1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 //     function-scope locals)
17 //   - All functions/classes/etc reside in namespace __tsan, except for those
18 //     declared in tsan_interface.h.
19 //   - Platform-specific files should be used instead of ifdefs (*).
20 //   - No system headers included in header files (*).
21 //   - Platform specific headres included only into platform-specific files (*).
22 //
23 //  (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28 
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_asm.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
34 #include "sanitizer_common/sanitizer_libignore.h"
35 #include "sanitizer_common/sanitizer_suppressions.h"
36 #include "sanitizer_common/sanitizer_thread_registry.h"
37 #include "tsan_clock.h"
38 #include "tsan_defs.h"
39 #include "tsan_flags.h"
40 #include "tsan_sync.h"
41 #include "tsan_trace.h"
42 #include "tsan_vector.h"
43 #include "tsan_report.h"
44 #include "tsan_platform.h"
45 #include "tsan_mutexset.h"
46 #include "tsan_ignoreset.h"
47 #include "tsan_stack_trace.h"
48 
49 #if SANITIZER_WORDSIZE != 64
50 # error "ThreadSanitizer is supported only on 64-bit platforms"
51 #endif
52 
53 namespace __tsan {
54 
55 #ifndef SANITIZER_GO
56 struct MapUnmapCallback;
57 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
58 static const uptr kAllocatorSpace = 0;
59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE;
60 static const uptr kAllocatorRegionSizeLog = 20;
61 static const uptr kAllocatorNumRegions =
62     kAllocatorSize >> kAllocatorRegionSizeLog;
63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
64     MapUnmapCallback> ByteMap;
65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0,
66     CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap,
67     MapUnmapCallback> PrimaryAllocator;
68 #else
69 typedef SizeClassAllocator64<Mapping::kHeapMemBeg,
70     Mapping::kHeapMemEnd - Mapping::kHeapMemBeg, 0,
71     DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
72 #endif
73 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
74 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
75 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
76     SecondaryAllocator> Allocator;
77 Allocator *allocator();
78 #endif
79 
80 void TsanCheckFailed(const char *file, int line, const char *cond,
81                      u64 v1, u64 v2);
82 
83 const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
84 
85 // FastState (from most significant bit):
86 //   ignore          : 1
87 //   tid             : kTidBits
88 //   unused          : -
89 //   history_size    : 3
90 //   epoch           : kClkBits
91 class FastState {
92  public:
FastState(u64 tid,u64 epoch)93   FastState(u64 tid, u64 epoch) {
94     x_ = tid << kTidShift;
95     x_ |= epoch;
96     DCHECK_EQ(tid, this->tid());
97     DCHECK_EQ(epoch, this->epoch());
98     DCHECK_EQ(GetIgnoreBit(), false);
99   }
100 
FastState(u64 x)101   explicit FastState(u64 x)
102       : x_(x) {
103   }
104 
raw()105   u64 raw() const {
106     return x_;
107   }
108 
tid()109   u64 tid() const {
110     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
111     return res;
112   }
113 
TidWithIgnore()114   u64 TidWithIgnore() const {
115     u64 res = x_ >> kTidShift;
116     return res;
117   }
118 
epoch()119   u64 epoch() const {
120     u64 res = x_ & ((1ull << kClkBits) - 1);
121     return res;
122   }
123 
IncrementEpoch()124   void IncrementEpoch() {
125     u64 old_epoch = epoch();
126     x_ += 1;
127     DCHECK_EQ(old_epoch + 1, epoch());
128     (void)old_epoch;
129   }
130 
SetIgnoreBit()131   void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()132   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()133   bool GetIgnoreBit() const { return (s64)x_ < 0; }
134 
SetHistorySize(int hs)135   void SetHistorySize(int hs) {
136     CHECK_GE(hs, 0);
137     CHECK_LE(hs, 7);
138     x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
139   }
140 
141   ALWAYS_INLINE
GetHistorySize()142   int GetHistorySize() const {
143     return (int)((x_ >> kHistoryShift) & kHistoryMask);
144   }
145 
ClearHistorySize()146   void ClearHistorySize() {
147     SetHistorySize(0);
148   }
149 
150   ALWAYS_INLINE
GetTracePos()151   u64 GetTracePos() const {
152     const int hs = GetHistorySize();
153     // When hs == 0, the trace consists of 2 parts.
