1 // symtab.cc -- the gold symbol table
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <cstring>
26 #include <stdint.h>
27 #include <algorithm>
28 #include <set>
29 #include <string>
30 #include <utility>
31 #include "demangle.h"
32 
33 #include "gc.h"
34 #include "object.h"
35 #include "dwarf_reader.h"
36 #include "dynobj.h"
37 #include "output.h"
38 #include "target.h"
39 #include "workqueue.h"
40 #include "symtab.h"
41 #include "script.h"
42 #include "plugin.h"
43 #include "incremental.h"
44 
45 namespace gold
46 {
47 
48 // Class Symbol.
49 
50 // Initialize fields in Symbol.  This initializes everything except u_
51 // and source_.
52 
53 void
init_fields(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)54 Symbol::init_fields(const char* name, const char* version,
55 		    elfcpp::STT type, elfcpp::STB binding,
56 		    elfcpp::STV visibility, unsigned char nonvis)
57 {
58   this->name_ = name;
59   this->version_ = version;
60   this->symtab_index_ = 0;
61   this->dynsym_index_ = 0;
62   this->got_offsets_.init();
63   this->plt_offset_ = -1U;
64   this->type_ = type;
65   this->binding_ = binding;
66   this->visibility_ = visibility;
67   this->nonvis_ = nonvis;
68   this->is_def_ = false;
69   this->is_forwarder_ = false;
70   this->has_alias_ = false;
71   this->needs_dynsym_entry_ = false;
72   this->in_reg_ = false;
73   this->in_dyn_ = false;
74   this->has_warning_ = false;
75   this->is_copied_from_dynobj_ = false;
76   this->is_forced_local_ = false;
77   this->is_ordinary_shndx_ = false;
78   this->in_real_elf_ = false;
79   this->is_defined_in_discarded_section_ = false;
80   this->undef_binding_set_ = false;
81   this->undef_binding_weak_ = false;
82   this->is_predefined_ = false;
83 }
84 
85 // Return the demangled version of the symbol's name, but only
86 // if the --demangle flag was set.
87 
88 static std::string
demangle(const char * name)89 demangle(const char* name)
90 {
91   if (!parameters->options().do_demangle())
92     return name;
93 
94   // cplus_demangle allocates memory for the result it returns,
95   // and returns NULL if the name is already demangled.
96   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
97   if (demangled_name == NULL)
98     return name;
99 
100   std::string retval(demangled_name);
101   free(demangled_name);
102   return retval;
103 }
104 
105 std::string
demangled_name() const106 Symbol::demangled_name() const
107 {
108   return demangle(this->name());
109 }
110 
111 // Initialize the fields in the base class Symbol for SYM in OBJECT.
112 
113 template<int size, bool big_endian>
114 void
init_base_object(const char * name,const char * version,Object * object,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary)115 Symbol::init_base_object(const char* name, const char* version, Object* object,
116 			 const elfcpp::Sym<size, big_endian>& sym,
117 			 unsigned int st_shndx, bool is_ordinary)
118 {
119   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
120 		    sym.get_st_visibility(), sym.get_st_nonvis());
121   this->u_.from_object.object = object;
122   this->u_.from_object.shndx = st_shndx;
123   this->is_ordinary_shndx_ = is_ordinary;
124   this->source_ = FROM_OBJECT;
125   this->in_reg_ = !object->is_dynamic();
126   this->in_dyn_ = object->is_dynamic();
127   this->in_real_elf_ = object->pluginobj() == NULL;
128 }
129 
130 // Initialize the fields in the base class Symbol for a symbol defined
131 // in an Output_data.
132 
133 void
init_base_output_data(const char * name,const char * version,Output_data * od,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool is_predefined)134 Symbol::init_base_output_data(const char* name, const char* version,
135 			      Output_data* od, elfcpp::STT type,
136 			      elfcpp::STB binding, elfcpp::STV visibility,
137 			      unsigned char nonvis, bool offset_is_from_end,
138 			      bool is_predefined)
139 {
140   this->init_fields(name, version, type, binding, visibility, nonvis);
141   this->u_.in_output_data.output_data = od;
142   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
143   this->source_ = IN_OUTPUT_DATA;
144   this->in_reg_ = true;
145   this->in_real_elf_ = true;
146   this->is_predefined_ = is_predefined;
147 }
148 
149 // Initialize the fields in the base class Symbol for a symbol defined
150 // in an Output_segment.
151 
152 void
init_base_output_segment(const char * name,const char * version,Output_segment * os,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Segment_offset_base offset_base,bool is_predefined)153 Symbol::init_base_output_segment(const char* name, const char* version,
154 				 Output_segment* os, elfcpp::STT type,
155 				 elfcpp::STB binding, elfcpp::STV visibility,
156 				 unsigned char nonvis,
157 				 Segment_offset_base offset_base,
158 				 bool is_predefined)
159 {
160   this->init_fields(name, version, type, binding, visibility, nonvis);
161   this->u_.in_output_segment.output_segment = os;
162   this->u_.in_output_segment.offset_base = offset_base;
163   this->source_ = IN_OUTPUT_SEGMENT;
164   this->in_reg_ = true;
165   this->in_real_elf_ = true;
166   this->is_predefined_ = is_predefined;
167 }
168 
169 // Initialize the fields in the base class Symbol for a symbol defined
170 // as a constant.
171 
172 void
init_base_constant(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool is_predefined)173 Symbol::init_base_constant(const char* name, const char* version,
174 			   elfcpp::STT type, elfcpp::STB binding,
175 			   elfcpp::STV visibility, unsigned char nonvis,
176 			   bool is_predefined)
177 {
178   this->init_fields(name, version, type, binding, visibility, nonvis);
179   this->source_ = IS_CONSTANT;
180   this->in_reg_ = true;
181   this->in_real_elf_ = true;
182   this->is_predefined_ = is_predefined;
183 }
184 
185 // Initialize the fields in the base class Symbol for an undefined
186 // symbol.
187 
188 void
init_base_undefined(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)189 Symbol::init_base_undefined(const char* name, const char* version,
190 			    elfcpp::STT type, elfcpp::STB binding,
191 			    elfcpp::STV visibility, unsigned char nonvis)
192 {
193   this->init_fields(name, version, type, binding, visibility, nonvis);
194   this->dynsym_index_ = -1U;
195   this->source_ = IS_UNDEFINED;
196   this->in_reg_ = true;
197   this->in_real_elf_ = true;
198 }
199 
200 // Allocate a common symbol in the base.
201 
202 void
allocate_base_common(Output_data * od)203 Symbol::allocate_base_common(Output_data* od)
204 {
205   gold_assert(this->is_common());
206   this->source_ = IN_OUTPUT_DATA;
207   this->u_.in_output_data.output_data = od;
208   this->u_.in_output_data.offset_is_from_end = false;
209 }
210 
211 // Initialize the fields in Sized_symbol for SYM in OBJECT.
212 
213 template<int size>
214 template<bool big_endian>
215 void
init_object(const char * name,const char * version,Object * object,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary)216 Sized_symbol<size>::init_object(const char* name, const char* version,
217 				Object* object,
218 				const elfcpp::Sym<size, big_endian>& sym,
219 				unsigned int st_shndx, bool is_ordinary)
220 {
221   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
222   this->value_ = sym.get_st_value();
223   this->symsize_ = sym.get_st_size();
224 }
225 
226 // Initialize the fields in Sized_symbol for a symbol defined in an
227 // Output_data.
228 
229 template<int size>
230 void
init_output_data(const char * name,const char * version,Output_data * od,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool is_predefined)231 Sized_symbol<size>::init_output_data(const char* name, const char* version,
232 				     Output_data* od, Value_type value,
233 				     Size_type symsize, elfcpp::STT type,
234 				     elfcpp::STB binding,
235 				     elfcpp::STV visibility,
236 				     unsigned char nonvis,
237 				     bool offset_is_from_end,
238 				     bool is_predefined)
239 {
240   this->init_base_output_data(name, version, od, type, binding, visibility,
241 			      nonvis, offset_is_from_end, is_predefined);
242   this->value_ = value;
243   this->symsize_ = symsize;
244 }
245 
246 // Initialize the fields in Sized_symbol for a symbol defined in an
247 // Output_segment.
248 
249 template<int size>
250 void
init_output_segment(const char * name,const char * version,Output_segment * os,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Segment_offset_base offset_base,bool is_predefined)251 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
252 					Output_segment* os, Value_type value,
253 					Size_type symsize, elfcpp::STT type,
254 					elfcpp::STB binding,
255 					elfcpp::STV visibility,
256 					unsigned char nonvis,
257 					Segment_offset_base offset_base,
258 					bool is_predefined)
259 {
260   this->init_base_output_segment(name, version, os, type, binding, visibility,
261 				 nonvis, offset_base, is_predefined);
262   this->value_ = value;
263   this->symsize_ = symsize;
264 }
265 
266 // Initialize the fields in Sized_symbol for a symbol defined as a
267 // constant.
268 
269 template<int size>
270 void
init_constant(const char * name,const char * version,Value_type value,Size_type symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool is_predefined)271 Sized_symbol<size>::init_constant(const char* name, const char* version,
272 				  Value_type value, Size_type symsize,
273 				  elfcpp::STT type, elfcpp::STB binding,
274 				  elfcpp::STV visibility, unsigned char nonvis,
275 				  bool is_predefined)
276 {
277   this->init_base_constant(name, version, type, binding, visibility, nonvis,
278 			   is_predefined);
279   this->value_ = value;
280   this->symsize_ = symsize;
281 }
282 
283 // Initialize the fields in Sized_symbol for an undefined symbol.
284 
285 template<int size>
286 void
init_undefined(const char * name,const char * version,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis)287 Sized_symbol<size>::init_undefined(const char* name, const char* version,
288 				   elfcpp::STT type, elfcpp::STB binding,
289 				   elfcpp::STV visibility, unsigned char nonvis)
290 {
291   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
292   this->value_ = 0;
293   this->symsize_ = 0;
294 }
295 
296 // Return an allocated string holding the symbol's name as
297 // name@version.  This is used for relocatable links.
298 
299 std::string
versioned_name() const300 Symbol::versioned_name() const
301 {
302   gold_assert(this->version_ != NULL);
303   std::string ret = this->name_;
304   ret.push_back('@');
305   if (this->is_def_)
306     ret.push_back('@');
307   ret += this->version_;
308   return ret;
309 }
310 
311 // Return true if SHNDX represents a common symbol.
312 
313 bool
is_common_shndx(unsigned int shndx)314 Symbol::is_common_shndx(unsigned int shndx)
315 {
316   return (shndx == elfcpp::SHN_COMMON
317 	  || shndx == parameters->target().small_common_shndx()
318 	  || shndx == parameters->target().large_common_shndx());
319 }
320 
321 // Allocate a common symbol.
322 
323 template<int size>
324 void
allocate_common(Output_data * od,Value_type value)325 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
326 {
327   this->allocate_base_common(od);
328   this->value_ = value;
329 }
330 
331 // The ""'s around str ensure str is a string literal, so sizeof works.
