalid"), radix);
3175 *input_line_pointer = ch;
3176 demand_empty_rest_of_line ();
3177 }
3178
3179 /* Helper function for .loc directives. If the assembler is not generating
3180 line number info, then we need to remember which instructions have a .loc
3181 directive, and only call dwarf2_gen_line_info for those instructions. */
3182
3183 static void
dot_loc(int x)3184 dot_loc (int x)
3185 {
3186 CURR_SLOT.loc_directive_seen = 1;
3187 dwarf2_directive_loc (x);
3188 }
3189
3190 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3191 static void
dot_special_section(int which)3192 dot_special_section (int which)
3193 {
3194 set_section ((char *) special_section_name[which]);
3195 }
3196
3197 /* Return -1 for warning and 0 for error. */
3198
3199 static int
unwind_diagnostic(const char * region,const char * directive)3200 unwind_diagnostic (const char * region, const char *directive)
3201 {
3202 if (md.unwind_check == unwind_check_warning)
3203 {
3204 as_warn (_(".%s outside of %s"), directive, region);
3205 return -1;
3206 }
3207 else
3208 {
3209 as_bad (_(".%s outside of %s"), directive, region);
3210 ignore_rest_of_line ();
3211 return 0;
3212 }
3213 }
3214
3215 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3216 a procedure but the unwind directive check is set to warning, 0 if
3217 a directive isn't in a procedure and the unwind directive check is set
3218 to error. */
3219
3220 static int
in_procedure(const char * directive)3221 in_procedure (const char *directive)
3222 {
3223 if (unwind.proc_pending.sym
3224 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3225 return 1;
3226 return unwind_diagnostic ("procedure", directive);
3227 }
3228
3229 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3230 a prologue but the unwind directive check is set to warning, 0 if
3231 a directive isn't in a prologue and the unwind directive check is set
3232 to error. */
3233
3234 static int
in_prologue(const char * directive)3235 in_prologue (const char *directive)
3236 {
3237 int in = in_procedure (directive);
3238
3239 if (in > 0 && !unwind.prologue)
3240 in = unwind_diagnostic ("prologue", directive);
3241 check_pending_save ();
3242 return in;
3243 }
3244
3245 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3246 a body but the unwind directive check is set to warning, 0 if
3247 a directive isn't in a body and the unwind directive check is set
3248 to error. */
3249
3250 static int
in_body(const char * directive)3251 in_body (const char *directive)
3252 {
3253 int in = in_procedure (directive);
3254
3255 if (in > 0 && !unwind.body)
3256 in = unwind_diagnostic ("body region", directive);
3257 return in;
3258 }
3259
3260 static void
add_unwind_entry(unw_rec_list * ptr,int sep)3261 add_unwind_entry (unw_rec_list *ptr, int sep)
3262 {
3263 if (ptr)
3264 {
3265 if (unwind.tail)
3266 unwind.tail->next = ptr;
3267 else
3268 unwind.list = ptr;
3269 unwind.tail = ptr;
3270
3271 /* The current entry can in fact be a chain of unwind entries. */
3272 if (unwind.current_entry == NULL)
3273 unwind.current_entry = ptr;
3274 }
3275
3276 /* The current entry can in fact be a chain of unwind entries. */
3277 if (unwind.current_entry == NULL)
3278 unwind.current_entry = ptr;
3279
3280 if (sep == ',')
3281 {
3282 /* Parse a tag permitted for the current directive. */
3283 int ch;
3284
3285 SKIP_WHITESPACE ();
3286 ch = get_symbol_end ();
3287 /* FIXME: For now, just issue a warning that this isn't implemented. */
3288 {
3289 static int warned;
3290
3291 if (!warned)
3292 {
3293 warned = 1;
3294 as_warn (_("Tags on unwind pseudo-ops aren't supported, yet"));
3295 }
3296 }
3297 *input_line_pointer = ch;
3298 }
3299 if (sep != NOT_A_CHAR)
3300 demand_empty_rest_of_line ();
3301 }
3302
3303 static void
dot_fframe(int dummy ATTRIBUTE_UNUSED)3304 dot_fframe (int dummy ATTRIBUTE_UNUSED)
3305 {
3306 expressionS e;
3307 int sep;
3308
3309 if (!in_prologue ("fframe"))
3310 return;
3311
3312 sep = parse_operand_and_eval (&e, ',');
3313
3314 if (e.X_op != O_constant)
3315 {
3316 as_bad (_("First operand to .fframe must be a constant"));
3317 e.X_add_number = 0;
3318 }
3319 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3320 }
3321
3322 static void
dot_vframe(int dummy ATTRIBUTE_UNUSED)3323 dot_vframe (int dummy ATTRIBUTE_UNUSED)
3324 {
3325 expressionS e;
3326 unsigned reg;
3327 int sep;
3328
3329 if (!in_prologue ("vframe"))
3330 return;
3331
3332 sep = parse_operand_and_eval (&e, ',');
3333 reg = e.X_add_number - REG_GR;
3334 if (e.X_op != O_register || reg > 127)
3335 {
3336 as_bad (_("First operand to .vframe must be a general register"));
3337 reg = 0;
3338 }
3339 add_unwind_entry (output_mem_stack_v (), sep);
3340 if (! (unwind.prologue_mask & 2))
3341 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3342 else if (reg != unwind.prologue_gr
3343 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3344 as_warn (_("Operand of .vframe contradicts .prologue"));
3345 }
3346
3347 static void
dot_vframesp(int psp)3348 dot_vframesp (int psp)
3349 {
3350 expressionS e;
3351 int sep;
3352
3353 if (psp)
3354 as_warn (_(".vframepsp is meaningless, assuming .vframesp was meant"));
3355
3356 if (!in_prologue ("vframesp"))
3357 return;
3358
3359 sep = parse_operand_and_eval (&e, ',');
3360 if (e.X_op != O_constant)
3361 {
3362 as_bad (_("Operand to .vframesp must be a constant (sp-relative offset)"));
3363 e.X_add_number = 0;
3364 }
3365 add_unwind_entry (output_mem_stack_v (), sep);
3366 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3367 }
3368
3369 static void
dot_save(int dummy ATTRIBUTE_UNUSED)3370 dot_save (int dummy ATTRIBUTE_UNUSED)
3371 {
3372 expressionS e1, e2;
3373 unsigned reg1, reg2;
3374 int sep;
3375
3376 if (!in_prologue ("save"))
3377 return;
3378
3379 sep = parse_operand_and_eval (&e1, ',');
3380 if (sep == ',')
3381 sep = parse_operand_and_eval (&e2, ',');
3382 else
3383 e2.X_op = O_absent;
3384
3385 reg1 = e1.X_add_number;
3386 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3387 if (e1.X_op != O_register)
3388 {
3389 as_bad (_("First operand to .save not a register"));
3390 reg1 = REG_PR; /* Anything valid is good here. */
3391 }
3392 reg2 = e2.X_add_number - REG_GR;
3393 if (e2.X_op != O_register || reg2 > 127)
3394 {
3395 as_bad (_("Second operand to .save not a valid register"));
3396 reg2 = 0;
3397 }
3398 switch (reg1)
3399 {
3400 case REG_AR + AR_BSP:
3401 add_unwind_entry (output_bsp_when (), sep);
3402 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3403 break;
3404 case REG_AR + AR_BSPSTORE:
3405 add_unwind_entry (output_bspstore_when (), sep);
3406 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3407 break;
3408 case REG_AR + AR_RNAT:
3409 add_unwind_entry (output_rnat_when (), sep);
3410 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3411 break;
3412 case REG_AR + AR_UNAT:
3413 add_unwind_entry (output_unat_when (), sep);
3414 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3415 break;
3416 case REG_AR + AR_FPSR:
3417 add_unwind_entry (output_fpsr_when (), sep);
3418 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3419 break;
3420 case REG_AR + AR_PFS:
3421 add_unwind_entry (output_pfs_when (), sep);
3422 if (! (unwind.prologue_mask & 4))
3423 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3424 else if (reg2 != unwind.prologue_gr
3425 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3426 as_warn (_("Second operand of .save contradicts .prologue"));
3427 break;
3428 case REG_AR + AR_LC:
3429 add_unwind_entry (output_lc_when (), sep);
3430 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3431 break;
3432 case REG_BR:
3433 add_unwind_entry (output_rp_when (), sep);
3434 if (! (unwind.prologue_mask & 8))
3435 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3436 else if (reg2 != unwind.prologue_gr)
3437 as_warn (_("Second operand of .save contradicts .prologue"));
3438 break;
3439 case REG_PR:
3440 add_unwind_entry (output_preds_when (), sep);
3441 if (! (unwind.prologue_mask & 1))
3442 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3443 else if (reg2 != unwind.prologue_gr
3444 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3445 as_warn (_("Second operand of .save contradicts .prologue"));
3446 break;
3447 case REG_PRIUNAT:
3448 add_unwind_entry (output_priunat_when_gr (), sep);
3449 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3450 break;
3451 default:
3452 as_bad (_("First operand to .save not a valid register"));
3453 add_unwind_entry (NULL, sep);
3454 break;
3455 }
3456 }
3457
3458 static void
dot_restore(int dummy ATTRIBUTE_UNUSED)3459 dot_restore (int dummy ATTRIBUTE_UNUSED)
3460 {
3461 expressionS e1;
3462 unsigned long ecount; /* # of _additional_ regions to pop */
3463 int sep;
3464
3465 if (!in_body ("restore"))
3466 return;
3467
3468 sep = parse_operand_and_eval (&e1, ',');
3469 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3470 as_bad (_("First operand to .restore must be stack pointer (sp)"));
3471
3472 if (sep == ',')
3473 {
3474 expressionS e2;
3475
3476 sep = parse_operand_and_eval (&e2, ',');
3477 if (e2.X_op != O_constant || e2.X_add_number < 0)
3478 {
3479 as_bad (_("Second operand to .restore must be a constant >= 0"));
3480 e2.X_add_number = 0;
3481 }
3482 ecount = e2.X_add_number;
3483 }
3484 else
3485 ecount = unwind.prologue_count - 1;
3486
3487 if (ecount >= unwind.prologue_count)
3488 {
3489 as_bad (_("Epilogue count of %lu exceeds number of nested prologues (%u)"),
3490 ecount + 1, unwind.prologue_count);
3491 ecount = 0;
3492 }
3493
3494 add_unwind_entry (output_epilogue (ecount), sep);
3495
3496 if (ecount < unwind.prologue_count)
3497 unwind.prologue_count -= ecount + 1;
3498 else
3499 unwind.prologue_count = 0;
3500 }
3501
3502 static void
dot_restorereg(int pred)3503 dot_restorereg (int pred)
3504 {
3505 unsigned int qp, ab, reg;
3506 expressionS e;
3507 int sep;
3508 const char * const po = pred ? "restorereg.p" : "restorereg";
3509
3510 if (!in_procedure (po))
3511 return;
3512
3513 if (pred)
3514 sep = parse_predicate_and_operand (&e, &qp, po);
3515 else
3516 {
3517 sep = parse_operand_and_eval (&e, ',');
3518 qp = 0;
3519 }
3520 convert_expr_to_ab_reg (&e, &ab, ®, po, 1 + pred);
3521
3522 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3523 }
3524
3525 static char *special_linkonce_name[] =
3526 {
3527 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3528 };
3529
3530 static void
start_unwind_section(const segT text_seg,int sec_index)3531 start_unwind_section (const segT text_seg, int sec_index)
3532 {
3533 /*
3534 Use a slightly ugly scheme to derive the unwind section names from
3535 the text section name:
3536
3537 text sect. unwind table sect.
3538 name: name: comments:
3539 ---------- ----------------- --------------------------------
3540 .text .IA_64.unwind
3541 .text.foo .IA_64.unwind.text.foo
3542 .foo .IA_64.unwind.foo
3543 .gnu.linkonce.t.foo
3544 .gnu.linkonce.ia64unw.foo
3545 _info .IA_64.unwind_info gas issues error message (ditto)
3546 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3547
3548 This mapping is done so that:
3549
3550 (a) An object file with unwind info only in .text will use
3551 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3552 This follows the letter of the ABI and also ensures backwards
3553 compatibility with older toolchains.
3554
3555 (b) An object file with unwind info in multiple text sections
3556 will use separate unwind sections for each text section.
3557 This allows us to properly set the "sh_info" and "sh_link"
3558 fields in SHT_IA_64_UNWIND as required by the ABI and also
3559 lets GNU ld support programs with multiple segments
3560 containing unwind info (as might be the case for certain
3561 embedded applications).
3562
3563 (c) An error is issued if there would be a name clash.
3564 */
3565
3566 const char *text_name, *sec_text_name;
3567 char *sec_name;
3568 const char *prefix = special_section_name [sec_index];
3569 const char *suffix;
3570 size_t prefix_len, suffix_len, sec_name_len;
3571
3572 sec_text_name = segment_name (text_seg);
3573 text_name = sec_text_name;
3574 if (strncmp (text_name, "_info", 5) == 0)
3575 {
3576 as_bad (_("Illegal section name `%s' (causes unwind section name clash)"),
3577 text_name);
3578 ignore_rest_of_line ();
3579 return;
3580 }
3581 if (strcmp (text_name, ".text") == 0)
3582 text_name = "";
3583
3584 /* Build the unwind section name by appending the (possibly stripped)
3585 text section name to the unwind prefix. */
3586 suffix = text_name;
3587 if (strncmp (text_name, ".gnu.linkonce.t.",
3588 sizeof (".gnu.linkonce.t.") - 1) == 0)
3589 {
3590 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3591 suffix += sizeof (".gnu.linkonce.t.") - 1;
3592 }
3593
3594 prefix_len = strlen (prefix);
3595 suffix_len = strlen (suffix);
3596 sec_name_len = prefix_len + suffix_len;
3597 sec_name = alloca (sec_name_len + 1);
3598 memcpy (sec_name, prefix, prefix_len);
3599 memcpy (sec_name + prefix_len, suffix, suffix_len);
3600 sec_name [sec_name_len] = '\0';
3601
3602 /* Handle COMDAT group. */
3603 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3604 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3605 {
3606 char *section;
3607 size_t len, group_name_len;
3608 const char *group_name = elf_group_name (text_seg);
3609
3610 if (group_name == NULL)
3611 {
3612 as_bad (_("Group section `%s' has no group signature"),
3613 sec_text_name);
3614 ignore_rest_of_line ();
3615 return;
3616 }
3617 /* We have to construct a fake section directive. */
3618 group_name_len = strlen (group_name);
3619 len = (sec_name_len
3620 + 16 /* ,"aG",@progbits, */
3621 + group_name_len /* ,group_name */
3622 + 7); /* ,comdat */
3623
3624 section = alloca (len + 1);
3625 memcpy (section, sec_name, sec_name_len);
3626 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3627 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3628 memcpy (section + len - 7, ",comdat", 7);
3629 section [len] = '\0';
3630 set_section (section);
3631 }
3632 else
3633 {
3634 set_section (sec_name);
3635 bfd_set_section_flags (stdoutput, now_seg,
3636 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3637 }
3638
3639 elf_linked_to_section (now_seg) = text_seg;
3640 }
3641
3642 static void
generate_unwind_image(const segT text_seg)3643 generate_unwind_image (const segT text_seg)
3644 {
3645 int size, pad;
3646 unw_rec_list *list;
3647
3648 /* Mark the end of the unwind info, so that we can compute the size of the
3649 last unwind region. */
3650 add_unwind_entry (output_endp (), NOT_A_CHAR);
3651
3652 /* Force out pending instructions, to make sure all unwind records have
3653 a valid slot_number field. */
3654 ia64_flush_insns ();
3655
3656 /* Generate the unwind record. */
3657 list = optimize_unw_records (unwind.list);
3658 fixup_unw_records (list, 1);
3659 size = calc_record_size (list);
3660
3661 if (size > 0 || unwind.force_unwind_entry)
3662 {
3663 unwind.force_unwind_entry = 0;
3664 /* pad to pointer-size boundary. */
3665 pad = size % md.pointer_size;
3666 if (pad != 0)
3667 size += md.pointer_size - pad;
3668 /* Add 8 for the header. */
3669 size += 8;
3670 /* Add a pointer for the personality offset. */
3671 if (unwind.personality_routine)
3672 size += md.pointer_size;
3673 }
3674
3675 /* If there are unwind records, switch sections, and output the info. */
3676 if (size != 0)
3677 {
3678 expressionS exp;
3679 bfd_reloc_code_real_type reloc;
3680
3681 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3682
3683 /* Make sure the section has 4 byte alignment for ILP32 and
3684 8 byte alignment for LP64. */
3685 frag_align (md.pointer_size_shift, 0, 0);
3686 record_alignment (now_seg, md.pointer_size_shift);
3687
3688 /* Set expression which points to start of unwind descriptor area. */
3689 unwind.info = expr_build_dot ();
3690
3691 frag_var (rs_machine_dependent, size, size, 0, 0,
3692 (offsetT) (long) unwind.personality_routine,
3693 (char *) list);
3694
3695 /* Add the personality address to the image. */
3696 if (unwind.personality_routine != 0)
3697 {
3698 exp.X_op = O_symbol;
3699 exp.X_add_symbol = unwind.personality_routine;
3700 exp.X_add_number = 0;
3701
3702 if (md.flags & EF_IA_64_BE)
3703 {
3704 if (md.flags & EF_IA_64_ABI64)
3705 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3706 else
3707 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3708 }
3709 else
3710 {
3711 if (md.flags & EF_IA_64_ABI64)
3712 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3713 else
3714 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3715 }
3716
3717 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3718 md.pointer_size, &exp, 0, reloc);
3719 unwind.personality_routine = 0;
3720 }
3721 }
3722
3723 free_saved_prologue_counts ();
3724 unwind.list = unwind.tail = unwind.current_entry = NULL;
3725 }
3726
3727 static void
dot_handlerdata(int dummy ATTRIBUTE_UNUSED)3728 dot_handlerdata (int dummy ATTRIBUTE_UNUSED)
3729 {
3730 if (!in_procedure ("handlerdata"))
3731 return;
3732 unwind.force_unwind_entry = 1;
3733
3734 /* Remember which segment we're in so we can switch back after .endp */
3735 unwind.saved_text_seg = now_seg;
3736 unwind.saved_text_subseg = now_subseg;
3737
3738 /* Generate unwind info into unwind-info section and then leave that
3739 section as the currently active one so dataXX directives go into
3740 the language specific data area of the unwind info block. */
3741 generate_unwind_image (now_seg);
3742 demand_empty_rest_of_line ();
3743 }
3744
3745 static void
dot_unwentry(int dummy ATTRIBUTE_UNUSED)3746 dot_unwentry (int dummy ATTRIBUTE_UNUSED)
3747 {
3748 if (!in_procedure ("unwentry"))
3749 return;
3750 unwind.force_unwind_entry = 1;
3751 demand_empty_rest_of_line ();
3752 }
3753
3754 static void
dot_altrp(int dummy ATTRIBUTE_UNUSED)3755 dot_altrp (int dummy ATTRIBUTE_UNUSED)
3756 {
3757 expressionS e;
3758 unsigned reg;
3759
3760 if (!in_prologue ("altrp"))
3761 return;
3762
3763 parse_operand_and_eval (&e, 0);
3764 reg = e.X_add_number - REG_BR;
3765 if (e.X_op != O_register || reg > 7)
3766 {
3767 as_bad (_("First operand to .altrp not a valid branch register"));
3768 reg = 0;
3769 }
3770 add_unwind_entry (output_rp_br (reg), 0);
3771 }
3772
3773 static void
dot_savemem(int psprel)3774 dot_savemem (int psprel)
3775 {
3776 expressionS e1, e2;
3777 int sep;
3778 int reg1, val;
3779 const char * const po = psprel ? "savepsp" : "savesp";
3780
3781 if (!in_prologue (po))
3782 return;
3783
3784 sep = parse_operand_and_eval (&e1, ',');
3785 if (sep == ',')
3786 sep = parse_operand_and_eval (&e2, ',');
3787 else
3788 e2.X_op = O_absent;
3789
3790 reg1 = e1.X_add_number;
3791 val = e2.X_add_number;
3792
3793 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3794 if (e1.X_op != O_register)
3795 {
3796 as_bad (_("First operand to .%s not a register"), po);
3797 reg1 = REG_PR; /* Anything valid is good here. */
3798 }
3799 if (e2.X_op != O_constant)
3800 {
3801 as_bad (_("Second operand to .%s not a constant"), po);
3802 val = 0;
3803 }
3804
3805 switch (reg1)
3806 {
3807 case REG_AR + AR_BSP:
3808 add_unwind_entry (output_bsp_when (), sep);
3809 add_unwind_entry ((psprel
3810 ? output_bsp_psprel
3811 : output_bsp_sprel) (val), NOT_A_CHAR);
3812 break;
3813 case REG_AR + AR_BSPSTORE:
3814 add_unwind_entry (output_bspstore_when (), sep);
3815 add_unwind_entry ((psprel
3816 ? output_bspstore_psprel
3817 : output_bspstore_sprel) (val), NOT_A_CHAR);
3818 break;
3819 case REG_AR + AR_RNAT:
3820 add_unwind_entry (output_rnat_when (), sep);
3821 add_unwind_entry ((psprel
3822 ? output_rnat_psprel
3823 : output_rnat_sprel) (val), NOT_A_CHAR);
3824 break;
3825 case REG_AR + AR_UNAT:
3826 add_unwind_entry (output_unat_when (), sep);
3827 add_unwind_entry ((psprel
3828 ? output_unat_psprel
3829 : output_unat_sprel) (val), NOT_A_CHAR);
3830 break;
3831 case REG_AR + AR_FPSR:
3832 add_unwind_entry (output_fpsr_when (), sep);
3833 add_unwind_entry ((psprel
3834 ? output_fpsr_psprel
3835 : output_fpsr_sprel) (val), NOT_A_CHAR);
3836 break;
3837 case REG_AR + AR_PFS:
3838 add_unwind_entry (output_pfs_when (), sep);
3839 add_unwind_entry ((psprel
3840 ? output_pfs_psprel
3841 : output_pfs_sprel) (val), NOT_A_CHAR);
3842 break;
3843 case REG_AR + AR_LC:
3844 add_unwind_entry (output_lc_when (), sep);
3845 add_unwind_entry ((psprel
3846 ? output_lc_psprel
3847 : output_lc_sprel) (val), NOT_A_CHAR);
3848 break;
3849 case REG_BR:
3850 add_unwind_entry (output_rp_when (), sep);
3851 add_unwind_entry ((psprel
3852 ? output_rp_psprel
3853 : output_rp_sprel) (val), NOT_A_CHAR);
3854 break;
3855 case REG_PR:
3856 add_unwind_entry (output_preds_when (), sep);
3857 add_unwind_entry ((psprel
3858 ? output_preds_psprel
3859 : output_preds_sprel) (val), NOT_A_CHAR);
3860 break;
3861 case REG_PRIUNAT:
3862 add_unwind_entry (output_priunat_when_mem (), sep);
3863 add_unwind_entry ((psprel
3864 ? output_priunat_psprel
3865 : output_priunat_sprel) (val), NOT_A_CHAR);
3866 break;
3867 default:
3868 as_bad (_("First operand to .%s not a valid register"), po);
3869 add_unwind_entry (NULL, sep);
3870 break;
3871 }
3872 }
3873
3874 static void
dot_saveg(int dummy ATTRIBUTE_UNUSED)3875 dot_saveg (int dummy ATTRIBUTE_UNUSED)
3876 {
3877 expressionS e;
3878 unsigned grmask;
3879 int sep;
3880
3881 if (!in_prologue ("save.g"))
3882 return;
3883
3884 sep = parse_operand_and_eval (&e, ',');
3885
3886 grmask = e.X_add_number;
3887 if (e.X_op != O_constant
3888 || e.X_add_number <= 0
3889 || e.X_add_number > 0xf)
3890 {
3891 as_bad (_("First operand to .save.g must be a positive 4-bit constant"));
3892 grmask = 0;
3893 }
3894
3895 if (sep == ',')
3896 {
3897 unsigned reg;
3898 int n = popcount (grmask);
3899
3900 parse_operand_and_eval (&e, 0);
3901 reg = e.X_add_number - REG_GR;
3902 if (e.X_op != O_register || reg > 127)
3903 {
3904 as_bad (_("Second operand to .save.g must be a general register"));
3905 reg = 0;
3906 }
3907 else if (reg > 128U - n)
3908 {
3909 as_bad (_("Second operand to .save.g must be the first of %d general registers"), n);
3910 reg = 0;
3911 }
3912 add_unwind_entry (output_gr_gr (grmask, reg), 0);
3913 }
3914 else
3915 add_unwind_entry (output_gr_mem (grmask), 0);
3916 }
3917
3918 static void
dot_savef(int dummy ATTRIBUTE_UNUSED)3919 dot_savef (int dummy ATTRIBUTE_UNUSED)
3920 {
3921 expressionS e;
3922
3923 if (!in_prologue ("save.f"))
3924 return;
3925
3926 parse_operand_and_eval (&e, 0);
3927
3928 if (e.X_op != O_constant
3929 || e.X_add_number <= 0
3930 || e.X_add_number > 0xfffff)
3931 {
3932 as_bad (_("Operand to .save.f must be a positive 20-bit constant"));
3933 e.X_add_number = 0;
3934 }
3935 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
3936 }
3937
3938 static void
dot_saveb(int dummy ATTRIBUTE_UNUSED)3939 dot_saveb (int dummy ATTRIBUTE_UNUSED)
3940 {
3941 expressionS e;
3942 unsigned brmask;
3943 int sep;
3944
3945 if (!in_prologue ("save.b"))
3946 return;
3947
3948 sep = parse_operand_and_eval (&e, ',');
3949
3950 brmask = e.X_add_number;
3951 if (e.X_op != O_constant
3952 || e.X_add_number <= 0
3953 || e.X_add_number > 0x1f)
3954 {
3955 as_bad (_("First operand to .save.b must be a positive 5-bit constant"));
3956 brmask = 0;
3957 }
3958
3959 if (sep == ',')
3960 {
3961 unsigned reg;
3962 int n = popcount (brmask);
3963
3964 parse_operand_and_eval (&e, 0);
3965 reg = e.X_add_number - REG_GR;
3966 if (e.X_op != O_register || reg > 127)
3967 {
3968 as_bad (_("Second operand to .save.b must be a general register"));
3969 reg = 0;
3970 }
3971 else if (reg > 128U - n)
3972 {
3973 as_bad (_("Second operand to .save.b must be the first of %d general registers"), n);
3974 reg = 0;
3975 }
3976 add_unwind_entry (output_br_gr (brmask, reg), 0);
3977 }
3978 else
3979 add_unwind_entry (output_br_mem (brmask), 0);
3980 }
3981
3982 static void
dot_savegf(int dummy ATTRIBUTE_UNUSED)3983 dot_savegf (int dummy ATTRIBUTE_UNUSED)
3984 {
3985 expressionS e1, e2;
3986
3987 if (!in_prologue ("save.gf"))
3988 return;
3989
3990 if (parse_operand_and_eval (&e1, ',') == ',')
3991 parse_operand_and_eval (&e2, 0);
3992 else
3993 e2.X_op = O_absent;
3994
3995 if (e1.X_op != O_constant
3996 || e1.X_add_number < 0
3997 || e1.X_add_number > 0xf)
3998 {
3999 as_bad (_("First operand to .save.gf must be a non-negative 4-bit constant"));
4000 e1.X_op = O_absent;
4001 e1.X_add_number = 0;
4002 }
4003 if (e2.X_op != O_constant
4004 || e2.X_add_number < 0
4005 || e2.X_add_number > 0xfffff)
4006 {
4007 as_bad (_("Second operand to .save.gf must be a non-negative 20-bit constant"));
4008 e2.X_op = O_absent;
4009 e2.X_add_number = 0;
4010 }
4011 if (e1.X_op == O_constant
4012 && e2.X_op == O_constant
4013 && e1.X_add_number == 0
4014 && e2.X_add_number == 0)
4015 as_bad (_("Operands to .save.gf may not be both zero"));
4016
4017 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4018 }
4019
4020 static void
dot_spill(int dummy ATTRIBUTE_UNUSED)4021 dot_spill (int dummy ATTRIBUTE_UNUSED)
4022 {
4023 expressionS e;
4024
4025 if (!in_prologue ("spill"))
4026 return;
4027
4028 parse_operand_and_eval (&e, 0);
4029
4030 if (e.X_op != O_constant)
4031 {
4032 as_bad (_("Operand to .spill must be a constant"));
4033 e.X_add_number = 0;
4034 }
4035 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4036 }
4037
4038 static void
dot_spillreg(int pred)4039 dot_spillreg (int pred)
4040 {
4041 int sep;
4042 unsigned int qp, ab, xy, reg, treg;
4043 expressionS e;
4044 const char * const po = pred ? "spillreg.p" : "spillreg";
4045
4046 if (!in_procedure (po))
4047 return;
4048
4049 if (pred)
4050 sep = parse_predicate_and_operand (&e, &qp, po);
4051 else
4052 {
4053 sep = parse_operand_and_eval (&e, ',');
4054 qp = 0;
4055 }
4056 convert_expr_to_ab_reg (&e, &ab, ®, po, 1 + pred);
4057
4058 if (sep == ',')
4059 sep = parse_operand_and_eval (&e, ',');
4060 else
4061 e.X_op = O_absent;
4062 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4063
4064 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4065 }
4066
4067 static void
dot_spillmem(int psprel)4068 dot_spillmem (int psprel)
4069 {
4070 expressionS e;
4071 int pred = (psprel < 0), sep;
4072 unsigned int qp, ab, reg;
4073 const char * po;
4074
4075 if (pred)
4076 {
4077 psprel = ~psprel;
4078 po = psprel ? "spillpsp.p" : "spillsp.p";
4079 }
4080 else
4081 po = psprel ? "spillpsp" : "spillsp";
4082
4083 if (!in_procedure (po))
4084 return;
4085
4086 if (pred)
4087 sep = parse_predicate_and_operand (&e, &qp, po);
4088 else
4089 {
4090 sep = parse_operand_and_eval (&e, ',');
4091 qp = 0;
4092 }
4093 convert_expr_to_ab_reg (&e, &ab, ®, po, 1 + pred);
4094
4095 if (sep == ',')
4096 sep = parse_operand_and_eval (&e, ',');
4097 else
4098 e.X_op = O_absent;
4099 if (e.X_op != O_constant)
4100 {
4101 as_bad (_("Operand %d to .%s must be a constant"), 2 + pred, po);
4102 e.X_add_number = 0;
4103 }
4104
4105 if (psprel)
4106 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4107 else
4108 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4109 }
4110
4111 static unsigned int
get_saved_prologue_count(unsigned long lbl)4112 get_saved_prologue_count (unsigned long lbl)
4113 {
4114 label_prologue_count *lpc = unwind.saved_prologue_counts;
4115
4116 while (lpc != NULL && lpc->label_number != lbl)
4117 lpc = lpc->next;
4118
4119 if (lpc != NULL)
4120 return lpc->prologue_count;
4121