154     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
155     return epoch() & mask;
156   }
157 
158  private:
159   friend class Shadow;
160   static const int kTidShift = 64 - kTidBits - 1;
161   static const u64 kIgnoreBit = 1ull << 63;
162   static const u64 kFreedBit = 1ull << 63;
163   static const u64 kHistoryShift = kClkBits;
164   static const u64 kHistoryMask = 7;
165   u64 x_;
166 };
167 
168 // Shadow (from most significant bit):
169 //   freed           : 1
170 //   tid             : kTidBits
171 //   is_atomic       : 1
172 //   is_read         : 1
173 //   size_log        : 2
174 //   addr0           : 3
175 //   epoch           : kClkBits
176 class Shadow : public FastState {
177  public:
Shadow(u64 x)178   explicit Shadow(u64 x)
179       : FastState(x) {
180   }
181 
Shadow(const FastState & s)182   explicit Shadow(const FastState &s)
183       : FastState(s.x_) {
184     ClearHistorySize();
185   }
186 
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)187   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
188     DCHECK_EQ((x_ >> kClkBits) & 31, 0);
189     DCHECK_LE(addr0, 7);
190     DCHECK_LE(kAccessSizeLog, 3);
191     x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
192     DCHECK_EQ(kAccessSizeLog, size_log());
193     DCHECK_EQ(addr0, this->addr0());
194   }
195 
SetWrite(unsigned kAccessIsWrite)196   void SetWrite(unsigned kAccessIsWrite) {
197     DCHECK_EQ(x_ & kReadBit, 0);
198     if (!kAccessIsWrite)
199       x_ |= kReadBit;
200     DCHECK_EQ(kAccessIsWrite, IsWrite());
201   }
202 
SetAtomic(bool kIsAtomic)203   void SetAtomic(bool kIsAtomic) {
204     DCHECK(!IsAtomic());
205     if (kIsAtomic)
206       x_ |= kAtomicBit;
207     DCHECK_EQ(IsAtomic(), kIsAtomic);
208   }
209 
IsAtomic()210   bool IsAtomic() const {
211     return x_ & kAtomicBit;
212   }
213 
IsZero()214   bool IsZero() const {
215     return x_ == 0;
216   }
217 
TidsAreEqual(const Shadow s1,const Shadow s2)218   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
219     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
220     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
221     return shifted_xor == 0;
222   }
223 
224   static ALWAYS_INLINE
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)225   bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
226     u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
227     return masked_xor == 0;
228   }
229 
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)230   static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
231       unsigned kS2AccessSize) {
232     bool res = false;
233     u64 diff = s1.addr0() - s2.addr0();
234     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
235       // if (s1.addr0() + size1) > s2.addr0()) return true;
236       if (s1.size() > -diff)
237         res = true;
238     } else {
239       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
240       if (kS2AccessSize > diff)
241         res = true;
242     }
243     DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
244     DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
245     return res;
246   }
247 
addr0()248   u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
size()249   u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
IsWrite()250   bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
IsRead()251   bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
252 
253   // The idea behind the freed bit is as follows.
254   // When the memory is freed (or otherwise unaccessible) we write to the shadow
255   // values with tid/epoch related to the free and the freed bit set.
256   // During memory accesses processing the freed bit is considered
257   // as msb of tid. So any access races with shadow with freed bit set
258   // (it is as if write from a thread with which we never synchronized before).
259   // This allows us to detect accesses to freed memory w/o additional
260   // overheads in memory access processing and at the same time restore
261   // tid/epoch of free.
