1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the COFFObjectFile class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Object/COFF.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/Support/COFF.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <cctype>
24 #include <limits>
25
26 using namespace llvm;
27 using namespace object;
28
29 using support::ulittle16_t;
30 using support::ulittle32_t;
31 using support::ulittle64_t;
32 using support::little16_t;
33
34 // Returns false if size is greater than the buffer size. And sets ec.
checkSize(MemoryBufferRef M,std::error_code & EC,uint64_t Size)35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
36 if (M.getBufferSize() < Size) {
37 EC = object_error::unexpected_eof;
38 return false;
39 }
40 return true;
41 }
42
checkOffset(MemoryBufferRef M,uintptr_t Addr,const uint64_t Size)43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr,
44 const uint64_t Size) {
45 if (Addr + Size < Addr || Addr + Size < Size ||
46 Addr + Size > uintptr_t(M.getBufferEnd()) ||
47 Addr < uintptr_t(M.getBufferStart())) {
48 return object_error::unexpected_eof;
49 }
50 return std::error_code();
51 }
52
53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
54 // Returns unexpected_eof if error.
55 template <typename T>
getObject(const T * & Obj,MemoryBufferRef M,const void * Ptr,const uint64_t Size=sizeof (T))56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
57 const void *Ptr,
58 const uint64_t Size = sizeof(T)) {
59 uintptr_t Addr = uintptr_t(Ptr);
60 if (std::error_code EC = checkOffset(M, Addr, Size))
61 return EC;
62 Obj = reinterpret_cast<const T *>(Addr);
63 return std::error_code();
64 }
65
66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
67 // prefixed slashes.
decodeBase64StringEntry(StringRef Str,uint32_t & Result)68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
69 assert(Str.size() <= 6 && "String too long, possible overflow.");
70 if (Str.size() > 6)
71 return true;
72
73 uint64_t Value = 0;
74 while (!Str.empty()) {
75 unsigned CharVal;
76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
77 CharVal = Str[0] - 'A';
78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
79 CharVal = Str[0] - 'a' + 26;
80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
81 CharVal = Str[0] - '0' + 52;
82 else if (Str[0] == '+') // 62
83 CharVal = 62;
84 else if (Str[0] == '/') // 63
85 CharVal = 63;
86 else
87 return true;
88
89 Value = (Value * 64) + CharVal;
90 Str = Str.substr(1);
91 }
92
93 if (Value > std::numeric_limits<uint32_t>::max())
94 return true;
95
96 Result = static_cast<uint32_t>(Value);
97 return false;
98 }
99
100 template <typename coff_symbol_type>
toSymb(DataRefImpl Ref) const101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
102 const coff_symbol_type *Addr =
103 reinterpret_cast<const coff_symbol_type *>(Ref.p);
104
105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
106 #ifndef NDEBUG
107 // Verify that the symbol points to a valid entry in the symbol table.
108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
109
110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
111 "Symbol did not point to the beginning of a symbol");
112 #endif
113
114 return Addr;
115 }
116
toSec(DataRefImpl Ref) const117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
119
120 # ifndef NDEBUG
121 // Verify that the section points to a valid entry in the section table.
122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
123 report_fatal_error("Section was outside of section table.");
124
125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
126 assert(Offset % sizeof(coff_section) == 0 &&
127 "Section did not point to the beginning of a section");
128 # endif
129
130 return Addr;
131 }
132
moveSymbolNext(DataRefImpl & Ref) const133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
134 auto End = reinterpret_cast<uintptr_t>(StringTable);
135 if (SymbolTable16) {
136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
137 Symb += 1 + Symb->NumberOfAuxSymbols;
138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
139 } else if (SymbolTable32) {
140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
141 Symb += 1 + Symb->NumberOfAuxSymbols;
142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
143 } else {
144 llvm_unreachable("no symbol table pointer!");
145 }
146 }
147
getSymbolName(DataRefImpl Ref) const148 ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
149 COFFSymbolRef Symb = getCOFFSymbol(Ref);
150 StringRef Result;
151 std::error_code EC = getSymbolName(Symb, Result);
152 if (EC)
153 return EC;
154 return Result;
155 }
156
getSymbolValueImpl(DataRefImpl Ref) const157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
158 return getCOFFSymbol(Ref).getValue();
159 }
160
getSymbolAddress(DataRefImpl Ref) const161 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
162 uint64_t Result = getSymbolValue(Ref);
163 COFFSymbolRef Symb = getCOFFSymbol(Ref);
164 int32_t SectionNumber = Symb.getSectionNumber();
165
166 if (Symb.isAnyUndefined() || Symb.isCommon() ||
167 COFF::isReservedSectionNumber(SectionNumber))
168 return Result;
169
170 const coff_section *Section = nullptr;
171 if (std::error_code EC = getSection(SectionNumber, Section))
172 return EC;
173 Result += Section->VirtualAddress;
174
175 // The section VirtualAddress does not include ImageBase, and we want to
176 // return virtual addresses.
177 Result += getImageBase();
178
179 return Result;
180 }
181
getSymbolType(DataRefImpl Ref) const182 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
183 COFFSymbolRef Symb = getCOFFSymbol(Ref);
184 int32_t SectionNumber = Symb.getSectionNumber();
185
186 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
187 return SymbolRef::ST_Function;
188 if (Symb.isAnyUndefined())
189 return SymbolRef::ST_Unknown;
190 if (Symb.isCommon())
191 return SymbolRef::ST_Data;
192 if (Symb.isFileRecord())
193 return SymbolRef::ST_File;
194
195 // TODO: perhaps we need a new symbol type ST_Section.