4122 as_bad (_("Missing .label_state %ld"), lbl);
4123 return 1;
4124 }
4125
4126 static void
save_prologue_count(unsigned long lbl,unsigned int count)4127 save_prologue_count (unsigned long lbl, unsigned int count)
4128 {
4129 label_prologue_count *lpc = unwind.saved_prologue_counts;
4130
4131 while (lpc != NULL && lpc->label_number != lbl)
4132 lpc = lpc->next;
4133
4134 if (lpc != NULL)
4135 lpc->prologue_count = count;
4136 else
4137 {
4138 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4139
4140 new_lpc->next = unwind.saved_prologue_counts;
4141 new_lpc->label_number = lbl;
4142 new_lpc->prologue_count = count;
4143 unwind.saved_prologue_counts = new_lpc;
4144 }
4145 }
4146
4147 static void
free_saved_prologue_counts()4148 free_saved_prologue_counts ()
4149 {
4150 label_prologue_count *lpc = unwind.saved_prologue_counts;
4151 label_prologue_count *next;
4152
4153 while (lpc != NULL)
4154 {
4155 next = lpc->next;
4156 free (lpc);
4157 lpc = next;
4158 }
4159
4160 unwind.saved_prologue_counts = NULL;
4161 }
4162
4163 static void
dot_label_state(int dummy ATTRIBUTE_UNUSED)4164 dot_label_state (int dummy ATTRIBUTE_UNUSED)
4165 {
4166 expressionS e;
4167
4168 if (!in_body ("label_state"))
4169 return;
4170
4171 parse_operand_and_eval (&e, 0);
4172 if (e.X_op == O_constant)
4173 save_prologue_count (e.X_add_number, unwind.prologue_count);
4174 else
4175 {
4176 as_bad (_("Operand to .label_state must be a constant"));
4177 e.X_add_number = 0;
4178 }
4179 add_unwind_entry (output_label_state (e.X_add_number), 0);
4180 }
4181
4182 static void
dot_copy_state(int dummy ATTRIBUTE_UNUSED)4183 dot_copy_state (int dummy ATTRIBUTE_UNUSED)
4184 {
4185 expressionS e;
4186
4187 if (!in_body ("copy_state"))
4188 return;
4189
4190 parse_operand_and_eval (&e, 0);
4191 if (e.X_op == O_constant)
4192 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4193 else
4194 {
4195 as_bad (_("Operand to .copy_state must be a constant"));
4196 e.X_add_number = 0;
4197 }
4198 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4199 }
4200
4201 static void
dot_unwabi(int dummy ATTRIBUTE_UNUSED)4202 dot_unwabi (int dummy ATTRIBUTE_UNUSED)
4203 {
4204 expressionS e1, e2;
4205 unsigned char sep;
4206
4207 if (!in_prologue ("unwabi"))
4208 return;
4209
4210 sep = parse_operand_and_eval (&e1, ',');
4211 if (sep == ',')
4212 parse_operand_and_eval (&e2, 0);
4213 else
4214 e2.X_op = O_absent;
4215
4216 if (e1.X_op != O_constant)
4217 {
4218 as_bad (_("First operand to .unwabi must be a constant"));
4219 e1.X_add_number = 0;
4220 }
4221
4222 if (e2.X_op != O_constant)
4223 {
4224 as_bad (_("Second operand to .unwabi must be a constant"));
4225 e2.X_add_number = 0;
4226 }
4227
4228 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4229 }
4230
4231 static void
dot_personality(int dummy ATTRIBUTE_UNUSED)4232 dot_personality (int dummy ATTRIBUTE_UNUSED)
4233 {
4234 char *name, *p, c;
4235 if (!in_procedure ("personality"))
4236 return;
4237 SKIP_WHITESPACE ();
4238 name = input_line_pointer;
4239 c = get_symbol_end ();
4240 p = input_line_pointer;
4241 unwind.personality_routine = symbol_find_or_make (name);
4242 unwind.force_unwind_entry = 1;
4243 *p = c;
4244 SKIP_WHITESPACE ();
4245 demand_empty_rest_of_line ();
4246 }
4247
4248 static void
dot_proc(int dummy ATTRIBUTE_UNUSED)4249 dot_proc (int dummy ATTRIBUTE_UNUSED)
4250 {
4251 char *name, *p, c;
4252 symbolS *sym;
4253 proc_pending *pending, *last_pending;
4254
4255 if (unwind.proc_pending.sym)
4256 {
4257 (md.unwind_check == unwind_check_warning
4258 ? as_warn
4259 : as_bad) (_("Missing .endp after previous .proc"));
4260 while (unwind.proc_pending.next)
4261 {
4262 pending = unwind.proc_pending.next;
4263 unwind.proc_pending.next = pending->next;
4264 free (pending);
4265 }
4266 }
4267 last_pending = NULL;
4268
4269 /* Parse names of main and alternate entry points and mark them as
4270 function symbols: */
4271 while (1)
4272 {
4273 SKIP_WHITESPACE ();
4274 name = input_line_pointer;
4275 c = get_symbol_end ();
4276 p = input_line_pointer;
4277 if (!*name)
4278 as_bad (_("Empty argument of .proc"));
4279 else
4280 {
4281 sym = symbol_find_or_make (name);
4282 if (S_IS_DEFINED (sym))
4283 as_bad (_("`%s' was already defined"), name);
4284 else if (!last_pending)
4285 {
4286 unwind.proc_pending.sym = sym;
4287 last_pending = &unwind.proc_pending;
4288 }
4289 else
4290 {
4291 pending = xmalloc (sizeof (*pending));
4292 pending->sym = sym;
4293 last_pending = last_pending->next = pending;
4294 }
4295 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4296 }
4297 *p = c;
4298 SKIP_WHITESPACE ();
4299 if (*input_line_pointer != ',')
4300 break;
4301 ++input_line_pointer;
4302 }
4303 if (!last_pending)
4304 {
4305 unwind.proc_pending.sym = expr_build_dot ();
4306 last_pending = &unwind.proc_pending;
4307 }
4308 last_pending->next = NULL;
4309 demand_empty_rest_of_line ();
4310 ia64_do_align (16);
4311
4312 unwind.prologue = 0;
4313 unwind.prologue_count = 0;
4314 unwind.body = 0;
4315 unwind.insn = 0;
4316 unwind.list = unwind.tail = unwind.current_entry = NULL;
4317 unwind.personality_routine = 0;
4318 }
4319
4320 static void
dot_body(int dummy ATTRIBUTE_UNUSED)4321 dot_body (int dummy ATTRIBUTE_UNUSED)
4322 {
4323 if (!in_procedure ("body"))
4324 return;
4325 if (!unwind.prologue && !unwind.body && unwind.insn)
4326 as_warn (_("Initial .body should precede any instructions"));
4327 check_pending_save ();
4328
4329 unwind.prologue = 0;
4330 unwind.prologue_mask = 0;
4331 unwind.body = 1;
4332
4333 add_unwind_entry (output_body (), 0);
4334 }
4335
4336 static void
dot_prologue(int dummy ATTRIBUTE_UNUSED)4337 dot_prologue (int dummy ATTRIBUTE_UNUSED)
4338 {
4339 unsigned mask = 0, grsave = 0;
4340
4341 if (!in_procedure ("prologue"))
4342 return;
4343 if (unwind.prologue)
4344 {
4345 as_bad (_(".prologue within prologue"));
4346 ignore_rest_of_line ();
4347 return;
4348 }
4349 if (!unwind.body && unwind.insn)
4350 as_warn (_("Initial .prologue should precede any instructions"));
4351
4352 if (!is_it_end_of_statement ())
4353 {
4354 expressionS e;
4355 int n, sep = parse_operand_and_eval (&e, ',');
4356
4357 if (e.X_op != O_constant
4358 || e.X_add_number < 0
4359 || e.X_add_number > 0xf)
4360 as_bad (_("First operand to .prologue must be a positive 4-bit constant"));
4361 else if (e.X_add_number == 0)
4362 as_warn (_("Pointless use of zero first operand to .prologue"));
4363 else
4364 mask = e.X_add_number;
4365 n = popcount (mask);
4366
4367 if (sep == ',')
4368 parse_operand_and_eval (&e, 0);
4369 else
4370 e.X_op = O_absent;
4371 if (e.X_op == O_constant
4372 && e.X_add_number >= 0
4373 && e.X_add_number < 128)
4374 {
4375 if (md.unwind_check == unwind_check_error)
4376 as_warn (_("Using a constant as second operand to .prologue is deprecated"));
4377 grsave = e.X_add_number;
4378 }
4379 else if (e.X_op != O_register
4380 || (grsave = e.X_add_number - REG_GR) > 127)
4381 {
4382 as_bad (_("Second operand to .prologue must be a general register"));
4383 grsave = 0;
4384 }
4385 else if (grsave > 128U - n)
4386 {
4387 as_bad (_("Second operand to .prologue must be the first of %d general registers"), n);
4388 grsave = 0;
4389 }
4390
4391 }
4392
4393 if (mask)
4394 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4395 else
4396 add_unwind_entry (output_prologue (), 0);
4397
4398 unwind.prologue = 1;
4399 unwind.prologue_mask = mask;
4400 unwind.prologue_gr = grsave;
4401 unwind.body = 0;
4402 ++unwind.prologue_count;
4403 }
4404
4405 static void
dot_endp(int dummy ATTRIBUTE_UNUSED)4406 dot_endp (int dummy ATTRIBUTE_UNUSED)
4407 {
4408 expressionS e;
4409 int bytes_per_address;
4410 long where;
4411 segT saved_seg;
4412 subsegT saved_subseg;
4413 proc_pending *pending;
4414 int unwind_check = md.unwind_check;
4415
4416 md.unwind_check = unwind_check_error;
4417 if (!in_procedure ("endp"))
4418 return;
4419 md.unwind_check = unwind_check;
4420
4421 if (unwind.saved_text_seg)
4422 {
4423 saved_seg = unwind.saved_text_seg;
4424 saved_subseg = unwind.saved_text_subseg;
4425 unwind.saved_text_seg = NULL;
4426 }
4427 else
4428 {
4429 saved_seg = now_seg;
4430 saved_subseg = now_subseg;
4431 }
4432
4433 insn_group_break (1, 0, 0);
4434
4435 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4436 if (!unwind.info)
4437 generate_unwind_image (saved_seg);
4438
4439 if (unwind.info || unwind.force_unwind_entry)
4440 {
4441 symbolS *proc_end;
4442
4443 subseg_set (md.last_text_seg, 0);
4444 proc_end = expr_build_dot ();
4445
4446 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4447
4448 /* Make sure that section has 4 byte alignment for ILP32 and
4449 8 byte alignment for LP64. */
4450 record_alignment (now_seg, md.pointer_size_shift);
4451
4452 /* Need space for 3 pointers for procedure start, procedure end,
4453 and unwind info. */
4454 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4455 where = frag_now_fix () - (3 * md.pointer_size);
4456 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4457
4458 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4459 e.X_op = O_pseudo_fixup;
4460 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4461 e.X_add_number = 0;
4462 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4463 && S_IS_DEFINED (unwind.proc_pending.sym))
4464 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4465 S_GET_VALUE (unwind.proc_pending.sym),
4466 symbol_get_frag (unwind.proc_pending.sym));
4467 else
4468 e.X_add_symbol = unwind.proc_pending.sym;
4469 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e,
4470 BFD_RELOC_NONE);
4471
4472 e.X_op = O_pseudo_fixup;
4473 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4474 e.X_add_number = 0;
4475 e.X_add_symbol = proc_end;
4476 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4477 bytes_per_address, &e, BFD_RELOC_NONE);
4478
4479 if (unwind.info)
4480 {
4481 e.X_op = O_pseudo_fixup;
4482 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4483 e.X_add_number = 0;
4484 e.X_add_symbol = unwind.info;
4485 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4486 bytes_per_address, &e, BFD_RELOC_NONE);
4487 }
4488 }
4489 subseg_set (saved_seg, saved_subseg);
4490
4491 /* Set symbol sizes. */
4492 pending = &unwind.proc_pending;
4493 if (S_GET_NAME (pending->sym))
4494 {
4495 do
4496 {
4497 symbolS *sym = pending->sym;
4498
4499 if (!S_IS_DEFINED (sym))
4500 as_bad (_("`%s' was not defined within procedure"), S_GET_NAME (sym));
4501 else if (S_GET_SIZE (sym) == 0
4502 && symbol_get_obj (sym)->size == NULL)
4503 {
4504 fragS *frag = symbol_get_frag (sym);
4505
4506 if (frag)
4507 {
4508 if (frag == frag_now && SEG_NORMAL (now_seg))
4509 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4510 else
4511 {
4512 symbol_get_obj (sym)->size =
4513 (expressionS *) xmalloc (sizeof (expressionS));
4514 symbol_get_obj (sym)->size->X_op = O_subtract;
4515 symbol_get_obj (sym)->size->X_add_symbol
4516 = symbol_new (FAKE_LABEL_NAME, now_seg,
4517 frag_now_fix (), frag_now);
4518 symbol_get_obj (sym)->size->X_op_symbol = sym;
4519 symbol_get_obj (sym)->size->X_add_number = 0;
4520 }
4521 }
4522 }
4523 } while ((pending = pending->next) != NULL);
4524 }
4525
4526 /* Parse names of main and alternate entry points. */
4527 while (1)
4528 {
4529 char *name, *p, c;
4530
4531 SKIP_WHITESPACE ();
4532 name = input_line_pointer;
4533 c = get_symbol_end ();
4534 p = input_line_pointer;
4535 if (!*name)
4536 (md.unwind_check == unwind_check_warning
4537 ? as_warn
4538 : as_bad) (_("Empty argument of .endp"));
4539 else
4540 {
4541 symbolS *sym = symbol_find (name);
4542
4543 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4544 {
4545 if (sym == pending->sym)
4546 {
4547 pending->sym = NULL;
4548 break;
4549 }
4550 }
4551 if (!sym || !pending)
4552 as_warn (_("`%s' was not specified with previous .proc"), name);
4553 }
4554 *p = c;
4555 SKIP_WHITESPACE ();
4556 if (*input_line_pointer != ',')
4557 break;
4558 ++input_line_pointer;
4559 }
4560 demand_empty_rest_of_line ();
4561
4562 /* Deliberately only checking for the main entry point here; the
4563 language spec even says all arguments to .endp are ignored. */
4564 if (unwind.proc_pending.sym
4565 && S_GET_NAME (unwind.proc_pending.sym)
4566 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4567 as_warn (_("`%s' should be an operand to this .endp"),
4568 S_GET_NAME (unwind.proc_pending.sym));
4569 while (unwind.proc_pending.next)
4570 {
4571 pending = unwind.proc_pending.next;
4572 unwind.proc_pending.next = pending->next;
4573 free (pending);
4574 }
4575 unwind.proc_pending.sym = unwind.info = NULL;
4576 }
4577
4578 static void
dot_template(int template_val)4579 dot_template (int template_val)
4580 {
4581 CURR_SLOT.user_template = template_val;
4582 }
4583
4584 static void
dot_regstk(int dummy ATTRIBUTE_UNUSED)4585 dot_regstk (int dummy ATTRIBUTE_UNUSED)
4586 {
4587 int ins, locs, outs, rots;
4588
4589 if (is_it_end_of_statement ())
4590 ins = locs = outs = rots = 0;
4591 else
4592 {
4593 ins = get_absolute_expression ();
4594 if (*input_line_pointer++ != ',')
4595 goto err;
4596 locs = get_absolute_expression ();
4597 if (*input_line_pointer++ != ',')
4598 goto err;
4599 outs = get_absolute_expression ();
4600 if (*input_line_pointer++ != ',')
4601 goto err;
4602 rots = get_absolute_expression ();
4603 }
4604 set_regstack (ins, locs, outs, rots);
4605 return;
4606
4607 err:
4608 as_bad (_("Comma expected"));
4609 ignore_rest_of_line ();
4610 }
4611
4612 static void
dot_rot(int type)4613 dot_rot (int type)
4614 {
4615 offsetT num_regs;
4616 valueT num_alloced = 0;
4617 struct dynreg **drpp, *dr;
4618 int ch, base_reg = 0;
4619 char *name, *start;
4620 size_t len;
4621
4622 switch (type)
4623 {
4624 case DYNREG_GR: base_reg = REG_GR + 32; break;
4625 case DYNREG_FR: base_reg = REG_FR + 32; break;
4626 case DYNREG_PR: base_reg = REG_P + 16; break;
4627 default: break;
4628 }
4629
4630 /* First, remove existing names from hash table. */
4631 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4632 {
4633 hash_delete (md.dynreg_hash, dr->name, FALSE);
4634 /* FIXME: Free dr->name. */
4635 dr->num_regs = 0;
4636 }
4637
4638 drpp = &md.dynreg[type];
4639 while (1)
4640 {
4641 start = input_line_pointer;
4642 ch = get_symbol_end ();
4643 len = strlen (ia64_canonicalize_symbol_name (start));
4644 *input_line_pointer = ch;
4645
4646 SKIP_WHITESPACE ();
4647 if (*input_line_pointer != '[')
4648 {
4649 as_bad (_("Expected '['"));
4650 goto err;
4651 }
4652 ++input_line_pointer; /* skip '[' */
4653
4654 num_regs = get_absolute_expression ();
4655
4656 if (*input_line_pointer++ != ']')
4657 {
4658 as_bad (_("Expected ']'"));
4659 goto err;
4660 }
4661 if (num_regs <= 0)
4662 {
4663 as_bad (_("Number of elements must be positive"));
4664 goto err;
4665 }
4666 SKIP_WHITESPACE ();
4667
4668 num_alloced += num_regs;
4669 switch (type)
4670 {
4671 case DYNREG_GR:
4672 if (num_alloced > md.rot.num_regs)
4673 {
4674 as_bad (_("Used more than the declared %d rotating registers"),
4675 md.rot.num_regs);
4676 goto err;
4677 }
4678 break;
4679 case DYNREG_FR:
4680 if (num_alloced > 96)
4681 {
4682 as_bad (_("Used more than the available 96 rotating registers"));
4683 goto err;
4684 }
4685 break;
4686 case DYNREG_PR:
4687 if (num_alloced > 48)
4688 {
4689 as_bad (_("Used more than the available 48 rotating registers"));
4690 goto err;
4691 }
4692 break;
4693
4694 default:
4695 break;
4696 }
4697
4698 if (!*drpp)
4699 {
4700 *drpp = obstack_alloc (¬es, sizeof (*dr));
4701 memset (*drpp, 0, sizeof (*dr));
4702 }
4703
4704 name = obstack_alloc (¬es, len + 1);
4705 memcpy (name, start, len);
4706 name[len] = '\0';
4707
4708 dr = *drpp;
4709 dr->name = name;
4710 dr->num_regs = num_regs;
4711 dr->base = base_reg;
4712 drpp = &dr->next;
4713 base_reg += num_regs;
4714
4715 if (hash_insert (md.dynreg_hash, name, dr))
4716 {
4717 as_bad (_("Attempt to redefine register set `%s'"), name);
4718 obstack_free (¬es, name);
4719 goto err;
4720 }
4721
4722 if (*input_line_pointer != ',')
4723 break;
4724 ++input_line_pointer; /* skip comma */
4725 SKIP_WHITESPACE ();
4726 }
4727 demand_empty_rest_of_line ();
4728 return;
4729
4730 err:
4731 ignore_rest_of_line ();
4732 }
4733
4734 static void
dot_byteorder(int byteorder)4735 dot_byteorder (int byteorder)
4736 {
4737 segment_info_type *seginfo = seg_info (now_seg);
4738
4739 if (byteorder == -1)
4740 {
4741 if (seginfo->tc_segment_info_data.endian == 0)
4742 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4743 byteorder = seginfo->tc_segment_info_data.endian == 1;
4744 }
4745 else
4746 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4747
4748 if (target_big_endian != byteorder)
4749 {
4750 target_big_endian = byteorder;
4751 if (target_big_endian)
4752 {
4753 ia64_number_to_chars = number_to_chars_bigendian;
4754 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4755 }
4756 else
4757 {
4758 ia64_number_to_chars = number_to_chars_littleendian;
4759 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4760 }
4761 }
4762 }
4763
4764 static void
dot_psr(int dummy ATTRIBUTE_UNUSED)4765 dot_psr (int dummy ATTRIBUTE_UNUSED)
4766 {
4767 char *option;
4768 int ch;
4769
4770 while (1)
4771 {
4772 option = input_line_pointer;
4773 ch = get_symbol_end ();
4774 if (strcmp (option, "lsb") == 0)
4775 md.flags &= ~EF_IA_64_BE;
4776 else if (strcmp (option, "msb") == 0)
4777 md.flags |= EF_IA_64_BE;
4778 else if (strcmp (option, "abi32") == 0)
4779 md.flags &= ~EF_IA_64_ABI64;
4780 else if (strcmp (option, "abi64") == 0)
4781 md.flags |= EF_IA_64_ABI64;
4782 else
4783 as_bad (_("Unknown psr option `%s'"), option);
4784 *input_line_pointer = ch;
4785
4786 SKIP_WHITESPACE ();
4787 if (*input_line_pointer != ',')
4788 break;
4789
4790 ++input_line_pointer;
4791 SKIP_WHITESPACE ();
4792 }
4793 demand_empty_rest_of_line ();
4794 }
4795
4796 static void
dot_ln(int dummy ATTRIBUTE_UNUSED)4797 dot_ln (int dummy ATTRIBUTE_UNUSED)
4798 {
4799 new_logical_line (0, get_absolute_expression ());
4800 demand_empty_rest_of_line ();
4801 }
4802
4803 static void
cross_section(int ref,void (* builder)(int),int ua)4804 cross_section (int ref, void (*builder) (int), int ua)
4805 {
4806 char *start, *end;
4807 int saved_auto_align;
4808 unsigned int section_count;
4809
4810 SKIP_WHITESPACE ();
4811 start = input_line_pointer;
4812 if (*start == '"')
4813 {
4814 int len;
4815 char *name;
4816
4817 name = demand_copy_C_string (&len);
4818 obstack_free(¬es, name);
4819 if (!name)
4820 {
4821 ignore_rest_of_line ();
4822 return;
4823 }
4824 }
4825 else
4826 {
4827 char c = get_symbol_end ();
4828
4829 if (input_line_pointer == start)
4830 {
4831 as_bad (_("Missing section name"));
4832 ignore_rest_of_line ();
4833 return;
4834 }
4835 *input_line_pointer = c;
4836 }
4837 end = input_line_pointer;
4838 SKIP_WHITESPACE ();
4839 if (*input_line_pointer != ',')
4840 {
4841 as_bad (_("Comma expected after section name"));
4842 ignore_rest_of_line ();
4843 return;
4844 }
4845 *end = '\0';
4846 end = input_line_pointer + 1; /* skip comma */
4847 input_line_pointer = start;
4848 md.keep_pending_output = 1;
4849 section_count = bfd_count_sections (stdoutput);
4850 obj_elf_section (0);
4851 if (section_count != bfd_count_sections (stdoutput))
4852 as_warn (_("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated."));
4853 input_line_pointer = end;
4854 saved_auto_align = md.auto_align;
4855 if (ua)
4856 md.auto_align = 0;
4857 (*builder) (ref);
4858 if (ua)
4859 md.auto_align = saved_auto_align;
4860 obj_elf_previous (0);
4861 md.keep_pending_output = 0;
4862 }
4863
4864 static void
dot_xdata(int size)4865 dot_xdata (int size)
4866 {
4867 cross_section (size, cons, 0);
4868 }
4869
4870 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4871
4872 static void
stmt_float_cons(int kind)4873 stmt_float_cons (int kind)
4874 {
4875 size_t alignment;
4876
4877 switch (kind)
4878 {
4879 case 'd':
4880 alignment = 8;
4881 break;
4882
4883 case 'x':
4884 case 'X':
4885 alignment = 16;
4886 break;
4887
4888 case 'f':
4889 default:
4890 alignment = 4;
4891 break;
4892 }
4893 ia64_do_align (alignment);
4894 float_cons (kind);
4895 }
4896
4897 static void
stmt_cons_ua(int size)4898 stmt_cons_ua (int size)
4899 {
4900 int saved_auto_align = md.auto_align;
4901
4902 md.auto_align = 0;
4903 cons (size);
4904 md.auto_align = saved_auto_align;
4905 }
4906
4907 static void
dot_xfloat_cons(int kind)4908 dot_xfloat_cons (int kind)
4909 {
4910 cross_section (kind, stmt_float_cons, 0);
4911 }
4912
4913 static void
dot_xstringer(int zero)4914 dot_xstringer (int zero)
4915 {
4916 cross_section (zero, stringer, 0);
4917 }
4918
4919 static void
dot_xdata_ua(int size)4920 dot_xdata_ua (int size)
4921 {
4922 cross_section (size, cons, 1);
4923 }
4924
4925 static void
dot_xfloat_cons_ua(int kind)4926 dot_xfloat_cons_ua (int kind)
4927 {
4928 cross_section (kind, float_cons, 1);
4929 }
4930
4931 /* .reg.val <regname>,value */
4932
4933 static void
dot_reg_val(int dummy ATTRIBUTE_UNUSED)4934 dot_reg_val (int dummy ATTRIBUTE_UNUSED)
4935 {
4936 expressionS reg;
4937
4938 expression_and_evaluate (®);
4939 if (reg.X_op != O_register)
4940 {
4941 as_bad (_("Register name expected"));
4942 ignore_rest_of_line ();
4943 }
4944 else if (*input_line_pointer++ != ',')
4945 {
4946 as_bad (_("Comma expected"));
4947 ignore_rest_of_line ();
4948 }
4949 else
4950 {
4951 valueT value = get_absolute_expression ();
4952 int regno = reg.X_add_number;
4953 if (regno <= REG_GR || regno > REG_GR + 127)
4954 as_warn (_("Register value annotation ignored"));
4955 else
4956 {
4957 gr_values[regno - REG_GR].known = 1;
4958 gr_values[regno - REG_GR].value = value;
4959 gr_values[regno - REG_GR].path = md.path;
4960 }
4961 }
4962 demand_empty_rest_of_line ();
4963 }
4964
4965 /*
4966 .serialize.data
4967 .serialize.instruction
4968 */
4969 static void
dot_serialize(int type)4970 dot_serialize (int type)
4971 {
4972 insn_group_break (0, 0, 0);
4973 if (type)
4974 instruction_serialization ();
4975 else
4976 data_serialization ();
4977 insn_group_break (0, 0, 0);
4978 demand_empty_rest_of_line ();
4979 }
4980
4981 /* select dv checking mode
4982 .auto
4983 .explicit
4984 .default
4985
4986 A stop is inserted when changing modes
4987 */
4988
4989 static void
dot_dv_mode(int type)4990 dot_dv_mode (int type)
4991 {
4992 if (md.manual_bundling)
4993 as_warn (_("Directive invalid within a bundle"));
4994
4995 if (type == 'E' || type == 'A')
4996 md.mode_explicitly_set = 0;
4997 else
4998 md.mode_explicitly_set = 1;
4999
5000 md.detect_dv = 1;
5001 switch (type)
5002 {
5003 case 'A':
5004 case 'a':
5005 if (md.explicit_mode)
5006 insn_group_break (1, 0, 0);
5007 md.explicit_mode = 0;
5008 break;
5009 case 'E':
5010 case 'e':
5011 if (!md.explicit_mode)
5012 insn_group_break (1, 0, 0);
5013 md.explicit_mode = 1;
5014 break;
5015 default:
5016 case 'd':
5017 if (md.explicit_mode != md.default_explicit_mode)
5018 insn_group_break (1, 0, 0);
5019 md.explicit_mode = md.default_explicit_mode;
5020 md.mode_explicitly_set = 0;
5021 break;
5022 }
5023 }
5024
5025 static void
print_prmask(valueT mask)5026 print_prmask (valueT mask)
5027 {
5028 int regno;
5029 char *comma = "";
5030 for (regno = 0; regno < 64; regno++)
5031 {
5032 if (mask & ((valueT) 1 << regno))
5033 {
5034 fprintf (stderr, "%s p%d", comma, regno);
5035 comma = ",";
5036 }
5037 }
5038 }
5039
5040 /*
5041 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5042 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5043 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5044 .pred.safe_across_calls p1 [, p2 [,...]]
5045 */
5046
5047 static void
dot_pred_rel(int type)5048 dot_pred_rel (int type)
5049 {
5050 valueT mask = 0;
5051 int count = 0;
5052 int p1 = -1, p2 = -1;
5053
5054 if (type == 0)
5055 {
5056 if (*input_line_pointer == '"')
5057 {
5058 int len;
5059 char *form = demand_copy_C_string (&len);
5060
5061 if (strcmp (form, "mutex") == 0)
5062 type = 'm';
5063 else if (strcmp (form, "clear") == 0)
5064 type = 'c';
5065 else if (strcmp (form, "imply") == 0)
5066 type = 'i';
5067 obstack_free (¬es, form);
5068 }
5069 else if (*input_line_pointer == '@')
5070 {
5071 char *form = ++input_line_pointer;
5072 char c = get_symbol_end();
5073
5074 if (strcmp (form, "mutex") == 0)
5075 type = 'm';
5076 else if (strcmp (form, "clear") == 0)
5077 type = 'c';
5078 else if (strcmp (form, "imply") == 0)
5079 type = 'i';
5080 *input_line_pointer = c;
5081 }
5082 else
5083 {
5084 as_bad (_("Missing predicate relation type"));
5085 ignore_rest_of_line ();
5086 return;
5087 }
5088 if (type == 0)
5089 {
5090 as_bad (_("Unrecognized predicate relation type"));
5091 ignore_rest_of_line ();
5092 return;
5093 }
5094 if (*input_line_pointer == ',')
5095 ++input_line_pointer;
5096 SKIP_WHITESPACE ();
5097 }
5098
5099 while (1)
5100 {
5101 valueT bits = 1;
5102 int sep, regno;
5103 expressionS pr, *pr1, *pr2;
5104
5105 sep = parse_operand_and_eval (&pr, ',');
5106 if (pr.X_op == O_register
5107 && pr.X_add_number >= REG_P
5108 && pr.X_add_number <= REG_P + 63)
5109 {
5110 regno = pr.X_add_number - REG_P;
5111 bits <<= regno;
5112 count++;
5113 if (p1 == -1)
5114 p1 = regno;
5115 else if (p2 == -1)
5116 p2 = regno;
5117 }
5118 else if (type != 'i'
5119 && pr.X_op == O_subtract
5120 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5121 && pr1->X_op == O_register
5122 && pr1->X_add_number >= REG_P
5123 && pr1->X_add_number <= REG_P + 63
5124 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5125 && pr2->X_op == O_register
5126 && pr2->X_add_number >= REG_P
5127 && pr2->X_add_number <= REG_P + 63)
5128 {
5129 /* It's a range. */
5130 int stop;
5131
5132 regno = pr1->X_add_number - REG_P;
5133 stop = pr2->X_add_number - REG_P;
5134 if (regno >= stop)
5135 {
5136 as_bad (_("Bad register range"));
5137 ignore_rest_of_line ();
5138 return;
5139 }
5140 bits = ((bits << stop) << 1) - (bits << regno);
5141 count += stop - regno + 1;
5142 }
5143 else
5144 {
5145 as_bad (_("Predicate register expected"));
5146 ignore_rest_of_line ();
5147 return;
5148 }
5149 if (mask & bits)
5150 as_warn (_("Duplicate predicate register ignored"));
5151 mask |= bits;
5152 if (sep != ',')
5153 break;
5154 }
5155
5156 switch (type)
5157 {
5158 case 'c':
5159 if (count == 0)
5160 mask = ~(valueT) 0;
5161 clear_qp_mutex (mask);
5162 clear_qp_implies (mask, (valueT) 0);
5163 break;
5164 case 'i':
5165 if (count != 2 || p1 == -1 || p2 == -1)
5166 as_bad (_("Predicate source and target required"));
5167 else if (p1 == 0 || p2 == 0)
5168 as_bad (_("Use of p0 is not valid in this context"));
5169 else
5170 add_qp_imply (p1, p2);
5171 break;
5172 case 'm':
5173 if (count < 2)
5174 {
5175 as_bad (_("At least two PR arguments expected"));
5176 break;
5177 }
5178 else if (mask & 1)
5179 {
5180 as_bad (_("Use of p0 is not valid in this context"));
5181 break;
5182 }
5183 add_qp_mutex (mask);
5184 break;
5185 case 's':
5186 /* note that we don't override any existing relations */
5187 if (count == 0)
5188 {
5189 as_bad (_("At least one PR argument expected"));
5190 break;
5191 }
5192 if (md.debug_dv)
5193 {
5194 fprintf (stderr, "Safe across calls: ");
5195 print_prmask (mask);
5196 fprintf (stderr, "\n");
5197 }
5198 qp_safe_across_calls = mask;
5199 break;
5200 }
5201 demand_empty_rest_of_line ();
5202 }
5203
5204 /* .entry label [, label [, ...]]