MarkAsFreed()262   void MarkAsFreed() {
263      x_ |= kFreedBit;
264   }
265 
IsFreed()266   bool IsFreed() const {
267     return x_ & kFreedBit;
268   }
269 
GetFreedAndReset()270   bool GetFreedAndReset() {
271     bool res = x_ & kFreedBit;
272     x_ &= ~kFreedBit;
273     return res;
274   }
275 
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)276   bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
277     bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
278         | (u64(kIsAtomic) << kAtomicShift));
279     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
280     return v;
281   }
282 
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)283   bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
284     bool v = ((x_ >> kReadShift) & 3)
285         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
286     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
287         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
288     return v;
289   }
290 
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)291   bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
292     bool v = ((x_ >> kReadShift) & 3)
293         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
294     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
295         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
296     return v;
297   }
298 
299  private:
300   static const u64 kReadShift   = 5 + kClkBits;
301   static const u64 kReadBit     = 1ull << kReadShift;
302   static const u64 kAtomicShift = 6 + kClkBits;
303   static const u64 kAtomicBit   = 1ull << kAtomicShift;
304 
size_log()305   u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
306 
TwoRangesIntersectSlow(const Shadow s1,const Shadow s2)307   static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
308     if (s1.addr0() == s2.addr0()) return true;
309     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
310       return true;
311     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
312       return true;
313     return false;
314   }
315 };
316 
317 struct ThreadSignalContext;
318 
319 struct JmpBuf {
320   uptr sp;
321   uptr mangled_sp;
322   int int_signal_send;
323   bool in_blocking_func;
324   uptr in_signal_handler;
325   uptr *shadow_stack_pos;
326 };
327 
328 // This struct is stored in TLS.
329 struct ThreadState {
330   FastState fast_state;
331   // Synch epoch represents the threads's epoch before the last synchronization
332   // action. It allows to reduce number of shadow state updates.
333   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
334   // if we are processing write to X from the same thread at epoch=200,
335   // we do nothing, because both writes happen in the same 'synch epoch'.
336   // That is, if another memory access does not race with the former write,
337   // it does not race with the latter as well.
338   // QUESTION: can we can squeeze this into ThreadState::Fast?
339   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
340   // taken by epoch between synchs.
341   // This way we can save one load from tls.
342   u64 fast_synch_epoch;
343   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
344   // We do not distinguish beteween ignoring reads and writes
345   // for better performance.
346   int ignore_reads_and_writes;
347   int ignore_sync;
348   // Go does not support ignores.
349 #ifndef SANITIZER_GO
350   IgnoreSet mop_ignore_set;
351   IgnoreSet sync_ignore_set;
352 #endif
353   // C/C++ uses fixed size shadow stack embed into Trace.
354   // Go uses malloc-allocated shadow stack with dynamic size.
355   uptr *shadow_stack;
356   uptr *shadow_stack_end;
357   uptr *shadow_stack_pos;
358   u64 *racy_shadow_addr;
359   u64 racy_state[2];
360   MutexSet mset;
361   ThreadClock clock;
362 #ifndef SANITIZER_GO
363   AllocatorCache alloc_cache;
364   InternalAllocatorCache internal_alloc_cache;
365   Vector<JmpBuf> jmp_bufs;
366   int ignore_interceptors;
367 #endif
368 #if TSAN_COLLECT_STATS
369   u64 stat[StatCnt];
370 #endif
371   const int tid;
372   const int unique_id;
373   bool in_symbolizer;
374   bool in_ignored_lib;
375   bool is_inited;
376   bool is_dead;
377   bool is_freeing;
378   bool is_vptr_access;
379   const uptr stk_addr;
380   const uptr stk_size;
381   const uptr tls_addr;
382   const uptr tls_size;
383   ThreadContext *tctx;
384 
385 #if SANITIZER_DEBUG && !SANITIZER_GO
386   InternalDeadlockDetector internal_deadlock_detector;
387 #endif
388   DDPhysicalThread *dd_pt;
389   DDLogicalThread *dd_lt;
390 
391   atomic_uintptr_t in_signal_handler;
392   ThreadSignalContext *signal_ctx;
393 
394   DenseSlabAllocCache block_cache;
395   DenseSlabAllocCache sync_cache;
396   DenseSlabAllocCache clock_cache;
397 
398 #ifndef SANITIZER_GO
399   u32 last_sleep_stack_id;
400   ThreadClock last_sleep_clock;
401 #endif
402 
403   // Set in regions of runtime that must be signal-safe and fork-safe.