332 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
333 
334 // Return true if this symbol should be added to the dynamic symbol
335 // table.
336 
337 bool
should_add_dynsym_entry(Symbol_table * symtab) const338 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
339 {
340   // If the symbol is only present on plugin files, the plugin decided we
341   // don't need it.
342   if (!this->in_real_elf())
343     return false;
344 
345   // If the symbol is used by a dynamic relocation, we need to add it.
346   if (this->needs_dynsym_entry())
347     return true;
348 
349   // If this symbol's section is not added, the symbol need not be added.
350   // The section may have been GCed.  Note that export_dynamic is being
351   // overridden here.  This should not be done for shared objects.
352   if (parameters->options().gc_sections()
353       && !parameters->options().shared()
354       && this->source() == Symbol::FROM_OBJECT
355       && !this->object()->is_dynamic())
356     {
357       Relobj* relobj = static_cast<Relobj*>(this->object());
358       bool is_ordinary;
359       unsigned int shndx = this->shndx(&is_ordinary);
360       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
361           && !relobj->is_section_included(shndx)
362           && !symtab->is_section_folded(relobj, shndx))
363         return false;
364     }
365 
366   // If the symbol was forced dynamic in a --dynamic-list file
367   // or an --export-dynamic-symbol option, add it.
368   if (!this->is_from_dynobj()
369       && (parameters->options().in_dynamic_list(this->name())
370 	  || parameters->options().is_export_dynamic_symbol(this->name())))
371     {
372       if (!this->is_forced_local())
373         return true;
374       gold_warning(_("Cannot export local symbol '%s'"),
375 		   this->demangled_name().c_str());
376       return false;
377     }
378 
379   // If the symbol was forced local in a version script, do not add it.
380   if (this->is_forced_local())
381     return false;
382 
383   // If dynamic-list-data was specified, add any STT_OBJECT.
384   if (parameters->options().dynamic_list_data()
385       && !this->is_from_dynobj()
386       && this->type() == elfcpp::STT_OBJECT)
387     return true;
388 
389   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
390   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
391   if ((parameters->options().dynamic_list_cpp_new()
392        || parameters->options().dynamic_list_cpp_typeinfo())
393       && !this->is_from_dynobj())
394     {
395       // TODO(csilvers): We could probably figure out if we're an operator
396       //                 new/delete or typeinfo without the need to demangle.
397       char* demangled_name = cplus_demangle(this->name(),
398                                             DMGL_ANSI | DMGL_PARAMS);
399       if (demangled_name == NULL)
400         {
401           // Not a C++ symbol, so it can't satisfy these flags
402         }
403       else if (parameters->options().dynamic_list_cpp_new()
404                && (strprefix(demangled_name, "operator new")
405                    || strprefix(demangled_name, "operator delete")))
406         {
407           free(demangled_name);
408           return true;
409         }
410       else if (parameters->options().dynamic_list_cpp_typeinfo()
411                && (strprefix(demangled_name, "typeinfo name for")
412                    || strprefix(demangled_name, "typeinfo for")))
413         {
414           free(demangled_name);
415           return true;
416         }
417       else
418         free(demangled_name);
419     }
420 
421   // If exporting all symbols or building a shared library,
422   // or the symbol should be globally unique (GNU_UNIQUE),
423   // and the symbol is defined in a regular object and is
424   // externally visible, we need to add it.
425   if ((parameters->options().export_dynamic()
426        || parameters->options().shared()
427        || (parameters->options().gnu_unique()
428 	   && this->binding() == elfcpp::STB_GNU_UNIQUE))
429       && !this->is_from_dynobj()
430       && !this->is_undefined()
431       && this->is_externally_visible())
432     return true;
433 
434   return false;
435 }
436 
437 // Return true if the final value of this symbol is known at link
438 // time.
439 
440 bool
final_value_is_known() const441 Symbol::final_value_is_known() const
442 {
443   // If we are not generating an executable, then no final values are
444   // known, since they will change at runtime, with the exception of
445   // TLS symbols in a position-independent executable.
446   if ((parameters->options().output_is_position_independent()
447        || parameters->options().relocatable())
448       && !(this->type() == elfcpp::STT_TLS
449            && parameters->options().pie()))
450     return false;
451 
452   // If the symbol is not from an object file, and is not undefined,
453   // then it is defined, and known.
454   if (this->source_ != FROM_OBJECT)
455     {
456       if (this->source_ != IS_UNDEFINED)
457 	return true;
458     }
459   else
460     {
461       // If the symbol is from a dynamic object, then the final value
462       // is not known.
463       if (this->object()->is_dynamic())
464 	return false;
465 
466       // If the symbol is not undefined (it is defined or common),
467       // then the final value is known.
468       if (!this->is_undefined())
469 	return true;
470     }
471 
472   // If the symbol is undefined, then whether the final value is known
473   // depends on whether we are doing a static link.  If we are doing a
474   // dynamic link, then the final value could be filled in at runtime.
475   // This could reasonably be the case for a weak undefined symbol.
476   return parameters->doing_static_link();
477 }
478 
479 // Return the output section where this symbol is defined.
480 
481 Output_section*
output_section() const482 Symbol::output_section() const
483 {
484   switch (this->source_)
485     {
486     case FROM_OBJECT:
487       {
488 	unsigned int shndx = this->u_.from_object.shndx;
489 	if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
490 	  {
491 	    gold_assert(!this->u_.from_object.object->is_dynamic());
492 	    gold_assert(this->u_.from_object.object->pluginobj() == NULL);
493 	    Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
494 	    return relobj->output_section(shndx);
495 	  }
496 	return NULL;
497       }
498 
499     case IN_OUTPUT_DATA:
500       return this->u_.in_output_data.output_data->output_section();
501 
502     case IN_OUTPUT_SEGMENT:
503     case IS_CONSTANT:
504     case IS_UNDEFINED:
505       return NULL;
506 
507     default:
508       gold_unreachable();
509     }
510 }
511 
512 // Set the symbol's output section.  This is used for symbols defined
513 // in scripts.  This should only be called after the symbol table has
514 // been finalized.
515 
516 void
set_output_section(Output_section * os)517 Symbol::set_output_section(Output_section* os)
518 {
519   switch (this->source_)
520     {
521     case FROM_OBJECT:
522     case IN_OUTPUT_DATA:
523       gold_assert(this->output_section() == os);
524       break;
525     case IS_CONSTANT:
526       this->source_ = IN_OUTPUT_DATA;
527       this->u_.in_output_data.output_data = os;
528       this->u_.in_output_data.offset_is_from_end = false;
529       break;
530     case IN_OUTPUT_SEGMENT:
531     case IS_UNDEFINED:
532     default:
533       gold_unreachable();
534     }
535 }
536 
537 // Set the symbol's output segment.  This is used for pre-defined
538 // symbols whose segments aren't known until after layout is done
539 // (e.g., __ehdr_start).
540 
541 void
set_output_segment(Output_segment * os,Segment_offset_base base)542 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
543 {
544   gold_assert(this->is_predefined_);
545   this->source_ = IN_OUTPUT_SEGMENT;
546   this->u_.in_output_segment.output_segment = os;
547   this->u_.in_output_segment.offset_base = base;
548 }
549 
550 // Set the symbol to undefined.  This is used for pre-defined
551 // symbols whose segments aren't known until after layout is done
552 // (e.g., __ehdr_start).
553 
554 void
set_undefined()555 Symbol::set_undefined()
556 {
557   this->source_ = IS_UNDEFINED;
558   this->is_predefined_ = false;
559 }
560 
561 // Class Symbol_table.
562 
Symbol_table(unsigned int count,const Version_script_info & version_script)563 Symbol_table::Symbol_table(unsigned int count,
564                            const Version_script_info& version_script)
565   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
566     forwarders_(), commons_(), tls_commons_(), small_commons_(),
567     large_commons_(), forced_locals_(), warnings_(),
568     version_script_(version_script), gc_(NULL), icf_(NULL)
569 {
570   namepool_.reserve(count);
571 }
572 
~Symbol_table()573 Symbol_table::~Symbol_table()
574 {
575 }
576 
577 // The symbol table key equality function.  This is called with
578 // Stringpool keys.
579 
580 inline bool
operator ()(const Symbol_table_key & k1,const Symbol_table_key & k2) const581 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
582 					  const Symbol_table_key& k2) const
583 {
584   return k1.first == k2.first && k1.second == k2.second;
585 }
586 
587 bool
is_section_folded(Object * obj,unsigned int shndx) const588 Symbol_table::is_section_folded(Object* obj, unsigned int shndx) const
589 {
590   return (parameters->options().icf_enabled()
591           && this->icf_->is_section_folded(obj, shndx));
592 }
593 
594 // For symbols that have been listed with a -u or --export-dynamic-symbol
595 // option, add them to the work list to avoid gc'ing them.
596 
597 void
gc_mark_undef_symbols(Layout * layout)598 Symbol_table::gc_mark_undef_symbols(Layout* layout)
599 {
600   for (options::String_set::const_iterator p =
601 	 parameters->options().undefined_begin();
602        p != parameters->options().undefined_end();
603        ++p)
604     {
605       const char* name = p->c_str();
606       Symbol* sym = this->lookup(name);
607       gold_assert(sym != NULL);
608       if (sym->source() == Symbol::FROM_OBJECT
609           && !sym->object()->is_dynamic())
610         {
611 	  this->gc_mark_symbol(sym);
612         }
613     }
614 
615   for (options::String_set::const_iterator p =
616 	 parameters->options().export_dynamic_symbol_begin();
617        p != parameters->options().export_dynamic_symbol_end();
618        ++p)
619     {
620       const char* name = p->c_str();
621       Symbol* sym = this->lookup(name);
622       // It's not an error if a symbol named by --export-dynamic-symbol
623       // is undefined.
624       if (sym != NULL
625 	  && sym->source() == Symbol::FROM_OBJECT
626           && !sym->object()->is_dynamic())
627         {
628 	  this->gc_mark_symbol(sym);
629         }
630     }
631 
632   for (Script_options::referenced_const_iterator p =
633 	 layout->script_options()->referenced_begin();
634        p != layout->script_options()->referenced_end();
635        ++p)
636     {
637       Symbol* sym = this->lookup(p->c_str());
638       gold_assert(sym != NULL);
639       if (sym->source() == Symbol::FROM_OBJECT
640 	  && !sym->object()->is_dynamic())
641 	{
642 	  this->gc_mark_symbol(sym);
643 	}
644     }
645 }
646 
647 void
gc_mark_symbol(Symbol * sym)648 Symbol_table::gc_mark_symbol(Symbol* sym)
649 {
650   // Add the object and section to the work list.
651   bool is_ordinary;
652   unsigned int shndx = sym->shndx(&is_ordinary);
653   if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
654     {
655       gold_assert(this->gc_!= NULL);
656       this->gc_->worklist().push(Section_id(sym->object(), shndx));
657     }
658   parameters->target().gc_mark_symbol(this, sym);
659 }
660 
661 // When doing garbage collection, keep symbols that have been seen in
662 // dynamic objects.