5205 Hint to DV code that the given labels are to be considered entry points.
5206 Otherwise, only global labels are considered entry points. */
5207
5208 static void
dot_entry(int dummy ATTRIBUTE_UNUSED)5209 dot_entry (int dummy ATTRIBUTE_UNUSED)
5210 {
5211 const char *err;
5212 char *name;
5213 int c;
5214 symbolS *symbolP;
5215
5216 do
5217 {
5218 name = input_line_pointer;
5219 c = get_symbol_end ();
5220 symbolP = symbol_find_or_make (name);
5221
5222 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (void *) symbolP);
5223 if (err)
5224 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5225 name, err);
5226
5227 *input_line_pointer = c;
5228 SKIP_WHITESPACE ();
5229 c = *input_line_pointer;
5230 if (c == ',')
5231 {
5232 input_line_pointer++;
5233 SKIP_WHITESPACE ();
5234 if (*input_line_pointer == '\n')
5235 c = '\n';
5236 }
5237 }
5238 while (c == ',');
5239
5240 demand_empty_rest_of_line ();
5241 }
5242
5243 /* .mem.offset offset, base
5244 "base" is used to distinguish between offsets from a different base. */
5245
5246 static void
dot_mem_offset(int dummy ATTRIBUTE_UNUSED)5247 dot_mem_offset (int dummy ATTRIBUTE_UNUSED)
5248 {
5249 md.mem_offset.hint = 1;
5250 md.mem_offset.offset = get_absolute_expression ();
5251 if (*input_line_pointer != ',')
5252 {
5253 as_bad (_("Comma expected"));
5254 ignore_rest_of_line ();
5255 return;
5256 }
5257 ++input_line_pointer;
5258 md.mem_offset.base = get_absolute_expression ();
5259 demand_empty_rest_of_line ();
5260 }
5261
5262 /* ia64-specific pseudo-ops: */
5263 const pseudo_typeS md_pseudo_table[] =
5264 {
5265 { "radix", dot_radix, 0 },
5266 { "lcomm", s_lcomm_bytes, 1 },
5267 { "loc", dot_loc, 0 },
5268 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5269 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5270 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5271 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5272 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5273 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5274 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5275 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5276 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5277 { "proc", dot_proc, 0 },
5278 { "body", dot_body, 0 },
5279 { "prologue", dot_prologue, 0 },
5280 { "endp", dot_endp, 0 },
5281
5282 { "fframe", dot_fframe, 0 },
5283 { "vframe", dot_vframe, 0 },
5284 { "vframesp", dot_vframesp, 0 },
5285 { "vframepsp", dot_vframesp, 1 },
5286 { "save", dot_save, 0 },
5287 { "restore", dot_restore, 0 },
5288 { "restorereg", dot_restorereg, 0 },
5289 { "restorereg.p", dot_restorereg, 1 },
5290 { "handlerdata", dot_handlerdata, 0 },
5291 { "unwentry", dot_unwentry, 0 },
5292 { "altrp", dot_altrp, 0 },
5293 { "savesp", dot_savemem, 0 },
5294 { "savepsp", dot_savemem, 1 },
5295 { "save.g", dot_saveg, 0 },
5296 { "save.f", dot_savef, 0 },
5297 { "save.b", dot_saveb, 0 },
5298 { "save.gf", dot_savegf, 0 },
5299 { "spill", dot_spill, 0 },
5300 { "spillreg", dot_spillreg, 0 },
5301 { "spillsp", dot_spillmem, 0 },
5302 { "spillpsp", dot_spillmem, 1 },
5303 { "spillreg.p", dot_spillreg, 1 },
5304 { "spillsp.p", dot_spillmem, ~0 },
5305 { "spillpsp.p", dot_spillmem, ~1 },
5306 { "label_state", dot_label_state, 0 },
5307 { "copy_state", dot_copy_state, 0 },
5308 { "unwabi", dot_unwabi, 0 },
5309 { "personality", dot_personality, 0 },
5310 { "mii", dot_template, 0x0 },
5311 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5312 { "mlx", dot_template, 0x2 },
5313 { "mmi", dot_template, 0x4 },
5314 { "mfi", dot_template, 0x6 },
5315 { "mmf", dot_template, 0x7 },
5316 { "mib", dot_template, 0x8 },
5317 { "mbb", dot_template, 0x9 },
5318 { "bbb", dot_template, 0xb },
5319 { "mmb", dot_template, 0xc },
5320 { "mfb", dot_template, 0xe },
5321 { "align", dot_align, 0 },
5322 { "regstk", dot_regstk, 0 },
5323 { "rotr", dot_rot, DYNREG_GR },
5324 { "rotf", dot_rot, DYNREG_FR },
5325 { "rotp", dot_rot, DYNREG_PR },
5326 { "lsb", dot_byteorder, 0 },
5327 { "msb", dot_byteorder, 1 },
5328 { "psr", dot_psr, 0 },
5329 { "alias", dot_alias, 0 },
5330 { "secalias", dot_alias, 1 },
5331 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5332
5333 { "xdata1", dot_xdata, 1 },
5334 { "xdata2", dot_xdata, 2 },
5335 { "xdata4", dot_xdata, 4 },
5336 { "xdata8", dot_xdata, 8 },
5337 { "xdata16", dot_xdata, 16 },
5338 { "xreal4", dot_xfloat_cons, 'f' },
5339 { "xreal8", dot_xfloat_cons, 'd' },
5340 { "xreal10", dot_xfloat_cons, 'x' },
5341 { "xreal16", dot_xfloat_cons, 'X' },
5342 { "xstring", dot_xstringer, 8 + 0 },
5343 { "xstringz", dot_xstringer, 8 + 1 },
5344
5345 /* unaligned versions: */
5346 { "xdata2.ua", dot_xdata_ua, 2 },
5347 { "xdata4.ua", dot_xdata_ua, 4 },
5348 { "xdata8.ua", dot_xdata_ua, 8 },
5349 { "xdata16.ua", dot_xdata_ua, 16 },
5350 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5351 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5352 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5353 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5354
5355 /* annotations/DV checking support */
5356 { "entry", dot_entry, 0 },
5357 { "mem.offset", dot_mem_offset, 0 },
5358 { "pred.rel", dot_pred_rel, 0 },
5359 { "pred.rel.clear", dot_pred_rel, 'c' },
5360 { "pred.rel.imply", dot_pred_rel, 'i' },
5361 { "pred.rel.mutex", dot_pred_rel, 'm' },
5362 { "pred.safe_across_calls", dot_pred_rel, 's' },
5363 { "reg.val", dot_reg_val, 0 },
5364 { "serialize.data", dot_serialize, 0 },
5365 { "serialize.instruction", dot_serialize, 1 },
5366 { "auto", dot_dv_mode, 'a' },
5367 { "explicit", dot_dv_mode, 'e' },
5368 { "default", dot_dv_mode, 'd' },
5369
5370 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5371 IA-64 aligns data allocation pseudo-ops by default, so we have to
5372 tell it that these ones are supposed to be unaligned. Long term,
5373 should rewrite so that only IA-64 specific data allocation pseudo-ops
5374 are aligned by default. */
5375 {"2byte", stmt_cons_ua, 2},
5376 {"4byte", stmt_cons_ua, 4},
5377 {"8byte", stmt_cons_ua, 8},
5378
5379 #ifdef TE_VMS
5380 {"vms_common", obj_elf_vms_common, 0},
5381 #endif
5382
5383 { NULL, 0, 0 }
5384 };
5385
5386 static const struct pseudo_opcode
5387 {
5388 const char *name;
5389 void (*handler) (int);
5390 int arg;
5391 }
5392 pseudo_opcode[] =
5393 {
5394 /* these are more like pseudo-ops, but don't start with a dot */
5395 { "data1", cons, 1 },
5396 { "data2", cons, 2 },
5397 { "data4", cons, 4 },
5398 { "data8", cons, 8 },
5399 { "data16", cons, 16 },
5400 { "real4", stmt_float_cons, 'f' },
5401 { "real8", stmt_float_cons, 'd' },
5402 { "real10", stmt_float_cons, 'x' },
5403 { "real16", stmt_float_cons, 'X' },
5404 { "string", stringer, 8 + 0 },
5405 { "stringz", stringer, 8 + 1 },
5406
5407 /* unaligned versions: */
5408 { "data2.ua", stmt_cons_ua, 2 },
5409 { "data4.ua", stmt_cons_ua, 4 },
5410 { "data8.ua", stmt_cons_ua, 8 },
5411 { "data16.ua", stmt_cons_ua, 16 },
5412 { "real4.ua", float_cons, 'f' },
5413 { "real8.ua", float_cons, 'd' },
5414 { "real10.ua", float_cons, 'x' },
5415 { "real16.ua", float_cons, 'X' },
5416 };
5417
5418 /* Declare a register by creating a symbol for it and entering it in
5419 the symbol table. */
5420
5421 static symbolS *
declare_register(const char * name,unsigned int regnum)5422 declare_register (const char *name, unsigned int regnum)
5423 {
5424 const char *err;
5425 symbolS *sym;
5426
5427 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5428
5429 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (void *) sym);
5430 if (err)
5431 as_fatal ("Inserting \"%s\" into register table failed: %s",
5432 name, err);
5433
5434 return sym;
5435 }
5436
5437 static void
declare_register_set(const char * prefix,unsigned int num_regs,unsigned int base_regnum)5438 declare_register_set (const char *prefix,
5439 unsigned int num_regs,
5440 unsigned int base_regnum)
5441 {
5442 char name[8];
5443 unsigned int i;
5444
5445 for (i = 0; i < num_regs; ++i)
5446 {
5447 snprintf (name, sizeof (name), "%s%u", prefix, i);
5448 declare_register (name, base_regnum + i);
5449 }
5450 }
5451
5452 static unsigned int
operand_width(enum ia64_opnd opnd)5453 operand_width (enum ia64_opnd opnd)
5454 {
5455 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5456 unsigned int bits = 0;
5457 int i;
5458
5459 bits = 0;
5460 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5461 bits += odesc->field[i].bits;
5462
5463 return bits;
5464 }
5465
5466 static enum operand_match_result
operand_match(const struct ia64_opcode * idesc,int res_index,expressionS * e)5467 operand_match (const struct ia64_opcode *idesc, int res_index, expressionS *e)
5468 {
5469 enum ia64_opnd opnd = idesc->operands[res_index];
5470 int bits, relocatable = 0;
5471 struct insn_fix *fix;
5472 bfd_signed_vma val;
5473
5474 switch (opnd)
5475 {
5476 /* constants: */
5477
5478 case IA64_OPND_AR_CCV:
5479 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5480 return OPERAND_MATCH;
5481 break;
5482
5483 case IA64_OPND_AR_CSD:
5484 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5485 return OPERAND_MATCH;
5486 break;
5487
5488 case IA64_OPND_AR_PFS:
5489 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5490 return OPERAND_MATCH;
5491 break;
5492
5493 case IA64_OPND_GR0:
5494 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5495 return OPERAND_MATCH;
5496 break;
5497
5498 case IA64_OPND_IP:
5499 if (e->X_op == O_register && e->X_add_number == REG_IP)
5500 return OPERAND_MATCH;
5501 break;
5502
5503 case IA64_OPND_PR:
5504 if (e->X_op == O_register && e->X_add_number == REG_PR)
5505 return OPERAND_MATCH;
5506 break;
5507
5508 case IA64_OPND_PR_ROT:
5509 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5510 return OPERAND_MATCH;
5511 break;
5512
5513 case IA64_OPND_PSR:
5514 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5515 return OPERAND_MATCH;
5516 break;
5517
5518 case IA64_OPND_PSR_L:
5519 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5520 return OPERAND_MATCH;
5521 break;
5522
5523 case IA64_OPND_PSR_UM:
5524 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5525 return OPERAND_MATCH;
5526 break;
5527
5528 case IA64_OPND_C1:
5529 if (e->X_op == O_constant)
5530 {
5531 if (e->X_add_number == 1)
5532 return OPERAND_MATCH;
5533 else
5534 return OPERAND_OUT_OF_RANGE;
5535 }
5536 break;
5537
5538 case IA64_OPND_C8:
5539 if (e->X_op == O_constant)
5540 {
5541 if (e->X_add_number == 8)
5542 return OPERAND_MATCH;
5543 else
5544 return OPERAND_OUT_OF_RANGE;
5545 }
5546 break;
5547
5548 case IA64_OPND_C16:
5549 if (e->X_op == O_constant)
5550 {
5551 if (e->X_add_number == 16)
5552 return OPERAND_MATCH;
5553 else
5554 return OPERAND_OUT_OF_RANGE;
5555 }
5556 break;
5557
5558 /* register operands: */
5559
5560 case IA64_OPND_AR3:
5561 if (e->X_op == O_register && e->X_add_number >= REG_AR
5562 && e->X_add_number < REG_AR + 128)
5563 return OPERAND_MATCH;
5564 break;
5565
5566 case IA64_OPND_B1:
5567 case IA64_OPND_B2:
5568 if (e->X_op == O_register && e->X_add_number >= REG_BR
5569 && e->X_add_number < REG_BR + 8)
5570 return OPERAND_MATCH;
5571 break;
5572
5573 case IA64_OPND_CR3:
5574 if (e->X_op == O_register && e->X_add_number >= REG_CR
5575 && e->X_add_number < REG_CR + 128)
5576 return OPERAND_MATCH;
5577 break;
5578
5579 case IA64_OPND_DAHR3:
5580 if (e->X_op == O_register && e->X_add_number >= REG_DAHR
5581 && e->X_add_number < REG_DAHR + 8)
5582 return OPERAND_MATCH;
5583 break;
5584
5585 case IA64_OPND_F1:
5586 case IA64_OPND_F2:
5587 case IA64_OPND_F3:
5588 case IA64_OPND_F4:
5589 if (e->X_op == O_register && e->X_add_number >= REG_FR
5590 && e->X_add_number < REG_FR + 128)
5591 return OPERAND_MATCH;
5592 break;
5593
5594 case IA64_OPND_P1:
5595 case IA64_OPND_P2:
5596 if (e->X_op == O_register && e->X_add_number >= REG_P
5597 && e->X_add_number < REG_P + 64)
5598 return OPERAND_MATCH;
5599 break;
5600
5601 case IA64_OPND_R1:
5602 case IA64_OPND_R2:
5603 case IA64_OPND_R3:
5604 if (e->X_op == O_register && e->X_add_number >= REG_GR
5605 && e->X_add_number < REG_GR + 128)
5606 return OPERAND_MATCH;
5607 break;
5608
5609 case IA64_OPND_R3_2:
5610 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5611 {
5612 if (e->X_add_number < REG_GR + 4)
5613 return OPERAND_MATCH;
5614 else if (e->X_add_number < REG_GR + 128)
5615 return OPERAND_OUT_OF_RANGE;
5616 }
5617 break;
5618
5619 /* indirect operands: */
5620 case IA64_OPND_CPUID_R3:
5621 case IA64_OPND_DBR_R3:
5622 case IA64_OPND_DTR_R3:
5623 case IA64_OPND_ITR_R3:
5624 case IA64_OPND_IBR_R3:
5625 case IA64_OPND_MSR_R3:
5626 case IA64_OPND_PKR_R3:
5627 case IA64_OPND_PMC_R3:
5628 case IA64_OPND_PMD_R3:
5629 case IA64_OPND_DAHR_R3:
5630 case IA64_OPND_RR_R3:
5631 if (e->X_op == O_index && e->X_op_symbol
5632 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5633 == opnd - IA64_OPND_CPUID_R3))
5634 return OPERAND_MATCH;
5635 break;
5636
5637 case IA64_OPND_MR3:
5638 if (e->X_op == O_index && !e->X_op_symbol)
5639 return OPERAND_MATCH;
5640 break;
5641
5642 /* immediate operands: */
5643 case IA64_OPND_CNT2a:
5644 case IA64_OPND_LEN4:
5645 case IA64_OPND_LEN6:
5646 bits = operand_width (idesc->operands[res_index]);
5647 if (e->X_op == O_constant)
5648 {
5649 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5650 return OPERAND_MATCH;
5651 else
5652 return OPERAND_OUT_OF_RANGE;
5653 }
5654 break;
5655
5656 case IA64_OPND_CNT2b:
5657 if (e->X_op == O_constant)
5658 {
5659 if ((bfd_vma) (e->X_add_number - 1) < 3)
5660 return OPERAND_MATCH;
5661 else
5662 return OPERAND_OUT_OF_RANGE;
5663 }
5664 break;
5665
5666 case IA64_OPND_CNT2c:
5667 val = e->X_add_number;
5668 if (e->X_op == O_constant)
5669 {
5670 if ((val == 0 || val == 7 || val == 15 || val == 16))
5671 return OPERAND_MATCH;
5672 else
5673 return OPERAND_OUT_OF_RANGE;
5674 }
5675 break;
5676
5677 case IA64_OPND_SOR:
5678 /* SOR must be an integer multiple of 8 */
5679 if (e->X_op == O_constant && e->X_add_number & 0x7)
5680 return OPERAND_OUT_OF_RANGE;
5681 case IA64_OPND_SOF:
5682 case IA64_OPND_SOL:
5683 if (e->X_op == O_constant)
5684 {
5685 if ((bfd_vma) e->X_add_number <= 96)
5686 return OPERAND_MATCH;
5687 else
5688 return OPERAND_OUT_OF_RANGE;
5689 }
5690 break;
5691
5692 case IA64_OPND_IMMU62:
5693 if (e->X_op == O_constant)
5694 {
5695 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5696 return OPERAND_MATCH;
5697 else
5698 return OPERAND_OUT_OF_RANGE;
5699 }
5700 else
5701 {
5702 /* FIXME -- need 62-bit relocation type */
5703 as_bad (_("62-bit relocation not yet implemented"));
5704 }
5705 break;
5706
5707 case IA64_OPND_IMMU64:
5708 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5709 || e->X_op == O_subtract)
5710 {
5711 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5712 fix->code = BFD_RELOC_IA64_IMM64;
5713 if (e->X_op != O_subtract)
5714 {
5715 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5716 if (e->X_op == O_pseudo_fixup)
5717 e->X_op = O_symbol;
5718 }
5719
5720 fix->opnd = idesc->operands[res_index];
5721 fix->expr = *e;
5722 fix->is_pcrel = 0;
5723 ++CURR_SLOT.num_fixups;
5724 return OPERAND_MATCH;
5725 }
5726 else if (e->X_op == O_constant)
5727 return OPERAND_MATCH;
5728 break;
5729
5730 case IA64_OPND_IMMU5b:
5731 if (e->X_op == O_constant)
5732 {
5733 val = e->X_add_number;
5734 if (val >= 32 && val <= 63)
5735 return OPERAND_MATCH;
5736 else
5737 return OPERAND_OUT_OF_RANGE;
5738 }
5739 break;
5740
5741 case IA64_OPND_CCNT5:
5742 case IA64_OPND_CNT5:
5743 case IA64_OPND_CNT6:
5744 case IA64_OPND_CPOS6a:
5745 case IA64_OPND_CPOS6b:
5746 case IA64_OPND_CPOS6c:
5747 case IA64_OPND_IMMU2:
5748 case IA64_OPND_IMMU7a:
5749 case IA64_OPND_IMMU7b:
5750 case IA64_OPND_IMMU16:
5751 case IA64_OPND_IMMU19:
5752 case IA64_OPND_IMMU21:
5753 case IA64_OPND_IMMU24:
5754 case IA64_OPND_MBTYPE4:
5755 case IA64_OPND_MHTYPE8:
5756 case IA64_OPND_POS6:
5757 bits = operand_width (idesc->operands[res_index]);
5758 if (e->X_op == O_constant)
5759 {
5760 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5761 return OPERAND_MATCH;
5762 else
5763 return OPERAND_OUT_OF_RANGE;
5764 }
5765 break;
5766
5767 case IA64_OPND_IMMU9:
5768 bits = operand_width (idesc->operands[res_index]);
5769 if (e->X_op == O_constant)
5770 {
5771 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5772 {
5773 int lobits = e->X_add_number & 0x3;
5774 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5775 e->X_add_number |= (bfd_vma) 0x3;
5776 return OPERAND_MATCH;
5777 }
5778 else
5779 return OPERAND_OUT_OF_RANGE;
5780 }
5781 break;
5782
5783 case IA64_OPND_IMM44:
5784 /* least 16 bits must be zero */
5785 if ((e->X_add_number & 0xffff) != 0)
5786 /* XXX technically, this is wrong: we should not be issuing warning
5787 messages until we're sure this instruction pattern is going to
5788 be used! */
5789 as_warn (_("lower 16 bits of mask ignored"));
5790
5791 if (e->X_op == O_constant)
5792 {
5793 if (((e->X_add_number >= 0
5794 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5795 || (e->X_add_number < 0
5796 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5797 {
5798 /* sign-extend */
5799 if (e->X_add_number >= 0
5800 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5801 {
5802 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5803 }
5804 return OPERAND_MATCH;
5805 }
5806 else
5807 return OPERAND_OUT_OF_RANGE;
5808 }
5809 break;
5810
5811 case IA64_OPND_IMM17:
5812 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5813 if (e->X_op == O_constant)
5814 {
5815 if (((e->X_add_number >= 0
5816 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5817 || (e->X_add_number < 0
5818 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5819 {
5820 /* sign-extend */
5821 if (e->X_add_number >= 0
5822 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5823 {
5824 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5825 }
5826 return OPERAND_MATCH;
5827 }
5828 else
5829 return OPERAND_OUT_OF_RANGE;
5830 }
5831 break;
5832
5833 case IA64_OPND_IMM14:
5834 case IA64_OPND_IMM22:
5835 relocatable = 1;
5836 case IA64_OPND_IMM1:
5837 case IA64_OPND_IMM8:
5838 case IA64_OPND_IMM8U4:
5839 case IA64_OPND_IMM8M1:
5840 case IA64_OPND_IMM8M1U4:
5841 case IA64_OPND_IMM8M1U8:
5842 case IA64_OPND_IMM9a:
5843 case IA64_OPND_IMM9b:
5844 bits = operand_width (idesc->operands[res_index]);
5845 if (relocatable && (e->X_op == O_symbol
5846 || e->X_op == O_subtract
5847 || e->X_op == O_pseudo_fixup))
5848 {
5849 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5850
5851 if (idesc->operands[res_index] == IA64_OPND_IMM14)
5852 fix->code = BFD_RELOC_IA64_IMM14;
5853 else
5854 fix->code = BFD_RELOC_IA64_IMM22;
5855
5856 if (e->X_op != O_subtract)
5857 {
5858 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5859 if (e->X_op == O_pseudo_fixup)
5860 e->X_op = O_symbol;
5861 }
5862
5863 fix->opnd = idesc->operands[res_index];
5864 fix->expr = *e;
5865 fix->is_pcrel = 0;
5866 ++CURR_SLOT.num_fixups;
5867 return OPERAND_MATCH;
5868 }
5869 else if (e->X_op != O_constant
5870 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5871 return OPERAND_MISMATCH;
5872
5873 if (opnd == IA64_OPND_IMM8M1U4)
5874 {
5875 /* Zero is not valid for unsigned compares that take an adjusted
5876 constant immediate range. */
5877 if (e->X_add_number == 0)
5878 return OPERAND_OUT_OF_RANGE;
5879
5880 /* Sign-extend 32-bit unsigned numbers, so that the following range
5881 checks will work. */
5882 val = e->X_add_number;
5883 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5884 && ((val & ((bfd_vma) 1 << 31)) != 0))
5885 val = ((val << 32) >> 32);
5886
5887 /* Check for 0x100000000. This is valid because
5888 0x100000000-1 is the same as ((uint32_t) -1). */
5889 if (val == ((bfd_signed_vma) 1 << 32))
5890 return OPERAND_MATCH;
5891
5892 val = val - 1;
5893 }
5894 else if (opnd == IA64_OPND_IMM8M1U8)
5895 {
5896 /* Zero is not valid for unsigned compares that take an adjusted
5897 constant immediate range. */
5898 if (e->X_add_number == 0)
5899 return OPERAND_OUT_OF_RANGE;
5900
5901 /* Check for 0x10000000000000000. */
5902 if (e->X_op == O_big)
5903 {
5904 if (generic_bignum[0] == 0
5905 && generic_bignum[1] == 0
5906 && generic_bignum[2] == 0
5907 && generic_bignum[3] == 0
5908 && generic_bignum[4] == 1)
5909 return OPERAND_MATCH;
5910 else
5911 return OPERAND_OUT_OF_RANGE;
5912 }
5913 else
5914 val = e->X_add_number - 1;
5915 }
5916 else if (opnd == IA64_OPND_IMM8M1)
5917 val = e->X_add_number - 1;
5918 else if (opnd == IA64_OPND_IMM8U4)
5919 {
5920 /* Sign-extend 32-bit unsigned numbers, so that the following range
5921 checks will work. */
5922 val = e->X_add_number;
5923 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5924 && ((val & ((bfd_vma) 1 << 31)) != 0))
5925 val = ((val << 32) >> 32);
5926 }
5927 else
5928 val = e->X_add_number;
5929
5930 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5931 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5932 return OPERAND_MATCH;
5933 else
5934 return OPERAND_OUT_OF_RANGE;
5935
5936 case IA64_OPND_INC3:
5937 /* +/- 1, 4, 8, 16 */
5938 val = e->X_add_number;
5939 if (val < 0)
5940 val = -val;
5941 if (e->X_op == O_constant)
5942 {
5943 if ((val == 1 || val == 4 || val == 8 || val == 16))
5944 return OPERAND_MATCH;
5945 else
5946 return OPERAND_OUT_OF_RANGE;
5947 }
5948 break;
5949
5950 case IA64_OPND_TGT25:
5951 case IA64_OPND_TGT25b:
5952 case IA64_OPND_TGT25c:
5953 case IA64_OPND_TGT64:
5954 if (e->X_op == O_symbol)
5955 {
5956 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5957 if (opnd == IA64_OPND_TGT25)
5958 fix->code = BFD_RELOC_IA64_PCREL21F;
5959 else if (opnd == IA64_OPND_TGT25b)
5960 fix->code = BFD_RELOC_IA64_PCREL21M;
5961 else if (opnd == IA64_OPND_TGT25c)
5962 fix->code = BFD_RELOC_IA64_PCREL21B;
5963 else if (opnd == IA64_OPND_TGT64)
5964 fix->code = BFD_RELOC_IA64_PCREL60B;
5965 else
5966 abort ();
5967
5968 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5969 fix->opnd = idesc->operands[res_index];
5970 fix->expr = *e;
5971 fix->is_pcrel = 1;
5972 ++CURR_SLOT.num_fixups;
5973 return OPERAND_MATCH;
5974 }
5975 case IA64_OPND_TAG13:
5976 case IA64_OPND_TAG13b:
5977 switch (e->X_op)
5978 {
5979 case O_constant:
5980 return OPERAND_MATCH;
5981
5982 case O_symbol:
5983 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5984 /* There are no external relocs for TAG13/TAG13b fields, so we
5985 create a dummy reloc. This will not live past md_apply_fix. */
5986 fix->code = BFD_RELOC_UNUSED;
5987 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5988 fix->opnd = idesc->operands[res_index];
5989 fix->expr = *e;
5990 fix->is_pcrel = 1;
5991 ++CURR_SLOT.num_fixups;
5992 return OPERAND_MATCH;
5993
5994 default:
5995 break;
5996 }
5997 break;
5998
5999 case IA64_OPND_LDXMOV:
6000 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6001 fix->code = BFD_RELOC_IA64_LDXMOV;
6002 fix->opnd = idesc->operands[res_index];
6003 fix->expr = *e;
6004 fix->is_pcrel = 0;
6005 ++CURR_SLOT.num_fixups;
6006 return OPERAND_MATCH;
6007
6008 case IA64_OPND_STRD5b:
6009 if (e->X_op == O_constant)
6010 {
6011 /* 5-bit signed scaled by 64 */
6012 if ((e->X_add_number <= ( 0xf << 6 ))
6013 && (e->X_add_number >= -( 0x10 << 6 )))
6014 {
6015
6016 /* Must be a multiple of 64 */
6017 if ((e->X_add_number & 0x3f) != 0)
6018 as_warn (_("stride must be a multiple of 64; lower 6 bits ignored"));
6019
6020 e->X_add_number &= ~ 0x3f;
6021 return OPERAND_MATCH;
6022 }
6023 else
6024 return OPERAND_OUT_OF_RANGE;
6025 }
6026 break;
6027 case IA64_OPND_CNT6a:
6028 if (e->X_op == O_constant)
6029 {
6030 /* 6-bit unsigned biased by 1 -- count 0 is meaningless */
6031 if ((e->X_add_number <= 64)
6032 && (e->X_add_number > 0) )
6033 {
6034 return OPERAND_MATCH;
6035 }
6036 else
6037 return OPERAND_OUT_OF_RANGE;
6038 }
6039 break;
6040
6041 default:
6042 break;
6043 }
6044 return OPERAND_MISMATCH;
6045 }
6046
6047 static int
parse_operand(expressionS * e,int more)6048 parse_operand (expressionS *e, int more)
6049 {
6050 int sep = '\0';
6051
6052 memset (e, 0, sizeof (*e));
6053 e->X_op = O_absent;
6054 SKIP_WHITESPACE ();
6055 expression (e);
6056 sep = *input_line_pointer;
6057 if (more && (sep == ',' || sep == more))
6058 ++input_line_pointer;
6059 return sep;
6060 }
6061
6062 static int
parse_operand_and_eval(expressionS * e,int more)6063 parse_operand_and_eval (expressionS *e, int more)
6064 {
6065 int sep = parse_operand (e, more);
6066 resolve_expression (e);
6067 return sep;
6068 }
6069
6070 static int
parse_operand_maybe_eval(expressionS * e,int more,enum ia64_opnd op)6071 parse_operand_maybe_eval (expressionS *e, int more, enum ia64_opnd op)
6072 {
6073 int sep = parse_operand (e, more);
6074 switch (op)
6075 {
6076 case IA64_OPND_IMM14:
6077 case IA64_OPND_IMM22:
6078 case IA64_OPND_IMMU64:
6079 case IA64_OPND_TGT25:
6080 case IA64_OPND_TGT25b:
6081 case IA64_OPND_TGT25c:
6082 case IA64_OPND_TGT64:
6083 case IA64_OPND_TAG13:
6084 case IA64_OPND_TAG13b:
6085 case IA64_OPND_LDXMOV:
6086 break;
6087 default:
6088 resolve_expression (e);
6089 break;
6090 }
6091 return sep;
6092 }
6093
6094 /* Returns the next entry in the opcode table that matches the one in
6095 IDESC, and frees the entry in IDESC. If no matching entry is
6096 found, NULL is returned instead. */
6097
6098 static struct ia64_opcode *
get_next_opcode(struct ia64_opcode * idesc)6099 get_next_opcode (struct ia64_opcode *idesc)
6100 {
6101 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6102 ia64_free_opcode (idesc);
6103 return next;
6104 }
6105
6106 /* Parse the operands for the opcode and find the opcode variant that
6107 matches the specified operands, or NULL if no match is possible. */
6108
6109 static struct ia64_opcode *
parse_operands(struct ia64_opcode * idesc)6110 parse_operands (struct ia64_opcode *idesc)
6111 {
6112 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6113 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6114 int reg1, reg2;
6115 char reg_class;
6116 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6117 enum operand_match_result result;
6118 char mnemonic[129];
6119 char *first_arg = 0, *end, *saved_input_pointer;
6120 unsigned int sof;
6121
6122 gas_assert (strlen (idesc->name) <= 128);
6123
6124 strcpy (mnemonic, idesc->name);
6125 if (idesc->operands[2] == IA64_OPND_SOF
6126 || idesc->operands[1] == IA64_OPND_SOF)
6127 {
6128 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6129 can't parse the first operand until we have parsed the
6130 remaining operands of the "alloc" instruction. */
6131 SKIP_WHITESPACE ();
6132 first_arg = input_line_pointer;
6133 end = strchr (input_line_pointer, '=');
6134 if (!end)
6135 {
6136 as_bad (_("Expected separator `='"));
6137 return 0;
6138 }
6139 input_line_pointer = end + 1;
6140 ++i;
6141 ++num_outputs;
6142 }
6143
6144 for (; ; ++i)
6145 {
6146 if (i < NELEMS (CURR_SLOT.opnd))
6147 {
6148 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + i, '=',
6149 idesc->operands[i]);
6150 if (CURR_SLOT.opnd[i].X_op == O_absent)
6151 break;
6152 }
6153 else
6154 {
6155 expressionS dummy;
6156
6157 sep = parse_operand (&dummy, '=');
6158 if (dummy.X_op == O_absent)
6159 break;
6160 }
6161
6162 ++num_operands;
6163
6164 if (sep != '=' && sep != ',')
6165 break;
6166
6167 if (sep == '=')
6168 {
6169 if (num_outputs > 0)
6170 as_bad (_("Duplicate equal sign (=) in instruction"));
6171 else
6172 num_outputs = i + 1;
6173 }
6174 }
6175 if (sep != '\0')
6176 {
6177 as_bad (_("Illegal operand separator `%c'"), sep);
6178 return 0;
6179 }
6180
6181 if (idesc->operands[2] == IA64_OPND_SOF
6182 || idesc->operands[1] == IA64_OPND_SOF)
6183 {
6184 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6185 Note, however, that due to that mapping operand numbers in error
6186 messages for any of the constant operands will not be correct. */
6187 know (strcmp (idesc->name, "alloc") == 0);
6188 /* The first operand hasn't been parsed/initialized, yet (but
6189 num_operands intentionally doesn't account for that). */
6190 i = num_operands > 4 ? 2 : 1;
6191 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6192 ? CURR_SLOT.opnd[n].X_add_number \
6193 : 0)
6194 sof = set_regstack (FORCE_CONST(i),
6195 FORCE_CONST(i + 1),
6196 FORCE_CONST(i + 2),
6197 FORCE_CONST(i + 3));
6198 #undef FORCE_CONST
6199
6200 /* now we can parse the first arg: */
6201 saved_input_pointer = input_line_pointer;
6202 input_line_pointer = first_arg;
6203 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + 0, '=',
6204 idesc->operands[0]);
6205 if (sep != '=')
6206 --num_outputs; /* force error */
6207 input_line_pointer = saved_input_pointer;
6208
6209 CURR_SLOT.opnd[i].X_add_number = sof;
6210 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6211 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6212 CURR_SLOT.opnd[i + 1].X_add_number
6213 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6214 else
6215 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6216 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6217 }
6218
6219 highest_unmatched_operand = -4;
6220 curr_out_of_range_pos = -1;
6221 error_pos = 0;
6222 for (; idesc; idesc = get_next_opcode (idesc))
6223 {
6224 if (num_outputs != idesc->num_outputs)
6225 continue; /* mismatch in # of outputs */
6226 if (highest_unmatched_operand < 0)
6227 highest_unmatched_operand |= 1;
6228 if (num_operands > NELEMS (idesc->operands)
6229 || (num_operands < NELEMS (idesc->operands)
6230 && idesc->operands[num_operands])
6231 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6232 continue; /* mismatch in number of arguments */
6233 if (highest_unmatched_operand < 0)
6234 highest_unmatched_operand |= 2;
6235
6236 CURR_SLOT.num_fixups = 0;
6237
6238 /* Try to match all operands. If we see an out-of-range operand,
6239 then continue trying to match the rest of the operands, since if
6240 the rest match, then this idesc will give the best error message. */
6241
6242 out_of_range_pos = -1;
6243 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6244 {
6245 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6246 if (result != OPERAND_MATCH)
6247 {
6248 if (result != OPERAND_OUT_OF_RANGE)
6249 break;
6250 if (out_of_range_pos < 0)
6251 /* remember position of the first out-of-range operand: */
6252 out_of_range_pos = i;
6253 }
6254 }
6255
6256 /* If we did not match all operands, or if at least one operand was
6257 out-of-range, then this idesc does not match. Keep track of which
6258 idesc matched the most operands before failing. If we have two
6259 idescs that failed at the same position, and one had an out-of-range
6260 operand, then prefer the out-of-range operand. Thus if we have
6261 "add r0=0x1000000,r1" we get an error saying the constant is out
6262 of range instead of an error saying that the constant should have been
6263 a register. */
6264
6265 if (i != num_operands || out_of_range_pos >= 0)
6266 {
6267 if (i > highest_unmatched_operand
6268 || (i == highest_unmatched_operand
6269 && out_of_range_pos > curr_out_of_range_pos))
6270 {
6271 highest_unmatched_operand = i;
6272 if (out_of_range_pos >= 0)
6273 {
6274 expected_operand = idesc->operands[out_of_range_pos];
6275 error_pos = out_of_range_pos;
6276 }
6277 else
6278 {
6279 expected_operand = idesc->operands[i];
6280 error_pos = i;
6281 }
6282 curr_out_of_range_pos = out_of_range_pos;
6283 }
6284 continue;
6285 }
6286
6287 break;
6288 }
6289 if (!idesc)
6290 {
6291 if (expected_operand)
6292 as_bad (_("Operand %u of `%s' should be %s"),
6293 error_pos + 1, mnemonic,
6294 elf64_ia64_operands[expected_operand].desc);
6295 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6296 as_bad (_("Wrong number of output operands"));
6297 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6298 as_bad (_("Wrong number of input operands"));
6299 else
6300 as_bad (_("Operand mismatch"));
6301 return 0;
6302 }
6303
6304 /* Check that the instruction doesn't use
6305 - r0, f0, or f1 as output operands
6306 - the same predicate twice as output operands
6307 - r0 as address of a base update load or store
6308 - the same GR as output and address of a base update load
6309 - two even- or two odd-numbered FRs as output operands of a floating
6310 point parallel load.