196 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
197 return SymbolRef::ST_Debug;
198
199 if (!COFF::isReservedSectionNumber(SectionNumber))
200 return SymbolRef::ST_Data;
201
202 return SymbolRef::ST_Other;
203 }
204
getSymbolFlags(DataRefImpl Ref) const205 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
206 COFFSymbolRef Symb = getCOFFSymbol(Ref);
207 uint32_t Result = SymbolRef::SF_None;
208
209 if (Symb.isExternal() || Symb.isWeakExternal())
210 Result |= SymbolRef::SF_Global;
211
212 if (Symb.isWeakExternal())
213 Result |= SymbolRef::SF_Weak;
214
215 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
216 Result |= SymbolRef::SF_Absolute;
217
218 if (Symb.isFileRecord())
219 Result |= SymbolRef::SF_FormatSpecific;
220
221 if (Symb.isSectionDefinition())
222 Result |= SymbolRef::SF_FormatSpecific;
223
224 if (Symb.isCommon())
225 Result |= SymbolRef::SF_Common;
226
227 if (Symb.isAnyUndefined())
228 Result |= SymbolRef::SF_Undefined;
229
230 return Result;
231 }
232
getCommonSymbolSizeImpl(DataRefImpl Ref) const233 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
234 COFFSymbolRef Symb = getCOFFSymbol(Ref);
235 return Symb.getValue();
236 }
237
238 ErrorOr<section_iterator>
getSymbolSection(DataRefImpl Ref) const239 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
240 COFFSymbolRef Symb = getCOFFSymbol(Ref);
241 if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
242 return section_end();
243 const coff_section *Sec = nullptr;
244 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
245 return EC;
246 DataRefImpl Ret;
247 Ret.p = reinterpret_cast<uintptr_t>(Sec);
248 return section_iterator(SectionRef(Ret, this));
249 }
250
getSymbolSectionID(SymbolRef Sym) const251 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
252 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
253 return Symb.getSectionNumber();
254 }
255
moveSectionNext(DataRefImpl & Ref) const256 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
257 const coff_section *Sec = toSec(Ref);
258 Sec += 1;
259 Ref.p = reinterpret_cast<uintptr_t>(Sec);
260 }
261
getSectionName(DataRefImpl Ref,StringRef & Result) const262 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
263 StringRef &Result) const {
264 const coff_section *Sec = toSec(Ref);
265 return getSectionName(Sec, Result);
266 }
267
getSectionAddress(DataRefImpl Ref) const268 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
269 const coff_section *Sec = toSec(Ref);
270 uint64_t Result = Sec->VirtualAddress;
271
272 // The section VirtualAddress does not include ImageBase, and we want to
273 // return virtual addresses.
274 Result += getImageBase();
275 return Result;
276 }
277
getSectionSize(DataRefImpl Ref) const278 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
279 return getSectionSize(toSec(Ref));
280 }
281
getSectionContents(DataRefImpl Ref,StringRef & Result) const282 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
283 StringRef &Result) const {
284 const coff_section *Sec = toSec(Ref);
285 ArrayRef<uint8_t> Res;
286 std::error_code EC = getSectionContents(Sec, Res);
287 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
288 return EC;
289 }
290
getSectionAlignment(DataRefImpl Ref) const291 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
292 const coff_section *Sec = toSec(Ref);
293 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1);
294 }
295
isSectionText(DataRefImpl Ref) const296 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
297 const coff_section *Sec = toSec(Ref);
298 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
299 }
300
isSectionData(DataRefImpl Ref) const301 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
302 const coff_section *Sec = toSec(Ref);
303 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
304 }
305
isSectionBSS(DataRefImpl Ref) const306 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
307 const coff_section *Sec = toSec(Ref);
308 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
309 COFF::IMAGE_SCN_MEM_READ |
310 COFF::IMAGE_SCN_MEM_WRITE;
311 return (Sec->Characteristics & BssFlags) == BssFlags;
312 }
313
getSectionID(SectionRef Sec) const314 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
315 uintptr_t Offset =
316 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
317 assert((Offset % sizeof(coff_section)) == 0);
318 return (Offset / sizeof(coff_section)) + 1;
319 }
320
isSectionVirtual(DataRefImpl Ref) const321 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
322 const coff_section *Sec = toSec(Ref);
323 // In COFF, a virtual section won't have any in-file
324 // content, so the file pointer to the content will be zero.
325 return Sec->PointerToRawData == 0;
326 }
327
getNumberOfRelocations(const coff_section * Sec,MemoryBufferRef M,const uint8_t * base)328 static uint32_t getNumberOfRelocations(const coff_section *Sec,
329 MemoryBufferRef M, const uint8_t *base) {
330 // The field for the number of relocations in COFF section table is only
331 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
332 // NumberOfRelocations field, and the actual relocation count is stored in the
333 // VirtualAddress field in the first relocation entry.
334 if (Sec->hasExtendedRelocations()) {
335 const coff_relocation *FirstReloc;
336 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
337 base + Sec->PointerToRelocations)))
338 return 0;
339 // -1 to exclude this first relocation entry.
340 return FirstReloc->VirtualAddress - 1;
341 }
342 return Sec->NumberOfRelocations;
343 }
344
345 static const coff_relocation *
getFirstReloc(const coff_section * Sec,MemoryBufferRef M,const uint8_t * Base)346 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
347 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
348 if (!NumRelocs)
349 return nullptr;
350 auto begin = reinterpret_cast<const coff_relocation *>(
351 Base + Sec->PointerToRelocations);
352 if (Sec->hasExtendedRelocations()) {
353 // Skip the first relocation entry repurposed to store the number of
354 // relocations.