404   // If set, malloc must not be called.
405   int nomalloc;
406 
407   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
408                        unsigned reuse_count,
409                        uptr stk_addr, uptr stk_size,
410                        uptr tls_addr, uptr tls_size);
411 };
412 
413 #ifndef SANITIZER_GO
414 #if SANITIZER_MAC
415 ThreadState *cur_thread();
416 void cur_thread_finalize();
417 #else
418 __attribute__((tls_model("initial-exec")))
419 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()420 INLINE ThreadState *cur_thread() {
421   return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
422 }
cur_thread_finalize()423 INLINE void cur_thread_finalize() { }
424 #endif  // SANITIZER_MAC
425 #endif  // SANITIZER_GO
426 
427 class ThreadContext : public ThreadContextBase {
428  public:
429   explicit ThreadContext(int tid);
430   ~ThreadContext();
431   ThreadState *thr;
432   u32 creation_stack_id;
433   SyncClock sync;
434   // Epoch at which the thread had started.
435   // If we see an event from the thread stamped by an older epoch,
436   // the event is from a dead thread that shared tid with this thread.
437   u64 epoch0;
438   u64 epoch1;
439 
440   // Override superclass callbacks.
441   void OnDead() override;
442   void OnJoined(void *arg) override;
443   void OnFinished() override;
444   void OnStarted(void *arg) override;
445   void OnCreated(void *arg) override;
446   void OnReset() override;
447   void OnDetached(void *arg) override;
448 };
449 
450 struct RacyStacks {
451   MD5Hash hash[2];
452   bool operator==(const RacyStacks &other) const {
453     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
454       return true;
455     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
456       return true;
457     return false;
458   }
459 };
460 
461 struct RacyAddress {
462   uptr addr_min;
463   uptr addr_max;
464 };
465 
466 struct FiredSuppression {
467   ReportType type;
468   uptr pc_or_addr;
469   Suppression *supp;
470 };
471 
472 struct Context {
473   Context();
474 
475   bool initialized;
476   bool after_multithreaded_fork;
477 
478   MetaMap metamap;
479 
480   Mutex report_mtx;
481   int nreported;
482   int nmissed_expected;
483   atomic_uint64_t last_symbolize_time_ns;
484 
485   void *background_thread;
486   atomic_uint32_t stop_background_thread;
487 
488   ThreadRegistry *thread_registry;
489 
490   Mutex racy_mtx;
491   Vector<RacyStacks> racy_stacks;
492   Vector<RacyAddress> racy_addresses;
493   // Number of fired suppressions may be large enough.
494   Mutex fired_suppressions_mtx;
495   InternalMmapVector<FiredSuppression> fired_suppressions;
496   DDetector *dd;
497 
498   ClockAlloc clock_alloc;
499 
500   Flags flags;
501 
502   u64 stat[StatCnt];
503   u64 int_alloc_cnt[MBlockTypeCount];
504   u64 int_alloc_siz[MBlockTypeCount];
505 };
506 
507 extern Context *ctx;  // The one and the only global runtime context.