6311 At most two (conflicting) output (or output-like) operands can exist,
6312 (floating point parallel loads have three outputs, but the base register,
6313 if updated, cannot conflict with the actual outputs). */
6314 reg2 = reg1 = -1;
6315 for (i = 0; i < num_operands; ++i)
6316 {
6317 int regno = 0;
6318
6319 reg_class = 0;
6320 switch (idesc->operands[i])
6321 {
6322 case IA64_OPND_R1:
6323 case IA64_OPND_R2:
6324 case IA64_OPND_R3:
6325 if (i < num_outputs)
6326 {
6327 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6328 reg_class = 'r';
6329 else if (reg1 < 0)
6330 reg1 = CURR_SLOT.opnd[i].X_add_number;
6331 else if (reg2 < 0)
6332 reg2 = CURR_SLOT.opnd[i].X_add_number;
6333 }
6334 break;
6335 case IA64_OPND_P1:
6336 case IA64_OPND_P2:
6337 if (i < num_outputs)
6338 {
6339 if (reg1 < 0)
6340 reg1 = CURR_SLOT.opnd[i].X_add_number;
6341 else if (reg2 < 0)
6342 reg2 = CURR_SLOT.opnd[i].X_add_number;
6343 }
6344 break;
6345 case IA64_OPND_F1:
6346 case IA64_OPND_F2:
6347 case IA64_OPND_F3:
6348 case IA64_OPND_F4:
6349 if (i < num_outputs)
6350 {
6351 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6352 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6353 {
6354 reg_class = 'f';
6355 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6356 }
6357 else if (reg1 < 0)
6358 reg1 = CURR_SLOT.opnd[i].X_add_number;
6359 else if (reg2 < 0)
6360 reg2 = CURR_SLOT.opnd[i].X_add_number;
6361 }
6362 break;
6363 case IA64_OPND_MR3:
6364 if (idesc->flags & IA64_OPCODE_POSTINC)
6365 {
6366 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6367 reg_class = 'm';
6368 else if (reg1 < 0)
6369 reg1 = CURR_SLOT.opnd[i].X_add_number;
6370 else if (reg2 < 0)
6371 reg2 = CURR_SLOT.opnd[i].X_add_number;
6372 }
6373 break;
6374 default:
6375 break;
6376 }
6377 switch (reg_class)
6378 {
6379 case 0:
6380 break;
6381 default:
6382 as_warn (_("Invalid use of `%c%d' as output operand"), reg_class, regno);
6383 break;
6384 case 'm':
6385 as_warn (_("Invalid use of `r%d' as base update address operand"), regno);
6386 break;
6387 }
6388 }
6389 if (reg1 == reg2)
6390 {
6391 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6392 {
6393 reg1 -= REG_GR;
6394 reg_class = 'r';
6395 }
6396 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6397 {
6398 reg1 -= REG_P;
6399 reg_class = 'p';
6400 }
6401 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6402 {
6403 reg1 -= REG_FR;
6404 reg_class = 'f';
6405 }
6406 else
6407 reg_class = 0;
6408 if (reg_class)
6409 as_warn (_("Invalid duplicate use of `%c%d'"), reg_class, reg1);
6410 }
6411 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6412 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6413 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6414 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6415 && ! ((reg1 ^ reg2) & 1))
6416 as_warn (_("Invalid simultaneous use of `f%d' and `f%d'"),
6417 reg1 - REG_FR, reg2 - REG_FR);
6418 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6419 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6420 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6421 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6422 as_warn (_("Dangerous simultaneous use of `f%d' and `f%d'"),
6423 reg1 - REG_FR, reg2 - REG_FR);
6424 return idesc;
6425 }
6426
6427 static void
build_insn(struct slot * slot,bfd_vma * insnp)6428 build_insn (struct slot *slot, bfd_vma *insnp)
6429 {
6430 const struct ia64_operand *odesc, *o2desc;
6431 struct ia64_opcode *idesc = slot->idesc;
6432 bfd_vma insn;
6433 bfd_signed_vma val;
6434 const char *err;
6435 int i;
6436
6437 insn = idesc->opcode | slot->qp_regno;
6438
6439 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6440 {
6441 if (slot->opnd[i].X_op == O_register
6442 || slot->opnd[i].X_op == O_constant
6443 || slot->opnd[i].X_op == O_index)
6444 val = slot->opnd[i].X_add_number;
6445 else if (slot->opnd[i].X_op == O_big)
6446 {
6447 /* This must be the value 0x10000000000000000. */
6448 gas_assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6449 val = 0;
6450 }
6451 else
6452 val = 0;
6453
6454 switch (idesc->operands[i])
6455 {
6456 case IA64_OPND_IMMU64:
6457 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6458 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6459 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6460 | (((val >> 63) & 0x1) << 36));
6461 continue;
6462
6463 case IA64_OPND_IMMU62:
6464 val &= 0x3fffffffffffffffULL;
6465 if (val != slot->opnd[i].X_add_number)
6466 as_warn (_("Value truncated to 62 bits"));
6467 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6468 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6469 continue;
6470
6471 case IA64_OPND_TGT64:
6472 val >>= 4;
6473 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6474 insn |= ((((val >> 59) & 0x1) << 36)
6475 | (((val >> 0) & 0xfffff) << 13));
6476 continue;
6477
6478 case IA64_OPND_AR3:
6479 val -= REG_AR;
6480 break;
6481
6482 case IA64_OPND_B1:
6483 case IA64_OPND_B2:
6484 val -= REG_BR;
6485 break;
6486
6487 case IA64_OPND_CR3:
6488 val -= REG_CR;
6489 break;
6490
6491 case IA64_OPND_DAHR3:
6492 val -= REG_DAHR;
6493 break;
6494
6495 case IA64_OPND_F1:
6496 case IA64_OPND_F2:
6497 case IA64_OPND_F3:
6498 case IA64_OPND_F4:
6499 val -= REG_FR;
6500 break;
6501
6502 case IA64_OPND_P1:
6503 case IA64_OPND_P2:
6504 val -= REG_P;
6505 break;
6506
6507 case IA64_OPND_R1:
6508 case IA64_OPND_R2:
6509 case IA64_OPND_R3:
6510 case IA64_OPND_R3_2:
6511 case IA64_OPND_CPUID_R3:
6512 case IA64_OPND_DBR_R3:
6513 case IA64_OPND_DTR_R3:
6514 case IA64_OPND_ITR_R3:
6515 case IA64_OPND_IBR_R3:
6516 case IA64_OPND_MR3:
6517 case IA64_OPND_MSR_R3:
6518 case IA64_OPND_PKR_R3:
6519 case IA64_OPND_PMC_R3:
6520 case IA64_OPND_PMD_R3:
6521 case IA64_OPND_DAHR_R3:
6522 case IA64_OPND_RR_R3:
6523 val -= REG_GR;
6524 break;
6525
6526 default:
6527 break;
6528 }
6529
6530 odesc = elf64_ia64_operands + idesc->operands[i];
6531 err = (*odesc->insert) (odesc, val, &insn);
6532 if (err)
6533 as_bad_where (slot->src_file, slot->src_line,
6534 _("Bad operand value: %s"), err);
6535 if (idesc->flags & IA64_OPCODE_PSEUDO)
6536 {
6537 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6538 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6539 {
6540 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6541 (*o2desc->insert) (o2desc, val, &insn);
6542 }
6543 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6544 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6545 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6546 {
6547 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6548 (*o2desc->insert) (o2desc, 64 - val, &insn);
6549 }
6550 }
6551 }
6552 *insnp = insn;
6553 }
6554
6555 static void
emit_one_bundle(void)6556 emit_one_bundle (void)
6557 {
6558 int manual_bundling_off = 0, manual_bundling = 0;
6559 enum ia64_unit required_unit, insn_unit = 0;
6560 enum ia64_insn_type type[3], insn_type;
6561 unsigned int template_val, orig_template;
6562 bfd_vma insn[3] = { -1, -1, -1 };
6563 struct ia64_opcode *idesc;
6564 int end_of_insn_group = 0, user_template = -1;
6565 int n, i, j, first, curr, last_slot;
6566 bfd_vma t0 = 0, t1 = 0;
6567 struct label_fix *lfix;
6568 bfd_boolean mark_label;
6569 struct insn_fix *ifix;
6570 char mnemonic[16];
6571 fixS *fix;
6572 char *f;
6573 int addr_mod;
6574
6575 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6576 know (first >= 0 && first < NUM_SLOTS);
6577 n = MIN (3, md.num_slots_in_use);
6578
6579 /* Determine template: user user_template if specified, best match
6580 otherwise: */
6581
6582 if (md.slot[first].user_template >= 0)
6583 user_template = template_val = md.slot[first].user_template;
6584 else
6585 {
6586 /* Auto select appropriate template. */
6587 memset (type, 0, sizeof (type));
6588 curr = first;
6589 for (i = 0; i < n; ++i)
6590 {
6591 if (md.slot[curr].label_fixups && i != 0)
6592 break;
6593 type[i] = md.slot[curr].idesc->type;
6594 curr = (curr + 1) % NUM_SLOTS;
6595 }
6596 template_val = best_template[type[0]][type[1]][type[2]];
6597 }
6598
6599 /* initialize instructions with appropriate nops: */
6600 for (i = 0; i < 3; ++i)
6601 insn[i] = nop[ia64_templ_desc[template_val].exec_unit[i]];
6602
6603 f = frag_more (16);
6604
6605 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6606 from the start of the frag. */
6607 addr_mod = frag_now_fix () & 15;
6608 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6609 as_bad (_("instruction address is not a multiple of 16"));
6610 frag_now->insn_addr = addr_mod;
6611 frag_now->has_code = 1;
6612
6613 /* now fill in slots with as many insns as possible: */
6614 curr = first;
6615 idesc = md.slot[curr].idesc;
6616 end_of_insn_group = 0;
6617 last_slot = -1;
6618 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6619 {
6620 /* If we have unwind records, we may need to update some now. */
6621 unw_rec_list *ptr = md.slot[curr].unwind_record;
6622 unw_rec_list *end_ptr = NULL;
6623
6624 if (ptr)
6625 {
6626 /* Find the last prologue/body record in the list for the current
6627 insn, and set the slot number for all records up to that point.
6628 This needs to be done now, because prologue/body records refer to
6629 the current point, not the point after the instruction has been
6630 issued. This matters because there may have been nops emitted
6631 meanwhile. Any non-prologue non-body record followed by a
6632 prologue/body record must also refer to the current point. */
6633 unw_rec_list *last_ptr;
6634
6635 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6636 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6637 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6638 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6639 || ptr->r.type == body)
6640 last_ptr = ptr;
6641 if (last_ptr)
6642 {
6643 /* Make last_ptr point one after the last prologue/body
6644 record. */
6645 last_ptr = last_ptr->next;
6646 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6647 ptr = ptr->next)
6648 {
6649 ptr->slot_number = (unsigned long) f + i;
6650 ptr->slot_frag = frag_now;
6651 }
6652 /* Remove the initialized records, so that we won't accidentally
6653 update them again if we insert a nop and continue. */
6654 md.slot[curr].unwind_record = last_ptr;
6655 }
6656 }
6657
6658 manual_bundling_off = md.slot[curr].manual_bundling_off;
6659 if (md.slot[curr].manual_bundling_on)
6660 {
6661 if (curr == first)
6662 manual_bundling = 1;
6663 else
6664 break; /* Need to start a new bundle. */
6665 }
6666
6667 /* If this instruction specifies a template, then it must be the first
6668 instruction of a bundle. */
6669 if (curr != first && md.slot[curr].user_template >= 0)
6670 break;
6671
6672 if (idesc->flags & IA64_OPCODE_SLOT2)
6673 {
6674 if (manual_bundling && !manual_bundling_off)
6675 {
6676 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6677 _("`%s' must be last in bundle"), idesc->name);
6678 if (i < 2)
6679 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6680 }
6681 i = 2;
6682 }
6683 if (idesc->flags & IA64_OPCODE_LAST)
6684 {
6685 int required_slot;
6686 unsigned int required_template;
6687
6688 /* If we need a stop bit after an M slot, our only choice is
6689 template 5 (M;;MI). If we need a stop bit after a B
6690 slot, our only choice is to place it at the end of the
6691 bundle, because the only available templates are MIB,
6692 MBB, BBB, MMB, and MFB. We don't handle anything other
6693 than M and B slots because these are the only kind of
6694 instructions that can have the IA64_OPCODE_LAST bit set. */
6695 required_template = template_val;
6696 switch (idesc->type)
6697 {
6698 case IA64_TYPE_M:
6699 required_slot = 0;
6700 required_template = 5;
6701 break;
6702
6703 case IA64_TYPE_B:
6704 required_slot = 2;
6705 break;
6706
6707 default:
6708 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6709 _("Internal error: don't know how to force %s to end of instruction group"),
6710 idesc->name);
6711 required_slot = i;
6712 break;
6713 }
6714 if (manual_bundling
6715 && (i > required_slot
6716 || (required_slot == 2 && !manual_bundling_off)
6717 || (user_template >= 0
6718 /* Changing from MMI to M;MI is OK. */
6719 && (template_val ^ required_template) > 1)))
6720 {
6721 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6722 _("`%s' must be last in instruction group"),
6723 idesc->name);
6724 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6725 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6726 }
6727 if (required_slot < i)
6728 /* Can't fit this instruction. */
6729 break;
6730
6731 i = required_slot;
6732 if (required_template != template_val)
6733 {
6734 /* If we switch the template, we need to reset the NOPs
6735 after slot i. The slot-types of the instructions ahead
6736 of i never change, so we don't need to worry about
6737 changing NOPs in front of this slot. */
6738 for (j = i; j < 3; ++j)
6739 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6740
6741 /* We just picked a template that includes the stop bit in the
6742 middle, so we don't need another one emitted later. */
6743 md.slot[curr].end_of_insn_group = 0;
6744 }
6745 template_val = required_template;
6746 }
6747 if (curr != first && md.slot[curr].label_fixups)
6748 {
6749 if (manual_bundling)
6750 {
6751 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6752 _("Label must be first in a bundle"));
6753 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6754 }
6755 /* This insn must go into the first slot of a bundle. */
6756 break;
6757 }
6758
6759 if (end_of_insn_group && md.num_slots_in_use >= 1)
6760 {
6761 /* We need an instruction group boundary in the middle of a
6762 bundle. See if we can switch to an other template with
6763 an appropriate boundary. */
6764
6765 orig_template = template_val;
6766 if (i == 1 && (user_template == 4
6767 || (user_template < 0
6768 && (ia64_templ_desc[template_val].exec_unit[0]
6769 == IA64_UNIT_M))))
6770 {
6771 template_val = 5;
6772 end_of_insn_group = 0;
6773 }
6774 else if (i == 2 && (user_template == 0
6775 || (user_template < 0
6776 && (ia64_templ_desc[template_val].exec_unit[1]
6777 == IA64_UNIT_I)))
6778 /* This test makes sure we don't switch the template if
6779 the next instruction is one that needs to be first in
6780 an instruction group. Since all those instructions are
6781 in the M group, there is no way such an instruction can
6782 fit in this bundle even if we switch the template. The
6783 reason we have to check for this is that otherwise we
6784 may end up generating "MI;;I M.." which has the deadly
6785 effect that the second M instruction is no longer the
6786 first in the group! --davidm 99/12/16 */
6787 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6788 {
6789 template_val = 1;
6790 end_of_insn_group = 0;
6791 }
6792 else if (i == 1
6793 && user_template == 0
6794 && !(idesc->flags & IA64_OPCODE_FIRST))
6795 /* Use the next slot. */
6796 continue;
6797 else if (curr != first)
6798 /* can't fit this insn */
6799 break;
6800
6801 if (template_val != orig_template)
6802 /* if we switch the template, we need to reset the NOPs
6803 after slot i. The slot-types of the instructions ahead
6804 of i never change, so we don't need to worry about
6805 changing NOPs in front of this slot. */
6806 for (j = i; j < 3; ++j)
6807 insn[j] = nop[ia64_templ_desc[template_val].exec_unit[j]];
6808 }
6809 required_unit = ia64_templ_desc[template_val].exec_unit[i];
6810
6811 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6812 if (idesc->type == IA64_TYPE_DYN)
6813 {
6814 enum ia64_opnd opnd1, opnd2;
6815
6816 if ((strcmp (idesc->name, "nop") == 0)
6817 || (strcmp (idesc->name, "break") == 0))
6818 insn_unit = required_unit;
6819 else if (strcmp (idesc->name, "hint") == 0)
6820 {
6821 insn_unit = required_unit;
6822 if (required_unit == IA64_UNIT_B)
6823 {
6824 switch (md.hint_b)
6825 {
6826 case hint_b_ok:
6827 break;
6828 case hint_b_warning:
6829 as_warn (_("hint in B unit may be treated as nop"));
6830 break;
6831 case hint_b_error:
6832 /* When manual bundling is off and there is no
6833 user template, we choose a different unit so
6834 that hint won't go into the current slot. We
6835 will fill the current bundle with nops and
6836 try to put hint into the next bundle. */
6837 if (!manual_bundling && user_template < 0)
6838 insn_unit = IA64_UNIT_I;
6839 else
6840 as_bad (_("hint in B unit can't be used"));
6841 break;
6842 }
6843 }
6844 }
6845 else if (strcmp (idesc->name, "chk.s") == 0
6846 || strcmp (idesc->name, "mov") == 0)
6847 {
6848 insn_unit = IA64_UNIT_M;
6849 if (required_unit == IA64_UNIT_I
6850 || (required_unit == IA64_UNIT_F && template_val == 6))
6851 insn_unit = IA64_UNIT_I;
6852 }
6853 else
6854 as_fatal (_("emit_one_bundle: unexpected dynamic op"));
6855
6856 snprintf (mnemonic, sizeof (mnemonic), "%s.%c",
6857 idesc->name, "?imbfxx"[insn_unit]);
6858 opnd1 = idesc->operands[0];
6859 opnd2 = idesc->operands[1];
6860 ia64_free_opcode (idesc);
6861 idesc = ia64_find_opcode (mnemonic);
6862 /* moves to/from ARs have collisions */
6863 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6864 {
6865 while (idesc != NULL
6866 && (idesc->operands[0] != opnd1
6867 || idesc->operands[1] != opnd2))
6868 idesc = get_next_opcode (idesc);
6869 }
6870 md.slot[curr].idesc = idesc;
6871 }
6872 else
6873 {
6874 insn_type = idesc->type;
6875 insn_unit = IA64_UNIT_NIL;
6876 switch (insn_type)
6877 {
6878 case IA64_TYPE_A:
6879 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6880 insn_unit = required_unit;
6881 break;
6882 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6883 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6884 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6885 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6886 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6887 default: break;
6888 }
6889 }
6890
6891 if (insn_unit != required_unit)
6892 continue; /* Try next slot. */
6893
6894 /* Now is a good time to fix up the labels for this insn. */
6895 mark_label = FALSE;
6896 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6897 {
6898 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6899 symbol_set_frag (lfix->sym, frag_now);
6900 mark_label |= lfix->dw2_mark_labels;
6901 }
6902 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6903 {
6904 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6905 symbol_set_frag (lfix->sym, frag_now);
6906 }
6907
6908 if (debug_type == DEBUG_DWARF2
6909 || md.slot[curr].loc_directive_seen
6910 || mark_label)
6911 {
6912 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6913
6914 md.slot[curr].loc_directive_seen = 0;
6915 if (mark_label)
6916 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
6917
6918 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6919 }
6920
6921 build_insn (md.slot + curr, insn + i);
6922
6923 ptr = md.slot[curr].unwind_record;
6924 if (ptr)
6925 {
6926 /* Set slot numbers for all remaining unwind records belonging to the
6927 current insn. There can not be any prologue/body unwind records
6928 here. */
6929 for (; ptr != end_ptr; ptr = ptr->next)
6930 {
6931 ptr->slot_number = (unsigned long) f + i;
6932 ptr->slot_frag = frag_now;
6933 }
6934 md.slot[curr].unwind_record = NULL;
6935 }
6936
6937 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6938 {
6939 ifix = md.slot[curr].fixup + j;
6940 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6941 &ifix->expr, ifix->is_pcrel, ifix->code);
6942 fix->tc_fix_data.opnd = ifix->opnd;
6943 fix->fx_file = md.slot[curr].src_file;
6944 fix->fx_line = md.slot[curr].src_line;
6945 }
6946
6947 end_of_insn_group = md.slot[curr].end_of_insn_group;
6948
6949 /* This adjustment to "i" must occur after the fix, otherwise the fix
6950 is assigned to the wrong slot, and the VMS linker complains. */
6951 if (required_unit == IA64_UNIT_L)
6952 {
6953 know (i == 1);
6954 /* skip one slot for long/X-unit instructions */
6955 ++i;
6956 }
6957 --md.num_slots_in_use;
6958 last_slot = i;
6959
6960 /* clear slot: */
6961 ia64_free_opcode (md.slot[curr].idesc);
6962 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6963 md.slot[curr].user_template = -1;
6964
6965 if (manual_bundling_off)
6966 {
6967 manual_bundling = 0;
6968 break;
6969 }
6970 curr = (curr + 1) % NUM_SLOTS;
6971 idesc = md.slot[curr].idesc;
6972 }
6973
6974 /* A user template was specified, but the first following instruction did
6975 not fit. This can happen with or without manual bundling. */
6976 if (md.num_slots_in_use > 0 && last_slot < 0)
6977 {
6978 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6979 _("`%s' does not fit into %s template"),
6980 idesc->name, ia64_templ_desc[template_val].name);
6981 /* Drop first insn so we don't livelock. */
6982 --md.num_slots_in_use;
6983 know (curr == first);
6984 ia64_free_opcode (md.slot[curr].idesc);
6985 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6986 md.slot[curr].user_template = -1;
6987 }
6988 else if (manual_bundling > 0)
6989 {
6990 if (md.num_slots_in_use > 0)
6991 {
6992 if (last_slot >= 2)
6993 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6994 _("`%s' does not fit into bundle"), idesc->name);
6995 else
6996 {
6997 const char *where;
6998
6999 if (template_val == 2)
7000 where = "X slot";
7001 else if (last_slot == 0)
7002 where = "slots 2 or 3";
7003 else
7004 where = "slot 3";
7005 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7006 _("`%s' can't go in %s of %s template"),
7007 idesc->name, where, ia64_templ_desc[template_val].name);
7008 }
7009 }
7010 else
7011 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7012 _("Missing '}' at end of file"));
7013 }
7014
7015 know (md.num_slots_in_use < NUM_SLOTS);
7016
7017 t0 = end_of_insn_group | (template_val << 1) | (insn[0] << 5) | (insn[1] << 46);
7018 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7019
7020 number_to_chars_littleendian (f + 0, t0, 8);
7021 number_to_chars_littleendian (f + 8, t1, 8);
7022 }
7023
7024 int
md_parse_option(int c,char * arg)7025 md_parse_option (int c, char *arg)
7026 {
7027
7028 switch (c)
7029 {
7030 /* Switches from the Intel assembler. */
7031 case 'm':
7032 if (strcmp (arg, "ilp64") == 0
7033 || strcmp (arg, "lp64") == 0
7034 || strcmp (arg, "p64") == 0)
7035 {
7036 md.flags |= EF_IA_64_ABI64;
7037 }
7038 else if (strcmp (arg, "ilp32") == 0)
7039 {
7040 md.flags &= ~EF_IA_64_ABI64;
7041 }
7042 else if (strcmp (arg, "le") == 0)
7043 {
7044 md.flags &= ~EF_IA_64_BE;
7045 default_big_endian = 0;
7046 }
7047 else if (strcmp (arg, "be") == 0)
7048 {
7049 md.flags |= EF_IA_64_BE;
7050 default_big_endian = 1;
7051 }
7052 else if (strncmp (arg, "unwind-check=", 13) == 0)
7053 {
7054 arg += 13;
7055 if (strcmp (arg, "warning") == 0)
7056 md.unwind_check = unwind_check_warning;
7057 else if (strcmp (arg, "error") == 0)
7058 md.unwind_check = unwind_check_error;
7059 else
7060 return 0;
7061 }
7062 else if (strncmp (arg, "hint.b=", 7) == 0)
7063 {
7064 arg += 7;
7065 if (strcmp (arg, "ok") == 0)
7066 md.hint_b = hint_b_ok;
7067 else if (strcmp (arg, "warning") == 0)
7068 md.hint_b = hint_b_warning;
7069 else if (strcmp (arg, "error") == 0)
7070 md.hint_b = hint_b_error;
7071 else
7072 return 0;
7073 }
7074 else if (strncmp (arg, "tune=", 5) == 0)
7075 {
7076 arg += 5;
7077 if (strcmp (arg, "itanium1") == 0)
7078 md.tune = itanium1;
7079 else if (strcmp (arg, "itanium2") == 0)
7080 md.tune = itanium2;
7081 else
7082 return 0;
7083 }
7084 else
7085 return 0;
7086 break;
7087
7088 case 'N':
7089 if (strcmp (arg, "so") == 0)
7090 {
7091 /* Suppress signon message. */
7092 }
7093 else if (strcmp (arg, "pi") == 0)
7094 {
7095 /* Reject privileged instructions. FIXME */
7096 }
7097 else if (strcmp (arg, "us") == 0)
7098 {
7099 /* Allow union of signed and unsigned range. FIXME */
7100 }
7101 else if (strcmp (arg, "close_fcalls") == 0)
7102 {
7103 /* Do not resolve global function calls. */
7104 }
7105 else
7106 return 0;
7107 break;
7108
7109 case 'C':
7110 /* temp[="prefix"] Insert temporary labels into the object file
7111 symbol table prefixed by "prefix".
7112 Default prefix is ":temp:".
7113 */
7114 break;
7115
7116 case 'a':
7117 /* indirect=<tgt> Assume unannotated indirect branches behavior
7118 according to <tgt> --
7119 exit: branch out from the current context (default)
7120 labels: all labels in context may be branch targets
7121 */
7122 if (strncmp (arg, "indirect=", 9) != 0)
7123 return 0;
7124 break;
7125
7126 case 'x':
7127 /* -X conflicts with an ignored option, use -x instead */
7128 md.detect_dv = 1;
7129 if (!arg || strcmp (arg, "explicit") == 0)
7130 {
7131 /* set default mode to explicit */
7132 md.default_explicit_mode = 1;
7133 break;
7134 }
7135 else if (strcmp (arg, "auto") == 0)
7136 {
7137 md.default_explicit_mode = 0;
7138 }
7139 else if (strcmp (arg, "none") == 0)
7140 {
7141 md.detect_dv = 0;
7142 }
7143 else if (strcmp (arg, "debug") == 0)
7144 {
7145 md.debug_dv = 1;
7146 }
7147 else if (strcmp (arg, "debugx") == 0)
7148 {
7149 md.default_explicit_mode = 1;
7150 md.debug_dv = 1;
7151 }
7152 else if (strcmp (arg, "debugn") == 0)
7153 {
7154 md.debug_dv = 1;
7155 md.detect_dv = 0;
7156 }
7157 else
7158 {
7159 as_bad (_("Unrecognized option '-x%s'"), arg);
7160 }
7161 break;
7162
7163 case 'S':
7164 /* nops Print nops statistics. */
7165 break;
7166
7167 /* GNU specific switches for gcc. */
7168 case OPTION_MCONSTANT_GP:
7169 md.flags |= EF_IA_64_CONS_GP;
7170 break;
7171
7172 case OPTION_MAUTO_PIC:
7173 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7174 break;
7175
7176 default:
7177 return 0;
7178 }
7179
7180 return 1;
7181 }
7182
7183 void
md_show_usage(FILE * stream)7184 md_show_usage (FILE *stream)
7185 {
7186 fputs (_("\
7187 IA-64 options:\n\
7188 --mconstant-gp mark output file as using the constant-GP model\n\
7189 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7190 --mauto-pic mark output file as using the constant-GP model\n\
7191 without function descriptors (sets ELF header flag\n\
7192 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7193 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7194 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7195 -mtune=[itanium1|itanium2]\n\
7196 tune for a specific CPU (default -mtune=itanium2)\n\
7197 -munwind-check=[warning|error]\n\
7198 unwind directive check (default -munwind-check=warning)\n\
7199 -mhint.b=[ok|warning|error]\n\
7200 hint.b check (default -mhint.b=error)\n\
7201 -x | -xexplicit turn on dependency violation checking\n"), stream);
7202 /* Note for translators: "automagically" can be translated as "automatically" here. */
7203 fputs (_("\
7204 -xauto automagically remove dependency violations (default)\n\
7205 -xnone turn off dependency violation checking\n\
7206 -xdebug debug dependency violation checker\n\
7207 -xdebugn debug dependency violation checker but turn off\n\
7208 dependency violation checking\n\
7209 -xdebugx debug dependency violation checker and turn on\n\
7210 dependency violation checking\n"),
7211 stream);
7212 }
7213
7214 void
ia64_after_parse_args(void)7215 ia64_after_parse_args (void)
7216 {
7217 if (debug_type == DEBUG_STABS)
7218 as_fatal (_("--gstabs is not supported for ia64"));
7219 }
7220
7221 /* Return true if TYPE fits in TEMPL at SLOT. */
7222
7223 static int
match(int templ,int type,int slot)7224 match (int templ, int type, int slot)
7225 {
7226 enum ia64_unit unit;
7227 int result;
7228
7229 unit = ia64_templ_desc[templ].exec_unit[slot];
7230 switch (type)
7231 {
7232 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7233 case IA64_TYPE_A:
7234 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7235 break;
7236 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7237 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7238 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7239 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7240 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7241 default: result = 0; break;
7242 }
7243 return result;
7244 }
7245
7246 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7247 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7248 type M or I would fit in TEMPL at SLOT. */
7249
7250 static inline int
extra_goodness(int templ,int slot)7251 extra_goodness (int templ, int slot)
7252 {
7253 switch (md.tune)
7254 {
7255 case itanium1:
7256 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7257 return 2;
7258 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7259 return 1;
7260 else
7261 return 0;
7262 break;
7263 case itanium2:
7264 if (match (templ, IA64_TYPE_M, slot)
7265 || match (templ, IA64_TYPE_I, slot))
7266 /* Favor M- and I-unit NOPs. We definitely want to avoid
7267 F-unit and B-unit may cause split-issue or less-than-optimal
7268 branch-prediction. */
7269 return 2;
7270 else
7271 return 0;
7272 break;
7273 default:
7274 abort ();
7275 return 0;
7276 }
7277 }
7278
7279 /* This function is called once, at assembler startup time. It sets
7280 up all the tables, etc. that the MD part of the assembler will need
7281 that can be determined before arguments are parsed. */
7282 void
md_begin(void)7283 md_begin (void)
7284 {
7285 int i, j, k, t, goodness, best, ok;
7286 const char *err;
7287 char name[8];
7288
7289 md.auto_align = 1;
7290 md.explicit_mode = md.default_explicit_mode;
7291
7292 bfd_set_section_alignment (stdoutput, text_section, 4);
7293
7294 /* Make sure function pointers get initialized. */
7295 target_big_endian = -1;
7296 dot_byteorder (default_big_endian);
7297
7298 alias_hash = hash_new ();
7299 alias_name_hash = hash_new ();
7300 secalias_hash = hash_new ();
7301 secalias_name_hash = hash_new ();
7302
7303 pseudo_func[FUNC_DTP_MODULE].u.sym =
7304 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7305 &zero_address_frag);
7306
7307 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7308 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7309 &zero_address_frag);
7310
7311 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7312 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7313 &zero_address_frag);
7314
7315 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7316 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7317 &zero_address_frag);
7318
7319 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7320 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7321 &zero_address_frag);
7322
7323 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7324 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7325 &zero_address_frag);
7326
7327 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7328 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7329 &zero_address_frag);
7330
7331 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7332 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7333 &zero_address_frag);
7334
7335 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7336 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7337 &zero_address_frag);
7338
7339 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7340 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7341 &zero_address_frag);
7342
7343 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7344 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7345 &zero_address_frag);
7346
7347 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7348 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7349 &zero_address_frag);
7350
7351 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7352 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7353 &zero_address_frag);
7354
7355 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7356 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7357 &zero_address_frag);
7358
7359 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7360 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7361 &zero_address_frag);
7362