355 begin++;
356 }
357 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs))
358 return nullptr;
359 return begin;
360 }
361
section_rel_begin(DataRefImpl Ref) const362 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
363 const coff_section *Sec = toSec(Ref);
364 const coff_relocation *begin = getFirstReloc(Sec, Data, base());
365 if (begin && Sec->VirtualAddress != 0)
366 report_fatal_error("Sections with relocations should have an address of 0");
367 DataRefImpl Ret;
368 Ret.p = reinterpret_cast<uintptr_t>(begin);
369 return relocation_iterator(RelocationRef(Ret, this));
370 }
371
section_rel_end(DataRefImpl Ref) const372 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
373 const coff_section *Sec = toSec(Ref);
374 const coff_relocation *I = getFirstReloc(Sec, Data, base());
375 if (I)
376 I += getNumberOfRelocations(Sec, Data, base());
377 DataRefImpl Ret;
378 Ret.p = reinterpret_cast<uintptr_t>(I);
379 return relocation_iterator(RelocationRef(Ret, this));
380 }
381
382 // Initialize the pointer to the symbol table.
initSymbolTablePtr()383 std::error_code COFFObjectFile::initSymbolTablePtr() {
384 if (COFFHeader)
385 if (std::error_code EC = getObject(
386 SymbolTable16, Data, base() + getPointerToSymbolTable(),
387 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
388 return EC;
389
390 if (COFFBigObjHeader)
391 if (std::error_code EC = getObject(
392 SymbolTable32, Data, base() + getPointerToSymbolTable(),
393 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
394 return EC;
395
396 // Find string table. The first four byte of the string table contains the
397 // total size of the string table, including the size field itself. If the
398 // string table is empty, the value of the first four byte would be 4.
399 uint32_t StringTableOffset = getPointerToSymbolTable() +
400 getNumberOfSymbols() * getSymbolTableEntrySize();
401 const uint8_t *StringTableAddr = base() + StringTableOffset;
402 const ulittle32_t *StringTableSizePtr;
403 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
404 return EC;
405 StringTableSize = *StringTableSizePtr;
406 if (std::error_code EC =
407 getObject(StringTable, Data, StringTableAddr, StringTableSize))
408 return EC;
409
410 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
411 // tools like cvtres write a size of 0 for an empty table instead of 4.
412 if (StringTableSize < 4)
413 StringTableSize = 4;
414
415 // Check that the string table is null terminated if has any in it.
416 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
417 return object_error::parse_failed;
418 return std::error_code();
419 }
420
getImageBase() const421 uint64_t COFFObjectFile::getImageBase() const {
422 if (PE32Header)
423 return PE32Header->ImageBase;
424 else if (PE32PlusHeader)
425 return PE32PlusHeader->ImageBase;
426 // This actually comes up in practice.
427 return 0;
428 }
429
430 // Returns the file offset for the given VA.
getVaPtr(uint64_t Addr,uintptr_t & Res) const431 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
432 uint64_t ImageBase = getImageBase();
433 uint64_t Rva = Addr - ImageBase;
434 assert(Rva <= UINT32_MAX);
435 return getRvaPtr((uint32_t)Rva, Res);
436 }
437
438 // Returns the file offset for the given RVA.
getRvaPtr(uint32_t Addr,uintptr_t & Res) const439 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
440 for (const SectionRef &S : sections()) {
441 const coff_section *Section = getCOFFSection(S);
442 uint32_t SectionStart = Section->VirtualAddress;
443 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
444 if (SectionStart <= Addr && Addr < SectionEnd) {
445 uint32_t Offset = Addr - SectionStart;
446 Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
447 return std::error_code();
448 }
449 }
450 return object_error::parse_failed;
451 }
452
453 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
454 // table entry.
getHintName(uint32_t Rva,uint16_t & Hint,StringRef & Name) const455 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
456 StringRef &Name) const {
457 uintptr_t IntPtr = 0;
458 if (std::error_code EC = getRvaPtr(Rva, IntPtr))
459 return EC;
460 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
461 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
462 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
463 return std::error_code();
464 }
465
466 // Find the import table.
initImportTablePtr()467 std::error_code COFFObjectFile::initImportTablePtr() {
468 // First, we get the RVA of the import table. If the file lacks a pointer to
469 // the import table, do nothing.
470 const data_directory *DataEntry;
471 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
472 return std::error_code();
473
474 // Do nothing if the pointer to import table is NULL.
475 if (DataEntry->RelativeVirtualAddress == 0)
476 return std::error_code();
477
478 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
479 // -1 because the last entry is the null entry.
480 NumberOfImportDirectory = DataEntry->Size /
481 sizeof(import_directory_table_entry) - 1;
482
483 // Find the section that contains the RVA. This is needed because the RVA is
484 // the import table's memory address which is different from its file offset.
485 uintptr_t IntPtr = 0;
486 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
487 return EC;
488 ImportDirectory = reinterpret_cast<
489 const import_directory_table_entry *>(IntPtr);
490 return std::error_code();
491 }
492
493 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
initDelayImportTablePtr()494 std::error_code COFFObjectFile::initDelayImportTablePtr() {
495 const data_directory *DataEntry;
496 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
497 return std::error_code();
498 if (DataEntry->RelativeVirtualAddress == 0)
499 return std::error_code();
500
501 uint32_t RVA = DataEntry->RelativeVirtualAddress;
502 NumberOfDelayImportDirectory = DataEntry->Size /
503 sizeof(delay_import_directory_table_entry) - 1;
504
505 uintptr_t IntPtr = 0;
506 if (std::error_code EC = getRvaPtr(RVA, IntPtr))
507 return EC;
508 DelayImportDirectory = reinterpret_cast<
509 const delay_import_directory_table_entry *>(IntPtr);
510 return std::error_code();
511 }
512
513 // Find the export table.
initExportTablePtr()514 std::error_code COFFObjectFile::initExportTablePtr() {
515 // First, we get the RVA of the export table. If the file lacks a pointer to
516 // the export table, do nothing.
517 const data_directory *DataEntry;
518 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
519 return std::error_code();
520
521 // Do nothing if the pointer to export table is NULL.