508 
509 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors510   ScopedIgnoreInterceptors() {
511 #ifndef SANITIZER_GO
512     cur_thread()->ignore_interceptors++;
513 #endif
514   }
515 
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors516   ~ScopedIgnoreInterceptors() {
517 #ifndef SANITIZER_GO
518     cur_thread()->ignore_interceptors--;
519 #endif
520   }
521 };
522 
523 class ScopedReport {
524  public:
525   explicit ScopedReport(ReportType typ);
526   ~ScopedReport();
527 
528   void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack,
529                        const MutexSet *mset);
530   void AddStack(StackTrace stack, bool suppressable = false);
531   void AddThread(const ThreadContext *tctx, bool suppressable = false);
532   void AddThread(int unique_tid, bool suppressable = false);
533   void AddUniqueTid(int unique_tid);
534   void AddMutex(const SyncVar *s);
535   u64 AddMutex(u64 id);
536   void AddLocation(uptr addr, uptr size);
537   void AddSleep(u32 stack_id);
538   void SetCount(int count);
539 
540   const ReportDesc *GetReport() const;
541 
542  private:
543   ReportDesc *rep_;
544   // Symbolizer makes lots of intercepted calls. If we try to process them,
545   // at best it will cause deadlocks on internal mutexes.
546   ScopedIgnoreInterceptors ignore_interceptors_;
547 
548   void AddDeadMutex(u64 id);
549 
550   ScopedReport(const ScopedReport&);
551   void operator = (const ScopedReport&);
552 };
553 
554 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
555                   MutexSet *mset);
556 
557 template<typename StackTraceTy>
ObtainCurrentStack(ThreadState * thr,uptr toppc,StackTraceTy * stack)558 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) {
559   uptr size = thr->shadow_stack_pos - thr->shadow_stack;
560   uptr start = 0;
561   if (size + !!toppc > kStackTraceMax) {
562     start = size + !!toppc - kStackTraceMax;
563     size = kStackTraceMax - !!toppc;
564   }
565   stack->Init(&thr->shadow_stack[start], size, toppc);
566 }
567 
568 
569 #if TSAN_COLLECT_STATS
570 void StatAggregate(u64 *dst, u64 *src);
571 void StatOutput(u64 *stat);
572 #endif
573 
574 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
575 #if TSAN_COLLECT_STATS
576   thr->stat[typ] += n;
577 #endif
578 }
StatSet(ThreadState * thr,StatType typ,u64 n)579 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
580 #if TSAN_COLLECT_STATS
581   thr->stat[typ] = n;
582 #endif
583 }
584 
585 void MapShadow(uptr addr, uptr size);
586 void MapThreadTrace(uptr addr, uptr size, const char *name);
587 void DontNeedShadowFor(uptr addr, uptr size);
588 void InitializeShadowMemory();
589 void InitializeInterceptors();
590 void InitializeLibIgnore();
591 void InitializeDynamicAnnotations();
592 
593 void ForkBefore(ThreadState *thr, uptr pc);
594 void ForkParentAfter(ThreadState *thr, uptr pc);
595 void ForkChildAfter(ThreadState *thr, uptr pc);
596 
597 void ReportRace(ThreadState *thr);
598 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
599 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
600 bool IsExpectedReport(uptr addr, uptr size);
601 void PrintMatchedBenignRaces();
602 
603 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
604 # define DPrintf Printf
605 #else
606 # define DPrintf(...)
607 #endif
608 
609 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
610 # define DPrintf2 Printf
611 #else
612 # define DPrintf2(...)