7363 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7364 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7365 &zero_address_frag);
7366
7367 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7368 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7369 &zero_address_frag);
7370
7371 #ifdef TE_VMS
7372 pseudo_func[FUNC_SLOTCOUNT_RELOC].u.sym =
7373 symbol_new (".<slotcount>", undefined_section, FUNC_SLOTCOUNT_RELOC,
7374 &zero_address_frag);
7375 #endif
7376
7377 if (md.tune != itanium1)
7378 {
7379 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7380 le_nop[0] = 0x8;
7381 le_nop_stop[0] = 0x9;
7382 }
7383
7384 /* Compute the table of best templates. We compute goodness as a
7385 base 4 value, in which each match counts for 3. Match-failures
7386 result in NOPs and we use extra_goodness() to pick the execution
7387 units that are best suited for issuing the NOP. */
7388 for (i = 0; i < IA64_NUM_TYPES; ++i)
7389 for (j = 0; j < IA64_NUM_TYPES; ++j)
7390 for (k = 0; k < IA64_NUM_TYPES; ++k)
7391 {
7392 best = 0;
7393 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7394 {
7395 goodness = 0;
7396 if (match (t, i, 0))
7397 {
7398 if (match (t, j, 1))
7399 {
7400 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7401 goodness = 3 + 3 + 3;
7402 else
7403 goodness = 3 + 3 + extra_goodness (t, 2);
7404 }
7405 else if (match (t, j, 2))
7406 goodness = 3 + 3 + extra_goodness (t, 1);
7407 else
7408 {
7409 goodness = 3;
7410 goodness += extra_goodness (t, 1);
7411 goodness += extra_goodness (t, 2);
7412 }
7413 }
7414 else if (match (t, i, 1))
7415 {
7416 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7417 goodness = 3 + 3;
7418 else
7419 goodness = 3 + extra_goodness (t, 2);
7420 }
7421 else if (match (t, i, 2))
7422 goodness = 3 + extra_goodness (t, 1);
7423
7424 if (goodness > best)
7425 {
7426 best = goodness;
7427 best_template[i][j][k] = t;
7428 }
7429 }
7430 }
7431
7432 #ifdef DEBUG_TEMPLATES
7433 /* For debugging changes to the best_template calculations. We don't care
7434 about combinations with invalid instructions, so start the loops at 1. */
7435 for (i = 0; i < IA64_NUM_TYPES; ++i)
7436 for (j = 0; j < IA64_NUM_TYPES; ++j)
7437 for (k = 0; k < IA64_NUM_TYPES; ++k)
7438 {
7439 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7440 'x', 'd' };
7441 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7442 type_letter[k],
7443 ia64_templ_desc[best_template[i][j][k]].name);
7444 }
7445 #endif
7446
7447 for (i = 0; i < NUM_SLOTS; ++i)
7448 md.slot[i].user_template = -1;
7449
7450 md.pseudo_hash = hash_new ();
7451 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7452 {
7453 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7454 (void *) (pseudo_opcode + i));
7455 if (err)
7456 as_fatal (_("ia64.md_begin: can't hash `%s': %s"),
7457 pseudo_opcode[i].name, err);
7458 }
7459
7460 md.reg_hash = hash_new ();
7461 md.dynreg_hash = hash_new ();
7462 md.const_hash = hash_new ();
7463 md.entry_hash = hash_new ();
7464
7465 /* general registers: */
7466 declare_register_set ("r", 128, REG_GR);
7467 declare_register ("gp", REG_GR + 1);
7468 declare_register ("sp", REG_GR + 12);
7469 declare_register ("tp", REG_GR + 13);
7470 declare_register_set ("ret", 4, REG_GR + 8);
7471
7472 /* floating point registers: */
7473 declare_register_set ("f", 128, REG_FR);
7474 declare_register_set ("farg", 8, REG_FR + 8);
7475 declare_register_set ("fret", 8, REG_FR + 8);
7476
7477 /* branch registers: */
7478 declare_register_set ("b", 8, REG_BR);
7479 declare_register ("rp", REG_BR + 0);
7480
7481 /* predicate registers: */
7482 declare_register_set ("p", 64, REG_P);
7483 declare_register ("pr", REG_PR);
7484 declare_register ("pr.rot", REG_PR_ROT);
7485
7486 /* application registers: */
7487 declare_register_set ("ar", 128, REG_AR);
7488 for (i = 0; i < NELEMS (ar); ++i)
7489 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7490
7491 /* control registers: */
7492 declare_register_set ("cr", 128, REG_CR);
7493 for (i = 0; i < NELEMS (cr); ++i)
7494 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7495
7496 /* dahr registers: */
7497 declare_register_set ("dahr", 8, REG_DAHR);
7498
7499 declare_register ("ip", REG_IP);
7500 declare_register ("cfm", REG_CFM);
7501 declare_register ("psr", REG_PSR);
7502 declare_register ("psr.l", REG_PSR_L);
7503 declare_register ("psr.um", REG_PSR_UM);
7504
7505 for (i = 0; i < NELEMS (indirect_reg); ++i)
7506 {
7507 unsigned int regnum = indirect_reg[i].regnum;
7508
7509 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7510 }
7511
7512 /* pseudo-registers used to specify unwind info: */
7513 declare_register ("psp", REG_PSP);
7514
7515 for (i = 0; i < NELEMS (const_bits); ++i)
7516 {
7517 err = hash_insert (md.const_hash, const_bits[i].name,
7518 (void *) (const_bits + i));
7519 if (err)
7520 as_fatal (_("Inserting \"%s\" into constant hash table failed: %s"),
7521 name, err);
7522 }
7523
7524 /* Set the architecture and machine depending on defaults and command line
7525 options. */
7526 if (md.flags & EF_IA_64_ABI64)
7527 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7528 else
7529 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7530
7531 if (! ok)
7532 as_warn (_("Could not set architecture and machine"));
7533
7534 /* Set the pointer size and pointer shift size depending on md.flags */
7535
7536 if (md.flags & EF_IA_64_ABI64)
7537 {
7538 md.pointer_size = 8; /* pointers are 8 bytes */
7539 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7540 }
7541 else
7542 {
7543 md.pointer_size = 4; /* pointers are 4 bytes */
7544 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7545 }
7546
7547 md.mem_offset.hint = 0;
7548 md.path = 0;
7549 md.maxpaths = 0;
7550 md.entry_labels = NULL;
7551 }
7552
7553 /* Set the default options in md. Cannot do this in md_begin because
7554 that is called after md_parse_option which is where we set the
7555 options in md based on command line options. */
7556
7557 void
ia64_init(int argc ATTRIBUTE_UNUSED,char ** argv ATTRIBUTE_UNUSED)7558 ia64_init (int argc ATTRIBUTE_UNUSED, char **argv ATTRIBUTE_UNUSED)
7559 {
7560 md.flags = MD_FLAGS_DEFAULT;
7561 #ifndef TE_VMS
7562 /* Don't turn on dependency checking for VMS, doesn't work. */
7563 md.detect_dv = 1;
7564 #endif
7565 /* FIXME: We should change it to unwind_check_error someday. */
7566 md.unwind_check = unwind_check_warning;
7567 md.hint_b = hint_b_error;
7568 md.tune = itanium2;
7569 }
7570
7571 /* Return a string for the target object file format. */
7572
7573 const char *
ia64_target_format(void)7574 ia64_target_format (void)
7575 {
7576 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7577 {
7578 if (md.flags & EF_IA_64_BE)
7579 {
7580 if (md.flags & EF_IA_64_ABI64)
7581 #if defined(TE_AIX50)
7582 return "elf64-ia64-aix-big";
7583 #elif defined(TE_HPUX)
7584 return "elf64-ia64-hpux-big";
7585 #else
7586 return "elf64-ia64-big";
7587 #endif
7588 else
7589 #if defined(TE_AIX50)
7590 return "elf32-ia64-aix-big";
7591 #elif defined(TE_HPUX)
7592 return "elf32-ia64-hpux-big";
7593 #else
7594 return "elf32-ia64-big";
7595 #endif
7596 }
7597 else
7598 {
7599 if (md.flags & EF_IA_64_ABI64)
7600 #if defined (TE_AIX50)
7601 return "elf64-ia64-aix-little";
7602 #elif defined (TE_VMS)
7603 {
7604 md.flags |= EF_IA_64_ARCHVER_1;
7605 return "elf64-ia64-vms";
7606 }
7607 #else
7608 return "elf64-ia64-little";
7609 #endif
7610 else
7611 #ifdef TE_AIX50
7612 return "elf32-ia64-aix-little";
7613 #else
7614 return "elf32-ia64-little";
7615 #endif
7616 }
7617 }
7618 else
7619 return "unknown-format";
7620 }
7621
7622 void
ia64_end_of_source(void)7623 ia64_end_of_source (void)
7624 {
7625 /* terminate insn group upon reaching end of file: */
7626 insn_group_break (1, 0, 0);
7627
7628 /* emits slots we haven't written yet: */
7629 ia64_flush_insns ();
7630
7631 bfd_set_private_flags (stdoutput, md.flags);
7632
7633 md.mem_offset.hint = 0;
7634 }
7635
7636 void
ia64_start_line(void)7637 ia64_start_line (void)
7638 {
7639 static int first;
7640
7641 if (!first) {
7642 /* Make sure we don't reference input_line_pointer[-1] when that's
7643 not valid. */
7644 first = 1;
7645 return;
7646 }
7647
7648 if (md.qp.X_op == O_register)
7649 as_bad (_("qualifying predicate not followed by instruction"));
7650 md.qp.X_op = O_absent;
7651
7652 if (ignore_input ())
7653 return;
7654
7655 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7656 {
7657 if (md.detect_dv && !md.explicit_mode)
7658 {
7659 static int warned;
7660
7661 if (!warned)
7662 {
7663 warned = 1;
7664 as_warn (_("Explicit stops are ignored in auto mode"));
7665 }
7666 }
7667 else
7668 insn_group_break (1, 0, 0);
7669 }
7670 else if (input_line_pointer[-1] == '{')
7671 {
7672 if (md.manual_bundling)
7673 as_warn (_("Found '{' when manual bundling is already turned on"));
7674 else
7675 CURR_SLOT.manual_bundling_on = 1;
7676 md.manual_bundling = 1;
7677
7678 /* Bundling is only acceptable in explicit mode
7679 or when in default automatic mode. */
7680 if (md.detect_dv && !md.explicit_mode)
7681 {
7682 if (!md.mode_explicitly_set
7683 && !md.default_explicit_mode)
7684 dot_dv_mode ('E');
7685 else
7686 as_warn (_("Found '{' after explicit switch to automatic mode"));
7687 }
7688 }
7689 else if (input_line_pointer[-1] == '}')
7690 {
7691 if (!md.manual_bundling)
7692 as_warn (_("Found '}' when manual bundling is off"));
7693 else
7694 PREV_SLOT.manual_bundling_off = 1;
7695 md.manual_bundling = 0;
7696
7697 /* switch back to automatic mode, if applicable */
7698 if (md.detect_dv
7699 && md.explicit_mode
7700 && !md.mode_explicitly_set
7701 && !md.default_explicit_mode)
7702 dot_dv_mode ('A');
7703 }
7704 }
7705
7706 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7707 labels. */
7708 static int defining_tag = 0;
7709
7710 int
ia64_unrecognized_line(int ch)7711 ia64_unrecognized_line (int ch)
7712 {
7713 switch (ch)
7714 {
7715 case '(':
7716 expression_and_evaluate (&md.qp);
7717 if (*input_line_pointer++ != ')')
7718 {
7719 as_bad (_("Expected ')'"));
7720 return 0;
7721 }
7722 if (md.qp.X_op != O_register)
7723 {
7724 as_bad (_("Qualifying predicate expected"));
7725 return 0;
7726 }
7727 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7728 {
7729 as_bad (_("Predicate register expected"));
7730 return 0;
7731 }
7732 return 1;
7733
7734 case '[':
7735 {
7736 char *s;
7737 char c;
7738 symbolS *tag;
7739 int temp;
7740
7741 if (md.qp.X_op == O_register)
7742 {
7743 as_bad (_("Tag must come before qualifying predicate."));
7744 return 0;
7745 }
7746
7747 /* This implements just enough of read_a_source_file in read.c to
7748 recognize labels. */
7749 if (is_name_beginner (*input_line_pointer))
7750 {
7751 s = input_line_pointer;
7752 c = get_symbol_end ();
7753 }
7754 else if (LOCAL_LABELS_FB
7755 && ISDIGIT (*input_line_pointer))
7756 {
7757 temp = 0;
7758 while (ISDIGIT (*input_line_pointer))
7759 temp = (temp * 10) + *input_line_pointer++ - '0';
7760 fb_label_instance_inc (temp);
7761 s = fb_label_name (temp, 0);
7762 c = *input_line_pointer;
7763 }
7764 else
7765 {
7766 s = NULL;
7767 c = '\0';
7768 }
7769 if (c != ':')
7770 {
7771 /* Put ':' back for error messages' sake. */
7772 *input_line_pointer++ = ':';
7773 as_bad (_("Expected ':'"));
7774 return 0;
7775 }
7776
7777 defining_tag = 1;
7778 tag = colon (s);
7779 defining_tag = 0;
7780 /* Put ':' back for error messages' sake. */
7781 *input_line_pointer++ = ':';
7782 if (*input_line_pointer++ != ']')
7783 {
7784 as_bad (_("Expected ']'"));
7785 return 0;
7786 }
7787 if (! tag)
7788 {
7789 as_bad (_("Tag name expected"));
7790 return 0;
7791 }
7792 return 1;
7793 }
7794
7795 default:
7796 break;
7797 }
7798
7799 /* Not a valid line. */
7800 return 0;
7801 }
7802
7803 void
ia64_frob_label(struct symbol * sym)7804 ia64_frob_label (struct symbol *sym)
7805 {
7806 struct label_fix *fix;
7807
7808 /* Tags need special handling since they are not bundle breaks like
7809 labels. */
7810 if (defining_tag)
7811 {
7812 fix = obstack_alloc (¬es, sizeof (*fix));
7813 fix->sym = sym;
7814 fix->next = CURR_SLOT.tag_fixups;
7815 fix->dw2_mark_labels = FALSE;
7816 CURR_SLOT.tag_fixups = fix;
7817
7818 return;
7819 }
7820
7821 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7822 {
7823 md.last_text_seg = now_seg;
7824 fix = obstack_alloc (¬es, sizeof (*fix));
7825 fix->sym = sym;
7826 fix->next = CURR_SLOT.label_fixups;
7827 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7828 CURR_SLOT.label_fixups = fix;
7829
7830 /* Keep track of how many code entry points we've seen. */
7831 if (md.path == md.maxpaths)
7832 {
7833 md.maxpaths += 20;
7834 md.entry_labels = (const char **)
7835 xrealloc ((void *) md.entry_labels,
7836 md.maxpaths * sizeof (char *));
7837 }
7838 md.entry_labels[md.path++] = S_GET_NAME (sym);
7839 }
7840 }
7841
7842 #ifdef TE_HPUX
7843 /* The HP-UX linker will give unresolved symbol errors for symbols
7844 that are declared but unused. This routine removes declared,
7845 unused symbols from an object. */
7846 int
ia64_frob_symbol(struct symbol * sym)7847 ia64_frob_symbol (struct symbol *sym)
7848 {
7849 if ((S_GET_SEGMENT (sym) == bfd_und_section_ptr && ! symbol_used_p (sym) &&
7850 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7851 || (S_GET_SEGMENT (sym) == bfd_abs_section_ptr
7852 && ! S_IS_EXTERNAL (sym)))
7853 return 1;
7854 return 0;
7855 }
7856 #endif
7857
7858 void
ia64_flush_pending_output(void)7859 ia64_flush_pending_output (void)
7860 {
7861 if (!md.keep_pending_output
7862 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7863 {
7864 /* ??? This causes many unnecessary stop bits to be emitted.
7865 Unfortunately, it isn't clear if it is safe to remove this. */
7866 insn_group_break (1, 0, 0);
7867 ia64_flush_insns ();
7868 }
7869 }
7870
7871 /* Do ia64-specific expression optimization. All that's done here is
7872 to transform index expressions that are either due to the indexing
7873 of rotating registers or due to the indexing of indirect register
7874 sets. */
7875 int
ia64_optimize_expr(expressionS * l,operatorT op,expressionS * r)7876 ia64_optimize_expr (expressionS *l, operatorT op, expressionS *r)
7877 {
7878 if (op != O_index)
7879 return 0;
7880 resolve_expression (l);
7881 if (l->X_op == O_register)
7882 {
7883 unsigned num_regs = l->X_add_number >> 16;
7884
7885 resolve_expression (r);
7886 if (num_regs)
7887 {
7888 /* Left side is a .rotX-allocated register. */
7889 if (r->X_op != O_constant)
7890 {
7891 as_bad (_("Rotating register index must be a non-negative constant"));
7892 r->X_add_number = 0;
7893 }
7894 else if ((valueT) r->X_add_number >= num_regs)
7895 {
7896 as_bad (_("Index out of range 0..%u"), num_regs - 1);
7897 r->X_add_number = 0;
7898 }
7899 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7900 return 1;
7901 }
7902 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
7903 {
7904 if (r->X_op != O_register
7905 || r->X_add_number < REG_GR
7906 || r->X_add_number > REG_GR + 127)
7907 {
7908 as_bad (_("Indirect register index must be a general register"));
7909 r->X_add_number = REG_GR;
7910 }
7911 l->X_op = O_index;
7912 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
7913 l->X_add_number = r->X_add_number;
7914 return 1;
7915 }
7916 }
7917 as_bad (_("Index can only be applied to rotating or indirect registers"));
7918 /* Fall back to some register use of which has as little as possible
7919 side effects, to minimize subsequent error messages. */
7920 l->X_op = O_register;
7921 l->X_add_number = REG_GR + 3;
7922 return 1;
7923 }
7924
7925 int
ia64_parse_name(char * name,expressionS * e,char * nextcharP)7926 ia64_parse_name (char *name, expressionS *e, char *nextcharP)
7927 {
7928 struct const_desc *cdesc;
7929 struct dynreg *dr = 0;
7930 unsigned int idx;
7931 struct symbol *sym;
7932 char *end;
7933
7934 if (*name == '@')
7935 {
7936 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7937
7938 /* Find what relocation pseudo-function we're dealing with. */
7939 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7940 if (pseudo_func[idx].name
7941 && pseudo_func[idx].name[0] == name[1]
7942 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7943 {
7944 pseudo_type = pseudo_func[idx].type;
7945 break;
7946 }
7947 switch (pseudo_type)
7948 {
7949 case PSEUDO_FUNC_RELOC:
7950 end = input_line_pointer;
7951 if (*nextcharP != '(')
7952 {
7953 as_bad (_("Expected '('"));
7954 break;
7955 }
7956 /* Skip '('. */
7957 ++input_line_pointer;
7958 expression (e);
7959 if (*input_line_pointer != ')')
7960 {
7961 as_bad (_("Missing ')'"));
7962 goto done;
7963 }
7964 /* Skip ')'. */
7965 ++input_line_pointer;
7966 #ifdef TE_VMS
7967 if (idx == FUNC_SLOTCOUNT_RELOC)
7968 {
7969 /* @slotcount can accept any expression. Canonicalize. */
7970 e->X_add_symbol = make_expr_symbol (e);
7971 e->X_op = O_symbol;
7972 e->X_add_number = 0;
7973 }
7974 #endif
7975 if (e->X_op != O_symbol)
7976 {
7977 if (e->X_op != O_pseudo_fixup)
7978 {
7979 as_bad (_("Not a symbolic expression"));
7980 goto done;
7981 }
7982 if (idx != FUNC_LT_RELATIVE)
7983 {
7984 as_bad (_("Illegal combination of relocation functions"));
7985 goto done;
7986 }
7987 switch (S_GET_VALUE (e->X_op_symbol))
7988 {
7989 case FUNC_FPTR_RELATIVE:
7990 idx = FUNC_LT_FPTR_RELATIVE; break;
7991 case FUNC_DTP_MODULE:
7992 idx = FUNC_LT_DTP_MODULE; break;
7993 case FUNC_DTP_RELATIVE:
7994 idx = FUNC_LT_DTP_RELATIVE; break;
7995 case FUNC_TP_RELATIVE:
7996 idx = FUNC_LT_TP_RELATIVE; break;
7997 default:
7998 as_bad (_("Illegal combination of relocation functions"));
7999 goto done;
8000 }
8001 }
8002 /* Make sure gas doesn't get rid of local symbols that are used
8003 in relocs. */
8004 e->X_op = O_pseudo_fixup;
8005 e->X_op_symbol = pseudo_func[idx].u.sym;
8006 done:
8007 *nextcharP = *input_line_pointer;
8008 break;
8009
8010 case PSEUDO_FUNC_CONST:
8011 e->X_op = O_constant;
8012 e->X_add_number = pseudo_func[idx].u.ival;
8013 break;
8014
8015 case PSEUDO_FUNC_REG:
8016 e->X_op = O_register;
8017 e->X_add_number = pseudo_func[idx].u.ival;
8018 break;
8019
8020 default:
8021 return 0;
8022 }
8023 return 1;
8024 }
8025
8026 /* first see if NAME is a known register name: */
8027 sym = hash_find (md.reg_hash, name);
8028 if (sym)
8029 {
8030 e->X_op = O_register;
8031 e->X_add_number = S_GET_VALUE (sym);
8032 return 1;
8033 }
8034
8035 cdesc = hash_find (md.const_hash, name);
8036 if (cdesc)
8037 {
8038 e->X_op = O_constant;
8039 e->X_add_number = cdesc->value;
8040 return 1;
8041 }
8042
8043 /* check for inN, locN, or outN: */
8044 idx = 0;
8045 switch (name[0])
8046 {
8047 case 'i':
8048 if (name[1] == 'n' && ISDIGIT (name[2]))
8049 {
8050 dr = &md.in;
8051 idx = 2;
8052 }
8053 break;
8054
8055 case 'l':
8056 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8057 {
8058 dr = &md.loc;
8059 idx = 3;
8060 }
8061 break;
8062
8063 case 'o':
8064 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8065 {
8066 dr = &md.out;
8067 idx = 3;
8068 }
8069 break;
8070
8071 default:
8072 break;
8073 }
8074
8075 /* Ignore register numbers with leading zeroes, except zero itself. */
8076 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8077 {
8078 unsigned long regnum;
8079
8080 /* The name is inN, locN, or outN; parse the register number. */
8081 regnum = strtoul (name + idx, &end, 10);
8082 if (end > name + idx && *end == '\0' && regnum < 96)
8083 {
8084 if (regnum >= dr->num_regs)
8085 {
8086 if (!dr->num_regs)
8087 as_bad (_("No current frame"));
8088 else
8089 as_bad (_("Register number out of range 0..%u"),
8090 dr->num_regs - 1);
8091 regnum = 0;
8092 }
8093 e->X_op = O_register;
8094 e->X_add_number = dr->base + regnum;
8095 return 1;
8096 }
8097 }
8098
8099 end = alloca (strlen (name) + 1);
8100 strcpy (end, name);
8101 name = ia64_canonicalize_symbol_name (end);
8102 if ((dr = hash_find (md.dynreg_hash, name)))
8103 {
8104 /* We've got ourselves the name of a rotating register set.
8105 Store the base register number in the low 16 bits of
8106 X_add_number and the size of the register set in the top 16
8107 bits. */
8108 e->X_op = O_register;
8109 e->X_add_number = dr->base | (dr->num_regs << 16);
8110 return 1;
8111 }
8112 return 0;
8113 }
8114
8115 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8116
8117 char *
ia64_canonicalize_symbol_name(char * name)8118 ia64_canonicalize_symbol_name (char *name)
8119 {
8120 size_t len = strlen (name), full = len;
8121
8122 while (len > 0 && name[len - 1] == '#')
8123 --len;
8124 if (len <= 0)
8125 {
8126 if (full > 0)
8127 as_bad (_("Standalone `#' is illegal"));
8128 }
8129 else if (len < full - 1)
8130 as_warn (_("Redundant `#' suffix operators"));
8131 name[len] = '\0';
8132 return name;
8133 }
8134
8135 /* Return true if idesc is a conditional branch instruction. This excludes
8136 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8137 because they always read/write resources regardless of the value of the
8138 qualifying predicate. br.ia must always use p0, and hence is always
8139 taken. Thus this function returns true for branches which can fall
8140 through, and which use no resources if they do fall through. */
8141
8142 static int
is_conditional_branch(struct ia64_opcode * idesc)8143 is_conditional_branch (struct ia64_opcode *idesc)
8144 {
8145 /* br is a conditional branch. Everything that starts with br. except
8146 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8147 Everything that starts with brl is a conditional branch. */
8148 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8149 && (idesc->name[2] == '\0'
8150 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8151 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8152 || idesc->name[2] == 'l'
8153 /* br.cond, br.call, br.clr */
8154 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8155 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8156 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8157 }
8158
8159 /* Return whether the given opcode is a taken branch. If there's any doubt,
8160 returns zero. */
8161
8162 static int
is_taken_branch(struct ia64_opcode * idesc)8163 is_taken_branch (struct ia64_opcode *idesc)
8164 {
8165 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8166 || strncmp (idesc->name, "br.ia", 5) == 0);
8167 }
8168
8169 /* Return whether the given opcode is an interruption or rfi. If there's any
8170 doubt, returns zero. */
8171
8172 static int
is_interruption_or_rfi(struct ia64_opcode * idesc)8173 is_interruption_or_rfi (struct ia64_opcode *idesc)
8174 {
8175 if (strcmp (idesc->name, "rfi") == 0)
8176 return 1;
8177 return 0;
8178 }
8179
8180 /* Returns the index of the given dependency in the opcode's list of chks, or
8181 -1 if there is no dependency. */
8182
8183 static int
depends_on(int depind,struct ia64_opcode * idesc)8184 depends_on (int depind, struct ia64_opcode *idesc)
8185 {
8186 int i;
8187 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8188 for (i = 0; i < dep->nchks; i++)
8189 {
8190 if (depind == DEP (dep->chks[i]))
8191 return i;
8192 }
8193 return -1;
8194 }
8195
8196 /* Determine a set of specific resources used for a particular resource
8197 class. Returns the number of specific resources identified For those
8198 cases which are not determinable statically, the resource returned is
8199 marked nonspecific.
8200
8201 Meanings of value in 'NOTE':
8202 1) only read/write when the register number is explicitly encoded in the
8203 insn.
8204 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8205 accesses CFM when qualifying predicate is in the rotating region.
8206 3) general register value is used to specify an indirect register; not
8207 determinable statically.
8208 4) only read the given resource when bits 7:0 of the indirect index
8209 register value does not match the register number of the resource; not
8210 determinable statically.
8211 5) all rules are implementation specific.
8212 6) only when both the index specified by the reader and the index specified
8213 by the writer have the same value in bits 63:61; not determinable
8214 statically.
8215 7) only access the specified resource when the corresponding mask bit is
8216 set
8217 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8218 only read when these insns reference FR2-31
8219 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8220 written when these insns write FR32-127
8221 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8222 instruction
8223 11) The target predicates are written independently of PR[qp], but source
8224 registers are only read if PR[qp] is true. Since the state of PR[qp]
8225 cannot statically be determined, all source registers are marked used.
8226 12) This insn only reads the specified predicate register when that
8227 register is the PR[qp].
8228 13) This reference to ld-c only applies to the GR whose value is loaded
8229 with data returned from memory, not the post-incremented address register.
8230 14) The RSE resource includes the implementation-specific RSE internal
8231 state resources. At least one (and possibly more) of these resources are
8232 read by each instruction listed in IC:rse-readers. At least one (and
8233 possibly more) of these resources are written by each insn listed in
8234 IC:rse-writers.
8235 15+16) Represents reserved instructions, which the assembler does not
8236 generate.
8237 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8238 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8239
8240 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8241 this code; there are no dependency violations based on memory access.
8242 */
8243
8244 #define MAX_SPECS 256
8245 #define DV_CHK 1
8246 #define DV_REG 0
8247
8248 static int
specify_resource(const struct ia64_dependency * dep,struct ia64_opcode * idesc,int type,struct rsrc specs[MAX_SPECS],int note,int path)8249 specify_resource (const struct ia64_dependency *dep,
8250 struct ia64_opcode *idesc,
8251 /* is this a DV chk or a DV reg? */
8252 int type,
8253 /* returned specific resources */
8254 struct rsrc specs[MAX_SPECS],
8255 /* resource note for this insn's usage */
8256 int note,
8257 /* which execution path to examine */
8258 int path)
8259 {
8260 int count = 0;
8261 int i;
8262 int rsrc_write = 0;
8263 struct rsrc tmpl;
8264
8265 if (dep->mode == IA64_DV_WAW
8266 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8267 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8268 rsrc_write = 1;
8269
8270 /* template for any resources we identify */
8271 tmpl.dependency = dep;
8272 tmpl.note = note;
8273 tmpl.insn_srlz = tmpl.data_srlz = 0;
8274 tmpl.qp_regno = CURR_SLOT.qp_regno;
8275 tmpl.link_to_qp_branch = 1;
8276 tmpl.mem_offset.hint = 0;
8277 tmpl.mem_offset.offset = 0;
8278 tmpl.mem_offset.base = 0;
8279 tmpl.specific = 1;
8280 tmpl.index = -1;
8281 tmpl.cmp_type = CMP_NONE;
8282 tmpl.depind = 0;
8283 tmpl.file = NULL;
8284 tmpl.line = 0;
8285 tmpl.path = 0;
8286
8287 #define UNHANDLED \
8288 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8289 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8290 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8291
8292 /* we don't need to track these */
8293 if (dep->semantics == IA64_DVS_NONE)
8294 return 0;
8295
8296 switch (dep->specifier)
8297 {
8298 case IA64_RS_AR_K:
8299 if (note == 1)
8300 {
8301 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8302 {
8303 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8304 if (regno >= 0 && regno <= 7)
8305 {
8306 specs[count] = tmpl;
8307 specs[count++].index = regno;
8308 }
8309 }
8310 }
8311 else if (note == 0)
8312 {
8313 for (i = 0; i < 8; i++)
8314 {
8315 specs[count] = tmpl;
8316 specs[count++].index = i;
8317 }
8318 }
8319 else
8320 {
8321 UNHANDLED;
8322 }
8323 break;
8324
8325 case IA64_RS_AR_UNAT:
8326 /* This is a mov =AR or mov AR= instruction. */
8327 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8328 {
8329 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8330 if (regno == AR_UNAT)
8331 {
8332 specs[count++] = tmpl;
8333 }
8334 }
8335 else
8336 {
8337 /* This is a spill/fill, or other instruction that modifies the
8338 unat register. */
8339
8340 /* Unless we can determine the specific bits used, mark the whole
8341 thing; bits 8:3 of the memory address indicate the bit used in
8342 UNAT. The .mem.offset hint may be used to eliminate a small
8343 subset of conflicts. */
8344 specs[count] = tmpl;
8345 if (md.mem_offset.hint)
8346 {
8347 if (md.debug_dv)
8348 fprintf (stderr, " Using hint for spill/fill\n");
8349 /* The index isn't actually used, just set it to something
8350 approximating the bit index. */
8351 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8352 specs[count].mem_offset.hint = 1;
8353 specs[count].mem_offset.offset = md.mem_offset.offset;
8354 specs[count++].mem_offset.base = md.mem_offset.base;
8355 }
8356 else
8357 {
8358 specs[count++].specific = 0;
8359 }
8360 }
8361 break;
8362
8363 case IA64_RS_AR:
8364 if (note == 1)
8365 {
8366 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8367 {
8368 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8369 if ((regno >= 8 && regno <= 15)
8370 || (regno >= 20 && regno <= 23)
8371 || (regno >= 31 && regno <= 39)
8372 || (regno >= 41 && regno <= 47)
8373 || (regno >= 67 && regno <= 111))
8374 {
8375 specs[count] = tmpl;
8376 specs[count++].index = regno;
8377 }
8378 }
8379 }
8380 else
8381 {
8382 UNHANDLED;
8383 }
8384 break;
8385
8386 case IA64_RS_ARb:
8387 if (note == 1)
8388 {
8389 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8390 {
8391 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8392 if ((regno >= 48 && regno <= 63)
8393 || (regno >= 112 && regno <= 127))
8394 {
8395 specs[count] = tmpl;
8396 specs[count++].index = regno;
8397 }
8398 }
8399 }
8400 else if (note == 0)
8401 {
8402 for (i = 48; i < 64; i++)
8403 {
8404 specs[count] = tmpl;
8405 specs[count++].index = i;
8406 }
8407 for (i = 112; i < 128; i++)
8408 {
8409 specs[count] = tmpl;
8410 specs[count++].index = i;
8411 }
8412 }
8413 else
8414 {
8415 UNHANDLED;
8416 }
8417 break;
8418
8419 case IA64_RS_BR:
8420 if (note != 1)
8421 {
8422 UNHANDLED;
8423 }
8424 else
8425 {
8426 if (rsrc_write)
8427 {
8428 for (i = 0; i < idesc->num_outputs; i++)
8429 if (idesc->operands[i] == IA64_OPND_B1
8430 || idesc->operands[i] == IA64_OPND_B2)
8431 {
8432 specs[count] = tmpl;
8433 specs[count++].index =
8434 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8435 }
8436 }
8437 else
8438 {
8439 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8440 if (idesc->operands[i] == IA64_OPND_B1
8441 || idesc->operands[i] == IA64_OPND_B2)
8442 {
8443 specs[count] = tmpl;
8444 specs[count++].index =
8445 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8446 }
8447 }
8448 }
8449 break;
8450
8451 case IA64_RS_CPUID: /* four or more registers */
8452 if (note == 3)
8453 {
8454 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8455 {
8456 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8457 if (regno >= 0 && regno < NELEMS (gr_values)
8458 && KNOWN (regno))
8459 {
8460 specs[count] = tmpl;
8461 specs[count++].index = gr_values[regno].value & 0xFF;
8462 }
8463 else
8464 {
8465 specs[count] = tmpl;
8466 specs[count++].specific = 0;
8467 }
8468 }
8469 }
8470 else
8471 {
8472 UNHANDLED;
8473 }
8474 break;
8475
8476 case IA64_RS_DBR: /* four or more registers */
8477 if (note == 3)
8478 {
8479 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8480 {
8481 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8482 if (regno >= 0 && regno < NELEMS (gr_values)
8483 && KNOWN (regno))
8484 {
8485 specs[count] = tmpl;
8486 specs[count++].index = gr_values[regno].value & 0xFF;
8487 }
8488 else
8489 {
8490 specs[count] = tmpl;
8491 specs[count++].specific = 0;
8492 }
8493 }
8494 }
8495 else if (note == 0 && !rsrc_write)
8496 {
8497 specs[count] = tmpl;
8498 specs[count++].specific = 0;
8499 }
8500 else
8501 {
8502 UNHANDLED;
8503 }