522 if (DataEntry->RelativeVirtualAddress == 0)
523 return std::error_code();
524
525 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
526 uintptr_t IntPtr = 0;
527 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
528 return EC;
529 ExportDirectory =
530 reinterpret_cast<const export_directory_table_entry *>(IntPtr);
531 return std::error_code();
532 }
533
initBaseRelocPtr()534 std::error_code COFFObjectFile::initBaseRelocPtr() {
535 const data_directory *DataEntry;
536 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
537 return std::error_code();
538 if (DataEntry->RelativeVirtualAddress == 0)
539 return std::error_code();
540
541 uintptr_t IntPtr = 0;
542 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
543 return EC;
544 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
545 IntPtr);
546 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
547 IntPtr + DataEntry->Size);
548 return std::error_code();
549 }
550
COFFObjectFile(MemoryBufferRef Object,std::error_code & EC)551 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
552 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
553 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
554 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
555 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
556 ImportDirectory(nullptr), NumberOfImportDirectory(0),
557 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
558 ExportDirectory(nullptr), BaseRelocHeader(nullptr),
559 BaseRelocEnd(nullptr) {
560 // Check that we at least have enough room for a header.
561 if (!checkSize(Data, EC, sizeof(coff_file_header)))
562 return;
563
564 // The current location in the file where we are looking at.
565 uint64_t CurPtr = 0;
566
567 // PE header is optional and is present only in executables. If it exists,
568 // it is placed right after COFF header.
569 bool HasPEHeader = false;
570
571 // Check if this is a PE/COFF file.
572 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
573 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
574 // PE signature to find 'normal' COFF header.
575 const auto *DH = reinterpret_cast<const dos_header *>(base());
576 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
577 CurPtr = DH->AddressOfNewExeHeader;
578 // Check the PE magic bytes. ("PE\0\0")
579 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
580 EC = object_error::parse_failed;
581 return;
582 }
583 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
584 HasPEHeader = true;
585 }
586 }
587
588 if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
589 return;
590
591 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF
592 // import libraries share a common prefix but bigobj is more restrictive.
593 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
594 COFFHeader->NumberOfSections == uint16_t(0xffff) &&
595 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
596 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
597 return;
598
599 // Verify that we are dealing with bigobj.
600 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
601 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
602 sizeof(COFF::BigObjMagic)) == 0) {
603 COFFHeader = nullptr;
604 CurPtr += sizeof(coff_bigobj_file_header);
605 } else {
606 // It's not a bigobj.
607 COFFBigObjHeader = nullptr;
608 }
609 }
610 if (COFFHeader) {
611 // The prior checkSize call may have failed. This isn't a hard error
612 // because we were just trying to sniff out bigobj.
613 EC = std::error_code();
614 CurPtr += sizeof(coff_file_header);
615
616 if (COFFHeader->isImportLibrary())
617 return;
618 }
619
620 if (HasPEHeader) {
621 const pe32_header *Header;
622 if ((EC = getObject(Header, Data, base() + CurPtr)))
623 return;
624
625 const uint8_t *DataDirAddr;
626 uint64_t DataDirSize;
627 if (Header->Magic == COFF::PE32Header::PE32) {
628 PE32Header = Header;
629 DataDirAddr = base() + CurPtr + sizeof(pe32_header);
630 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
631 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
632 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
633 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
634 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
635 } else {
636 // It's neither PE32 nor PE32+.
637 EC = object_error::parse_failed;
638 return;
639 }
640 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
641 return;
642 CurPtr += COFFHeader->SizeOfOptionalHeader;
643 }
644
645 if ((EC = getObject(SectionTable, Data, base() + CurPtr,
646 (uint64_t)getNumberOfSections() * sizeof(coff_section))))
647 return;
648
649 // Initialize the pointer to the symbol table.
650 if (getPointerToSymbolTable() != 0) {
651 if ((EC = initSymbolTablePtr()))
652 return;
653 } else {
654 // We had better not have any symbols if we don't have a symbol table.
655 if (getNumberOfSymbols() != 0) {
656 EC = object_error::parse_failed;
657 return;
658 }
659 }
660
661 // Initialize the pointer to the beginning of the import table.
662 if ((EC = initImportTablePtr()))
663 return;
664 if ((EC = initDelayImportTablePtr()))
665 return;
666
667 // Initialize the pointer to the export table.
668 if ((EC = initExportTablePtr()))
669 return;
670
671 // Initialize the pointer to the base relocation table.
672 if ((EC = initBaseRelocPtr()))
673 return;
674
675 EC = std::error_code();
676 }
677
symbol_begin_impl() const678 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
679 DataRefImpl Ret;
680 Ret.p = getSymbolTable();
681 return basic_symbol_iterator(SymbolRef(Ret, this));
682 }
683
symbol_end_impl() const684 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
685 // The symbol table ends where the string table begins.