663 inline void
gc_mark_dyn_syms(Symbol * sym)664 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
665 {
666   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
667       && !sym->object()->is_dynamic())
668     this->gc_mark_symbol(sym);
669 }
670 
671 // Make TO a symbol which forwards to FROM.
672 
673 void
make_forwarder(Symbol * from,Symbol * to)674 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
675 {
676   gold_assert(from != to);
677   gold_assert(!from->is_forwarder() && !to->is_forwarder());
678   this->forwarders_[from] = to;
679   from->set_forwarder();
680 }
681 
682 // Resolve the forwards from FROM, returning the real symbol.
683 
684 Symbol*
resolve_forwards(const Symbol * from) const685 Symbol_table::resolve_forwards(const Symbol* from) const
686 {
687   gold_assert(from->is_forwarder());
688   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
689     this->forwarders_.find(from);
690   gold_assert(p != this->forwarders_.end());
691   return p->second;
692 }
693 
694 // Look up a symbol by name.
695 
696 Symbol*
lookup(const char * name,const char * version) const697 Symbol_table::lookup(const char* name, const char* version) const
698 {
699   Stringpool::Key name_key;
700   name = this->namepool_.find(name, &name_key);
701   if (name == NULL)
702     return NULL;
703 
704   Stringpool::Key version_key = 0;
705   if (version != NULL)
706     {
707       version = this->namepool_.find(version, &version_key);
708       if (version == NULL)
709 	return NULL;
710     }
711 
712   Symbol_table_key key(name_key, version_key);
713   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
714   if (p == this->table_.end())
715     return NULL;
716   return p->second;
717 }
718 
719 // Resolve a Symbol with another Symbol.  This is only used in the
720 // unusual case where there are references to both an unversioned
721 // symbol and a symbol with a version, and we then discover that that
722 // version is the default version.  Because this is unusual, we do
723 // this the slow way, by converting back to an ELF symbol.
724 
725 template<int size, bool big_endian>
726 void
resolve(Sized_symbol<size> * to,const Sized_symbol<size> * from)727 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
728 {
729   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
730   elfcpp::Sym_write<size, big_endian> esym(buf);
731   // We don't bother to set the st_name or the st_shndx field.
732   esym.put_st_value(from->value());
733   esym.put_st_size(from->symsize());
734   esym.put_st_info(from->binding(), from->type());
735   esym.put_st_other(from->visibility(), from->nonvis());
736   bool is_ordinary;
737   unsigned int shndx = from->shndx(&is_ordinary);
738   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
739 		from->version());
740   if (from->in_reg())
741     to->set_in_reg();
742   if (from->in_dyn())
743     to->set_in_dyn();
744   if (parameters->options().gc_sections())
745     this->gc_mark_dyn_syms(to);
746 }
747 
748 // Record that a symbol is forced to be local by a version script or
749 // by visibility.
750 
751 void
force_local(Symbol * sym)752 Symbol_table::force_local(Symbol* sym)
753 {
754   if (!sym->is_defined() && !sym->is_common())
755     return;
756   if (sym->is_forced_local())
757     {
758       // We already got this one.
759       return;
760     }
761   sym->set_is_forced_local();
762   this->forced_locals_.push_back(sym);
763 }
764 
765 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
766 // is only called for undefined symbols, when at least one --wrap
767 // option was used.
768 
769 const char*
wrap_symbol(const char * name,Stringpool::Key * name_key)770 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
771 {
772   // For some targets, we need to ignore a specific character when
773   // wrapping, and add it back later.
774   char prefix = '\0';
775   if (name[0] == parameters->target().wrap_char())
776     {
777       prefix = name[0];
778       ++name;
779     }
780 
781   if (parameters->options().is_wrap(name))
782     {
783       // Turn NAME into __wrap_NAME.
784       std::string s;
785       if (prefix != '\0')
786 	s += prefix;
787       s += "__wrap_";
788       s += name;
789 
790       // This will give us both the old and new name in NAMEPOOL_, but
791       // that is OK.  Only the versions we need will wind up in the
792       // real string table in the output file.
793       return this->namepool_.add(s.c_str(), true, name_key);
794     }
795 
796   const char* const real_prefix = "__real_";
797   const size_t real_prefix_length = strlen(real_prefix);
798   if (strncmp(name, real_prefix, real_prefix_length) == 0
799       && parameters->options().is_wrap(name + real_prefix_length))
800     {
801       // Turn __real_NAME into NAME.
802       std::string s;
803       if (prefix != '\0')
804 	s += prefix;
805       s += name + real_prefix_length;
806       return this->namepool_.add(s.c_str(), true, name_key);
807     }
808 
809   return name;
810 }
811 
812 // This is called when we see a symbol NAME/VERSION, and the symbol
813 // already exists in the symbol table, and VERSION is marked as being
814 // the default version.  SYM is the NAME/VERSION symbol we just added.
815 // DEFAULT_IS_NEW is true if this is the first time we have seen the
816 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
817 
818 template<int size, bool big_endian>
819 void
define_default_version(Sized_symbol<size> * sym,bool default_is_new,Symbol_table_type::iterator pdef)820 Symbol_table::define_default_version(Sized_symbol<size>* sym,
821 				     bool default_is_new,
822 				     Symbol_table_type::iterator pdef)
823 {
824   if (default_is_new)
825     {
826       // This is the first time we have seen NAME/NULL.  Make
827       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
828       // version.
829       pdef->second = sym;
830       sym->set_is_default();
831     }
832   else if (pdef->second == sym)
833     {
834       // NAME/NULL already points to NAME/VERSION.  Don't mark the
835       // symbol as the default if it is not already the default.
836     }
837   else
838     {
839       // This is the unfortunate case where we already have entries
840       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
841       // NAME/VERSION where VERSION is the default version.  We have
842       // already resolved this new symbol with the existing
843       // NAME/VERSION symbol.
844 
845       // It's possible that NAME/NULL and NAME/VERSION are both
846       // defined in regular objects.  This can only happen if one
847       // object file defines foo and another defines foo@@ver.  This
848       // is somewhat obscure, but we call it a multiple definition
849       // error.
850 
851       // It's possible that NAME/NULL actually has a version, in which
852       // case it won't be the same as VERSION.  This happens with
853       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
854       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
855       // then see an unadorned t2_2 in an object file and give it
856       // version VER1 from the version script.  This looks like a
857       // default definition for VER1, so it looks like we should merge
858       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
859       // not obvious that this is an error, either.  So we just punt.
860 
861       // If one of the symbols has non-default visibility, and the
862       // other is defined in a shared object, then they are different
863       // symbols.
864 
865       // Otherwise, we just resolve the symbols as though they were
866       // the same.
867 
868       if (pdef->second->version() != NULL)
869 	gold_assert(pdef->second->version() != sym->version());
870       else if (sym->visibility() != elfcpp::STV_DEFAULT
871 	       && pdef->second->is_from_dynobj())
872 	;
873       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
874 	       && sym->is_from_dynobj())
875 	;
876       else
877 	{
878 	  const Sized_symbol<size>* symdef;
879 	  symdef = this->get_sized_symbol<size>(pdef->second);
880 	  Symbol_table::resolve<size, big_endian>(sym, symdef);
881 	  this->make_forwarder(pdef->second, sym);
882 	  pdef->second = sym;
883 	  sym->set_is_default();
884 	}
885     }
886 }
887 
888 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
889 // name and VERSION is the version; both are canonicalized.  DEF is
890 // whether this is the default version.  ST_SHNDX is the symbol's
891 // section index; IS_ORDINARY is whether this is a normal section
892 // rather than a special code.
893 
894 // If IS_DEFAULT_VERSION is true, then this is the definition of a
895 // default version of a symbol.  That means that any lookup of
896 // NAME/NULL and any lookup of NAME/VERSION should always return the
897 // same symbol.  This is obvious for references, but in particular we
898 // want to do this for definitions: overriding NAME/NULL should also
899 // override NAME/VERSION.  If we don't do that, it would be very hard
900 // to override functions in a shared library which uses versioning.
901 
902 // We implement this by simply making both entries in the hash table
903 // point to the same Symbol structure.  That is easy enough if this is
904 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
905 // that we have seen both already, in which case they will both have
906 // independent entries in the symbol table.  We can't simply change
907 // the symbol table entry, because we have pointers to the entries
908 // attached to the object files.  So we mark the entry attached to the
909 // object file as a forwarder, and record it in the forwarders_ map.
910 // Note that entries in the hash table will never be marked as
911 // forwarders.
912 //
913 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
914 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
915 // for a special section code.  ST_SHNDX may be modified if the symbol
916 // is defined in a section being discarded.
917 
918 template<int size, bool big_endian>
919 Sized_symbol<size>*
add_from_object(Object * object,const char * name,Stringpool::Key name_key,const char * version,Stringpool::Key version_key,bool is_default_version,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,unsigned int orig_st_shndx)920 Symbol_table::add_from_object(Object* object,
921 			      const char* name,
922 			      Stringpool::Key name_key,
923 			      const char* version,
924 			      Stringpool::Key version_key,
925 			      bool is_default_version,
926 			      const elfcpp::Sym<size, big_endian>& sym,
927 			      unsigned int st_shndx,
928 			      bool is_ordinary,
929 			      unsigned int orig_st_shndx)
930 {
931   // Print a message if this symbol is being traced.
932   if (parameters->options().is_trace_symbol(name))
933     {
934       if (orig_st_shndx == elfcpp::SHN_UNDEF)
935         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
936       else
937         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
938     }
939 
940   // For an undefined symbol, we may need to adjust the name using
941   // --wrap.
942   if (orig_st_shndx == elfcpp::SHN_UNDEF
943       && parameters->options().any_wrap())
944     {
945       const char* wrap_name = this->wrap_symbol(name, &name_key);
946       if (wrap_name != name)
947 	{
948 	  // If we see a reference to malloc with version GLIBC_2.0,
949 	  // and we turn it into a reference to __wrap_malloc, then we
950 	  // discard the version number.  Otherwise the user would be
951 	  // required to specify the correct version for
952 	  // __wrap_malloc.
953 	  version = NULL;
954 	  version_key = 0;
955 	  name = wrap_name;
956 	}
957     }
958 
959   Symbol* const snull = NULL;
960   std::pair<typename Symbol_table_type::iterator, bool> ins =
961     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
962 				       snull));
963 
964   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
965     std::make_pair(this->table_.end(), false);
966   if (is_default_version)
967     {
968       const Stringpool::Key vnull_key = 0;
969       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
970 								     vnull_key),
971 						      snull));
972     }
973 
974   // ins.first: an iterator, which is a pointer to a pair.
975   // ins.first->first: the key (a pair of name and version).
976   // ins.first->second: the value (Symbol*).
977   // ins.second: true if new entry was inserted, false if not.