8504 break;
8505
8506 case IA64_RS_IBR: /* four or more registers */
8507 if (note == 3)
8508 {
8509 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8510 {
8511 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8512 if (regno >= 0 && regno < NELEMS (gr_values)
8513 && KNOWN (regno))
8514 {
8515 specs[count] = tmpl;
8516 specs[count++].index = gr_values[regno].value & 0xFF;
8517 }
8518 else
8519 {
8520 specs[count] = tmpl;
8521 specs[count++].specific = 0;
8522 }
8523 }
8524 }
8525 else
8526 {
8527 UNHANDLED;
8528 }
8529 break;
8530
8531 case IA64_RS_MSR:
8532 if (note == 5)
8533 {
8534 /* These are implementation specific. Force all references to
8535 conflict with all other references. */
8536 specs[count] = tmpl;
8537 specs[count++].specific = 0;
8538 }
8539 else
8540 {
8541 UNHANDLED;
8542 }
8543 break;
8544
8545 case IA64_RS_PKR: /* 16 or more registers */
8546 if (note == 3 || note == 4)
8547 {
8548 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8549 {
8550 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8551 if (regno >= 0 && regno < NELEMS (gr_values)
8552 && KNOWN (regno))
8553 {
8554 if (note == 3)
8555 {
8556 specs[count] = tmpl;
8557 specs[count++].index = gr_values[regno].value & 0xFF;
8558 }
8559 else
8560 for (i = 0; i < NELEMS (gr_values); i++)
8561 {
8562 /* Uses all registers *except* the one in R3. */
8563 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8564 {
8565 specs[count] = tmpl;
8566 specs[count++].index = i;
8567 }
8568 }
8569 }
8570 else
8571 {
8572 specs[count] = tmpl;
8573 specs[count++].specific = 0;
8574 }
8575 }
8576 }
8577 else if (note == 0)
8578 {
8579 /* probe et al. */
8580 specs[count] = tmpl;
8581 specs[count++].specific = 0;
8582 }
8583 break;
8584
8585 case IA64_RS_PMC: /* four or more registers */
8586 if (note == 3)
8587 {
8588 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8589 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8590
8591 {
8592 int reg_index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8593 ? 1 : !rsrc_write);
8594 int regno = CURR_SLOT.opnd[reg_index].X_add_number - REG_GR;
8595 if (regno >= 0 && regno < NELEMS (gr_values)
8596 && KNOWN (regno))
8597 {
8598 specs[count] = tmpl;
8599 specs[count++].index = gr_values[regno].value & 0xFF;
8600 }
8601 else
8602 {
8603 specs[count] = tmpl;
8604 specs[count++].specific = 0;
8605 }
8606 }
8607 }
8608 else
8609 {
8610 UNHANDLED;
8611 }
8612 break;
8613
8614 case IA64_RS_PMD: /* four or more registers */
8615 if (note == 3)
8616 {
8617 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8618 {
8619 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8620 if (regno >= 0 && regno < NELEMS (gr_values)
8621 && KNOWN (regno))
8622 {
8623 specs[count] = tmpl;
8624 specs[count++].index = gr_values[regno].value & 0xFF;
8625 }
8626 else
8627 {
8628 specs[count] = tmpl;
8629 specs[count++].specific = 0;
8630 }
8631 }
8632 }
8633 else
8634 {
8635 UNHANDLED;
8636 }
8637 break;
8638
8639 case IA64_RS_RR: /* eight registers */
8640 if (note == 6)
8641 {
8642 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8643 {
8644 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8645 if (regno >= 0 && regno < NELEMS (gr_values)
8646 && KNOWN (regno))
8647 {
8648 specs[count] = tmpl;
8649 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8650 }
8651 else
8652 {
8653 specs[count] = tmpl;
8654 specs[count++].specific = 0;
8655 }
8656 }
8657 }
8658 else if (note == 0 && !rsrc_write)
8659 {
8660 specs[count] = tmpl;
8661 specs[count++].specific = 0;
8662 }
8663 else
8664 {
8665 UNHANDLED;
8666 }
8667 break;
8668
8669 case IA64_RS_CR_IRR:
8670 if (note == 0)
8671 {
8672 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8673 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8674 if (rsrc_write
8675 && idesc->operands[1] == IA64_OPND_CR3
8676 && regno == CR_IVR)
8677 {
8678 for (i = 0; i < 4; i++)
8679 {
8680 specs[count] = tmpl;
8681 specs[count++].index = CR_IRR0 + i;
8682 }
8683 }
8684 }
8685 else if (note == 1)
8686 {
8687 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8688 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8689 && regno >= CR_IRR0
8690 && regno <= CR_IRR3)
8691 {
8692 specs[count] = tmpl;
8693 specs[count++].index = regno;
8694 }
8695 }
8696 else
8697 {
8698 UNHANDLED;
8699 }
8700 break;
8701
8702 case IA64_RS_CR_IIB:
8703 if (note != 0)
8704 {
8705 UNHANDLED;
8706 }
8707 else
8708 {
8709 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8710 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8711 && (regno == CR_IIB0 || regno == CR_IIB1))
8712 {
8713 specs[count] = tmpl;
8714 specs[count++].index = regno;
8715 }
8716 }
8717 break;
8718
8719 case IA64_RS_CR_LRR:
8720 if (note != 1)
8721 {
8722 UNHANDLED;
8723 }
8724 else
8725 {
8726 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8727 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8728 && (regno == CR_LRR0 || regno == CR_LRR1))
8729 {
8730 specs[count] = tmpl;
8731 specs[count++].index = regno;
8732 }
8733 }
8734 break;
8735
8736 case IA64_RS_CR:
8737 if (note == 1)
8738 {
8739 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8740 {
8741 specs[count] = tmpl;
8742 specs[count++].index =
8743 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8744 }
8745 }
8746 else
8747 {
8748 UNHANDLED;
8749 }
8750 break;
8751
8752 case IA64_RS_DAHR:
8753 if (note == 0)
8754 {
8755 if (idesc->operands[!rsrc_write] == IA64_OPND_DAHR3)
8756 {
8757 specs[count] = tmpl;
8758 specs[count++].index =
8759 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_DAHR;
8760 }
8761 }
8762 else
8763 {
8764 UNHANDLED;
8765 }
8766 break;
8767
8768 case IA64_RS_FR:
8769 case IA64_RS_FRb:
8770 if (note != 1)
8771 {
8772 UNHANDLED;
8773 }
8774 else if (rsrc_write)
8775 {
8776 if (dep->specifier == IA64_RS_FRb
8777 && idesc->operands[0] == IA64_OPND_F1)
8778 {
8779 specs[count] = tmpl;
8780 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8781 }
8782 }
8783 else
8784 {
8785 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8786 {
8787 if (idesc->operands[i] == IA64_OPND_F2
8788 || idesc->operands[i] == IA64_OPND_F3
8789 || idesc->operands[i] == IA64_OPND_F4)
8790 {
8791 specs[count] = tmpl;
8792 specs[count++].index =
8793 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8794 }
8795 }
8796 }
8797 break;
8798
8799 case IA64_RS_GR:
8800 if (note == 13)
8801 {
8802 /* This reference applies only to the GR whose value is loaded with
8803 data returned from memory. */
8804 specs[count] = tmpl;
8805 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8806 }
8807 else if (note == 1)
8808 {
8809 if (rsrc_write)
8810 {
8811 for (i = 0; i < idesc->num_outputs; i++)
8812 if (idesc->operands[i] == IA64_OPND_R1
8813 || idesc->operands[i] == IA64_OPND_R2
8814 || idesc->operands[i] == IA64_OPND_R3)
8815 {
8816 specs[count] = tmpl;
8817 specs[count++].index =
8818 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8819 }
8820 if (idesc->flags & IA64_OPCODE_POSTINC)
8821 for (i = 0; i < NELEMS (idesc->operands); i++)
8822 if (idesc->operands[i] == IA64_OPND_MR3)
8823 {
8824 specs[count] = tmpl;
8825 specs[count++].index =
8826 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8827 }
8828 }
8829 else
8830 {
8831 /* Look for anything that reads a GR. */
8832 for (i = 0; i < NELEMS (idesc->operands); i++)
8833 {
8834 if (idesc->operands[i] == IA64_OPND_MR3
8835 || idesc->operands[i] == IA64_OPND_CPUID_R3
8836 || idesc->operands[i] == IA64_OPND_DBR_R3
8837 || idesc->operands[i] == IA64_OPND_IBR_R3
8838 || idesc->operands[i] == IA64_OPND_MSR_R3
8839 || idesc->operands[i] == IA64_OPND_PKR_R3
8840 || idesc->operands[i] == IA64_OPND_PMC_R3
8841 || idesc->operands[i] == IA64_OPND_PMD_R3
8842 || idesc->operands[i] == IA64_OPND_DAHR_R3
8843 || idesc->operands[i] == IA64_OPND_RR_R3
8844 || ((i >= idesc->num_outputs)
8845 && (idesc->operands[i] == IA64_OPND_R1
8846 || idesc->operands[i] == IA64_OPND_R2
8847 || idesc->operands[i] == IA64_OPND_R3
8848 /* addl source register. */
8849 || idesc->operands[i] == IA64_OPND_R3_2)))
8850 {
8851 specs[count] = tmpl;
8852 specs[count++].index =
8853 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8854 }
8855 }
8856 }
8857 }
8858 else
8859 {
8860 UNHANDLED;
8861 }
8862 break;
8863
8864 /* This is the same as IA64_RS_PRr, except that the register range is
8865 from 1 - 15, and there are no rotating register reads/writes here. */
8866 case IA64_RS_PR:
8867 if (note == 0)
8868 {
8869 for (i = 1; i < 16; i++)
8870 {
8871 specs[count] = tmpl;
8872 specs[count++].index = i;
8873 }
8874 }
8875 else if (note == 7)
8876 {
8877 valueT mask = 0;
8878 /* Mark only those registers indicated by the mask. */
8879 if (rsrc_write)
8880 {
8881 mask = CURR_SLOT.opnd[2].X_add_number;
8882 for (i = 1; i < 16; i++)
8883 if (mask & ((valueT) 1 << i))
8884 {
8885 specs[count] = tmpl;
8886 specs[count++].index = i;
8887 }
8888 }
8889 else
8890 {
8891 UNHANDLED;
8892 }
8893 }
8894 else if (note == 11) /* note 11 implies note 1 as well */
8895 {
8896 if (rsrc_write)
8897 {
8898 for (i = 0; i < idesc->num_outputs; i++)
8899 {
8900 if (idesc->operands[i] == IA64_OPND_P1
8901 || idesc->operands[i] == IA64_OPND_P2)
8902 {
8903 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8904 if (regno >= 1 && regno < 16)
8905 {
8906 specs[count] = tmpl;
8907 specs[count++].index = regno;
8908 }
8909 }
8910 }
8911 }
8912 else
8913 {
8914 UNHANDLED;
8915 }
8916 }
8917 else if (note == 12)
8918 {
8919 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8920 {
8921 specs[count] = tmpl;
8922 specs[count++].index = CURR_SLOT.qp_regno;
8923 }
8924 }
8925 else if (note == 1)
8926 {
8927 if (rsrc_write)
8928 {
8929 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8930 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8931 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8932 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8933
8934 if ((idesc->operands[0] == IA64_OPND_P1
8935 || idesc->operands[0] == IA64_OPND_P2)
8936 && p1 >= 1 && p1 < 16)
8937 {
8938 specs[count] = tmpl;
8939 specs[count].cmp_type =
8940 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8941 specs[count++].index = p1;
8942 }
8943 if ((idesc->operands[1] == IA64_OPND_P1
8944 || idesc->operands[1] == IA64_OPND_P2)
8945 && p2 >= 1 && p2 < 16)
8946 {
8947 specs[count] = tmpl;
8948 specs[count].cmp_type =
8949 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8950 specs[count++].index = p2;
8951 }
8952 }
8953 else
8954 {
8955 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8956 {
8957 specs[count] = tmpl;
8958 specs[count++].index = CURR_SLOT.qp_regno;
8959 }
8960 if (idesc->operands[1] == IA64_OPND_PR)
8961 {
8962 for (i = 1; i < 16; i++)
8963 {
8964 specs[count] = tmpl;
8965 specs[count++].index = i;
8966 }
8967 }
8968 }
8969 }
8970 else
8971 {
8972 UNHANDLED;
8973 }
8974 break;
8975
8976 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8977 simplified cases of this. */
8978 case IA64_RS_PRr:
8979 if (note == 0)
8980 {
8981 for (i = 16; i < 63; i++)
8982 {
8983 specs[count] = tmpl;
8984 specs[count++].index = i;
8985 }
8986 }
8987 else if (note == 7)
8988 {
8989 valueT mask = 0;
8990 /* Mark only those registers indicated by the mask. */
8991 if (rsrc_write
8992 && idesc->operands[0] == IA64_OPND_PR)
8993 {
8994 mask = CURR_SLOT.opnd[2].X_add_number;
8995 if (mask & ((valueT) 1 << 16))
8996 for (i = 16; i < 63; i++)
8997 {
8998 specs[count] = tmpl;
8999 specs[count++].index = i;
9000 }
9001 }
9002 else if (rsrc_write
9003 && idesc->operands[0] == IA64_OPND_PR_ROT)
9004 {
9005 for (i = 16; i < 63; i++)
9006 {
9007 specs[count] = tmpl;
9008 specs[count++].index = i;
9009 }
9010 }
9011 else
9012 {
9013 UNHANDLED;
9014 }
9015 }
9016 else if (note == 11) /* note 11 implies note 1 as well */
9017 {
9018 if (rsrc_write)
9019 {
9020 for (i = 0; i < idesc->num_outputs; i++)
9021 {
9022 if (idesc->operands[i] == IA64_OPND_P1
9023 || idesc->operands[i] == IA64_OPND_P2)
9024 {
9025 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9026 if (regno >= 16 && regno < 63)
9027 {
9028 specs[count] = tmpl;
9029 specs[count++].index = regno;
9030 }
9031 }
9032 }
9033 }
9034 else
9035 {
9036 UNHANDLED;
9037 }
9038 }
9039 else if (note == 12)
9040 {
9041 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9042 {
9043 specs[count] = tmpl;
9044 specs[count++].index = CURR_SLOT.qp_regno;
9045 }
9046 }
9047 else if (note == 1)
9048 {
9049 if (rsrc_write)
9050 {
9051 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9052 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9053 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9054 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9055
9056 if ((idesc->operands[0] == IA64_OPND_P1
9057 || idesc->operands[0] == IA64_OPND_P2)
9058 && p1 >= 16 && p1 < 63)
9059 {
9060 specs[count] = tmpl;
9061 specs[count].cmp_type =
9062 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9063 specs[count++].index = p1;
9064 }
9065 if ((idesc->operands[1] == IA64_OPND_P1
9066 || idesc->operands[1] == IA64_OPND_P2)
9067 && p2 >= 16 && p2 < 63)
9068 {
9069 specs[count] = tmpl;
9070 specs[count].cmp_type =
9071 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9072 specs[count++].index = p2;
9073 }
9074 }
9075 else
9076 {
9077 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9078 {
9079 specs[count] = tmpl;
9080 specs[count++].index = CURR_SLOT.qp_regno;
9081 }
9082 if (idesc->operands[1] == IA64_OPND_PR)
9083 {
9084 for (i = 16; i < 63; i++)
9085 {
9086 specs[count] = tmpl;
9087 specs[count++].index = i;
9088 }
9089 }
9090 }
9091 }
9092 else
9093 {
9094 UNHANDLED;
9095 }
9096 break;
9097
9098 case IA64_RS_PSR:
9099 /* Verify that the instruction is using the PSR bit indicated in
9100 dep->regindex. */
9101 if (note == 0)
9102 {
9103 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9104 {
9105 if (dep->regindex < 6)
9106 {
9107 specs[count++] = tmpl;
9108 }
9109 }
9110 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9111 {
9112 if (dep->regindex < 32
9113 || dep->regindex == 35
9114 || dep->regindex == 36
9115 || (!rsrc_write && dep->regindex == PSR_CPL))
9116 {
9117 specs[count++] = tmpl;
9118 }
9119 }
9120 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9121 {
9122 if (dep->regindex < 32
9123 || dep->regindex == 35
9124 || dep->regindex == 36
9125 || (rsrc_write && dep->regindex == PSR_CPL))
9126 {
9127 specs[count++] = tmpl;
9128 }
9129 }
9130 else
9131 {
9132 /* Several PSR bits have very specific dependencies. */
9133 switch (dep->regindex)
9134 {
9135 default:
9136 specs[count++] = tmpl;
9137 break;
9138 case PSR_IC:
9139 if (rsrc_write)
9140 {
9141 specs[count++] = tmpl;
9142 }
9143 else
9144 {
9145 /* Only certain CR accesses use PSR.ic */
9146 if (idesc->operands[0] == IA64_OPND_CR3
9147 || idesc->operands[1] == IA64_OPND_CR3)
9148 {
9149 int reg_index =
9150 ((idesc->operands[0] == IA64_OPND_CR3)
9151 ? 0 : 1);
9152 int regno =
9153 CURR_SLOT.opnd[reg_index].X_add_number - REG_CR;
9154
9155 switch (regno)
9156 {
9157 default:
9158 break;
9159 case CR_ITIR:
9160 case CR_IFS:
9161 case CR_IIM:
9162 case CR_IIP:
9163 case CR_IPSR:
9164 case CR_ISR:
9165 case CR_IFA:
9166 case CR_IHA:
9167 case CR_IIB0:
9168 case CR_IIB1:
9169 case CR_IIPA:
9170 specs[count++] = tmpl;
9171 break;
9172 }
9173 }
9174 }
9175 break;
9176 case PSR_CPL:
9177 if (rsrc_write)
9178 {
9179 specs[count++] = tmpl;
9180 }
9181 else
9182 {
9183 /* Only some AR accesses use cpl */
9184 if (idesc->operands[0] == IA64_OPND_AR3
9185 || idesc->operands[1] == IA64_OPND_AR3)
9186 {
9187 int reg_index =
9188 ((idesc->operands[0] == IA64_OPND_AR3)
9189 ? 0 : 1);
9190 int regno =
9191 CURR_SLOT.opnd[reg_index].X_add_number - REG_AR;
9192
9193 if (regno == AR_ITC
9194 || regno == AR_RUC
9195 || (reg_index == 0
9196 && (regno == AR_RSC
9197 || (regno >= AR_K0
9198 && regno <= AR_K7))))
9199 {
9200 specs[count++] = tmpl;
9201 }
9202 }
9203 else
9204 {
9205 specs[count++] = tmpl;
9206 }
9207 break;
9208 }
9209 }
9210 }
9211 }
9212 else if (note == 7)
9213 {
9214 valueT mask = 0;
9215 if (idesc->operands[0] == IA64_OPND_IMMU24)
9216 {
9217 mask = CURR_SLOT.opnd[0].X_add_number;
9218 }
9219 else
9220 {
9221 UNHANDLED;
9222 }
9223 if (mask & ((valueT) 1 << dep->regindex))
9224 {
9225 specs[count++] = tmpl;
9226 }
9227 }
9228 else if (note == 8)
9229 {
9230 int min = dep->regindex == PSR_DFL ? 2 : 32;
9231 int max = dep->regindex == PSR_DFL ? 31 : 127;
9232 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9233 for (i = 0; i < NELEMS (idesc->operands); i++)
9234 {
9235 if (idesc->operands[i] == IA64_OPND_F1
9236 || idesc->operands[i] == IA64_OPND_F2
9237 || idesc->operands[i] == IA64_OPND_F3
9238 || idesc->operands[i] == IA64_OPND_F4)
9239 {
9240 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9241 if (reg >= min && reg <= max)
9242 {
9243 specs[count++] = tmpl;
9244 }
9245 }
9246 }
9247 }
9248 else if (note == 9)
9249 {
9250 int min = dep->regindex == PSR_MFL ? 2 : 32;
9251 int max = dep->regindex == PSR_MFL ? 31 : 127;
9252 /* mfh is read on writes to FR32-127; mfl is read on writes to
9253 FR2-31 */
9254 for (i = 0; i < idesc->num_outputs; i++)
9255 {
9256 if (idesc->operands[i] == IA64_OPND_F1)
9257 {
9258 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9259 if (reg >= min && reg <= max)
9260 {
9261 specs[count++] = tmpl;
9262 }
9263 }
9264 }
9265 }
9266 else if (note == 10)
9267 {
9268 for (i = 0; i < NELEMS (idesc->operands); i++)
9269 {
9270 if (idesc->operands[i] == IA64_OPND_R1
9271 || idesc->operands[i] == IA64_OPND_R2
9272 || idesc->operands[i] == IA64_OPND_R3)
9273 {
9274 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9275 if (regno >= 16 && regno <= 31)
9276 {
9277 specs[count++] = tmpl;
9278 }
9279 }
9280 }
9281 }
9282 else
9283 {
9284 UNHANDLED;
9285 }
9286 break;
9287
9288 case IA64_RS_AR_FPSR:
9289 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9290 {
9291 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9292 if (regno == AR_FPSR)
9293 {
9294 specs[count++] = tmpl;
9295 }
9296 }
9297 else
9298 {
9299 specs[count++] = tmpl;
9300 }
9301 break;
9302
9303 case IA64_RS_ARX:
9304 /* Handle all AR[REG] resources */
9305 if (note == 0 || note == 1)
9306 {
9307 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9308 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9309 && regno == dep->regindex)
9310 {
9311 specs[count++] = tmpl;
9312 }
9313 /* other AR[REG] resources may be affected by AR accesses */
9314 else if (idesc->operands[0] == IA64_OPND_AR3)
9315 {
9316 /* AR[] writes */
9317 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9318 switch (dep->regindex)
9319 {
9320 default:
9321 break;
9322 case AR_BSP:
9323 case AR_RNAT:
9324 if (regno == AR_BSPSTORE)
9325 {
9326 specs[count++] = tmpl;
9327 }
9328 case AR_RSC:
9329 if (!rsrc_write &&
9330 (regno == AR_BSPSTORE
9331 || regno == AR_RNAT))
9332 {
9333 specs[count++] = tmpl;
9334 }
9335 break;
9336 }
9337 }
9338 else if (idesc->operands[1] == IA64_OPND_AR3)
9339 {
9340 /* AR[] reads */
9341 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9342 switch (dep->regindex)
9343 {
9344 default:
9345 break;
9346 case AR_RSC:
9347 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9348 {
9349 specs[count++] = tmpl;
9350 }
9351 break;
9352 }
9353 }
9354 else
9355 {
9356 specs[count++] = tmpl;
9357 }
9358 }
9359 else
9360 {
9361 UNHANDLED;
9362 }
9363 break;
9364
9365 case IA64_RS_CRX:
9366 /* Handle all CR[REG] resources.
9367 ??? FIXME: The rule 17 isn't really handled correctly. */
9368 if (note == 0 || note == 1 || note == 17)
9369 {
9370 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9371 {
9372 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9373 if (regno == dep->regindex)
9374 {
9375 specs[count++] = tmpl;
9376 }
9377 else if (!rsrc_write)
9378 {
9379 /* Reads from CR[IVR] affect other resources. */
9380 if (regno == CR_IVR)
9381 {
9382 if ((dep->regindex >= CR_IRR0
9383 && dep->regindex <= CR_IRR3)
9384 || dep->regindex == CR_TPR)
9385 {
9386 specs[count++] = tmpl;
9387 }
9388 }
9389 }
9390 }
9391 else
9392 {
9393 specs[count++] = tmpl;
9394 }
9395 }
9396 else
9397 {
9398 UNHANDLED;
9399 }
9400 break;
9401
9402 case IA64_RS_INSERVICE:
9403 /* look for write of EOI (67) or read of IVR (65) */
9404 if ((idesc->operands[0] == IA64_OPND_CR3
9405 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9406 || (idesc->operands[1] == IA64_OPND_CR3
9407 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9408 {
9409 specs[count++] = tmpl;
9410 }
9411 break;
9412
9413 case IA64_RS_GR0:
9414 if (note == 1)
9415 {
9416 specs[count++] = tmpl;
9417 }
9418 else
9419 {
9420 UNHANDLED;
9421 }
9422 break;
9423
9424 case IA64_RS_CFM:
9425 if (note != 2)
9426 {
9427 specs[count++] = tmpl;
9428 }
9429 else
9430 {
9431 /* Check if any of the registers accessed are in the rotating region.
9432 mov to/from pr accesses CFM only when qp_regno is in the rotating
9433 region */
9434 for (i = 0; i < NELEMS (idesc->operands); i++)
9435 {
9436 if (idesc->operands[i] == IA64_OPND_R1
9437 || idesc->operands[i] == IA64_OPND_R2
9438 || idesc->operands[i] == IA64_OPND_R3)
9439 {
9440 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9441 /* Assumes that md.rot.num_regs is always valid */
9442 if (md.rot.num_regs > 0
9443 && num > 31
9444 && num < 31 + md.rot.num_regs)
9445 {
9446 specs[count] = tmpl;
9447 specs[count++].specific = 0;
9448 }
9449 }
9450 else if (idesc->operands[i] == IA64_OPND_F1
9451 || idesc->operands[i] == IA64_OPND_F2
9452 || idesc->operands[i] == IA64_OPND_F3
9453 || idesc->operands[i] == IA64_OPND_F4)
9454 {
9455 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9456 if (num > 31)
9457 {
9458 specs[count] = tmpl;
9459 specs[count++].specific = 0;
9460 }
9461 }
9462 else if (idesc->operands[i] == IA64_OPND_P1
9463 || idesc->operands[i] == IA64_OPND_P2)
9464 {
9465 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9466 if (num > 15)
9467 {
9468 specs[count] = tmpl;
9469 specs[count++].specific = 0;
9470 }
9471 }
9472 }
9473 if (CURR_SLOT.qp_regno > 15)
9474 {
9475 specs[count] = tmpl;
9476 specs[count++].specific = 0;
9477 }
9478 }
9479 break;
9480
9481 /* This is the same as IA64_RS_PRr, except simplified to account for
9482 the fact that there is only one register. */
9483 case IA64_RS_PR63:
9484 if (note == 0)
9485 {
9486 specs[count++] = tmpl;
9487 }
9488 else if (note == 7)
9489 {
9490 valueT mask = 0;
9491 if (idesc->operands[2] == IA64_OPND_IMM17)
9492 mask = CURR_SLOT.opnd[2].X_add_number;
9493 if (mask & ((valueT) 1 << 63))
9494 specs[count++] = tmpl;
9495 }
9496 else if (note == 11)
9497 {
9498 if ((idesc->operands[0] == IA64_OPND_P1
9499 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9500 || (idesc->operands[1] == IA64_OPND_P2
9501 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9502 {
9503 specs[count++] = tmpl;
9504 }
9505 }
9506 else if (note == 12)
9507 {
9508 if (CURR_SLOT.qp_regno == 63)
9509 {
9510 specs[count++] = tmpl;
9511 }
9512 }
9513 else if (note == 1)
9514 {
9515 if (rsrc_write)
9516 {
9517 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9518 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9519 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9520 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9521
9522 if (p1 == 63
9523 && (idesc->operands[0] == IA64_OPND_P1
9524 || idesc->operands[0] == IA64_OPND_P2))
9525 {
9526 specs[count] = tmpl;
9527 specs[count++].cmp_type =
9528 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9529 }
9530 if (p2 == 63
9531 && (idesc->operands[1] == IA64_OPND_P1
9532 || idesc->operands[1] == IA64_OPND_P2))
9533 {
9534 specs[count] = tmpl;
9535 specs[count++].cmp_type =
9536 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9537 }
9538 }
9539 else
9540 {
9541 if (CURR_SLOT.qp_regno == 63)
9542 {
9543 specs[count++] = tmpl;
9544 }
9545 }
9546 }
9547 else
9548 {
9549 UNHANDLED;
9550 }
9551 break;
9552
9553 case IA64_RS_RSE:
9554 /* FIXME we can identify some individual RSE written resources, but RSE
9555 read resources have not yet been completely identified, so for now
9556 treat RSE as a single resource */
9557 if (strncmp (idesc->name, "mov", 3) == 0)
9558 {
9559 if (rsrc_write)
9560 {
9561 if (idesc->operands[0] == IA64_OPND_AR3
9562 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9563 {
9564 specs[count++] = tmpl;
9565 }
9566 }
9567 else
9568 {
9569 if (idesc->operands[0] == IA64_OPND_AR3)
9570 {
9571 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9572 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9573 {
9574 specs[count++] = tmpl;
9575 }
9576 }
9577 else if (idesc->operands[1] == IA64_OPND_AR3)
9578 {
9579 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9580 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9581 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9582 {
9583 specs[count++] = tmpl;
9584 }
9585 }
9586 }
9587 }
9588 else
9589 {
9590 specs[count++] = tmpl;
9591 }
9592 break;
9593
9594 case IA64_RS_ANY:
9595 /* FIXME -- do any of these need to be non-specific? */
9596 specs[count++] = tmpl;
9597 break;
9598
9599 default:
9600 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9601 break;
9602 }
9603
9604 return count;
9605 }
9606
9607 /* Clear branch flags on marked resources. This breaks the link between the
9608 QP of the marking instruction and a subsequent branch on the same QP. */
9609
9610 static void
clear_qp_branch_flag(valueT mask)9611 clear_qp_branch_flag (valueT mask)
9612 {
9613 int i;
9614 for (i = 0; i < regdepslen; i++)
9615 {
9616 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9617 if ((bit & mask) != 0)
9618 {
9619 regdeps[i].link_to_qp_branch = 0;
9620 }
9621 }
9622 }
9623
9624 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9625 any mutexes which contain one of the PRs and create new ones when
9626 needed. */
9627
9628 static int
update_qp_mutex(valueT mask)9629 update_qp_mutex (valueT mask)
9630 {
9631 int i;
9632 int add = 0;
9633
9634 i = 0;
9635 while (i < qp_mutexeslen)
9636 {
9637 if ((qp_mutexes[i].prmask & mask) != 0)
9638 {
9639 /* If it destroys and creates the same mutex, do nothing. */
9640 if (qp_mutexes[i].prmask == mask
9641 && qp_mutexes[i].path == md.path)
9642 {
9643 i++;
9644 add = -1;
9645 }
9646 else
9647 {
9648 int keep = 0;
9649
9650 if (md.debug_dv)
9651 {
9652 fprintf (stderr, " Clearing mutex relation");
9653 print_prmask (qp_mutexes[i].prmask);
9654 fprintf (stderr, "\n");
9655 }
9656
9657 /* Deal with the old mutex with more than 3+ PRs only if
9658 the new mutex on the same execution path with it.
9659
9660 FIXME: The 3+ mutex support is incomplete.
9661 dot_pred_rel () may be a better place to fix it. */
9662 if (qp_mutexes[i].path == md.path)
9663 {
9664 /* If it is a proper subset of the mutex, create a
9665 new mutex. */
9666 if (add == 0
9667 && (qp_mutexes[i].prmask & mask) == mask)
9668 add = 1;
9669
9670 qp_mutexes[i].prmask &= ~mask;
9671 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9672 {
9673 /* Modify the mutex if there are more than one
9674 PR left. */
9675 keep = 1;
9676 i++;
9677 }
9678 }
9679
9680 if (keep == 0)
9681 /* Remove the mutex. */
9682 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9683 }
9684 }
9685 else
9686 ++i;
9687 }
9688
9689 if (add == 1)
9690 add_qp_mutex (mask);
9691
9692 return add;
9693 }
9694
9695 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9696
9697 Any changes to a PR clears the mutex relations which include that PR. */
9698
9699 static void
clear_qp_mutex(valueT mask)9700 clear_qp_mutex (valueT mask)
9701 {
9702 int i;
9703
9704 i = 0;
9705 while (i < qp_mutexeslen)
9706 {
9707 if ((qp_mutexes[i].prmask & mask) != 0)
9708 {
9709 if (md.debug_dv)
9710 {
9711 fprintf (stderr, " Clearing mutex relation");
9712 print_prmask (qp_mutexes[i].prmask);
9713 fprintf (stderr, "\n");
9714 }
9715 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9716 }
9717 else
9718 ++i;
9719 }
9720 }
9721
9722 /* Clear implies relations which contain PRs in the given masks.
9723 P1_MASK indicates the source of the implies relation, while P2_MASK
9724 indicates the implied PR. */
9725
9726 static void
clear_qp_implies(valueT p1_mask,valueT p2_mask)9727 clear_qp_implies (valueT p1_mask, valueT p2_mask)
9728 {
9729 int i;
9730
9731 i = 0;
9732 while (i < qp_implieslen)
9733 {
9734 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9735 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9736 {
9737 if (md.debug_dv)
9738 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9739 qp_implies[i].p1, qp_implies[i].p2);
9740 qp_implies[i] = qp_implies[--qp_implieslen];
9741 }
9742 else
9743 ++i;
9744 }
9745 }
9746
9747 /* Add the PRs specified to the list of implied relations. */
9748
9749 static void
add_qp_imply(int p1,int p2)9750 add_qp_imply (int p1, int p2)
9751 {
9752 valueT mask;
9753 valueT bit;
9754 int i;
9755
9756 /* p0 is not meaningful here. */
9757 if (p1 == 0 || p2 == 0)
9758 abort ();
9759
9760 if (p1 == p2)
9761 return;
9762
9763 /* If it exists already, ignore it. */
9764 for (i = 0; i < qp_implieslen; i++)
9765 {
9766 if (qp_implies[i].p1 == p1
9767 && qp_implies[i].p2 == p2
9768 && qp_implies[i].path == md.path
9769 && !qp_implies[i].p2_branched)
9770 return;
9771 }
9772
9773 if (qp_implieslen == qp_impliestotlen)
9774 {
9775 qp_impliestotlen += 20;
9776 qp_implies = (struct qp_imply *)
9777 xrealloc ((void *) qp_implies,
9778 qp_impliestotlen * sizeof (struct qp_imply));
9779 }
9780 if (md.debug_dv)
9781 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9782 qp_implies[qp_implieslen].p1 = p1;
9783 qp_implies[qp_implieslen].p2 = p2;
9784 qp_implies[qp_implieslen].path = md.path;
9785 qp_implies[qp_implieslen++].p2_branched = 0;
9786
9787 /* Add in the implied transitive relations; for everything that p2 implies,
9788 make p1 imply that, too; for everything that implies p1, make it imply p2
9789 as well. */
9790 for (i = 0; i < qp_implieslen; i++)
9791 {
9792 if (qp_implies[i].p1 == p2)
9793 add_qp_imply (p1, qp_implies[i].p2);
9794 if (qp_implies[i].p2 == p1)
9795 add_qp_imply (qp_implies[i].p1, p2);
9796 }
9797 /* Add in mutex relations implied by this implies relation; for each mutex
9798 relation containing p2, duplicate it and replace p2 with p1. */
9799 bit = (valueT) 1 << p1;
9800 mask = (valueT) 1 << p2;
9801 for (i = 0; i < qp_mutexeslen; i++)
9802 {
9803 if (qp_mutexes[i].prmask & mask)
9804 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9805 }
9806 }
9807
9808 /* Add the PRs specified in the mask to the mutex list; this means that only
9809 one of the PRs can be true at any time. PR0 should never be included in
9810 the mask. */
9811
9812 static void
add_qp_mutex(valueT mask)9813 add_qp_mutex (valueT mask)
9814 {
9815 if (mask & 0x1)
9816 abort ();
9817
9818 if (qp_mutexeslen == qp_mutexestotlen)
9819 {
9820 qp_mutexestotlen += 20;
9821 qp_mutexes = (struct qpmutex *)
9822 xrealloc ((void *) qp_mutexes,
9823 qp_mutexestotlen * sizeof (struct qpmutex));
9824 }
9825 if (md.debug_dv)
9826 {
9827 fprintf (stderr, " Registering mutex on");
9828 print_prmask (mask);
9829 fprintf (stderr, "\n");
9830 }
9831 qp_mutexes[qp_mutexeslen].path = md.path;
9832 qp_mutexes[qp_mutexeslen++].prmask = mask;
9833 }
9834
9835 static int
has_suffix_p(const char * name,const char * suffix)9836 has_suffix_p (const char *name, const char *suffix)
9837 {
9838 size_t namelen = strlen (name);
9839 size_t sufflen = strlen (suffix);
9840
9841 if (namelen <= sufflen)
9842 return 0;
9843 return strcmp (name + namelen - sufflen, suffix) == 0;
9844 }
9845
9846 static void
clear_register_values(void)9847 clear_register_values (void)
9848 {
9849 int i;
9850 if (md.debug_dv)
9851 fprintf (stderr, " Clearing register values\n");
9852 for (i = 1; i < NELEMS (gr_values); i++)
9853 gr_values[i].known = 0;
9854 }
9855
9856 /* Keep track of register values/changes which affect DV tracking.