686 DataRefImpl Ret;
687 Ret.p = reinterpret_cast<uintptr_t>(StringTable);
688 return basic_symbol_iterator(SymbolRef(Ret, this));
689 }
690
import_directory_begin() const691 import_directory_iterator COFFObjectFile::import_directory_begin() const {
692 return import_directory_iterator(
693 ImportDirectoryEntryRef(ImportDirectory, 0, this));
694 }
695
import_directory_end() const696 import_directory_iterator COFFObjectFile::import_directory_end() const {
697 return import_directory_iterator(
698 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this));
699 }
700
701 delay_import_directory_iterator
delay_import_directory_begin() const702 COFFObjectFile::delay_import_directory_begin() const {
703 return delay_import_directory_iterator(
704 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
705 }
706
707 delay_import_directory_iterator
delay_import_directory_end() const708 COFFObjectFile::delay_import_directory_end() const {
709 return delay_import_directory_iterator(
710 DelayImportDirectoryEntryRef(
711 DelayImportDirectory, NumberOfDelayImportDirectory, this));
712 }
713
export_directory_begin() const714 export_directory_iterator COFFObjectFile::export_directory_begin() const {
715 return export_directory_iterator(
716 ExportDirectoryEntryRef(ExportDirectory, 0, this));
717 }
718
export_directory_end() const719 export_directory_iterator COFFObjectFile::export_directory_end() const {
720 if (!ExportDirectory)
721 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
722 ExportDirectoryEntryRef Ref(ExportDirectory,
723 ExportDirectory->AddressTableEntries, this);
724 return export_directory_iterator(Ref);
725 }
726
section_begin() const727 section_iterator COFFObjectFile::section_begin() const {
728 DataRefImpl Ret;
729 Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
730 return section_iterator(SectionRef(Ret, this));
731 }
732
section_end() const733 section_iterator COFFObjectFile::section_end() const {
734 DataRefImpl Ret;
735 int NumSections =
736 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
737 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
738 return section_iterator(SectionRef(Ret, this));
739 }
740
base_reloc_begin() const741 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
742 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
743 }
744
base_reloc_end() const745 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
746 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
747 }
748
getBytesInAddress() const749 uint8_t COFFObjectFile::getBytesInAddress() const {
750 return getArch() == Triple::x86_64 ? 8 : 4;
751 }
752
getFileFormatName() const753 StringRef COFFObjectFile::getFileFormatName() const {
754 switch(getMachine()) {
755 case COFF::IMAGE_FILE_MACHINE_I386:
756 return "COFF-i386";
757 case COFF::IMAGE_FILE_MACHINE_AMD64:
758 return "COFF-x86-64";
759 case COFF::IMAGE_FILE_MACHINE_ARMNT:
760 return "COFF-ARM";
761 case COFF::IMAGE_FILE_MACHINE_ARM64:
762 return "COFF-ARM64";
763 default:
764 return "COFF-<unknown arch>";
765 }
766 }
767
getArch() const768 unsigned COFFObjectFile::getArch() const {
769 switch (getMachine()) {
770 case COFF::IMAGE_FILE_MACHINE_I386:
771 return Triple::x86;
772 case COFF::IMAGE_FILE_MACHINE_AMD64:
773 return Triple::x86_64;
774 case COFF::IMAGE_FILE_MACHINE_ARMNT:
775 return Triple::thumb;
776 case COFF::IMAGE_FILE_MACHINE_ARM64:
777 return Triple::aarch64;
778 default:
779 return Triple::UnknownArch;
780 }
781 }
782
783 iterator_range<import_directory_iterator>
import_directories() const784 COFFObjectFile::import_directories() const {
785 return make_range(import_directory_begin(), import_directory_end());
786 }
787
788 iterator_range<delay_import_directory_iterator>
delay_import_directories() const789 COFFObjectFile::delay_import_directories() const {
790 return make_range(delay_import_directory_begin(),
791 delay_import_directory_end());
792 }
793
794 iterator_range<export_directory_iterator>
export_directories() const795 COFFObjectFile::export_directories() const {
796 return make_range(export_directory_begin(), export_directory_end());
797 }
798
base_relocs() const799 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
800 return make_range(base_reloc_begin(), base_reloc_end());
801 }
802
getPE32Header(const pe32_header * & Res) const803 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
804 Res = PE32Header;
805 return std::error_code();
806 }
807
808 std::error_code
getPE32PlusHeader(const pe32plus_header * & Res) const809 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
810 Res = PE32PlusHeader;
811 return std::error_code();
812 }
813
814 std::error_code
getDataDirectory(uint32_t Index,const data_directory * & Res) const815 COFFObjectFile::getDataDirectory(uint32_t Index,
816 const data_directory *&Res) const {
817 // Error if if there's no data directory or the index is out of range.
818 if (!DataDirectory) {
819 Res = nullptr;
820 return object_error::parse_failed;
821 }
822 assert(PE32Header || PE32PlusHeader);
823 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
824 : PE32PlusHeader->NumberOfRvaAndSize;
825 if (Index >= NumEnt) {
826 Res = nullptr;
827 return object_error::parse_failed;
828 }
829 Res = &DataDirectory[Index];
830 return std::error_code();
831 }
832
getSection(int32_t Index,const coff_section * & Result) const833 std::error_code COFFObjectFile::getSection(int32_t Index,
834 const coff_section *&Result) const {
835 Result = nullptr;
836 if (COFF::isReservedSectionNumber(Index))
837 return std::error_code();
838 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
839 // We already verified the section table data, so no need to check again.
840 Result = SectionTable + (Index - 1);
841 return std::error_code();
842 }
843 return object_error::parse_failed;
844 }
845
getString(uint32_t Offset,StringRef & Result) const846 std::error_code COFFObjectFile::getString(uint32_t Offset,
847 StringRef &Result) const {
848 if (StringTableSize <= 4)
849 // Tried to get a string from an empty string table.
850 return object_error::parse_failed;
851 if (Offset >= StringTableSize)
852 return object_error::unexpected_eof;
853 Result = StringRef(StringTable + Offset);
854 return std::error_code();
855 }
856
getSymbolName(COFFSymbolRef Symbol,StringRef & Res) const857 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
858 StringRef &Res) const {
859 return getSymbolName(Symbol.getGeneric(), Res);
860 }
861
getSymbolName(const coff_symbol_generic * Symbol,StringRef & Res) const862 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
863 StringRef &Res) const {
864 // Check for string table entry. First 4 bytes are 0.
865 if (Symbol->Name.Offset.Zeroes == 0) {
866 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
867 return EC;
868 return std::error_code();
869 }
870
871 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
872 // Null terminated, let ::strlen figure out the length.
873 Res = StringRef(Symbol->Name.ShortName);
874 else
875 // Not null terminated, use all 8 bytes.
876 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
877 return std::error_code();
878 }
879
880 ArrayRef<uint8_t>
getSymbolAuxData(COFFSymbolRef Symbol) const881 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
882 const uint8_t *Aux = nullptr;
883
884 size_t SymbolSize = getSymbolTableEntrySize();
885 if (Symbol.getNumberOfAuxSymbols() > 0) {
886 // AUX data comes immediately after the symbol in COFF
887 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
888 # ifndef NDEBUG
889 // Verify that the Aux symbol points to a valid entry in the symbol table.