978 
979   Sized_symbol<size>* ret;
980   bool was_undefined;
981   bool was_common;
982   if (!ins.second)
983     {
984       // We already have an entry for NAME/VERSION.
985       ret = this->get_sized_symbol<size>(ins.first->second);
986       gold_assert(ret != NULL);
987 
988       was_undefined = ret->is_undefined();
989       // Commons from plugins are just placeholders.
990       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
991 
992       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
993 		    version);
994       if (parameters->options().gc_sections())
995         this->gc_mark_dyn_syms(ret);
996 
997       if (is_default_version)
998 	this->define_default_version<size, big_endian>(ret, insdefault.second,
999 						       insdefault.first);
1000     }
1001   else
1002     {
1003       // This is the first time we have seen NAME/VERSION.
1004       gold_assert(ins.first->second == NULL);
1005 
1006       if (is_default_version && !insdefault.second)
1007 	{
1008 	  // We already have an entry for NAME/NULL.  If we override
1009 	  // it, then change it to NAME/VERSION.
1010 	  ret = this->get_sized_symbol<size>(insdefault.first->second);
1011 
1012 	  was_undefined = ret->is_undefined();
1013 	  // Commons from plugins are just placeholders.
1014 	  was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
1015 
1016 	  this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
1017 			version);
1018           if (parameters->options().gc_sections())
1019             this->gc_mark_dyn_syms(ret);
1020 	  ins.first->second = ret;
1021 	}
1022       else
1023 	{
1024 	  was_undefined = false;
1025 	  was_common = false;
1026 
1027 	  Sized_target<size, big_endian>* target =
1028 	    parameters->sized_target<size, big_endian>();
1029 	  if (!target->has_make_symbol())
1030 	    ret = new Sized_symbol<size>();
1031 	  else
1032 	    {
1033 	      ret = target->make_symbol();
1034 	      if (ret == NULL)
1035 		{
1036 		  // This means that we don't want a symbol table
1037 		  // entry after all.
1038 		  if (!is_default_version)
1039 		    this->table_.erase(ins.first);
1040 		  else
1041 		    {
1042 		      this->table_.erase(insdefault.first);
1043 		      // Inserting INSDEFAULT invalidated INS.
1044 		      this->table_.erase(std::make_pair(name_key,
1045 							version_key));
1046 		    }
1047 		  return NULL;
1048 		}
1049 	    }
1050 
1051 	  ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
1052 
1053 	  ins.first->second = ret;
1054 	  if (is_default_version)
1055 	    {
1056 	      // This is the first time we have seen NAME/NULL.  Point
1057 	      // it at the new entry for NAME/VERSION.
1058 	      gold_assert(insdefault.second);
1059 	      insdefault.first->second = ret;
1060 	    }
1061 	}
1062 
1063       if (is_default_version)
1064 	ret->set_is_default();
1065     }
1066 
1067   // Record every time we see a new undefined symbol, to speed up
1068   // archive groups.
1069   if (!was_undefined && ret->is_undefined())
1070     {
1071       ++this->saw_undefined_;
1072       if (parameters->options().has_plugins())
1073 	parameters->options().plugins()->new_undefined_symbol(ret);
1074     }
1075 
1076   // Keep track of common symbols, to speed up common symbol
1077   // allocation.  Don't record commons from plugin objects;
1078   // we need to wait until we see the real symbol in the
1079   // replacement file.
1080   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
1081     {
1082       if (ret->type() == elfcpp::STT_TLS)
1083 	this->tls_commons_.push_back(ret);
1084       else if (!is_ordinary
1085 	       && st_shndx == parameters->target().small_common_shndx())
1086 	this->small_commons_.push_back(ret);
1087       else if (!is_ordinary
1088 	       && st_shndx == parameters->target().large_common_shndx())
1089 	this->large_commons_.push_back(ret);
1090       else
1091 	this->commons_.push_back(ret);
1092     }
1093 
1094   // If we're not doing a relocatable link, then any symbol with
1095   // hidden or internal visibility is local.
1096   if ((ret->visibility() == elfcpp::STV_HIDDEN
1097        || ret->visibility() == elfcpp::STV_INTERNAL)
1098       && (ret->binding() == elfcpp::STB_GLOBAL
1099 	  || ret->binding() == elfcpp::STB_GNU_UNIQUE
1100 	  || ret->binding() == elfcpp::STB_WEAK)
1101       && !parameters->options().relocatable())
1102     this->force_local(ret);
1103 
1104   return ret;
1105 }
1106 
1107 // Add all the symbols in a relocatable object to the hash table.
1108 
1109 template<int size, bool big_endian>
1110 void
add_from_relobj(Sized_relobj_file<size,big_endian> * relobj,const unsigned char * syms,size_t count,size_t symndx_offset,const char * sym_names,size_t sym_name_size,typename Sized_relobj_file<size,big_endian>::Symbols * sympointers,size_t * defined)1111 Symbol_table::add_from_relobj(
1112     Sized_relobj_file<size, big_endian>* relobj,
1113     const unsigned char* syms,
1114     size_t count,
1115     size_t symndx_offset,
1116     const char* sym_names,
1117     size_t sym_name_size,
1118     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1119     size_t* defined)
1120 {
1121   *defined = 0;
1122 
1123   gold_assert(size == parameters->target().get_size());
1124 
1125   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1126 
1127   const bool just_symbols = relobj->just_symbols();
1128 
1129   const unsigned char* p = syms;
1130   for (size_t i = 0; i < count; ++i, p += sym_size)
1131     {
1132       (*sympointers)[i] = NULL;
1133 
1134       elfcpp::Sym<size, big_endian> sym(p);
1135 
1136       unsigned int st_name = sym.get_st_name();
1137       if (st_name >= sym_name_size)
1138 	{
1139 	  relobj->error(_("bad global symbol name offset %u at %zu"),
1140 			st_name, i);
1141 	  continue;
1142 	}
1143 
1144       const char* name = sym_names + st_name;
1145 
1146       if (strcmp (name, "__gnu_lto_slim") == 0)
1147         gold_info(_("%s: plugin needed to handle lto object"),
1148 		  relobj->name().c_str());
1149 
1150       bool is_ordinary;
1151       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
1152 						       sym.get_st_shndx(),
1153 						       &is_ordinary);
1154       unsigned int orig_st_shndx = st_shndx;
1155       if (!is_ordinary)
1156 	orig_st_shndx = elfcpp::SHN_UNDEF;
1157 
1158       if (st_shndx != elfcpp::SHN_UNDEF)
1159 	++*defined;
1160 
1161       // A symbol defined in a section which we are not including must
1162       // be treated as an undefined symbol.
1163       bool is_defined_in_discarded_section = false;
1164       if (st_shndx != elfcpp::SHN_UNDEF
1165 	  && is_ordinary
1166 	  && !relobj->is_section_included(st_shndx)
1167           && !this->is_section_folded(relobj, st_shndx))
1168 	{
1169 	  st_shndx = elfcpp::SHN_UNDEF;
1170 	  is_defined_in_discarded_section = true;
1171 	}
1172 
1173       // In an object file, an '@' in the name separates the symbol
1174       // name from the version name.  If there are two '@' characters,
1175       // this is the default version.
1176       const char* ver = strchr(name, '@');
1177       Stringpool::Key ver_key = 0;
1178       int namelen = 0;
1179       // IS_DEFAULT_VERSION: is the version default?
1180       // IS_FORCED_LOCAL: is the symbol forced local?
1181       bool is_default_version = false;
1182       bool is_forced_local = false;
1183 
1184       // FIXME: For incremental links, we don't store version information,
1185       // so we need to ignore version symbols for now.
1186       if (parameters->incremental_update() && ver != NULL)
1187 	{
1188 	  namelen = ver - name;
1189 	  ver = NULL;
1190 	}
1191 
1192       if (ver != NULL)
1193         {
1194           // The symbol name is of the form foo@VERSION or foo@@VERSION
1195           namelen = ver - name;
1196           ++ver;
1197 	  if (*ver == '@')
1198 	    {
1199 	      is_default_version = true;
1200 	      ++ver;
1201 	    }
1202 	  ver = this->namepool_.add(ver, true, &ver_key);
1203         }
1204       // We don't want to assign a version to an undefined symbol,
1205       // even if it is listed in the version script.  FIXME: What
1206       // about a common symbol?
1207       else
1208 	{
1209 	  namelen = strlen(name);
1210 	  if (!this->version_script_.empty()
1211 	      && st_shndx != elfcpp::SHN_UNDEF)
1212 	    {
1213 	      // The symbol name did not have a version, but the
1214 	      // version script may assign a version anyway.
1215 	      std::string version;
1216 	      bool is_global;
1217 	      if (this->version_script_.get_symbol_version(name, &version,
1218 							   &is_global))
1219 		{
1220 		  if (!is_global)
1221 		    is_forced_local = true;
1222 		  else if (!version.empty())
1223 		    {
1224 		      ver = this->namepool_.add_with_length(version.c_str(),
1225 							    version.length(),
1226 							    true,
1227 							    &ver_key);
1228 		      is_default_version = true;
1229 		    }
1230 		}
1231 	    }
1232 	}
1233 
1234       elfcpp::Sym<size, big_endian>* psym = &sym;
1235       unsigned char symbuf[sym_size];
1236       elfcpp::Sym<size, big_endian> sym2(symbuf);
1237       if (just_symbols)
1238 	{
1239 	  memcpy(symbuf, p, sym_size);
1240 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1241 	  if (orig_st_shndx != elfcpp::SHN_UNDEF
1242 	      && is_ordinary
1243 	      && relobj->e_type() == elfcpp::ET_REL)
1244 	    {
1245 	      // Symbol values in relocatable object files are section
1246 	      // relative.  This is normally what we want, but since here
1247 	      // we are converting the symbol to absolute we need to add
1248 	      // the section address.  The section address in an object
1249 	      // file is normally zero, but people can use a linker
1250 	      // script to change it.
1251 	      sw.put_st_value(sym.get_st_value()
1252 			      + relobj->section_address(orig_st_shndx));
1253 	    }
1254 	  st_shndx = elfcpp::SHN_ABS;
1255 	  is_ordinary = false;
1256 	  psym = &sym2;
1257 	}
1258 
1259       // Fix up visibility if object has no-export set.
1260       if (relobj->no_export()
1261 	  && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
1262         {
1263 	  // We may have copied symbol already above.
1264 	  if (psym != &sym2)
1265 	    {
1266 	      memcpy(symbuf, p, sym_size);
1267 	      psym = &sym2;
1268 	    }
1269 
1270 	  elfcpp::STV visibility = sym2.get_st_visibility();
1271 	  if (visibility == elfcpp::STV_DEFAULT
1272 	      || visibility == elfcpp::STV_PROTECTED)
1273 	    {
1274 	      elfcpp::Sym_write<size, big_endian> sw(symbuf);
1275 	      unsigned char nonvis = sym2.get_st_nonvis();
1276 	      sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
1277 	    }
1278         }
1279 
1280       Stringpool::Key name_key;
1281       name = this->namepool_.add_with_length(name, namelen, true,
1282 					     &name_key);
1283 
1284       Sized_symbol<size>* res;
1285       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
1286 				  is_default_version, *psym, st_shndx,
1287 				  is_ordinary, orig_st_shndx);
1288 
1289       if (is_forced_local)
1290 	this->force_local(res);
1291 
1292       // Do not treat this symbol as garbage if this symbol will be
1293       // exported to the dynamic symbol table.  This is true when
1294       // building a shared library or using --export-dynamic and
1295       // the symbol is externally visible.