9857
9858 optimization note: should add a flag to classes of insns where otherwise we
9859 have to examine a group of strings to identify them. */
9860
9861 static void
note_register_values(struct ia64_opcode * idesc)9862 note_register_values (struct ia64_opcode *idesc)
9863 {
9864 valueT qp_changemask = 0;
9865 int i;
9866
9867 /* Invalidate values for registers being written to. */
9868 for (i = 0; i < idesc->num_outputs; i++)
9869 {
9870 if (idesc->operands[i] == IA64_OPND_R1
9871 || idesc->operands[i] == IA64_OPND_R2
9872 || idesc->operands[i] == IA64_OPND_R3)
9873 {
9874 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9875 if (regno > 0 && regno < NELEMS (gr_values))
9876 gr_values[regno].known = 0;
9877 }
9878 else if (idesc->operands[i] == IA64_OPND_R3_2)
9879 {
9880 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9881 if (regno > 0 && regno < 4)
9882 gr_values[regno].known = 0;
9883 }
9884 else if (idesc->operands[i] == IA64_OPND_P1
9885 || idesc->operands[i] == IA64_OPND_P2)
9886 {
9887 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9888 qp_changemask |= (valueT) 1 << regno;
9889 }
9890 else if (idesc->operands[i] == IA64_OPND_PR)
9891 {
9892 if (idesc->operands[2] & (valueT) 0x10000)
9893 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9894 else
9895 qp_changemask = idesc->operands[2];
9896 break;
9897 }
9898 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9899 {
9900 if (idesc->operands[1] & ((valueT) 1 << 43))
9901 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9902 else
9903 qp_changemask = idesc->operands[1];
9904 qp_changemask &= ~(valueT) 0xFFFF;
9905 break;
9906 }
9907 }
9908
9909 /* Always clear qp branch flags on any PR change. */
9910 /* FIXME there may be exceptions for certain compares. */
9911 clear_qp_branch_flag (qp_changemask);
9912
9913 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9914 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9915 {
9916 qp_changemask |= ~(valueT) 0xFFFF;
9917 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9918 {
9919 for (i = 32; i < 32 + md.rot.num_regs; i++)
9920 gr_values[i].known = 0;
9921 }
9922 clear_qp_mutex (qp_changemask);
9923 clear_qp_implies (qp_changemask, qp_changemask);
9924 }
9925 /* After a call, all register values are undefined, except those marked
9926 as "safe". */
9927 else if (strncmp (idesc->name, "br.call", 6) == 0
9928 || strncmp (idesc->name, "brl.call", 7) == 0)
9929 {
9930 /* FIXME keep GR values which are marked as "safe_across_calls" */
9931 clear_register_values ();
9932 clear_qp_mutex (~qp_safe_across_calls);
9933 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9934 clear_qp_branch_flag (~qp_safe_across_calls);
9935 }
9936 else if (is_interruption_or_rfi (idesc)
9937 || is_taken_branch (idesc))
9938 {
9939 clear_register_values ();
9940 clear_qp_mutex (~(valueT) 0);
9941 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9942 }
9943 /* Look for mutex and implies relations. */
9944 else if ((idesc->operands[0] == IA64_OPND_P1
9945 || idesc->operands[0] == IA64_OPND_P2)
9946 && (idesc->operands[1] == IA64_OPND_P1
9947 || idesc->operands[1] == IA64_OPND_P2))
9948 {
9949 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9950 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9951 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9952 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9953
9954 /* If both PRs are PR0, we can't really do anything. */
9955 if (p1 == 0 && p2 == 0)
9956 {
9957 if (md.debug_dv)
9958 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9959 }
9960 /* In general, clear mutexes and implies which include P1 or P2,
9961 with the following exceptions. */
9962 else if (has_suffix_p (idesc->name, ".or.andcm")
9963 || has_suffix_p (idesc->name, ".and.orcm"))
9964 {
9965 clear_qp_implies (p2mask, p1mask);
9966 }
9967 else if (has_suffix_p (idesc->name, ".andcm")
9968 || has_suffix_p (idesc->name, ".and"))
9969 {
9970 clear_qp_implies (0, p1mask | p2mask);
9971 }
9972 else if (has_suffix_p (idesc->name, ".orcm")
9973 || has_suffix_p (idesc->name, ".or"))
9974 {
9975 clear_qp_mutex (p1mask | p2mask);
9976 clear_qp_implies (p1mask | p2mask, 0);
9977 }
9978 else
9979 {
9980 int added = 0;
9981
9982 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9983
9984 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9985 if (p1 == 0 || p2 == 0)
9986 clear_qp_mutex (p1mask | p2mask);
9987 else
9988 added = update_qp_mutex (p1mask | p2mask);
9989
9990 if (CURR_SLOT.qp_regno == 0
9991 || has_suffix_p (idesc->name, ".unc"))
9992 {
9993 if (added == 0 && p1 && p2)
9994 add_qp_mutex (p1mask | p2mask);
9995 if (CURR_SLOT.qp_regno != 0)
9996 {
9997 if (p1)
9998 add_qp_imply (p1, CURR_SLOT.qp_regno);
9999 if (p2)
10000 add_qp_imply (p2, CURR_SLOT.qp_regno);
10001 }
10002 }
10003 }
10004 }
10005 /* Look for mov imm insns into GRs. */
10006 else if (idesc->operands[0] == IA64_OPND_R1
10007 && (idesc->operands[1] == IA64_OPND_IMM22
10008 || idesc->operands[1] == IA64_OPND_IMMU64)
10009 && CURR_SLOT.opnd[1].X_op == O_constant
10010 && (strcmp (idesc->name, "mov") == 0
10011 || strcmp (idesc->name, "movl") == 0))
10012 {
10013 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10014 if (regno > 0 && regno < NELEMS (gr_values))
10015 {
10016 gr_values[regno].known = 1;
10017 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10018 gr_values[regno].path = md.path;
10019 if (md.debug_dv)
10020 {
10021 fprintf (stderr, " Know gr%d = ", regno);
10022 fprintf_vma (stderr, gr_values[regno].value);
10023 fputs ("\n", stderr);
10024 }
10025 }
10026 }
10027 /* Look for dep.z imm insns. */
10028 else if (idesc->operands[0] == IA64_OPND_R1
10029 && idesc->operands[1] == IA64_OPND_IMM8
10030 && strcmp (idesc->name, "dep.z") == 0)
10031 {
10032 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10033 if (regno > 0 && regno < NELEMS (gr_values))
10034 {
10035 valueT value = CURR_SLOT.opnd[1].X_add_number;
10036
10037 if (CURR_SLOT.opnd[3].X_add_number < 64)
10038 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10039 value <<= CURR_SLOT.opnd[2].X_add_number;
10040 gr_values[regno].known = 1;
10041 gr_values[regno].value = value;
10042 gr_values[regno].path = md.path;
10043 if (md.debug_dv)
10044 {
10045 fprintf (stderr, " Know gr%d = ", regno);
10046 fprintf_vma (stderr, gr_values[regno].value);
10047 fputs ("\n", stderr);
10048 }
10049 }
10050 }
10051 else
10052 {
10053 clear_qp_mutex (qp_changemask);
10054 clear_qp_implies (qp_changemask, qp_changemask);
10055 }
10056 }
10057
10058 /* Return whether the given predicate registers are currently mutex. */
10059
10060 static int
qp_mutex(int p1,int p2,int path)10061 qp_mutex (int p1, int p2, int path)
10062 {
10063 int i;
10064 valueT mask;
10065
10066 if (p1 != p2)
10067 {
10068 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10069 for (i = 0; i < qp_mutexeslen; i++)
10070 {
10071 if (qp_mutexes[i].path >= path
10072 && (qp_mutexes[i].prmask & mask) == mask)
10073 return 1;
10074 }
10075 }
10076 return 0;
10077 }
10078
10079 /* Return whether the given resource is in the given insn's list of chks
10080 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10081 conflict. */
10082
10083 static int
resources_match(struct rsrc * rs,struct ia64_opcode * idesc,int note,int qp_regno,int path)10084 resources_match (struct rsrc *rs,
10085 struct ia64_opcode *idesc,
10086 int note,
10087 int qp_regno,
10088 int path)
10089 {
10090 struct rsrc specs[MAX_SPECS];
10091 int count;
10092
10093 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10094 we don't need to check. One exception is note 11, which indicates that
10095 target predicates are written regardless of PR[qp]. */
10096 if (qp_mutex (rs->qp_regno, qp_regno, path)
10097 && note != 11)
10098 return 0;
10099
10100 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10101 while (count-- > 0)
10102 {
10103 /* UNAT checking is a bit more specific than other resources */
10104 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10105 && specs[count].mem_offset.hint
10106 && rs->mem_offset.hint)
10107 {
10108 if (rs->mem_offset.base == specs[count].mem_offset.base)
10109 {
10110 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10111 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10112 return 1;
10113 else
10114 continue;
10115 }
10116 }
10117
10118 /* Skip apparent PR write conflicts where both writes are an AND or both
10119 writes are an OR. */
10120 if (rs->dependency->specifier == IA64_RS_PR
10121 || rs->dependency->specifier == IA64_RS_PRr
10122 || rs->dependency->specifier == IA64_RS_PR63)
10123 {
10124 if (specs[count].cmp_type != CMP_NONE
10125 && specs[count].cmp_type == rs->cmp_type)
10126 {
10127 if (md.debug_dv)
10128 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10129 dv_mode[rs->dependency->mode],
10130 rs->dependency->specifier != IA64_RS_PR63 ?
10131 specs[count].index : 63);
10132 continue;
10133 }
10134 if (md.debug_dv)
10135 fprintf (stderr,
10136 " %s on parallel compare conflict %s vs %s on PR%d\n",
10137 dv_mode[rs->dependency->mode],
10138 dv_cmp_type[rs->cmp_type],
10139 dv_cmp_type[specs[count].cmp_type],
10140 rs->dependency->specifier != IA64_RS_PR63 ?
10141 specs[count].index : 63);
10142
10143 }
10144
10145 /* If either resource is not specific, conservatively assume a conflict
10146 */
10147 if (!specs[count].specific || !rs->specific)
10148 return 2;
10149 else if (specs[count].index == rs->index)
10150 return 1;
10151 }
10152
10153 return 0;
10154 }
10155
10156 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10157 insert a stop to create the break. Update all resource dependencies
10158 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10159 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10160 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10161 instruction. */
10162
10163 static void
insn_group_break(int insert_stop,int qp_regno,int save_current)10164 insn_group_break (int insert_stop, int qp_regno, int save_current)
10165 {
10166 int i;
10167
10168 if (insert_stop && md.num_slots_in_use > 0)
10169 PREV_SLOT.end_of_insn_group = 1;
10170
10171 if (md.debug_dv)
10172 {
10173 fprintf (stderr, " Insn group break%s",
10174 (insert_stop ? " (w/stop)" : ""));
10175 if (qp_regno != 0)
10176 fprintf (stderr, " effective for QP=%d", qp_regno);
10177 fprintf (stderr, "\n");
10178 }
10179
10180 i = 0;
10181 while (i < regdepslen)
10182 {
10183 const struct ia64_dependency *dep = regdeps[i].dependency;
10184
10185 if (qp_regno != 0
10186 && regdeps[i].qp_regno != qp_regno)
10187 {
10188 ++i;
10189 continue;
10190 }
10191
10192 if (save_current
10193 && CURR_SLOT.src_file == regdeps[i].file
10194 && CURR_SLOT.src_line == regdeps[i].line)
10195 {
10196 ++i;
10197 continue;
10198 }
10199
10200 /* clear dependencies which are automatically cleared by a stop, or
10201 those that have reached the appropriate state of insn serialization */
10202 if (dep->semantics == IA64_DVS_IMPLIED
10203 || dep->semantics == IA64_DVS_IMPLIEDF
10204 || regdeps[i].insn_srlz == STATE_SRLZ)
10205 {
10206 print_dependency ("Removing", i);
10207 regdeps[i] = regdeps[--regdepslen];
10208 }
10209 else
10210 {
10211 if (dep->semantics == IA64_DVS_DATA
10212 || dep->semantics == IA64_DVS_INSTR
10213 || dep->semantics == IA64_DVS_SPECIFIC)
10214 {
10215 if (regdeps[i].insn_srlz == STATE_NONE)
10216 regdeps[i].insn_srlz = STATE_STOP;
10217 if (regdeps[i].data_srlz == STATE_NONE)
10218 regdeps[i].data_srlz = STATE_STOP;
10219 }
10220 ++i;
10221 }
10222 }
10223 }
10224
10225 /* Add the given resource usage spec to the list of active dependencies. */
10226
10227 static void
mark_resource(struct ia64_opcode * idesc ATTRIBUTE_UNUSED,const struct ia64_dependency * dep ATTRIBUTE_UNUSED,struct rsrc * spec,int depind,int path)10228 mark_resource (struct ia64_opcode *idesc ATTRIBUTE_UNUSED,
10229 const struct ia64_dependency *dep ATTRIBUTE_UNUSED,
10230 struct rsrc *spec,
10231 int depind,
10232 int path)
10233 {
10234 if (regdepslen == regdepstotlen)
10235 {
10236 regdepstotlen += 20;
10237 regdeps = (struct rsrc *)
10238 xrealloc ((void *) regdeps,
10239 regdepstotlen * sizeof (struct rsrc));
10240 }
10241
10242 regdeps[regdepslen] = *spec;
10243 regdeps[regdepslen].depind = depind;
10244 regdeps[regdepslen].path = path;
10245 regdeps[regdepslen].file = CURR_SLOT.src_file;
10246 regdeps[regdepslen].line = CURR_SLOT.src_line;
10247
10248 print_dependency ("Adding", regdepslen);
10249
10250 ++regdepslen;
10251 }
10252
10253 static void
print_dependency(const char * action,int depind)10254 print_dependency (const char *action, int depind)
10255 {
10256 if (md.debug_dv)
10257 {
10258 fprintf (stderr, " %s %s '%s'",
10259 action, dv_mode[(regdeps[depind].dependency)->mode],
10260 (regdeps[depind].dependency)->name);
10261 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10262 fprintf (stderr, " (%d)", regdeps[depind].index);
10263 if (regdeps[depind].mem_offset.hint)
10264 {
10265 fputs (" ", stderr);
10266 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10267 fputs ("+", stderr);
10268 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10269 }
10270 fprintf (stderr, "\n");
10271 }
10272 }
10273
10274 static void
instruction_serialization(void)10275 instruction_serialization (void)
10276 {
10277 int i;
10278 if (md.debug_dv)
10279 fprintf (stderr, " Instruction serialization\n");
10280 for (i = 0; i < regdepslen; i++)
10281 if (regdeps[i].insn_srlz == STATE_STOP)
10282 regdeps[i].insn_srlz = STATE_SRLZ;
10283 }
10284
10285 static void
data_serialization(void)10286 data_serialization (void)
10287 {
10288 int i = 0;
10289 if (md.debug_dv)
10290 fprintf (stderr, " Data serialization\n");
10291 while (i < regdepslen)
10292 {
10293 if (regdeps[i].data_srlz == STATE_STOP
10294 /* Note: as of 991210, all "other" dependencies are cleared by a
10295 data serialization. This might change with new tables */
10296 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10297 {
10298 print_dependency ("Removing", i);
10299 regdeps[i] = regdeps[--regdepslen];
10300 }
10301 else
10302 ++i;
10303 }
10304 }
10305
10306 /* Insert stops and serializations as needed to avoid DVs. */
10307
10308 static void
remove_marked_resource(struct rsrc * rs)10309 remove_marked_resource (struct rsrc *rs)
10310 {
10311 switch (rs->dependency->semantics)
10312 {
10313 case IA64_DVS_SPECIFIC:
10314 if (md.debug_dv)
10315 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10316 /* ...fall through... */
10317 case IA64_DVS_INSTR:
10318 if (md.debug_dv)
10319 fprintf (stderr, "Inserting instr serialization\n");
10320 if (rs->insn_srlz < STATE_STOP)
10321 insn_group_break (1, 0, 0);
10322 if (rs->insn_srlz < STATE_SRLZ)
10323 {
10324 struct slot oldslot = CURR_SLOT;
10325 /* Manually jam a srlz.i insn into the stream */
10326 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10327 CURR_SLOT.user_template = -1;
10328 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10329 instruction_serialization ();
10330 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10331 if (++md.num_slots_in_use >= NUM_SLOTS)
10332 emit_one_bundle ();
10333 CURR_SLOT = oldslot;
10334 }
10335 insn_group_break (1, 0, 0);
10336 break;
10337 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10338 "other" types of DV are eliminated
10339 by a data serialization */
10340 case IA64_DVS_DATA:
10341 if (md.debug_dv)
10342 fprintf (stderr, "Inserting data serialization\n");
10343 if (rs->data_srlz < STATE_STOP)
10344 insn_group_break (1, 0, 0);
10345 {
10346 struct slot oldslot = CURR_SLOT;
10347 /* Manually jam a srlz.d insn into the stream */
10348 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10349 CURR_SLOT.user_template = -1;
10350 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10351 data_serialization ();
10352 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10353 if (++md.num_slots_in_use >= NUM_SLOTS)
10354 emit_one_bundle ();
10355 CURR_SLOT = oldslot;
10356 }
10357 break;
10358 case IA64_DVS_IMPLIED:
10359 case IA64_DVS_IMPLIEDF:
10360 if (md.debug_dv)
10361 fprintf (stderr, "Inserting stop\n");
10362 insn_group_break (1, 0, 0);
10363 break;
10364 default:
10365 break;
10366 }
10367 }
10368
10369 /* Check the resources used by the given opcode against the current dependency
10370 list.
10371
10372 The check is run once for each execution path encountered. In this case,
10373 a unique execution path is the sequence of instructions following a code
10374 entry point, e.g. the following has three execution paths, one starting
10375 at L0, one at L1, and one at L2.
10376
10377 L0: nop
10378 L1: add
10379 L2: add
10380 br.ret
10381 */
10382
10383 static void
check_dependencies(struct ia64_opcode * idesc)10384 check_dependencies (struct ia64_opcode *idesc)
10385 {
10386 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10387 int path;
10388 int i;
10389
10390 /* Note that the number of marked resources may change within the
10391 loop if in auto mode. */
10392 i = 0;
10393 while (i < regdepslen)
10394 {
10395 struct rsrc *rs = ®deps[i];
10396 const struct ia64_dependency *dep = rs->dependency;
10397 int chkind;
10398 int note;
10399 int start_over = 0;
10400
10401 if (dep->semantics == IA64_DVS_NONE
10402 || (chkind = depends_on (rs->depind, idesc)) == -1)
10403 {
10404 ++i;
10405 continue;
10406 }
10407
10408 note = NOTE (opdeps->chks[chkind]);
10409
10410 /* Check this resource against each execution path seen thus far. */
10411 for (path = 0; path <= md.path; path++)
10412 {
10413 int matchtype;
10414
10415 /* If the dependency wasn't on the path being checked, ignore it. */
10416 if (rs->path < path)
10417 continue;
10418
10419 /* If the QP for this insn implies a QP which has branched, don't
10420 bother checking. Ed. NOTE: I don't think this check is terribly
10421 useful; what's the point of generating code which will only be
10422 reached if its QP is zero?
10423 This code was specifically inserted to handle the following code,
10424 based on notes from Intel's DV checking code, where p1 implies p2.
10425
10426 mov r4 = 2
10427 (p2) br.cond L
10428 (p1) mov r4 = 7
10429 */
10430 if (CURR_SLOT.qp_regno != 0)
10431 {
10432 int skip = 0;
10433 int implies;
10434 for (implies = 0; implies < qp_implieslen; implies++)
10435 {
10436 if (qp_implies[implies].path >= path
10437 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10438 && qp_implies[implies].p2_branched)
10439 {
10440 skip = 1;
10441 break;
10442 }
10443 }
10444 if (skip)
10445 continue;
10446 }
10447
10448 if ((matchtype = resources_match (rs, idesc, note,
10449 CURR_SLOT.qp_regno, path)) != 0)
10450 {
10451 char msg[1024];
10452 char pathmsg[256] = "";
10453 char indexmsg[256] = "";
10454 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10455
10456 if (path != 0)
10457 snprintf (pathmsg, sizeof (pathmsg),
10458 " when entry is at label '%s'",
10459 md.entry_labels[path - 1]);
10460 if (matchtype == 1 && rs->index >= 0)
10461 snprintf (indexmsg, sizeof (indexmsg),
10462 ", specific resource number is %d",
10463 rs->index);
10464 snprintf (msg, sizeof (msg),
10465 "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10466 idesc->name,
10467 (certain ? "violates" : "may violate"),
10468 dv_mode[dep->mode], dep->name,
10469 dv_sem[dep->semantics],
10470 pathmsg, indexmsg);
10471
10472 if (md.explicit_mode)
10473 {
10474 as_warn ("%s", msg);
10475 if (path < md.path)
10476 as_warn (_("Only the first path encountering the conflict is reported"));
10477 as_warn_where (rs->file, rs->line,
10478 _("This is the location of the conflicting usage"));
10479 /* Don't bother checking other paths, to avoid duplicating
10480 the same warning */
10481 break;
10482 }
10483 else
10484 {
10485 if (md.debug_dv)
10486 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10487
10488 remove_marked_resource (rs);
10489
10490 /* since the set of dependencies has changed, start over */
10491 /* FIXME -- since we're removing dvs as we go, we
10492 probably don't really need to start over... */
10493 start_over = 1;
10494 break;
10495 }
10496 }
10497 }
10498 if (start_over)
10499 i = 0;
10500 else
10501 ++i;
10502 }
10503 }
10504
10505 /* Register new dependencies based on the given opcode. */
10506
10507 static void
mark_resources(struct ia64_opcode * idesc)10508 mark_resources (struct ia64_opcode *idesc)
10509 {
10510 int i;
10511 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10512 int add_only_qp_reads = 0;
10513
10514 /* A conditional branch only uses its resources if it is taken; if it is
10515 taken, we stop following that path. The other branch types effectively
10516 *always* write their resources. If it's not taken, register only QP
10517 reads. */
10518 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10519 {
10520 add_only_qp_reads = 1;
10521 }
10522
10523 if (md.debug_dv)
10524 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10525
10526 for (i = 0; i < opdeps->nregs; i++)
10527 {
10528 const struct ia64_dependency *dep;
10529 struct rsrc specs[MAX_SPECS];
10530 int note;
10531 int path;
10532 int count;
10533
10534 dep = ia64_find_dependency (opdeps->regs[i]);
10535 note = NOTE (opdeps->regs[i]);
10536
10537 if (add_only_qp_reads
10538 && !(dep->mode == IA64_DV_WAR
10539 && (dep->specifier == IA64_RS_PR
10540 || dep->specifier == IA64_RS_PRr
10541 || dep->specifier == IA64_RS_PR63)))
10542 continue;
10543
10544 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10545
10546 while (count-- > 0)
10547 {
10548 mark_resource (idesc, dep, &specs[count],
10549 DEP (opdeps->regs[i]), md.path);
10550 }
10551
10552 /* The execution path may affect register values, which may in turn
10553 affect which indirect-access resources are accessed. */
10554 switch (dep->specifier)
10555 {
10556 default:
10557 break;
10558 case IA64_RS_CPUID:
10559 case IA64_RS_DBR:
10560 case IA64_RS_IBR:
10561 case IA64_RS_MSR:
10562 case IA64_RS_PKR:
10563 case IA64_RS_PMC:
10564 case IA64_RS_PMD:
10565 case IA64_RS_RR:
10566 for (path = 0; path < md.path; path++)
10567 {
10568 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10569 while (count-- > 0)
10570 mark_resource (idesc, dep, &specs[count],
10571 DEP (opdeps->regs[i]), path);
10572 }
10573 break;
10574 }
10575 }
10576 }
10577
10578 /* Remove dependencies when they no longer apply. */
10579
10580 static void
update_dependencies(struct ia64_opcode * idesc)10581 update_dependencies (struct ia64_opcode *idesc)
10582 {
10583 int i;
10584
10585 if (strcmp (idesc->name, "srlz.i") == 0)
10586 {
10587 instruction_serialization ();
10588 }
10589 else if (strcmp (idesc->name, "srlz.d") == 0)
10590 {
10591 data_serialization ();
10592 }
10593 else if (is_interruption_or_rfi (idesc)
10594 || is_taken_branch (idesc))
10595 {
10596 /* Although technically the taken branch doesn't clear dependencies
10597 which require a srlz.[id], we don't follow the branch; the next
10598 instruction is assumed to start with a clean slate. */
10599 regdepslen = 0;
10600 md.path = 0;
10601 }
10602 else if (is_conditional_branch (idesc)
10603 && CURR_SLOT.qp_regno != 0)
10604 {
10605 int is_call = strstr (idesc->name, ".call") != NULL;
10606
10607 for (i = 0; i < qp_implieslen; i++)
10608 {
10609 /* If the conditional branch's predicate is implied by the predicate
10610 in an existing dependency, remove that dependency. */
10611 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10612 {
10613 int depind = 0;
10614 /* Note that this implied predicate takes a branch so that if
10615 a later insn generates a DV but its predicate implies this
10616 one, we can avoid the false DV warning. */
10617 qp_implies[i].p2_branched = 1;
10618 while (depind < regdepslen)
10619 {
10620 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10621 {
10622 print_dependency ("Removing", depind);
10623 regdeps[depind] = regdeps[--regdepslen];
10624 }
10625 else
10626 ++depind;
10627 }
10628 }
10629 }
10630 /* Any marked resources which have this same predicate should be
10631 cleared, provided that the QP hasn't been modified between the
10632 marking instruction and the branch. */
10633 if (is_call)
10634 {
10635 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10636 }
10637 else
10638 {
10639 i = 0;
10640 while (i < regdepslen)
10641 {
10642 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10643 && regdeps[i].link_to_qp_branch
10644 && (regdeps[i].file != CURR_SLOT.src_file
10645 || regdeps[i].line != CURR_SLOT.src_line))
10646 {
10647 /* Treat like a taken branch */
10648 print_dependency ("Removing", i);
10649 regdeps[i] = regdeps[--regdepslen];
10650 }
10651 else
10652 ++i;
10653 }
10654 }
10655 }
10656 }
10657
10658 /* Examine the current instruction for dependency violations. */
10659
10660 static int
check_dv(struct ia64_opcode * idesc)10661 check_dv (struct ia64_opcode *idesc)
10662 {
10663 if (md.debug_dv)
10664 {
10665 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10666 idesc->name, CURR_SLOT.src_line,
10667 idesc->dependencies->nchks,
10668 idesc->dependencies->nregs);
10669 }
10670
10671 /* Look through the list of currently marked resources; if the current
10672 instruction has the dependency in its chks list which uses that resource,
10673 check against the specific resources used. */
10674 check_dependencies (idesc);
10675
10676 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10677 then add them to the list of marked resources. */
10678 mark_resources (idesc);
10679
10680 /* There are several types of dependency semantics, and each has its own
10681 requirements for being cleared
10682
10683 Instruction serialization (insns separated by interruption, rfi, or
10684 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10685
10686 Data serialization (instruction serialization, or writer + srlz.d +
10687 reader, where writer and srlz.d are in separate groups) clears
10688 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10689 always be the case).
10690
10691 Instruction group break (groups separated by stop, taken branch,
10692 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10693 */
10694 update_dependencies (idesc);
10695
10696 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10697 warning. Keep track of as many as possible that are useful. */
10698 note_register_values (idesc);
10699
10700 /* We don't need or want this anymore. */
10701 md.mem_offset.hint = 0;
10702
10703 return 0;
10704 }
10705
10706 /* Translate one line of assembly. Pseudo ops and labels do not show
10707 here. */
10708 void
md_assemble(char * str)10709 md_assemble (char *str)
10710 {
10711 char *saved_input_line_pointer, *mnemonic;
10712 const struct pseudo_opcode *pdesc;
10713 struct ia64_opcode *idesc;
10714 unsigned char qp_regno;
10715 unsigned int flags;
10716 int ch;
10717
10718 saved_input_line_pointer = input_line_pointer;
10719 input_line_pointer = str;
10720
10721 /* extract the opcode (mnemonic): */
10722
10723 mnemonic = input_line_pointer;
10724 ch = get_symbol_end ();
10725 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10726 if (pdesc)
10727 {
10728 *input_line_pointer = ch;
10729 (*pdesc->handler) (pdesc->arg);
10730 goto done;
10731 }
10732
10733 /* Find the instruction descriptor matching the arguments. */
10734
10735 idesc = ia64_find_opcode (mnemonic);
10736 *input_line_pointer = ch;
10737 if (!idesc)
10738 {
10739 as_bad (_("Unknown opcode `%s'"), mnemonic);
10740 goto done;
10741 }
10742
10743 idesc = parse_operands (idesc);
10744 if (!idesc)
10745 goto done;
10746
10747 /* Handle the dynamic ops we can handle now: */
10748 if (idesc->type == IA64_TYPE_DYN)
10749 {
10750 if (strcmp (idesc->name, "add") == 0)
10751 {
10752 if (CURR_SLOT.opnd[2].X_op == O_register
10753 && CURR_SLOT.opnd[2].X_add_number < 4)
10754 mnemonic = "addl";
10755 else
10756 mnemonic = "adds";
10757 ia64_free_opcode (idesc);
10758 idesc = ia64_find_opcode (mnemonic);
10759 }
10760 else if (strcmp (idesc->name, "mov") == 0)
10761 {
10762 enum ia64_opnd opnd1, opnd2;
10763 int rop;
10764
10765 opnd1 = idesc->operands[0];
10766 opnd2 = idesc->operands[1];
10767 if (opnd1 == IA64_OPND_AR3)
10768 rop = 0;
10769 else if (opnd2 == IA64_OPND_AR3)
10770 rop = 1;
10771 else
10772 abort ();
10773 if (CURR_SLOT.opnd[rop].X_op == O_register)
10774 {
10775 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10776 mnemonic = "mov.i";
10777 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10778 mnemonic = "mov.m";
10779 else
10780 rop = -1;
10781 }
10782 else
10783 abort ();
10784 if (rop >= 0)
10785 {
10786 ia64_free_opcode (idesc);
10787 idesc = ia64_find_opcode (mnemonic);
10788 while (idesc != NULL
10789 && (idesc->operands[0] != opnd1
10790 || idesc->operands[1] != opnd2))
10791 idesc = get_next_opcode (idesc);
10792 }
10793 }
10794 }
10795 else if (strcmp (idesc->name, "mov.i") == 0
10796 || strcmp (idesc->name, "mov.m") == 0)
10797 {
10798 enum ia64_opnd opnd1, opnd2;
10799 int rop;
10800
10801 opnd1 = idesc->operands[0];
10802 opnd2 = idesc->operands[1];
10803 if (opnd1 == IA64_OPND_AR3)
10804 rop = 0;
10805 else if (opnd2 == IA64_OPND_AR3)
10806 rop = 1;
10807 else
10808 abort ();
10809 if (CURR_SLOT.opnd[rop].X_op == O_register)
10810 {
10811 char unit = 'a';
10812 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10813 unit = 'i';
10814 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10815 unit = 'm';
10816 if (unit != 'a' && unit != idesc->name [4])
10817 as_bad (_("AR %d can only be accessed by %c-unit"),
10818 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10819 TOUPPER (unit));
10820 }
10821 }
10822 else if (strcmp (idesc->name, "hint.b") == 0)
10823 {
10824 switch (md.hint_b)
10825 {
10826 case hint_b_ok:
10827 break;
10828 case hint_b_warning:
10829 as_warn (_("hint.b may be treated as nop"));
10830 break;
10831 case hint_b_error:
10832 as_bad (_("hint.b shouldn't be used"));
10833 break;
10834 }
10835 }
10836
10837 qp_regno = 0;
10838 if (md.qp.X_op == O_register)
10839 {
10840 qp_regno = md.qp.X_add_number - REG_P;
10841 md.qp.X_op = O_absent;
10842 }
10843
10844 flags = idesc->flags;
10845
10846 if ((flags & IA64_OPCODE_FIRST) != 0)
10847 {
10848 /* The alignment frag has to end with a stop bit only if the
10849 next instruction after the alignment directive has to be
10850 the first instruction in an instruction group. */
10851 if (align_frag)
10852 {
10853 while (align_frag->fr_type != rs_align_code)
10854 {
10855 align_frag = align_frag->fr_next;
10856 if (!align_frag)
10857 break;
10858 }
10859 /* align_frag can be NULL if there are directives in
10860 between. */
10861 if (align_frag && align_frag->fr_next == frag_now)
10862 align_frag->tc_frag_data = 1;
10863 }
10864
10865 insn_group_break (1, 0, 0);
10866 }
10867 align_frag = NULL;
10868
10869 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10870 {
10871 as_bad (_("`%s' cannot be predicated"), idesc->name);
10872 goto done;
10873 }
10874
10875 /* Build the instruction. */
10876 CURR_SLOT.qp_regno = qp_regno;
10877 CURR_SLOT.idesc = idesc;
10878 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10879 dwarf2_where (&CURR_SLOT.debug_line);
10880 dwarf2_consume_line_info ();
10881
10882 /* Add unwind entries, if there are any. */
10883 if (unwind.current_entry)
10884 {
10885 CURR_SLOT.unwind_record = unwind.current_entry;
10886 unwind.current_entry = NULL;
10887 }
10888 if (unwind.pending_saves)
10889 {
10890 if (unwind.pending_saves->next)
10891 {
10892 /* Attach the next pending save to the next slot so that its
10893 slot number will get set correctly. */
10894 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10895 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10896 }
10897 else
10898 unwind.pending_saves = NULL;
10899 }
10900 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10901 unwind.insn = 1;
10902
10903 /* Check for dependency violations. */
10904 if (md.detect_dv)
10905 check_dv (idesc);
10906
10907 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10908 if (++md.num_slots_in_use >= NUM_SLOTS)
10909 emit_one_bundle ();
10910
10911 if ((flags & IA64_OPCODE_LAST) != 0)
10912 insn_group_break (1, 0, 0);
10913
10914 md.last_text_seg = now_seg;
10915
10916 done:
10917 input_line_pointer = saved_input_line_pointer;
10918 }
10919
10920 /* Called when symbol NAME cannot be found in the symbol table.