890 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
891 if (Offset < getPointerToSymbolTable() ||
892 Offset >=
893 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
894 report_fatal_error("Aux Symbol data was outside of symbol table.");
895
896 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
897 "Aux Symbol data did not point to the beginning of a symbol");
898 # endif
899 }
900 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
901 }
902
getSectionName(const coff_section * Sec,StringRef & Res) const903 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
904 StringRef &Res) const {
905 StringRef Name;
906 if (Sec->Name[COFF::NameSize - 1] == 0)
907 // Null terminated, let ::strlen figure out the length.
908 Name = Sec->Name;
909 else
910 // Not null terminated, use all 8 bytes.
911 Name = StringRef(Sec->Name, COFF::NameSize);
912
913 // Check for string table entry. First byte is '/'.
914 if (Name.startswith("/")) {
915 uint32_t Offset;
916 if (Name.startswith("//")) {
917 if (decodeBase64StringEntry(Name.substr(2), Offset))
918 return object_error::parse_failed;
919 } else {
920 if (Name.substr(1).getAsInteger(10, Offset))
921 return object_error::parse_failed;
922 }
923 if (std::error_code EC = getString(Offset, Name))
924 return EC;
925 }
926
927 Res = Name;
928 return std::error_code();
929 }
930
getSectionSize(const coff_section * Sec) const931 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
932 // SizeOfRawData and VirtualSize change what they represent depending on
933 // whether or not we have an executable image.
934 //
935 // For object files, SizeOfRawData contains the size of section's data;
936 // VirtualSize should be zero but isn't due to buggy COFF writers.
937 //
938 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
939 // actual section size is in VirtualSize. It is possible for VirtualSize to
940 // be greater than SizeOfRawData; the contents past that point should be
941 // considered to be zero.
942 if (getDOSHeader())
943 return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
944 return Sec->SizeOfRawData;
945 }
946
947 std::error_code
getSectionContents(const coff_section * Sec,ArrayRef<uint8_t> & Res) const948 COFFObjectFile::getSectionContents(const coff_section *Sec,
949 ArrayRef<uint8_t> &Res) const {
950 // PointerToRawData and SizeOfRawData won't make sense for BSS sections,
951 // don't do anything interesting for them.
952 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 &&
953 "BSS sections don't have contents!");
954 // The only thing that we need to verify is that the contents is contained
955 // within the file bounds. We don't need to make sure it doesn't cover other
956 // data, as there's nothing that says that is not allowed.
957 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
958 uint32_t SectionSize = getSectionSize(Sec);
959 if (checkOffset(Data, ConStart, SectionSize))
960 return object_error::parse_failed;
961 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
962 return std::error_code();
963 }
964
toRel(DataRefImpl Rel) const965 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
966 return reinterpret_cast<const coff_relocation*>(Rel.p);
967 }
968
moveRelocationNext(DataRefImpl & Rel) const969 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
970 Rel.p = reinterpret_cast<uintptr_t>(
971 reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
972 }
973
getRelocationOffset(DataRefImpl Rel) const974 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
975 const coff_relocation *R = toRel(Rel);
976 return R->VirtualAddress;
977 }
978
getRelocationSymbol(DataRefImpl Rel) const979 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
980 const coff_relocation *R = toRel(Rel);
981 DataRefImpl Ref;
982 if (R->SymbolTableIndex >= getNumberOfSymbols())
983 return symbol_end();
984 if (SymbolTable16)
985 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
986 else if (SymbolTable32)
987 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
988 else
989 llvm_unreachable("no symbol table pointer!");
990 return symbol_iterator(SymbolRef(Ref, this));
991 }
992
getRelocationType(DataRefImpl Rel) const993 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
994 const coff_relocation* R = toRel(Rel);
995 return R->Type;
996 }
997
998 const coff_section *
getCOFFSection(const SectionRef & Section) const999 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
1000 return toSec(Section.getRawDataRefImpl());
1001 }
1002
getCOFFSymbol(const DataRefImpl & Ref) const1003 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
1004 if (SymbolTable16)
1005 return toSymb<coff_symbol16>(Ref);
1006 if (SymbolTable32)
1007 return toSymb<coff_symbol32>(Ref);
1008 llvm_unreachable("no symbol table pointer!");
1009 }
1010
getCOFFSymbol(const SymbolRef & Symbol) const1011 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
1012 return getCOFFSymbol(Symbol.getRawDataRefImpl());
1013 }
1014
1015 const coff_relocation *
getCOFFRelocation(const RelocationRef & Reloc) const1016 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
1017 return toRel(Reloc.getRawDataRefImpl());
1018 }
1019
1020 iterator_range<const coff_relocation *>
getRelocations(const coff_section * Sec) const1021 COFFObjectFile::getRelocations(const coff_section *Sec) const {
1022 const coff_relocation *I = getFirstReloc(Sec, Data, base());
1023 const coff_relocation *E = I;
1024 if (I)
1025 E += getNumberOfRelocations(Sec, Data, base());
1026 return make_range(I, E);
1027 }
1028
1029 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \
1030 case COFF::reloc_type: \
1031 Res = #reloc_type; \
1032 break;
1033
getRelocationTypeName(DataRefImpl Rel,SmallVectorImpl<char> & Result) const1034 void COFFObjectFile::getRelocationTypeName(
1035 DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
1036 const coff_relocation *Reloc = toRel(Rel);
1037 StringRef Res;
1038 switch (getMachine()) {
1039 case COFF::IMAGE_FILE_MACHINE_AMD64:
1040 switch (Reloc->Type) {
1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
1058 default:
1059 Res = "Unknown";
1060 }
1061 break;
1062 case COFF::IMAGE_FILE_MACHINE_ARMNT:
1063 switch (Reloc->Type) {
1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
1079 default:
1080 Res = "Unknown";
1081 }
1082 break;
1083 case COFF::IMAGE_FILE_MACHINE_I386:
1084 switch (Reloc->Type) {
1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
1087 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
1095 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
1096 default:
1097 Res = "Unknown";
1098 }
1099 break;
1100 default:
1101 Res = "Unknown";
1102 }
1103 Result.append(Res.begin(), Res.end());
1104 }
1105
1106 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
1107
isRelocatableObject() const1108 bool COFFObjectFile::isRelocatableObject() const {
1109 return !DataDirectory;