613 #endif
614 
615 u32 CurrentStackId(ThreadState *thr, uptr pc);
616 ReportStack *SymbolizeStackId(u32 stack_id);
617 void PrintCurrentStack(ThreadState *thr, uptr pc);
618 void PrintCurrentStackSlow(uptr pc);  // uses libunwind
619 
620 void Initialize(ThreadState *thr);
621 int Finalize(ThreadState *thr);
622 
623 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
624 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
625 
626 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
627     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
628 void MemoryAccessImpl(ThreadState *thr, uptr addr,
629     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
630     u64 *shadow_mem, Shadow cur);
631 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
632     uptr size, bool is_write);
633 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
634     uptr size, uptr step, bool is_write);
635 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
636     int size, bool kAccessIsWrite, bool kIsAtomic);
637 
638 const int kSizeLog1 = 0;
639 const int kSizeLog2 = 1;
640 const int kSizeLog4 = 2;
641 const int kSizeLog8 = 3;
642 
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)643 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
644                                      uptr addr, int kAccessSizeLog) {
645   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
646 }
647 
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)648 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
649                                       uptr addr, int kAccessSizeLog) {
650   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
651 }
652 
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)653 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
654                                            uptr addr, int kAccessSizeLog) {
655   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
656 }
657 
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)658 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
659                                             uptr addr, int kAccessSizeLog) {
660   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
661 }
662 
663 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
664 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
665 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
666 
667 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
668 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
669 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
670 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
671 
672 void FuncEntry(ThreadState *thr, uptr pc);
673 void FuncExit(ThreadState *thr);
674 
675 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
676 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
677 void ThreadFinish(ThreadState *thr);
678 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
679 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
680 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
681 void ThreadFinalize(ThreadState *thr);
682 void ThreadSetName(ThreadState *thr, const char *name);
683 int ThreadCount(ThreadState *thr);
684 void ProcessPendingSignals(ThreadState *thr);
685 
686 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
687                  bool rw, bool recursive, bool linker_init);
688 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
689 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
690                bool try_lock = false);
691 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
692 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
693 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
694 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
695 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
696 
697 void Acquire(ThreadState *thr, uptr pc, uptr addr);
698 // AcquireGlobal synchronizes the current thread with all other threads.
699 // In terms of happens-before relation, it draws a HB edge from all threads
700 // (where they happen to execute right now) to the current thread. We use it to
701 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
702 // right before executing finalizers. This provides a coarse, but simple
703 // approximation of the actual required synchronization.
704 void AcquireGlobal(ThreadState *thr, uptr pc);
705 void Release(ThreadState *thr, uptr pc, uptr addr);
706 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
707 void AfterSleep(ThreadState *thr, uptr pc);
708 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
709 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
710 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
711 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
712 
713 // The hacky call uses custom calling convention and an assembly thunk.
714 // It is considerably faster that a normal call for the caller
715 // if it is not executed (it is intended for slow paths from hot functions).
716 // The trick is that the call preserves all registers and the compiler
717 // does not treat it as a call.
718 // If it does not work for you, use normal call.
719 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
720 // The caller may not create the stack frame for itself at all,
721 // so we create a reserve stack frame for it (1024b must be enough).
722 #define HACKY_CALL(f) \
723   __asm__ __volatile__("sub $1024, %%rsp;" \
724                        CFI_INL_ADJUST_CFA_OFFSET(1024) \
725                        ".hidden " #f "_thunk;" \
726                        "call " #f "_thunk;" \
727                        "add $1024, %%rsp;" \
728                        CFI_INL_ADJUST_CFA_OFFSET(-1024) \
729                        ::: "memory", "cc");
730 #else
731 #define HACKY_CALL(f) f()
732 #endif
733 
734 void TraceSwitch(ThreadState *thr);
735 uptr TraceTopPC(ThreadState *thr);
736 uptr TraceSize();
737 uptr TraceParts();
738 Trace *ThreadTrace(int tid);
739 
740 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)741 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
742                                         EventType typ, u64 addr) {
743   if (!kCollectHistory)
744     return;
745   DCHECK_GE((int)typ, 0);
746   DCHECK_LE((int)typ, 7);
747   DCHECK_EQ(GetLsb(addr, 61), addr);
748   StatInc(thr, StatEvents);
749   u64 pos = fs.GetTracePos();
750   if (UNLIKELY((pos % kTracePartSize) == 0)) {
751 #ifndef SANITIZER_GO
752     HACKY_CALL(__tsan_trace_switch);
753 #else
754     TraceSwitch(thr);
755 #endif
756   }
757   Event *trace = (Event*)GetThreadTrace(fs.tid());
758   Event *evp = &trace[pos];
759   Event ev = (u64)addr | ((u64)typ << 61);
760   *evp = ev;
761 }
762 
763 #ifndef SANITIZER_GO
HeapEnd()764 uptr ALWAYS_INLINE HeapEnd() {
765   return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
766 }
767 #endif
768 
769 }  // namespace __tsan
770 
771 #endif  // TSAN_RTL_H
772