10921 Should be used for dynamic valued symbols only. */
10922
10923 symbolS *
md_undefined_symbol(char * name ATTRIBUTE_UNUSED)10924 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
10925 {
10926 return 0;
10927 }
10928
10929 /* Called for any expression that can not be recognized. When the
10930 function is called, `input_line_pointer' will point to the start of
10931 the expression. */
10932
10933 void
md_operand(expressionS * e)10934 md_operand (expressionS *e)
10935 {
10936 switch (*input_line_pointer)
10937 {
10938 case '[':
10939 ++input_line_pointer;
10940 expression_and_evaluate (e);
10941 if (*input_line_pointer != ']')
10942 {
10943 as_bad (_("Closing bracket missing"));
10944 goto err;
10945 }
10946 else
10947 {
10948 if (e->X_op != O_register
10949 || e->X_add_number < REG_GR
10950 || e->X_add_number > REG_GR + 127)
10951 {
10952 as_bad (_("Index must be a general register"));
10953 e->X_add_number = REG_GR;
10954 }
10955
10956 ++input_line_pointer;
10957 e->X_op = O_index;
10958 }
10959 break;
10960
10961 default:
10962 break;
10963 }
10964 return;
10965
10966 err:
10967 ignore_rest_of_line ();
10968 }
10969
10970 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10971 a section symbol plus some offset. For relocs involving @fptr(),
10972 directives we don't want such adjustments since we need to have the
10973 original symbol's name in the reloc. */
10974 int
ia64_fix_adjustable(fixS * fix)10975 ia64_fix_adjustable (fixS *fix)
10976 {
10977 /* Prevent all adjustments to global symbols */
10978 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10979 return 0;
10980
10981 switch (fix->fx_r_type)
10982 {
10983 case BFD_RELOC_IA64_FPTR64I:
10984 case BFD_RELOC_IA64_FPTR32MSB:
10985 case BFD_RELOC_IA64_FPTR32LSB:
10986 case BFD_RELOC_IA64_FPTR64MSB:
10987 case BFD_RELOC_IA64_FPTR64LSB:
10988 case BFD_RELOC_IA64_LTOFF_FPTR22:
10989 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10990 return 0;
10991 default:
10992 break;
10993 }
10994
10995 return 1;
10996 }
10997
10998 int
ia64_force_relocation(fixS * fix)10999 ia64_force_relocation (fixS *fix)
11000 {
11001 switch (fix->fx_r_type)
11002 {
11003 case BFD_RELOC_IA64_FPTR64I:
11004 case BFD_RELOC_IA64_FPTR32MSB:
11005 case BFD_RELOC_IA64_FPTR32LSB:
11006 case BFD_RELOC_IA64_FPTR64MSB:
11007 case BFD_RELOC_IA64_FPTR64LSB:
11008
11009 case BFD_RELOC_IA64_LTOFF22:
11010 case BFD_RELOC_IA64_LTOFF64I:
11011 case BFD_RELOC_IA64_LTOFF_FPTR22:
11012 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11013 case BFD_RELOC_IA64_PLTOFF22:
11014 case BFD_RELOC_IA64_PLTOFF64I:
11015 case BFD_RELOC_IA64_PLTOFF64MSB:
11016 case BFD_RELOC_IA64_PLTOFF64LSB:
11017
11018 case BFD_RELOC_IA64_LTOFF22X:
11019 case BFD_RELOC_IA64_LDXMOV:
11020 return 1;
11021
11022 default:
11023 break;
11024 }
11025
11026 return generic_force_reloc (fix);
11027 }
11028
11029 /* Decide from what point a pc-relative relocation is relative to,
11030 relative to the pc-relative fixup. Er, relatively speaking. */
11031 long
ia64_pcrel_from_section(fixS * fix,segT sec)11032 ia64_pcrel_from_section (fixS *fix, segT sec)
11033 {
11034 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11035
11036 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11037 off &= ~0xfUL;
11038
11039 return off;
11040 }
11041
11042
11043 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11044 void
ia64_dwarf2_emit_offset(symbolS * symbol,unsigned int size)11045 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11046 {
11047 expressionS exp;
11048
11049 exp.X_op = O_pseudo_fixup;
11050 exp.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11051 exp.X_add_number = 0;
11052 exp.X_add_symbol = symbol;
11053 emit_expr (&exp, size);
11054 }
11055
11056 /* This is called whenever some data item (not an instruction) needs a
11057 fixup. We pick the right reloc code depending on the byteorder
11058 currently in effect. */
11059 void
ia64_cons_fix_new(fragS * f,int where,int nbytes,expressionS * exp,bfd_reloc_code_real_type code)11060 ia64_cons_fix_new (fragS *f, int where, int nbytes, expressionS *exp,
11061 bfd_reloc_code_real_type code)
11062 {
11063 fixS *fix;
11064
11065 switch (nbytes)
11066 {
11067 /* There are no reloc for 8 and 16 bit quantities, but we allow
11068 them here since they will work fine as long as the expression
11069 is fully defined at the end of the pass over the source file. */
11070 case 1: code = BFD_RELOC_8; break;
11071 case 2: code = BFD_RELOC_16; break;
11072 case 4:
11073 if (target_big_endian)
11074 code = BFD_RELOC_IA64_DIR32MSB;
11075 else
11076 code = BFD_RELOC_IA64_DIR32LSB;
11077 break;
11078
11079 case 8:
11080 /* In 32-bit mode, data8 could mean function descriptors too. */
11081 if (exp->X_op == O_pseudo_fixup
11082 && exp->X_op_symbol
11083 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11084 && !(md.flags & EF_IA_64_ABI64))
11085 {
11086 if (target_big_endian)
11087 code = BFD_RELOC_IA64_IPLTMSB;
11088 else
11089 code = BFD_RELOC_IA64_IPLTLSB;
11090 exp->X_op = O_symbol;
11091 break;
11092 }
11093 else
11094 {
11095 if (target_big_endian)
11096 code = BFD_RELOC_IA64_DIR64MSB;
11097 else
11098 code = BFD_RELOC_IA64_DIR64LSB;
11099 break;
11100 }
11101
11102 case 16:
11103 if (exp->X_op == O_pseudo_fixup
11104 && exp->X_op_symbol
11105 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11106 {
11107 if (target_big_endian)
11108 code = BFD_RELOC_IA64_IPLTMSB;
11109 else
11110 code = BFD_RELOC_IA64_IPLTLSB;
11111 exp->X_op = O_symbol;
11112 break;
11113 }
11114 /* FALLTHRU */
11115
11116 default:
11117 as_bad (_("Unsupported fixup size %d"), nbytes);
11118 ignore_rest_of_line ();
11119 return;
11120 }
11121
11122 if (exp->X_op == O_pseudo_fixup)
11123 {
11124 exp->X_op = O_symbol;
11125 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11126 /* ??? If code unchanged, unsupported. */
11127 }
11128
11129 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11130 /* We need to store the byte order in effect in case we're going
11131 to fix an 8 or 16 bit relocation (for which there no real
11132 relocs available). See md_apply_fix(). */
11133 fix->tc_fix_data.bigendian = target_big_endian;
11134 }
11135
11136 /* Return the actual relocation we wish to associate with the pseudo
11137 reloc described by SYM and R_TYPE. SYM should be one of the
11138 symbols in the pseudo_func array, or NULL. */
11139
11140 static bfd_reloc_code_real_type
ia64_gen_real_reloc_type(struct symbol * sym,bfd_reloc_code_real_type r_type)11141 ia64_gen_real_reloc_type (struct symbol *sym, bfd_reloc_code_real_type r_type)
11142 {
11143 bfd_reloc_code_real_type newr = 0;
11144 const char *type = NULL, *suffix = "";
11145
11146 if (sym == NULL)
11147 {
11148 return r_type;
11149 }
11150
11151 switch (S_GET_VALUE (sym))
11152 {
11153 case FUNC_FPTR_RELATIVE:
11154 switch (r_type)
11155 {
11156 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_FPTR64I; break;
11157 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_FPTR32MSB; break;
11158 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_FPTR32LSB; break;
11159 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_FPTR64MSB; break;
11160 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_FPTR64LSB; break;
11161 default: type = "FPTR"; break;
11162 }
11163 break;
11164
11165 case FUNC_GP_RELATIVE:
11166 switch (r_type)
11167 {
11168 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_GPREL22; break;
11169 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_GPREL64I; break;
11170 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_GPREL32MSB; break;
11171 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_GPREL32LSB; break;
11172 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_GPREL64MSB; break;
11173 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_GPREL64LSB; break;
11174 default: type = "GPREL"; break;
11175 }
11176 break;
11177
11178 case FUNC_LT_RELATIVE:
11179 switch (r_type)
11180 {
11181 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22; break;
11182 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_LTOFF64I; break;
11183 default: type = "LTOFF"; break;
11184 }
11185 break;
11186
11187 case FUNC_LT_RELATIVE_X:
11188 switch (r_type)
11189 {
11190 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22X; break;
11191 default: type = "LTOFF"; suffix = "X"; break;
11192 }
11193 break;
11194
11195 case FUNC_PC_RELATIVE:
11196 switch (r_type)
11197 {
11198 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PCREL22; break;
11199 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PCREL64I; break;
11200 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_PCREL32MSB; break;
11201 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_PCREL32LSB; break;
11202 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PCREL64MSB; break;
11203 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PCREL64LSB; break;
11204 default: type = "PCREL"; break;
11205 }
11206 break;
11207
11208 case FUNC_PLT_RELATIVE:
11209 switch (r_type)
11210 {
11211 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PLTOFF22; break;
11212 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PLTOFF64I; break;
11213 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PLTOFF64MSB;break;
11214 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PLTOFF64LSB;break;
11215 default: type = "PLTOFF"; break;
11216 }
11217 break;
11218
11219 case FUNC_SEC_RELATIVE:
11220 switch (r_type)
11221 {
11222 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SECREL32MSB;break;
11223 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SECREL32LSB;break;
11224 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SECREL64MSB;break;
11225 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SECREL64LSB;break;
11226 default: type = "SECREL"; break;
11227 }
11228 break;
11229
11230 case FUNC_SEG_RELATIVE:
11231 switch (r_type)
11232 {
11233 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SEGREL32MSB;break;
11234 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SEGREL32LSB;break;
11235 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SEGREL64MSB;break;
11236 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SEGREL64LSB;break;
11237 default: type = "SEGREL"; break;
11238 }
11239 break;
11240
11241 case FUNC_LTV_RELATIVE:
11242 switch (r_type)
11243 {
11244 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_LTV32MSB; break;
11245 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_LTV32LSB; break;
11246 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_LTV64MSB; break;
11247 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_LTV64LSB; break;
11248 default: type = "LTV"; break;
11249 }
11250 break;
11251
11252 case FUNC_LT_FPTR_RELATIVE:
11253 switch (r_type)
11254 {
11255 case BFD_RELOC_IA64_IMM22:
11256 newr = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11257 case BFD_RELOC_IA64_IMM64:
11258 newr = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11259 case BFD_RELOC_IA64_DIR32MSB:
11260 newr = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11261 case BFD_RELOC_IA64_DIR32LSB:
11262 newr = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11263 case BFD_RELOC_IA64_DIR64MSB:
11264 newr = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11265 case BFD_RELOC_IA64_DIR64LSB:
11266 newr = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11267 default:
11268 type = "LTOFF_FPTR"; break;
11269 }
11270 break;
11271
11272 case FUNC_TP_RELATIVE:
11273 switch (r_type)
11274 {
11275 case BFD_RELOC_IA64_IMM14: newr = BFD_RELOC_IA64_TPREL14; break;
11276 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_TPREL22; break;
11277 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_TPREL64I; break;
11278 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_TPREL64MSB; break;
11279 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_TPREL64LSB; break;
11280 default: type = "TPREL"; break;
11281 }
11282 break;
11283
11284 case FUNC_LT_TP_RELATIVE:
11285 switch (r_type)
11286 {
11287 case BFD_RELOC_IA64_IMM22:
11288 newr = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11289 default:
11290 type = "LTOFF_TPREL"; break;
11291 }
11292 break;
11293
11294 case FUNC_DTP_MODULE:
11295 switch (r_type)
11296 {
11297 case BFD_RELOC_IA64_DIR64MSB:
11298 newr = BFD_RELOC_IA64_DTPMOD64MSB; break;
11299 case BFD_RELOC_IA64_DIR64LSB:
11300 newr = BFD_RELOC_IA64_DTPMOD64LSB; break;
11301 default:
11302 type = "DTPMOD"; break;
11303 }
11304 break;
11305
11306 case FUNC_LT_DTP_MODULE:
11307 switch (r_type)
11308 {
11309 case BFD_RELOC_IA64_IMM22:
11310 newr = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11311 default:
11312 type = "LTOFF_DTPMOD"; break;
11313 }
11314 break;
11315
11316 case FUNC_DTP_RELATIVE:
11317 switch (r_type)
11318 {
11319 case BFD_RELOC_IA64_DIR32MSB:
11320 newr = BFD_RELOC_IA64_DTPREL32MSB; break;
11321 case BFD_RELOC_IA64_DIR32LSB:
11322 newr = BFD_RELOC_IA64_DTPREL32LSB; break;
11323 case BFD_RELOC_IA64_DIR64MSB:
11324 newr = BFD_RELOC_IA64_DTPREL64MSB; break;
11325 case BFD_RELOC_IA64_DIR64LSB:
11326 newr = BFD_RELOC_IA64_DTPREL64LSB; break;
11327 case BFD_RELOC_IA64_IMM14:
11328 newr = BFD_RELOC_IA64_DTPREL14; break;
11329 case BFD_RELOC_IA64_IMM22:
11330 newr = BFD_RELOC_IA64_DTPREL22; break;
11331 case BFD_RELOC_IA64_IMM64:
11332 newr = BFD_RELOC_IA64_DTPREL64I; break;
11333 default:
11334 type = "DTPREL"; break;
11335 }
11336 break;
11337
11338 case FUNC_LT_DTP_RELATIVE:
11339 switch (r_type)
11340 {
11341 case BFD_RELOC_IA64_IMM22:
11342 newr = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11343 default:
11344 type = "LTOFF_DTPREL"; break;
11345 }
11346 break;
11347
11348 case FUNC_IPLT_RELOC:
11349 switch (r_type)
11350 {
11351 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11352 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11353 default: type = "IPLT"; break;
11354 }
11355 break;
11356
11357 #ifdef TE_VMS
11358 case FUNC_SLOTCOUNT_RELOC:
11359 return DUMMY_RELOC_IA64_SLOTCOUNT;
11360 #endif
11361
11362 default:
11363 abort ();
11364 }
11365
11366 if (newr)
11367 return newr;
11368 else
11369 {
11370 int width;
11371
11372 if (!type)
11373 abort ();
11374 switch (r_type)
11375 {
11376 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11377 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11378 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11379 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11380 case BFD_RELOC_UNUSED: width = 13; break;
11381 case BFD_RELOC_IA64_IMM14: width = 14; break;
11382 case BFD_RELOC_IA64_IMM22: width = 22; break;
11383 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11384 default: abort ();
11385 }
11386
11387 /* This should be an error, but since previously there wasn't any
11388 diagnostic here, don't make it fail because of this for now. */
11389 as_warn (_("Cannot express %s%d%s relocation"), type, width, suffix);
11390 return r_type;
11391 }
11392 }
11393
11394 /* Here is where generate the appropriate reloc for pseudo relocation
11395 functions. */
11396 void
ia64_validate_fix(fixS * fix)11397 ia64_validate_fix (fixS *fix)
11398 {
11399 switch (fix->fx_r_type)
11400 {
11401 case BFD_RELOC_IA64_FPTR64I:
11402 case BFD_RELOC_IA64_FPTR32MSB:
11403 case BFD_RELOC_IA64_FPTR64LSB:
11404 case BFD_RELOC_IA64_LTOFF_FPTR22:
11405 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11406 if (fix->fx_offset != 0)
11407 as_bad_where (fix->fx_file, fix->fx_line,
11408 _("No addend allowed in @fptr() relocation"));
11409 break;
11410 default:
11411 break;
11412 }
11413 }
11414
11415 static void
fix_insn(fixS * fix,const struct ia64_operand * odesc,valueT value)11416 fix_insn (fixS *fix, const struct ia64_operand *odesc, valueT value)
11417 {
11418 bfd_vma insn[3], t0, t1, control_bits;
11419 const char *err;
11420 char *fixpos;
11421 long slot;
11422
11423 slot = fix->fx_where & 0x3;
11424 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11425
11426 /* Bundles are always in little-endian byte order */
11427 t0 = bfd_getl64 (fixpos);
11428 t1 = bfd_getl64 (fixpos + 8);
11429 control_bits = t0 & 0x1f;
11430 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11431 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11432 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11433
11434 err = NULL;
11435 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11436 {
11437 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11438 insn[2] |= (((value & 0x7f) << 13)
11439 | (((value >> 7) & 0x1ff) << 27)
11440 | (((value >> 16) & 0x1f) << 22)
11441 | (((value >> 21) & 0x1) << 21)
11442 | (((value >> 63) & 0x1) << 36));
11443 }
11444 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11445 {
11446 if (value & ~0x3fffffffffffffffULL)
11447 err = _("integer operand out of range");
11448 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11449 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11450 }
11451 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11452 {
11453 value >>= 4;
11454 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11455 insn[2] |= ((((value >> 59) & 0x1) << 36)
11456 | (((value >> 0) & 0xfffff) << 13));
11457 }
11458 else
11459 err = (*odesc->insert) (odesc, value, insn + slot);
11460
11461 if (err)
11462 as_bad_where (fix->fx_file, fix->fx_line, "%s", err);
11463
11464 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11465 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11466 number_to_chars_littleendian (fixpos + 0, t0, 8);
11467 number_to_chars_littleendian (fixpos + 8, t1, 8);
11468 }
11469
11470 /* Attempt to simplify or even eliminate a fixup. The return value is
11471 ignored; perhaps it was once meaningful, but now it is historical.
11472 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11473
11474 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11475 (if possible). */
11476
11477 void
md_apply_fix(fixS * fix,valueT * valP,segT seg ATTRIBUTE_UNUSED)11478 md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11479 {
11480 char *fixpos;
11481 valueT value = *valP;
11482
11483 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11484
11485 if (fix->fx_pcrel)
11486 {
11487 switch (fix->fx_r_type)
11488 {
11489 case BFD_RELOC_IA64_PCREL21B: break;
11490 case BFD_RELOC_IA64_PCREL21BI: break;
11491 case BFD_RELOC_IA64_PCREL21F: break;
11492 case BFD_RELOC_IA64_PCREL21M: break;
11493 case BFD_RELOC_IA64_PCREL60B: break;
11494 case BFD_RELOC_IA64_PCREL22: break;
11495 case BFD_RELOC_IA64_PCREL64I: break;
11496 case BFD_RELOC_IA64_PCREL32MSB: break;
11497 case BFD_RELOC_IA64_PCREL32LSB: break;
11498 case BFD_RELOC_IA64_PCREL64MSB: break;
11499 case BFD_RELOC_IA64_PCREL64LSB: break;
11500 default:
11501 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11502 fix->fx_r_type);
11503 break;
11504 }
11505 }
11506 if (fix->fx_addsy)
11507 {
11508 switch ((unsigned) fix->fx_r_type)
11509 {
11510 case BFD_RELOC_UNUSED:
11511 /* This must be a TAG13 or TAG13b operand. There are no external
11512 relocs defined for them, so we must give an error. */
11513 as_bad_where (fix->fx_file, fix->fx_line,
11514 _("%s must have a constant value"),
11515 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11516 fix->fx_done = 1;
11517 return;
11518
11519 case BFD_RELOC_IA64_TPREL14:
11520 case BFD_RELOC_IA64_TPREL22:
11521 case BFD_RELOC_IA64_TPREL64I:
11522 case BFD_RELOC_IA64_LTOFF_TPREL22:
11523 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11524 case BFD_RELOC_IA64_DTPREL14:
11525 case BFD_RELOC_IA64_DTPREL22:
11526 case BFD_RELOC_IA64_DTPREL64I:
11527 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11528 S_SET_THREAD_LOCAL (fix->fx_addsy);
11529 break;
11530
11531 #ifdef TE_VMS
11532 case DUMMY_RELOC_IA64_SLOTCOUNT:
11533 as_bad_where (fix->fx_file, fix->fx_line,
11534 _("cannot resolve @slotcount parameter"));
11535 fix->fx_done = 1;
11536 return;
11537 #endif
11538
11539 default:
11540 break;
11541 }
11542 }
11543 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11544 {
11545 #ifdef TE_VMS
11546 if (fix->fx_r_type == DUMMY_RELOC_IA64_SLOTCOUNT)
11547 {
11548 /* For @slotcount, convert an addresses difference to a slots
11549 difference. */
11550 valueT v;
11551
11552 v = (value >> 4) * 3;
11553 switch (value & 0x0f)
11554 {
11555 case 0:
11556 case 1:
11557 case 2:
11558 v += value & 0x0f;
11559 break;
11560 case 0x0f:
11561 v += 2;
11562 break;
11563 case 0x0e:
11564 v += 1;
11565 break;
11566 default:
11567 as_bad (_("invalid @slotcount value"));
11568 }
11569 value = v;
11570 }
11571 #endif
11572
11573 if (fix->tc_fix_data.bigendian)
11574 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11575 else
11576 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11577 fix->fx_done = 1;
11578 }
11579 else
11580 {
11581 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11582 fix->fx_done = 1;
11583 }
11584 }
11585
11586 /* Generate the BFD reloc to be stuck in the object file from the
11587 fixup used internally in the assembler. */
11588
11589 arelent *
tc_gen_reloc(asection * sec ATTRIBUTE_UNUSED,fixS * fixp)11590 tc_gen_reloc (asection *sec ATTRIBUTE_UNUSED, fixS *fixp)
11591 {
11592 arelent *reloc;
11593
11594 reloc = xmalloc (sizeof (*reloc));
11595 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11596 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11597 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11598 reloc->addend = fixp->fx_offset;
11599 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11600
11601 if (!reloc->howto)
11602 {
11603 as_bad_where (fixp->fx_file, fixp->fx_line,
11604 _("Cannot represent %s relocation in object file"),
11605 bfd_get_reloc_code_name (fixp->fx_r_type));
11606 free (reloc);
11607 return NULL;
11608 }
11609 return reloc;
11610 }
11611
11612 /* Turn a string in input_line_pointer into a floating point constant
11613 of type TYPE, and store the appropriate bytes in *LIT. The number
11614 of LITTLENUMS emitted is stored in *SIZE. An error message is
11615 returned, or NULL on OK. */
11616
11617 #define MAX_LITTLENUMS 5
11618
11619 char *
md_atof(int type,char * lit,int * size)11620 md_atof (int type, char *lit, int *size)
11621 {
11622 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11623 char *t;
11624 int prec;
11625
11626 switch (type)
11627 {
11628 /* IEEE floats */
11629 case 'f':
11630 case 'F':
11631 case 's':
11632 case 'S':
11633 prec = 2;
11634 break;
11635
11636 case 'd':
11637 case 'D':
11638 case 'r':
11639 case 'R':
11640 prec = 4;
11641 break;
11642
11643 case 'x':
11644 case 'X':
11645 case 'p':
11646 case 'P':
11647 prec = 5;
11648 break;
11649
11650 default:
11651 *size = 0;
11652 return _("Unrecognized or unsupported floating point constant");
11653 }
11654 t = atof_ieee (input_line_pointer, type, words);
11655 if (t)
11656 input_line_pointer = t;
11657
11658 (*ia64_float_to_chars) (lit, words, prec);
11659
11660 if (type == 'X')
11661 {
11662 /* It is 10 byte floating point with 6 byte padding. */
11663 memset (&lit [10], 0, 6);
11664 *size = 8 * sizeof (LITTLENUM_TYPE);
11665 }
11666 else
11667 *size = prec * sizeof (LITTLENUM_TYPE);
11668
11669 return NULL;
11670 }
11671
11672 /* Handle ia64 specific semantics of the align directive. */
11673
11674 void
ia64_md_do_align(int n ATTRIBUTE_UNUSED,const char * fill ATTRIBUTE_UNUSED,int len ATTRIBUTE_UNUSED,int max ATTRIBUTE_UNUSED)11675 ia64_md_do_align (int n ATTRIBUTE_UNUSED,
11676 const char *fill ATTRIBUTE_UNUSED,
11677 int len ATTRIBUTE_UNUSED,
11678 int max ATTRIBUTE_UNUSED)
11679 {
11680 if (subseg_text_p (now_seg))
11681 ia64_flush_insns ();
11682 }
11683
11684 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11685 of an rs_align_code fragment. */
11686
11687 void
ia64_handle_align(fragS * fragp)11688 ia64_handle_align (fragS *fragp)
11689 {
11690 int bytes;
11691 char *p;
11692 const unsigned char *nop_type;
11693
11694 if (fragp->fr_type != rs_align_code)
11695 return;
11696
11697 /* Check if this frag has to end with a stop bit. */
11698 nop_type = fragp->tc_frag_data ? le_nop_stop : le_nop;
11699
11700 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11701 p = fragp->fr_literal + fragp->fr_fix;
11702
11703 /* If no paddings are needed, we check if we need a stop bit. */
11704 if (!bytes && fragp->tc_frag_data)
11705 {
11706 if (fragp->fr_fix < 16)
11707 #if 1
11708 /* FIXME: It won't work with
11709 .align 16
11710 alloc r32=ar.pfs,1,2,4,0
11711 */
11712 ;
11713 #else
11714 as_bad_where (fragp->fr_file, fragp->fr_line,
11715 _("Can't add stop bit to mark end of instruction group"));
11716 #endif
11717 else
11718 /* Bundles are always in little-endian byte order. Make sure
11719 the previous bundle has the stop bit. */
11720 *(p - 16) |= 1;
11721 }
11722
11723 /* Make sure we are on a 16-byte boundary, in case someone has been
11724 putting data into a text section. */
11725 if (bytes & 15)
11726 {
11727 int fix = bytes & 15;
11728 memset (p, 0, fix);
11729 p += fix;
11730 bytes -= fix;
11731 fragp->fr_fix += fix;
11732 }
11733
11734 /* Instruction bundles are always little-endian. */
11735 memcpy (p, nop_type, 16);
11736 fragp->fr_var = 16;
11737 }
11738
11739 static void
ia64_float_to_chars_bigendian(char * lit,LITTLENUM_TYPE * words,int prec)11740 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11741 int prec)
11742 {
11743 while (prec--)
11744 {
11745 number_to_chars_bigendian (lit, (long) (*words++),
11746 sizeof (LITTLENUM_TYPE));
11747 lit += sizeof (LITTLENUM_TYPE);
11748 }
11749 }
11750
11751 static void
ia64_float_to_chars_littleendian(char * lit,LITTLENUM_TYPE * words,int prec)11752 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11753 int prec)
11754 {
11755 while (prec--)
11756 {
11757 number_to_chars_littleendian (lit, (long) (words[prec]),
11758 sizeof (LITTLENUM_TYPE));
11759 lit += sizeof (LITTLENUM_TYPE);
11760 }
11761 }
11762
11763 void
ia64_elf_section_change_hook(void)11764 ia64_elf_section_change_hook (void)
11765 {
11766 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11767 && elf_linked_to_section (now_seg) == NULL)
11768 elf_linked_to_section (now_seg) = text_section;
11769 dot_byteorder (-1);
11770 }
11771
11772 /* Check if a label should be made global. */
11773 void
ia64_check_label(symbolS * label)11774 ia64_check_label (symbolS *label)
11775 {
11776 if (*input_line_pointer == ':')
11777 {
11778 S_SET_EXTERNAL (label);
11779 input_line_pointer++;
11780 }
11781 }
11782
11783 /* Used to remember where .alias and .secalias directives are seen. We
11784 will rename symbol and section names when we are about to output
11785 the relocatable file. */
11786 struct alias
11787 {
11788 char *file; /* The file where the directive is seen. */
11789 unsigned int line; /* The line number the directive is at. */
11790 const char *name; /* The original name of the symbol. */
11791 };
11792
11793 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11794 .secalias. Otherwise, it is .alias. */
11795 static void
dot_alias(int section)11796 dot_alias (int section)
11797 {
11798 char *name, *alias;
11799 char delim;
11800 char *end_name;
11801 int len;
11802 const char *error_string;
11803 struct alias *h;
11804 const char *a;
11805 struct hash_control *ahash, *nhash;
11806 const char *kind;
11807
11808 name = input_line_pointer;
11809 delim = get_symbol_end ();
11810 end_name = input_line_pointer;
11811 *end_name = delim;
11812
11813 if (name == end_name)
11814 {
11815 as_bad (_("expected symbol name"));
11816 ignore_rest_of_line ();
11817 return;
11818 }
11819
11820 SKIP_WHITESPACE ();
11821
11822 if (*input_line_pointer != ',')
11823 {
11824 *end_name = 0;
11825 as_bad (_("expected comma after \"%s\""), name);
11826 *end_name = delim;
11827 ignore_rest_of_line ();
11828 return;
11829 }
11830
11831 input_line_pointer++;
11832 *end_name = 0;
11833 ia64_canonicalize_symbol_name (name);
11834
11835 /* We call demand_copy_C_string to check if alias string is valid.
11836 There should be a closing `"' and no `\0' in the string. */
11837 alias = demand_copy_C_string (&len);
11838 if (alias == NULL)
11839 {
11840 ignore_rest_of_line ();
11841 return;
11842 }
11843
11844 /* Make a copy of name string. */
11845 len = strlen (name) + 1;
11846 obstack_grow (¬es, name, len);
11847 name = obstack_finish (¬es);
11848
11849 if (section)
11850 {
11851 kind = "section";
11852 ahash = secalias_hash;
11853 nhash = secalias_name_hash;
11854 }
11855 else
11856 {
11857 kind = "symbol";
11858 ahash = alias_hash;
11859 nhash = alias_name_hash;
11860 }
11861
11862 /* Check if alias has been used before. */
11863 h = (struct alias *) hash_find (ahash, alias);
11864 if (h)
11865 {
11866 if (strcmp (h->name, name))
11867 as_bad (_("`%s' is already the alias of %s `%s'"),
11868 alias, kind, h->name);
11869 goto out;
11870 }
11871
11872 /* Check if name already has an alias. */
11873 a = (const char *) hash_find (nhash, name);
11874 if (a)
11875 {
11876 if (strcmp (a, alias))
11877 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11878 goto out;
11879 }
11880
11881 h = (struct alias *) xmalloc (sizeof (struct alias));
11882 as_where (&h->file, &h->line);
11883 h->name = name;
11884
11885 error_string = hash_jam (ahash, alias, (void *) h);
11886 if (error_string)
11887 {
11888 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11889 alias, kind, error_string);
11890 goto out;
11891 }
11892
11893 error_string = hash_jam (nhash, name, (void *) alias);
11894 if (error_string)
11895 {
11896 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11897 alias, kind, error_string);
11898 out:
11899 obstack_free (¬es, name);
11900 obstack_free (¬es, alias);
11901 }
11902
11903 demand_empty_rest_of_line ();
11904 }
11905
11906 /* It renames the original symbol name to its alias. */
11907 static void
do_alias(const char * alias,void * value)11908 do_alias (const char *alias, void *value)
11909 {
11910 struct alias *h = (struct alias *) value;
11911 symbolS *sym = symbol_find (h->name);
11912
11913 if (sym == NULL)
11914 {
11915 #ifdef TE_VMS
11916 /* Uses .alias extensively to alias CRTL functions to same with
11917 decc$ prefix. Sometimes function gets optimized away and a
11918 warning results, which should be suppressed. */
11919 if (strncmp (alias, "decc$", 5) != 0)
11920 #endif
11921 as_warn_where (h->file, h->line,
11922 _("symbol `%s' aliased to `%s' is not used"),
11923 h->name, alias);
11924 }
11925 else
11926 S_SET_NAME (sym, (char *) alias);
11927 }
11928
11929 /* Called from write_object_file. */
11930 void
ia64_adjust_symtab(void)11931 ia64_adjust_symtab (void)
11932 {
11933 hash_traverse (alias_hash, do_alias);
11934 }
11935
11936 /* It renames the original section name to its alias. */
11937 static void
do_secalias(const char * alias,void * value)11938 do_secalias (const char *alias, void *value)
11939 {
11940 struct alias *h = (struct alias *) value;
11941 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11942
11943 if (sec == NULL)
11944 as_warn_where (h->file, h->line,
11945 _("section `%s' aliased to `%s' is not used"),
11946 h->name, alias);
11947 else
11948 sec->name = alias;
11949 }
11950
11951 /* Called from write_object_file. */
11952 void
ia64_frob_file(void)11953 ia64_frob_file (void)
11954 {
11955 hash_traverse (secalias_hash, do_secalias);
11956 }
11957
11958 #ifdef TE_VMS
11959 #define NT_VMS_MHD 1
11960 #define NT_VMS_LNM 2
11961
11962 /* Integrity VMS 8.x identifies it's ELF modules with a standard ELF
11963 .note section. */
11964
11965 /* Manufacture a VMS-like time string. */
11966 static void
get_vms_time(char * Now)11967 get_vms_time (char *Now)
11968 {
11969 char *pnt;
11970 time_t timeb;
11971
11972 time (&timeb);
11973 pnt = ctime (&timeb);
11974 pnt[3] = 0;
11975 pnt[7] = 0;
11976 pnt[10] = 0;
11977 pnt[16] = 0;
11978 pnt[24] = 0;
11979 sprintf (Now, "%2s-%3s-%s %s", pnt + 8, pnt + 4, pnt + 20, pnt + 11);
11980 }
11981
11982 void
ia64_vms_note(void)11983 ia64_vms_note (void)
11984 {
11985 char *p;
11986 asection *seg = now_seg;
11987 subsegT subseg = now_subseg;
11988 asection *secp = NULL;
11989 char *bname;
11990 char buf [256];
11991 symbolS *sym;
11992
11993 /* Create the .note section. */
11994
11995 secp = subseg_new (".note", 0);
11996 bfd_set_section_flags (stdoutput,
11997 secp,
11998 SEC_HAS_CONTENTS | SEC_READONLY);
11999
12000 /* Module header note (MHD). */
12001 bname = xstrdup (lbasename (out_file_name));
12002 if ((p = strrchr (bname, '.')))
12003 *p = '\0';
12004
12005 /* VMS note header is 24 bytes long. */
12006 p = frag_more (8 + 8 + 8);
12007 number_to_chars_littleendian (p + 0, 8, 8);
12008 number_to_chars_littleendian (p + 8, 40 + strlen (bname), 8);
12009 number_to_chars_littleendian (p + 16, NT_VMS_MHD, 8);
12010
12011 p = frag_more (8);
12012 strcpy (p, "IPF/VMS");
12013
12014 p = frag_more (17 + 17 + strlen (bname) + 1 + 5);
12015 get_vms_time (p);
12016 strcpy (p + 17, "24-FEB-2005 15:00");
12017 p += 17 + 17;
12018 strcpy (p, bname);
12019 p += strlen (bname) + 1;
12020 free (bname);
12021 strcpy (p, "V1.0");
12022
12023 frag_align (3, 0, 0);
12024
12025 /* Language processor name note. */
12026 sprintf (buf, "GNU assembler version %s (%s) using BFD version %s",
12027 VERSION, TARGET_ALIAS, BFD_VERSION_STRING);
12028
12029 p = frag_more (8 + 8 + 8);
12030 number_to_chars_littleendian (p + 0, 8, 8);
12031 number_to_chars_littleendian (p + 8, strlen (buf) + 1, 8);
12032 number_to_chars_littleendian (p + 16, NT_VMS_LNM, 8);
12033
12034 p = frag_more (8);
12035 strcpy (p, "IPF/VMS");
12036
12037 p = frag_more (strlen (buf) + 1);
12038 strcpy (p, buf);
12039
12040 frag_align (3, 0, 0);
12041
12042 secp = subseg_new (".vms_display_name_info", 0);
12043 bfd_set_section_flags (stdoutput,
12044 secp,
12045 SEC_HAS_CONTENTS | SEC_READONLY);
12046
12047 /* This symbol should be passed on the command line and be variable
12048 according to language. */
12049 sym = symbol_new ("__gnat_vms_display_name@gnat_demangler_rtl",
12050 absolute_section, 0, &zero_address_frag);
12051 symbol_table_insert (sym);
12052 symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING | BSF_DYNAMIC;
12053
12054 p = frag_more (4);
12055 /* Format 3 of VMS demangler Spec. */
12056 number_to_chars_littleendian (p, 3, 4);
12057
12058 p = frag_more (4);
12059 /* Place holder for symbol table index of above symbol. */
12060 number_to_chars_littleendian (p, -1, 4);
12061
12062 frag_align (3, 0, 0);
12063
12064 /* We probably can't restore the current segment, for there likely
12065 isn't one yet... */
12066 if (seg && subseg)
12067 subseg_set (seg, subseg);
12068 }
12069
12070 #endif /* TE_VMS */
12071