1110 }
1111
1112 bool ImportDirectoryEntryRef::
operator ==(const ImportDirectoryEntryRef & Other) const1113 operator==(const ImportDirectoryEntryRef &Other) const {
1114 return ImportTable == Other.ImportTable && Index == Other.Index;
1115 }
1116
moveNext()1117 void ImportDirectoryEntryRef::moveNext() {
1118 ++Index;
1119 }
1120
getImportTableEntry(const import_directory_table_entry * & Result) const1121 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
1122 const import_directory_table_entry *&Result) const {
1123 Result = ImportTable + Index;
1124 return std::error_code();
1125 }
1126
1127 static imported_symbol_iterator
makeImportedSymbolIterator(const COFFObjectFile * Object,uintptr_t Ptr,int Index)1128 makeImportedSymbolIterator(const COFFObjectFile *Object,
1129 uintptr_t Ptr, int Index) {
1130 if (Object->getBytesInAddress() == 4) {
1131 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
1132 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1133 }
1134 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
1135 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
1136 }
1137
1138 static imported_symbol_iterator
importedSymbolBegin(uint32_t RVA,const COFFObjectFile * Object)1139 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
1140 uintptr_t IntPtr = 0;
1141 Object->getRvaPtr(RVA, IntPtr);
1142 return makeImportedSymbolIterator(Object, IntPtr, 0);
1143 }
1144
1145 static imported_symbol_iterator
importedSymbolEnd(uint32_t RVA,const COFFObjectFile * Object)1146 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
1147 uintptr_t IntPtr = 0;
1148 Object->getRvaPtr(RVA, IntPtr);
1149 // Forward the pointer to the last entry which is null.
1150 int Index = 0;
1151 if (Object->getBytesInAddress() == 4) {
1152 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
1153 while (*Entry++)
1154 ++Index;
1155 } else {
1156 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
1157 while (*Entry++)
1158 ++Index;
1159 }
1160 return makeImportedSymbolIterator(Object, IntPtr, Index);
1161 }
1162
1163 imported_symbol_iterator
imported_symbol_begin() const1164 ImportDirectoryEntryRef::imported_symbol_begin() const {
1165 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
1166 OwningObject);
1167 }
1168
1169 imported_symbol_iterator
imported_symbol_end() const1170 ImportDirectoryEntryRef::imported_symbol_end() const {
1171 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
1172 OwningObject);
1173 }
1174
1175 iterator_range<imported_symbol_iterator>
imported_symbols() const1176 ImportDirectoryEntryRef::imported_symbols() const {
1177 return make_range(imported_symbol_begin(), imported_symbol_end());
1178 }
1179
getName(StringRef & Result) const1180 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
1181 uintptr_t IntPtr = 0;
1182 if (std::error_code EC =
1183 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
1184 return EC;
1185 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1186 return std::error_code();
1187 }
1188
1189 std::error_code
getImportLookupTableRVA(uint32_t & Result) const1190 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const {
1191 Result = ImportTable[Index].ImportLookupTableRVA;
1192 return std::error_code();
1193 }
1194
1195 std::error_code
getImportAddressTableRVA(uint32_t & Result) const1196 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
1197 Result = ImportTable[Index].ImportAddressTableRVA;
1198 return std::error_code();
1199 }
1200
getImportLookupEntry(const import_lookup_table_entry32 * & Result) const1201 std::error_code ImportDirectoryEntryRef::getImportLookupEntry(
1202 const import_lookup_table_entry32 *&Result) const {
1203 uintptr_t IntPtr = 0;
1204 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA;
1205 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1206 return EC;
1207 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr);
1208 return std::error_code();
1209 }
1210
1211 bool DelayImportDirectoryEntryRef::
operator ==(const DelayImportDirectoryEntryRef & Other) const1212 operator==(const DelayImportDirectoryEntryRef &Other) const {
1213 return Table == Other.Table && Index == Other.Index;
1214 }
1215
moveNext()1216 void DelayImportDirectoryEntryRef::moveNext() {
1217 ++Index;
1218 }
1219
1220 imported_symbol_iterator
imported_symbol_begin() const1221 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
1222 return importedSymbolBegin(Table[Index].DelayImportNameTable,
1223 OwningObject);
1224 }
1225
1226 imported_symbol_iterator
imported_symbol_end() const1227 DelayImportDirectoryEntryRef::imported_symbol_end() const {
1228 return importedSymbolEnd(Table[Index].DelayImportNameTable,
1229 OwningObject);
1230 }
1231
1232 iterator_range<imported_symbol_iterator>
imported_symbols() const1233 DelayImportDirectoryEntryRef::imported_symbols() const {
1234 return make_range(imported_symbol_begin(), imported_symbol_end());
1235 }
1236
getName(StringRef & Result) const1237 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
1238 uintptr_t IntPtr = 0;
1239 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
1240 return EC;
1241 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1242 return std::error_code();
1243 }
1244
1245 std::error_code DelayImportDirectoryEntryRef::
getDelayImportTable(const delay_import_directory_table_entry * & Result) const1246 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
1247 Result = Table;
1248 return std::error_code();
1249 }
1250
1251 std::error_code DelayImportDirectoryEntryRef::
getImportAddress(int AddrIndex,uint64_t & Result) const1252 getImportAddress(int AddrIndex, uint64_t &Result) const {
1253 uint32_t RVA = Table[Index].DelayImportAddressTable +
1254 AddrIndex * (OwningObject->is64() ? 8 : 4);
1255 uintptr_t IntPtr = 0;
1256 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1257 return EC;
1258 if (OwningObject->is64())
1259 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
1260 else
1261 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
1262 return std::error_code();
1263 }
1264
1265 bool ExportDirectoryEntryRef::
operator ==(const ExportDirectoryEntryRef & Other) const1266 operator==(const ExportDirectoryEntryRef &Other) const {
1267 return ExportTable == Other.ExportTable && Index == Other.Index;
1268 }
1269
moveNext()1270 void ExportDirectoryEntryRef::moveNext() {
1271 ++Index;
1272 }
1273
1274 // Returns the name of the current export symbol. If the symbol is exported only
1275 // by ordinal, the empty string is set as a result.
getDllName(StringRef & Result) const1276 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
1277 uintptr_t IntPtr = 0;
1278 if (std::error_code EC =
1279 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
1280 return EC;
1281 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1282 return std::error_code();
1283 }
1284
1285 // Returns the starting ordinal number.