1296       if (parameters->options().gc_sections()
1297 	  && res->is_externally_visible()
1298 	  && !res->is_from_dynobj()
1299           && (parameters->options().shared()
1300 	      || parameters->options().export_dynamic()
1301 	      || parameters->options().in_dynamic_list(res->name())))
1302         this->gc_mark_symbol(res);
1303 
1304       if (is_defined_in_discarded_section)
1305 	res->set_is_defined_in_discarded_section();
1306 
1307       (*sympointers)[i] = res;
1308     }
1309 }
1310 
1311 // Add a symbol from a plugin-claimed file.
1312 
1313 template<int size, bool big_endian>
1314 Symbol*
add_from_pluginobj(Sized_pluginobj<size,big_endian> * obj,const char * name,const char * ver,elfcpp::Sym<size,big_endian> * sym)1315 Symbol_table::add_from_pluginobj(
1316     Sized_pluginobj<size, big_endian>* obj,
1317     const char* name,
1318     const char* ver,
1319     elfcpp::Sym<size, big_endian>* sym)
1320 {
1321   unsigned int st_shndx = sym->get_st_shndx();
1322   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1323 
1324   Stringpool::Key ver_key = 0;
1325   bool is_default_version = false;
1326   bool is_forced_local = false;
1327 
1328   if (ver != NULL)
1329     {
1330       ver = this->namepool_.add(ver, true, &ver_key);
1331     }
1332   // We don't want to assign a version to an undefined symbol,
1333   // even if it is listed in the version script.  FIXME: What
1334   // about a common symbol?
1335   else
1336     {
1337       if (!this->version_script_.empty()
1338           && st_shndx != elfcpp::SHN_UNDEF)
1339         {
1340           // The symbol name did not have a version, but the
1341           // version script may assign a version anyway.
1342           std::string version;
1343 	  bool is_global;
1344           if (this->version_script_.get_symbol_version(name, &version,
1345 						       &is_global))
1346             {
1347 	      if (!is_global)
1348 		is_forced_local = true;
1349 	      else if (!version.empty())
1350                 {
1351                   ver = this->namepool_.add_with_length(version.c_str(),
1352                                                         version.length(),
1353                                                         true,
1354                                                         &ver_key);
1355                   is_default_version = true;
1356                 }
1357             }
1358         }
1359     }
1360 
1361   Stringpool::Key name_key;
1362   name = this->namepool_.add(name, true, &name_key);
1363 
1364   Sized_symbol<size>* res;
1365   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1366 		              is_default_version, *sym, st_shndx,
1367 			      is_ordinary, st_shndx);
1368 
1369   if (is_forced_local)
1370     this->force_local(res);
1371 
1372   return res;
1373 }
1374 
1375 // Add all the symbols in a dynamic object to the hash table.
1376 
1377 template<int size, bool big_endian>
1378 void
add_from_dynobj(Sized_dynobj<size,big_endian> * dynobj,const unsigned char * syms,size_t count,const char * sym_names,size_t sym_name_size,const unsigned char * versym,size_t versym_size,const std::vector<const char * > * version_map,typename Sized_relobj_file<size,big_endian>::Symbols * sympointers,size_t * defined)1379 Symbol_table::add_from_dynobj(
1380     Sized_dynobj<size, big_endian>* dynobj,
1381     const unsigned char* syms,
1382     size_t count,
1383     const char* sym_names,
1384     size_t sym_name_size,
1385     const unsigned char* versym,
1386     size_t versym_size,
1387     const std::vector<const char*>* version_map,
1388     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
1389     size_t* defined)
1390 {
1391   *defined = 0;
1392 
1393   gold_assert(size == parameters->target().get_size());
1394 
1395   if (dynobj->just_symbols())
1396     {
1397       gold_error(_("--just-symbols does not make sense with a shared object"));
1398       return;
1399     }
1400 
1401   // FIXME: For incremental links, we don't store version information,
1402   // so we need to ignore version symbols for now.
1403   if (parameters->incremental_update())
1404     versym = NULL;
1405 
1406   if (versym != NULL && versym_size / 2 < count)
1407     {
1408       dynobj->error(_("too few symbol versions"));
1409       return;
1410     }
1411 
1412   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1413 
1414   // We keep a list of all STT_OBJECT symbols, so that we can resolve
1415   // weak aliases.  This is necessary because if the dynamic object
1416   // provides the same variable under two names, one of which is a
1417   // weak definition, and the regular object refers to the weak
1418   // definition, we have to put both the weak definition and the
1419   // strong definition into the dynamic symbol table.  Given a weak
1420   // definition, the only way that we can find the corresponding
1421   // strong definition, if any, is to search the symbol table.
1422   std::vector<Sized_symbol<size>*> object_symbols;
1423 
1424   const unsigned char* p = syms;
1425   const unsigned char* vs = versym;
1426   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
1427     {
1428       elfcpp::Sym<size, big_endian> sym(p);
1429 
1430       if (sympointers != NULL)
1431 	(*sympointers)[i] = NULL;
1432 
1433       // Ignore symbols with local binding or that have
1434       // internal or hidden visibility.
1435       if (sym.get_st_bind() == elfcpp::STB_LOCAL
1436           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
1437           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
1438 	continue;
1439 
1440       // A protected symbol in a shared library must be treated as a
1441       // normal symbol when viewed from outside the shared library.
1442       // Implement this by overriding the visibility here.
1443       elfcpp::Sym<size, big_endian>* psym = &sym;
1444       unsigned char symbuf[sym_size];
1445       elfcpp::Sym<size, big_endian> sym2(symbuf);
1446       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
1447 	{
1448 	  memcpy(symbuf, p, sym_size);
1449 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
1450 	  sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
1451 	  psym = &sym2;
1452 	}
1453 
1454       unsigned int st_name = psym->get_st_name();
1455       if (st_name >= sym_name_size)
1456 	{
1457 	  dynobj->error(_("bad symbol name offset %u at %zu"),
1458 			st_name, i);
1459 	  continue;
1460 	}
1461 
1462       const char* name = sym_names + st_name;
1463 
1464       bool is_ordinary;
1465       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
1466 						       &is_ordinary);
1467 
1468       if (st_shndx != elfcpp::SHN_UNDEF)
1469 	++*defined;
1470 
1471       Sized_symbol<size>* res;
1472 
1473       if (versym == NULL)
1474 	{
1475 	  Stringpool::Key name_key;
1476 	  name = this->namepool_.add(name, true, &name_key);
1477 	  res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1478 				      false, *psym, st_shndx, is_ordinary,
1479 				      st_shndx);
1480 	}
1481       else
1482 	{
1483 	  // Read the version information.
1484 
1485 	  unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
1486 
1487 	  bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
1488 	  v &= elfcpp::VERSYM_VERSION;
1489 
1490 	  // The Sun documentation says that V can be VER_NDX_LOCAL,
1491 	  // or VER_NDX_GLOBAL, or a version index.  The meaning of
1492 	  // VER_NDX_LOCAL is defined as "Symbol has local scope."
1493 	  // The old GNU linker will happily generate VER_NDX_LOCAL
1494 	  // for an undefined symbol.  I don't know what the Sun
1495 	  // linker will generate.
1496 
1497 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1498 	      && st_shndx != elfcpp::SHN_UNDEF)
1499 	    {
1500 	      // This symbol should not be visible outside the object.
1501 	      continue;
1502 	    }
1503 
1504 	  // At this point we are definitely going to add this symbol.
1505 	  Stringpool::Key name_key;
1506 	  name = this->namepool_.add(name, true, &name_key);
1507 
1508 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
1509 	      || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
1510 	    {
1511 	      // This symbol does not have a version.
1512 	      res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1513 					  false, *psym, st_shndx, is_ordinary,
1514 					  st_shndx);
1515 	    }
1516 	  else
1517 	    {
1518 	      if (v >= version_map->size())
1519 		{
1520 		  dynobj->error(_("versym for symbol %zu out of range: %u"),
1521 				i, v);
1522 		  continue;
1523 		}
1524 
1525 	      const char* version = (*version_map)[v];
1526 	      if (version == NULL)
1527 		{
1528 		  dynobj->error(_("versym for symbol %zu has no name: %u"),
1529 				i, v);
1530 		  continue;
1531 		}
1532 
1533 	      Stringpool::Key version_key;
1534 	      version = this->namepool_.add(version, true, &version_key);
1535 
1536 	      // If this is an absolute symbol, and the version name
1537 	      // and symbol name are the same, then this is the
1538 	      // version definition symbol.  These symbols exist to
1539 	      // support using -u to pull in particular versions.  We
1540 	      // do not want to record a version for them.
1541 	      if (st_shndx == elfcpp::SHN_ABS
1542 		  && !is_ordinary
1543 		  && name_key == version_key)
1544 		res = this->add_from_object(dynobj, name, name_key, NULL, 0,
1545 					    false, *psym, st_shndx, is_ordinary,
1546 					    st_shndx);
1547 	      else
1548 		{
1549 		  const bool is_default_version =
1550 		    !hidden && st_shndx != elfcpp::SHN_UNDEF;
1551 		  res = this->add_from_object(dynobj, name, name_key, version,
1552 					      version_key, is_default_version,
1553 					      *psym, st_shndx,
1554 					      is_ordinary, st_shndx);
1555 		}
1556 	    }
1557 	}
1558 
1559       // Note that it is possible that RES was overridden by an
1560       // earlier object, in which case it can't be aliased here.
1561       if (st_shndx != elfcpp::SHN_UNDEF
1562 	  && is_ordinary
1563 	  && psym->get_st_type() == elfcpp::STT_OBJECT
1564 	  && res->source() == Symbol::FROM_OBJECT
1565 	  && res->object() == dynobj)
1566 	object_symbols.push_back(res);
1567 
1568       if (sympointers != NULL)
1569 	(*sympointers)[i] = res;
1570     }
1571 
1572   this->record_weak_aliases(&object_symbols);
1573 }
1574 
1575 // Add a symbol from a incremental object file.