1286 std::error_code
getOrdinalBase(uint32_t & Result) const1287 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
1288 Result = ExportTable->OrdinalBase;
1289 return std::error_code();
1290 }
1291
1292 // Returns the export ordinal of the current export symbol.
getOrdinal(uint32_t & Result) const1293 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
1294 Result = ExportTable->OrdinalBase + Index;
1295 return std::error_code();
1296 }
1297
1298 // Returns the address of the current export symbol.
getExportRVA(uint32_t & Result) const1299 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
1300 uintptr_t IntPtr = 0;
1301 if (std::error_code EC =
1302 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
1303 return EC;
1304 const export_address_table_entry *entry =
1305 reinterpret_cast<const export_address_table_entry *>(IntPtr);
1306 Result = entry[Index].ExportRVA;
1307 return std::error_code();
1308 }
1309
1310 // Returns the name of the current export symbol. If the symbol is exported only
1311 // by ordinal, the empty string is set as a result.
1312 std::error_code
getSymbolName(StringRef & Result) const1313 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
1314 uintptr_t IntPtr = 0;
1315 if (std::error_code EC =
1316 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
1317 return EC;
1318 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
1319
1320 uint32_t NumEntries = ExportTable->NumberOfNamePointers;
1321 int Offset = 0;
1322 for (const ulittle16_t *I = Start, *E = Start + NumEntries;
1323 I < E; ++I, ++Offset) {
1324 if (*I != Index)
1325 continue;
1326 if (std::error_code EC =
1327 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
1328 return EC;
1329 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
1330 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
1331 return EC;
1332 Result = StringRef(reinterpret_cast<const char *>(IntPtr));
1333 return std::error_code();
1334 }
1335 Result = "";
1336 return std::error_code();
1337 }
1338
1339 bool ImportedSymbolRef::
operator ==(const ImportedSymbolRef & Other) const1340 operator==(const ImportedSymbolRef &Other) const {
1341 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
1342 && Index == Other.Index;
1343 }
1344
moveNext()1345 void ImportedSymbolRef::moveNext() {
1346 ++Index;
1347 }
1348
1349 std::error_code
getSymbolName(StringRef & Result) const1350 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
1351 uint32_t RVA;
1352 if (Entry32) {
1353 // If a symbol is imported only by ordinal, it has no name.
1354 if (Entry32[Index].isOrdinal())
1355 return std::error_code();
1356 RVA = Entry32[Index].getHintNameRVA();
1357 } else {
1358 if (Entry64[Index].isOrdinal())
1359 return std::error_code();
1360 RVA = Entry64[Index].getHintNameRVA();
1361 }
1362 uintptr_t IntPtr = 0;
1363 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1364 return EC;
1365 // +2 because the first two bytes is hint.
1366 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
1367 return std::error_code();
1368 }
1369
getOrdinal(uint16_t & Result) const1370 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
1371 uint32_t RVA;
1372 if (Entry32) {
1373 if (Entry32[Index].isOrdinal()) {
1374 Result = Entry32[Index].getOrdinal();
1375 return std::error_code();
1376 }
1377 RVA = Entry32[Index].getHintNameRVA();
1378 } else {
1379 if (Entry64[Index].isOrdinal()) {
1380 Result = Entry64[Index].getOrdinal();
1381 return std::error_code();
1382 }
1383 RVA = Entry64[Index].getHintNameRVA();
1384 }
1385 uintptr_t IntPtr = 0;
1386 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
1387 return EC;
1388 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
1389 return std::error_code();
1390 }
1391
1392 ErrorOr<std::unique_ptr<COFFObjectFile>>
createCOFFObjectFile(MemoryBufferRef Object)1393 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
1394 std::error_code EC;
1395 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
1396 if (EC)
1397 return EC;
1398 return std::move(Ret);
1399 }
1400
operator ==(const BaseRelocRef & Other) const1401 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
1402 return Header == Other.Header && Index == Other.Index;
1403 }
1404
moveNext()1405 void BaseRelocRef::moveNext() {
1406 // Header->BlockSize is the size of the current block, including the
1407 // size of the header itself.
1408 uint32_t Size = sizeof(*Header) +
1409 sizeof(coff_base_reloc_block_entry) * (Index + 1);
1410 if (Size == Header->BlockSize) {
1411 // .reloc contains a list of base relocation blocks. Each block
1412 // consists of the header followed by entries. The header contains
1413 // how many entories will follow. When we reach the end of the
1414 // current block, proceed to the next block.
1415 Header = reinterpret_cast<const coff_base_reloc_block_header *>(
1416 reinterpret_cast<const uint8_t *>(Header) + Size);
1417 Index = 0;
1418 } else {
1419 ++Index;
1420 }
1421 }
1422
getType(uint8_t & Type) const1423 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
1424 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1425 Type = Entry[Index].getType();
1426 return std::error_code();
1427 }
1428
getRVA(uint32_t & Result) const1429 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
1430 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
1431 Result = Header->PageRVA + Entry[Index].getOffset();
1432 return std::error_code();
1433 }
1434