1576 
1577 template<int size, bool big_endian>
1578 Sized_symbol<size>*
add_from_incrobj(Object * obj,const char * name,const char * ver,elfcpp::Sym<size,big_endian> * sym)1579 Symbol_table::add_from_incrobj(
1580     Object* obj,
1581     const char* name,
1582     const char* ver,
1583     elfcpp::Sym<size, big_endian>* sym)
1584 {
1585   unsigned int st_shndx = sym->get_st_shndx();
1586   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
1587 
1588   Stringpool::Key ver_key = 0;
1589   bool is_default_version = false;
1590   bool is_forced_local = false;
1591 
1592   Stringpool::Key name_key;
1593   name = this->namepool_.add(name, true, &name_key);
1594 
1595   Sized_symbol<size>* res;
1596   res = this->add_from_object(obj, name, name_key, ver, ver_key,
1597 		              is_default_version, *sym, st_shndx,
1598 			      is_ordinary, st_shndx);
1599 
1600   if (is_forced_local)
1601     this->force_local(res);
1602 
1603   return res;
1604 }
1605 
1606 // This is used to sort weak aliases.  We sort them first by section
1607 // index, then by offset, then by weak ahead of strong.
1608 
1609 template<int size>
1610 class Weak_alias_sorter
1611 {
1612  public:
1613   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1614 };
1615 
1616 template<int size>
1617 bool
operator ()(const Sized_symbol<size> * s1,const Sized_symbol<size> * s2) const1618 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1619 				    const Sized_symbol<size>* s2) const
1620 {
1621   bool is_ordinary;
1622   unsigned int s1_shndx = s1->shndx(&is_ordinary);
1623   gold_assert(is_ordinary);
1624   unsigned int s2_shndx = s2->shndx(&is_ordinary);
1625   gold_assert(is_ordinary);
1626   if (s1_shndx != s2_shndx)
1627     return s1_shndx < s2_shndx;
1628 
1629   if (s1->value() != s2->value())
1630     return s1->value() < s2->value();
1631   if (s1->binding() != s2->binding())
1632     {
1633       if (s1->binding() == elfcpp::STB_WEAK)
1634 	return true;
1635       if (s2->binding() == elfcpp::STB_WEAK)
1636 	return false;
1637     }
1638   return std::string(s1->name()) < std::string(s2->name());
1639 }
1640 
1641 // SYMBOLS is a list of object symbols from a dynamic object.  Look
1642 // for any weak aliases, and record them so that if we add the weak
1643 // alias to the dynamic symbol table, we also add the corresponding
1644 // strong symbol.
1645 
1646 template<int size>
1647 void
record_weak_aliases(std::vector<Sized_symbol<size> * > * symbols)1648 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1649 {
1650   // Sort the vector by section index, then by offset, then by weak
1651   // ahead of strong.
1652   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1653 
1654   // Walk through the vector.  For each weak definition, record
1655   // aliases.
1656   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1657 	 symbols->begin();
1658        p != symbols->end();
1659        ++p)
1660     {
1661       if ((*p)->binding() != elfcpp::STB_WEAK)
1662 	continue;
1663 
1664       // Build a circular list of weak aliases.  Each symbol points to
1665       // the next one in the circular list.
1666 
1667       Sized_symbol<size>* from_sym = *p;
1668       typename std::vector<Sized_symbol<size>*>::const_iterator q;
1669       for (q = p + 1; q != symbols->end(); ++q)
1670 	{
1671 	  bool dummy;
1672 	  if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
1673 	      || (*q)->value() != from_sym->value())
1674 	    break;
1675 
1676 	  this->weak_aliases_[from_sym] = *q;
1677 	  from_sym->set_has_alias();
1678 	  from_sym = *q;
1679 	}
1680 
1681       if (from_sym != *p)
1682 	{
1683 	  this->weak_aliases_[from_sym] = *p;
1684 	  from_sym->set_has_alias();
1685 	}
1686 
1687       p = q - 1;
1688     }
1689 }
1690 
1691 // Create and return a specially defined symbol.  If ONLY_IF_REF is
1692 // true, then only create the symbol if there is a reference to it.
1693 // If this does not return NULL, it sets *POLDSYM to the existing
1694 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
1695 // resolve the newly created symbol to the old one.  This
1696 // canonicalizes *PNAME and *PVERSION.
1697 
1698 template<int size, bool big_endian>
1699 Sized_symbol<size>*
define_special_symbol(const char ** pname,const char ** pversion,bool only_if_ref,Sized_symbol<size> ** poldsym,bool * resolve_oldsym)1700 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1701 				    bool only_if_ref,
1702                                     Sized_symbol<size>** poldsym,
1703 				    bool* resolve_oldsym)
1704 {
1705   *resolve_oldsym = false;
1706   *poldsym = NULL;
1707 
1708   // If the caller didn't give us a version, see if we get one from
1709   // the version script.
1710   std::string v;
1711   bool is_default_version = false;
1712   if (*pversion == NULL)
1713     {
1714       bool is_global;
1715       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
1716 	{
1717 	  if (is_global && !v.empty())
1718 	    {
1719 	      *pversion = v.c_str();
1720 	      // If we get the version from a version script, then we
1721 	      // are also the default version.
1722 	      is_default_version = true;
1723 	    }
1724 	}
1725     }
1726 
1727   Symbol* oldsym;
1728   Sized_symbol<size>* sym;
1729 
1730   bool add_to_table = false;
1731   typename Symbol_table_type::iterator add_loc = this->table_.end();
1732   bool add_def_to_table = false;
1733   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
1734 
1735   if (only_if_ref)
1736     {
1737       oldsym = this->lookup(*pname, *pversion);
1738       if (oldsym == NULL && is_default_version)
1739 	oldsym = this->lookup(*pname, NULL);
1740       if (oldsym == NULL || !oldsym->is_undefined())
1741 	return NULL;
1742 
1743       *pname = oldsym->name();
1744       if (is_default_version)
1745 	*pversion = this->namepool_.add(*pversion, true, NULL);
1746       else
1747 	*pversion = oldsym->version();
1748     }
1749   else
1750     {
1751       // Canonicalize NAME and VERSION.
1752       Stringpool::Key name_key;
1753       *pname = this->namepool_.add(*pname, true, &name_key);
1754 
1755       Stringpool::Key version_key = 0;
1756       if (*pversion != NULL)
1757 	*pversion = this->namepool_.add(*pversion, true, &version_key);
1758 
1759       Symbol* const snull = NULL;
1760       std::pair<typename Symbol_table_type::iterator, bool> ins =
1761 	this->table_.insert(std::make_pair(std::make_pair(name_key,
1762 							  version_key),
1763 					   snull));
1764 
1765       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
1766 	std::make_pair(this->table_.end(), false);
1767       if (is_default_version)
1768 	{
1769 	  const Stringpool::Key vnull = 0;
1770 	  insdefault =
1771 	    this->table_.insert(std::make_pair(std::make_pair(name_key,
1772 							      vnull),
1773 					       snull));
1774 	}
1775 
1776       if (!ins.second)
1777 	{
1778 	  // We already have a symbol table entry for NAME/VERSION.
1779 	  oldsym = ins.first->second;
1780 	  gold_assert(oldsym != NULL);
1781 
1782 	  if (is_default_version)
1783 	    {
1784 	      Sized_symbol<size>* soldsym =
1785 		this->get_sized_symbol<size>(oldsym);
1786 	      this->define_default_version<size, big_endian>(soldsym,
1787 							     insdefault.second,
1788 							     insdefault.first);
1789 	    }
1790 	}
1791       else
1792 	{
1793 	  // We haven't seen this symbol before.
1794 	  gold_assert(ins.first->second == NULL);
1795 
1796 	  add_to_table = true;
1797 	  add_loc = ins.first;
1798 
1799 	  if (is_default_version && !insdefault.second)
1800 	    {
1801 	      // We are adding NAME/VERSION, and it is the default
1802 	      // version.  We already have an entry for NAME/NULL.
1803 	      oldsym = insdefault.first->second;
1804 	      *resolve_oldsym = true;
1805 	    }
1806 	  else
1807 	    {
1808 	      oldsym = NULL;
1809 
1810 	      if (is_default_version)
1811 		{
1812 		  add_def_to_table = true;
1813 		  add_def_loc = insdefault.first;
1814 		}
1815 	    }
1816 	}
1817     }
1818 
1819   const Target& target = parameters->target();
1820   if (!target.has_make_symbol())
1821     sym = new Sized_symbol<size>();
1822   else
1823     {
1824       Sized_target<size, big_endian>* sized_target =
1825 	parameters->sized_target<size, big_endian>();
1826       sym = sized_target->make_symbol();
1827       if (sym == NULL)
1828         return NULL;
1829     }
1830 
1831   if (add_to_table)
1832     add_loc->second = sym;
1833   else
1834     gold_assert(oldsym != NULL);
1835 
1836   if (add_def_to_table)
1837     add_def_loc->second = sym;
1838 
1839   *poldsym = this->get_sized_symbol<size>(oldsym);
1840 
1841   return sym;
1842 }
1843 
1844 // Define a symbol based on an Output_data.
1845 
1846 Symbol*
define_in_output_data(const char * name,const char * version,Defined defined,Output_data * od,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool only_if_ref)1847 Symbol_table::define_in_output_data(const char* name,
1848 				    const char* version,
1849 				    Defined defined,
1850 				    Output_data* od,
1851 				    uint64_t value,
1852 				    uint64_t symsize,
1853 				    elfcpp::STT type,
1854 				    elfcpp::STB binding,
1855 				    elfcpp::STV visibility,
1856 				    unsigned char nonvis,
1857 				    bool offset_is_from_end,
1858 				    bool only_if_ref)
1859 {
1860   if (parameters->target().get_size() == 32)
1861     {
1862 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1863       return this->do_define_in_output_data<32>(name, version, defined, od,
1864                                                 value, symsize, type, binding,
1865                                                 visibility, nonvis,
1866                                                 offset_is_from_end,
1867                                                 only_if_ref);
1868 #else
1869       gold_unreachable();
1870 #endif
1871     }
1872   else if (parameters->target().get_size() == 64)
1873     {
1874 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1875       return this->do_define_in_output_data<64>(name, version, defined, od,
1876                                                 value, symsize, type, binding,
1877                                                 visibility, nonvis,
1878                                                 offset_is_from_end,
1879                                                 only_if_ref);
1880 #else
1881       gold_unreachable();
1882 #endif
1883     }
1884   else
1885     gold_unreachable();
1886 }
1887 
1888 // Define a symbol in an Output_data, sized version.
1889 
1890 template<int size>
1891 Sized_symbol<size>*
do_define_in_output_data(const char * name,const char * version,Defined defined,Output_data * od,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool offset_is_from_end,bool only_if_ref)1892 Symbol_table::do_define_in_output_data(
1893     const char* name,
1894     const char* version,
1895     Defined defined,
1896     Output_data* od,
1897     typename elfcpp::Elf_types<size>::Elf_Addr value,
1898     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1899     elfcpp::STT type,
1900     elfcpp::STB binding,
1901     elfcpp::STV visibility,
1902     unsigned char nonvis,
1903     bool offset_is_from_end,
1904     bool only_if_ref)
1905 {
1906   Sized_symbol<size>* sym;
1907   Sized_symbol<size>* oldsym;
1908   bool resolve_oldsym;
1909 
1910   if (parameters->target().is_big_endian())
1911     {
1912 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1913       sym = this->define_special_symbol<size, true>(&name, &version,
1914 						    only_if_ref, &oldsym,
1915 						    &resolve_oldsym);
1916 #else
1917       gold_unreachable();
1918 #endif
1919     }
1920   else
1921     {
1922 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1923       sym = this->define_special_symbol<size, false>(&name, &version,
1924 						     only_if_ref, &oldsym,
1925 						     &resolve_oldsym);
1926 #else
1927       gold_unreachable();
1928 #endif
1929     }
1930 
1931   if (sym == NULL)
1932     return NULL;
1933 
1934   sym->init_output_data(name, version, od, value, symsize, type, binding,
1935 			visibility, nonvis, offset_is_from_end,
1936 			defined == PREDEFINED);
1937 
1938   if (oldsym == NULL)
1939     {
1940       if (binding == elfcpp::STB_LOCAL
1941 	  || this->version_script_.symbol_is_local(name))
1942 	this->force_local(sym);
1943       else if (version != NULL)
1944 	sym->set_is_default();
1945       return sym;
1946     }
1947 
1948   if (Symbol_table::should_override_with_special(oldsym, type, defined))
1949     this->override_with_special(oldsym, sym);
1950 
1951   if (resolve_oldsym)
1952     return sym;
1953   else
1954     {
1955       delete sym;
1956       return oldsym;
1957     }
1958 }
1959 
1960 // Define a symbol based on an Output_segment.
1961 
1962 Symbol*
define_in_output_segment(const char * name,const char * version,Defined defined,Output_segment * os,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Symbol::Segment_offset_base offset_base,bool only_if_ref)1963 Symbol_table::define_in_output_segment(const char* name,
1964 				       const char* version,
1965 				       Defined defined,
1966 				       Output_segment* os,
1967 				       uint64_t value,
1968 				       uint64_t symsize,
1969 				       elfcpp::STT type,
1970 				       elfcpp::STB binding,
1971 				       elfcpp::STV visibility,
1972 				       unsigned char nonvis,
1973 				       Symbol::Segment_offset_base offset_base,
1974 				       bool only_if_ref)
1975 {
1976   if (parameters->target().get_size() == 32)
1977     {
1978 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1979       return this->do_define_in_output_segment<32>(name, version, defined, os,
1980                                                    value, symsize, type,
1981                                                    binding, visibility, nonvis,
1982                                                    offset_base, only_if_ref);
1983 #else
1984       gold_unreachable();
1985 #endif
1986     }
1987   else if (parameters->target().get_size() == 64)
1988     {
1989 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1990       return this->do_define_in_output_segment<64>(name, version, defined, os,
1991                                                    value, symsize, type,
1992                                                    binding, visibility, nonvis,
1993                                                    offset_base, only_if_ref);
1994 #else
1995       gold_unreachable();
1996 #endif
1997     }
1998   else
1999     gold_unreachable();
2000 }
2001 
2002 // Define a symbol in an Output_segment, sized version.
2003 
2004 template<int size>
2005 Sized_symbol<size>*
do_define_in_output_segment(const char * name,const char * version,Defined defined,Output_segment * os,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,Symbol::Segment_offset_base offset_base,bool only_if_ref)2006 Symbol_table::do_define_in_output_segment(
2007     const char* name,
2008     const char* version,
2009     Defined defined,
2010     Output_segment* os,
2011     typename elfcpp::Elf_types<size>::Elf_Addr value,
2012     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2013     elfcpp::STT type,
2014     elfcpp::STB binding,
2015     elfcpp::STV visibility,
2016     unsigned char nonvis,
2017     Symbol::Segment_offset_base offset_base,
2018     bool only_if_ref)
2019 {
2020   Sized_symbol<size>* sym;
2021   Sized_symbol<size>* oldsym;
2022   bool resolve_oldsym;
2023 
2024   if (parameters->target().is_big_endian())
2025     {
2026 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2027       sym = this->define_special_symbol<size, true>(&name, &version,
2028 						    only_if_ref, &oldsym,
2029 						    &resolve_oldsym);
2030 #else
2031       gold_unreachable();
2032 #endif
2033     }
2034   else
2035     {
2036 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2037       sym = this->define_special_symbol<size, false>(&name, &version,
2038 						     only_if_ref, &oldsym,
2039 						     &resolve_oldsym);
2040 #else
2041       gold_unreachable();
2042 #endif
2043     }
2044 
2045   if (sym == NULL)
2046     return NULL;
2047 
2048   sym->init_output_segment(name, version, os, value, symsize, type, binding,
2049 			   visibility, nonvis, offset_base,
2050 			   defined == PREDEFINED);
2051 
2052   if (oldsym == NULL)
2053     {
2054       if (binding == elfcpp::STB_LOCAL
2055 	  || this->version_script_.symbol_is_local(name))
2056 	this->force_local(sym);
2057       else if (version != NULL)
2058 	sym->set_is_default();
2059       return sym;
2060     }
2061 
2062   if (Symbol_table::should_override_with_special(oldsym, type, defined))
2063     this->override_with_special(oldsym, sym);
2064 
2065   if (resolve_oldsym)
2066     return sym;
2067   else
2068     {
2069       delete sym;
2070       return oldsym;
2071     }
2072 }
2073 
2074 // Define a special symbol with a constant value.  It is a multiple
2075 // definition error if this symbol is already defined.
2076 
2077 Symbol*
define_as_constant(const char * name,const char * version,Defined defined,uint64_t value,uint64_t symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool only_if_ref,bool force_override)2078 Symbol_table::define_as_constant(const char* name,
2079 				 const char* version,
2080 				 Defined defined,
2081 				 uint64_t value,
2082 				 uint64_t symsize,
2083 				 elfcpp::STT type,
2084 				 elfcpp::STB binding,
2085 				 elfcpp::STV visibility,
2086 				 unsigned char nonvis,
2087 				 bool only_if_ref,
2088                                  bool force_override)
2089 {
2090   if (parameters->target().get_size() == 32)
2091     {
2092 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2093       return this->do_define_as_constant<32>(name, version, defined, value,
2094                                              symsize, type, binding,
2095                                              visibility, nonvis, only_if_ref,
2096                                              force_override);
2097 #else
2098       gold_unreachable();
2099 #endif
2100     }
2101   else if (parameters->target().get_size() == 64)
2102     {
2103 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2104       return this->do_define_as_constant<64>(name, version, defined, value,
2105                                              symsize, type, binding,
2106                                              visibility, nonvis, only_if_ref,
2107                                              force_override);
2108 #else
2109       gold_unreachable();
2110 #endif
2111     }
2112   else
2113     gold_unreachable();
2114 }
2115 
2116 // Define a symbol as a constant, sized version.
2117 
2118 template<int size>
2119 Sized_symbol<size>*
do_define_as_constant(const char * name,const char * version,Defined defined,typename elfcpp::Elf_types<size>::Elf_Addr value,typename elfcpp::Elf_types<size>::Elf_WXword symsize,elfcpp::STT type,elfcpp::STB binding,elfcpp::STV visibility,unsigned char nonvis,bool only_if_ref,bool force_override)2120 Symbol_table::do_define_as_constant(
2121     const char* name,
2122     const char* version,
2123     Defined defined,
2124     typename elfcpp::Elf_types<size>::Elf_Addr value,
2125     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
2126     elfcpp::STT type,
2127     elfcpp::STB binding,
2128     elfcpp::STV visibility,
2129     unsigned char nonvis,
2130     bool only_if_ref,
2131     bool force_override)
2132 {
2133   Sized_symbol<size>* sym;
2134   Sized_symbol<size>* oldsym;
2135   bool resolve_oldsym;
2136 
2137   if (parameters->target().is_big_endian())
2138     {
2139 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2140       sym = this->define_special_symbol<size, true>(&name, &version,
2141 						    only_if_ref, &oldsym,
2142 						    &resolve_oldsym);
2143 #else
2144       gold_unreachable();
2145 #endif
2146     }
2147   else
2148     {
2149 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2150       sym = this->define_special_symbol<size, false>(&name, &version,
2151 						     only_if_ref, &oldsym,
2152 						     &resolve_oldsym);
2153 #else
2154       gold_unreachable();
2155 #endif
2156     }
2157 
2158   if (sym == NULL)
2159     return NULL;
2160 
2161   sym->init_constant(name, version, value, symsize, type, binding, visibility,
2162 		     nonvis, defined == PREDEFINED);
2163 
2164   if (oldsym == NULL)
2165     {
2166       // Version symbols are absolute symbols with name == version.
2167       // We don't want to force them to be local.
2168       if ((version == NULL
2169 	   || name != version
2170 	   || value != 0)
2171 	  && (binding == elfcpp::STB_LOCAL
2172 	      || this->version_script_.symbol_is_local(name)))
2173 	this->force_local(sym);
2174       else if (version != NULL
2175 	       && (name != version || value != 0))
2176 	sym->set_is_default();
2177       return sym;
2178     }
2179 
2180   if (force_override
2181       || Symbol_table::should_override_with_special(oldsym, type, defined))
2182     this->override_with_special(oldsym, sym);
2183 
2184   if (resolve_oldsym)
2185     return sym;
2186   else
2187     {
2188       delete sym;
2189       return oldsym;
2190     }
2191 }
2192 
2193 // Define a set of symbols in output sections.
2194 
2195 void
define_symbols(const Layout * layout,int count,const Define_symbol_in_section * p,bool only_if_ref)2196 Symbol_table::define_symbols(const Layout* layout, int count,
2197 			     const Define_symbol_in_section* p,
2198 			     bool only_if_ref)
2199 {
2200   for (int i = 0; i < count; ++i, ++p)
2201     {
2202       Output_section* os = layout->find_output_section(p->output_section);
2203       if (os != NULL)
2204 	this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
2205 				    p->size, p->type, p->binding,
2206 				    p->visibility, p->nonvis,
2207 				    p->offset_is_from_end,
2208 				    only_if_ref || p->only_if_ref);
2209       else
2210 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2211 				 p->type, p->binding, p->visibility, p->nonvis,
2212 				 only_if_ref || p->only_if_ref,
2213                                  false);
2214     }
2215 }
2216 
2217 // Define a set of symbols in output segments.
2218 
2219 void
define_symbols(const Layout * layout,int count,const Define_symbol_in_segment * p,bool only_if_ref)2220 Symbol_table::define_symbols(const Layout* layout, int count,
2221 			     const Define_symbol_in_segment* p,
2222 			     bool only_if_ref)
2223 {
2224   for (int i = 0; i < count; ++i, ++p)
2225     {
2226       Output_segment* os = layout->find_output_segment(p->segment_type,
2227 						       p->segment_flags_set,
2228 						       p->segment_flags_clear);
2229       if (os != NULL)
2230 	this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
2231 				       p->size, p->type, p->binding,
2232 				       p->visibility, p->nonvis,
2233 				       p->offset_base,
2234 				       only_if_ref || p->only_if_ref);
2235       else
2236 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
2237 				 p->type, p->binding, p->visibility, p->nonvis,
2238 				 only_if_ref || p->only_if_ref,
2239                                  false);
2240     }
2241 }
2242 
2243 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
2244 // symbol should be defined--typically a .dyn.bss section.  VALUE is
2245 // the offset within POSD.
2246 
2247 template<int size>
2248 void
define_with_copy_reloc(Sized_symbol<size> * csym,Output_data * posd,typename elfcpp::Elf_types<size>::Elf_Addr value)2249 Symbol_table::define_with_copy_reloc(
2250     Sized_symbol<size>* csym,
2251     Output_data* posd,
2252     typename elfcpp::Elf_types<size>::Elf_Addr value)
2253 {
2254   gold_assert(csym->is_from_dynobj());
2255   gold_assert(!csym->is_copied_from_dynobj());
2256   Object* object = csym->object();
2257   gold_assert(object->is_dynamic());
2258   Dynobj* dynobj = static_cast<Dynobj*>(object);
2259 
2260   // Our copied variable has to override any variable in a shared
2261   // library.
2262   elfcpp::STB binding = csym->binding();
2263   if (binding == elfcpp::STB_WEAK)
2264     binding = elfcpp::STB_GLOBAL;
2265 
2266   this->define_in_output_data(csym->name(), csym->version(), COPY,
2267 			      posd, value, csym->symsize(),
2268 			      csym->type(), binding,
2269 			      csym->visibility(), csym->nonvis(),
2270 			      false, false);
2271 
2272   csym->set_is_copied_from_dynobj();
2273   csym->set_needs_dynsym_entry();
2274 
2275   this->copied_symbol_dynobjs_[csym] = dynobj;
2276 
2277   // We have now defined all aliases, but we have not entered them all
2278   // in the copied_symbol_dynobjs_ map.
2279   if (csym->has_alias())
2280     {
2281       Symbol* sym = csym;
2282       while (true)
2283 	{
2284 	  sym = this->weak_aliases_[sym];
2285 	  if (sym == csym)
2286 	    break;
2287 	  gold_assert(sym->output_data() == posd);
2288 
2289 	  sym->set_is_copied_from_dynobj();
2290 	  this->copied_symbol_dynobjs_[sym] = dynobj;
2291 	}
2292     }
2293 }
2294 
2295 // SYM is defined using a COPY reloc.  Return the dynamic object where
2296 // the original definition was found.
2297 
2298 Dynobj*
get_copy_source(const Symbol * sym) const2299 Symbol_table::get_copy_source(const Symbol* sym) const
2300 {
2301   gold_assert(sym->is_copied_from_dynobj());
2302   Copied_symbol_dynobjs::const_iterator p =
2303     this->copied_symbol_dynobjs_.find(sym);
2304   gold_assert(p != this->copied_symbol_dynobjs_.end());
2305   return p->second;
2306 }
2307 
2308 // Add any undefined symbols named on the command line.
2309 
2310 void
add_undefined_symbols_from_command_line(Layout * layout)2311 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
2312 {
2313   if (parameters->options().any_undefined()
2314       || layout->script_options()->any_unreferenced())
2315     {
2316       if (parameters->target().get_size() == 32)
2317 	{
2318 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2319 	  this->do_add_undefined_symbols_from_command_line<32>(layout);
2320 #else
2321 	  gold_unreachable();
2322 #endif
2323 	}
2324       else if (parameters->target().get_size() == 64)
2325 	{
2326 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2327 	  this->do_add_undefined_symbols_from_command_line<64>(layout);
2328 #else
2329 	  gold_unreachable();
2330 #endif
2331 	}
2332       else
2333 	gold_unreachable();
2334     }
2335 }
2336 
2337 template<int size>
2338 void
do_add_undefined_symbols_from_command_line(Layout * layout)2339 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
2340 {
2341   for (options::String_set::const_iterator p =
2342 	 parameters->options().undefined_begin();
2343        p != parameters->options().undefined_end();
2344        ++p)
2345     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2346 
2347   for (options::String_set::const_iterator p =
2348 	 parameters->options().export_dynamic_symbol_begin();
2349        p != parameters->options().export_dynamic_symbol_end();
2350        ++p)
2351     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2352 
2353   for (Script_options::referenced_const_iterator p =
2354 	 layout->script_options()->referenced_begin();
2355        p != layout->script_options()->referenced_end();
2356        ++p)
2357     this->add_undefined_symbol_from_command_line<size>(p->c_str());
2358 }
2359 
2360 template<int size>
2361 void
add_undefined_symbol_from_command_line(const char * name)2362 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
2363 {
2364   if (this->lookup(name) != NULL)
2365     return;
2366 
2367   const char* version = NULL;
2368 
2369   Sized_symbol<size>* sym;
2370   Sized_symbol<size>* oldsym;
2371   bool resolve_oldsym;
2372   if (parameters->target().is_big_endian())
2373     {
2374 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
2375       sym = this->define_special_symbol<size, true>(&name, &version,
2376 						    false, &oldsym,
2377 						    &resolve_oldsym);
2378 #else
2379       gold_unreachable();
2380 #endif
2381     }
2382   else
2383     {
2384 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
2385       sym = this->define_special_symbol<size, false>(&name, &version,
2386 						     false, &oldsym,
2387 						     &resolve_oldsym);
2388 #else
2389       gold_unreachable();
2390 #endif
2391     }
2392 
2393   gold_assert(oldsym == NULL);
2394 
2395   sym->init_undefined(name, version, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2396 		      elfcpp::STV_DEFAULT, 0);
2397   ++this->saw_undefined_;
2398 }
2399 
2400 // Set the dynamic symbol indexes.  INDEX is the index of the first
2401 // global dynamic symbol.  Pointers to the symbols are stored into the
2402 // vector SYMS.  The names are added to DYNPOOL.  This returns an
2403 // updated dynamic symbol index.
2404 
2405 unsigned int
set_dynsym_indexes(unsigned int index,std::vector<Symbol * > * syms,Stringpool * dynpool,Versions * versions)2406 Symbol_table::set_dynsym_indexes(unsigned int index,
2407 				 std::vector<Symbol*>* syms,
2408 				 Stringpool* dynpool,
2409 				 Versions* versions)
2410 {
2411   std::vector<Symbol*> as_needed_sym;
2412 
2413   // Allow a target to set dynsym indexes.
2414   if (parameters->target().has_custom_set_dynsym_indexes())
2415     {
2416       std::vector<Symbol*> dyn_symbols;
2417       for (Symbol_table_type::iterator p = this->table_.begin();
2418            p != this->table_.end();
2419            ++p)
2420         {
2421           Symbol* sym = p->second;
2422           if (!sym->should_add_dynsym_entry(this))
2423             sym->set_dynsym_index(-1U);
2424           else
2425             dyn_symbols.push_back(sym);
2426         }
2427 
2428       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
2429                                                      dynpool, versions, this);
2430     }
2431 
2432   for (Symbol_table_type::iterator p = this->table_.begin();
2433        p != this->table_.end();
2434        ++p)
2435     {
2436       Symbol* sym = p->second;
2437 
2438       // Note that SYM may already have a dynamic symbol index, since
2439       // some symbols appear more than once in the symbol table, with
2440       // and without a version.
2441 
2442       if (!sym->should_add_dynsym_entry(this))
2443 	sym->set_dynsym_index(-1U);
2444       else if (!sym->has_dynsym_index())
2445 	{
2446 	  sym->set_dynsym_index(index);
2447 	  ++index;
2448 	  syms->push_back(sym);
2449 	  dynpool->add(sym->name(), false, NULL);
2450 
2451 	  // If the symbol is defined in a dynamic object and is
2452 	  // referenced strongly in a regular object, then mark the
2453 	  // dynamic object as needed.  This is used to implement
2454 	  // --as-needed.
2455 	  if (sym->is_from_dynobj()
2456 	      && sym->in_reg()
2457 	      && !sym->is_undef_binding_weak())
2458 	    sym->object()->set_is_needed();
2459 
2460 	  // Record any version information, except those from
2461 	  // as-needed libraries not seen to be needed.  Note that the
2462 	  // is_needed state for such libraries can change in this loop.
2463 	  if (sym->version() != NULL)
2464 	    {
2465 	      if (!sym->is_from_dynobj()
2466 		  || !sym->object()->as_needed()
2467 		  || sym->object()->is_needed())
2468 		versions->record_version(this, dynpool, sym);
2469 	      else
2470 		as_needed_sym.push_back(sym);
2471 	    }
2472 	}
2473     }
2474 
2475   // Process version information for symbols from as-needed libraries.
2476   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
2477        p != as_needed_sym.end();
2478        ++p)
2479     {
2480       Symbol* sym = *p;
2481 
2482       if (sym->object()->is_needed())
2483 	versions->record_version(this, dynpool, sym);
2484       else
2485 	sym->clear_version();
2486     }
2487 
2488   // Finish up the versions.  In some cases this may add new dynamic
2489   // symbols.
2490   index = versions->finalize(this, index, syms);
2491 
2492   return index;
2493 }
2494 
2495 // Set the final values for all the symbols.  The index of the first
2496 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
2497 // file offset OFF.  Add their names to POOL.  Return the new file
2498 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
2499 
2500 off_t
finalize(off_t off,off_t dynoff,size_t dyn_global_index,size_t dyncount,Stringpool * pool,unsigned int * plocal_symcount)2501 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
2502 		       size_t dyncount, Stringpool* pool,
2503 		       unsigned int* plocal_symcount)
2504 {
2505   off_t ret;
2506 
2507   gold_assert(*plocal_symcount != 0);
2508   this->first_global_index_ = *plocal_symcount;
2509 
2510   this->dynamic_offset_ = dynoff;
2511   this->first_dynamic_global_index_ = dyn_global_index;
2512   this->dynamic_count_ = dyncount;
2513 
2514   if (parameters->target().get_size() == 32)
2515     {
2516 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
2517       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
2518 #else
2519       gold_unreachable();
2520 #endif
2521     }
2522   else if (parameters->target().get_size() == 64)
2523     {
2524 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
2525       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
2526 #else
2527       gold_unreachable();
2528 #endif
2529     }
2530   else
2531     gold_unreachable();
2532 
2533   // Now that we have the final symbol table, we can reliably note
2534   // which symbols should get warnings.
2535   this->warnings_.note_warnings(this);
2536 
2537   return ret;
2538 }
2539 
2540 // SYM is going into the symbol table at *PINDEX.  Add the name to
2541 // POOL, update *PINDEX and *POFF.
2542 
2543 template<int size>
2544 void
add_to_final_symtab(Symbol * sym,Stringpool * pool,unsigned int * pindex,off_t * poff)2545 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
2546 				  unsigned int* pindex, off_t* poff)
2547 {
2548   sym->set_symtab_index(*pindex);
2549   if (sym->version() == NULL || !parameters->options().relocatable())
2550     pool->add(sym->name(), false, NULL);
2551   else
2552     pool->add(sym->versioned_name(), true, NULL);
2553   ++*pindex;
2554   *poff += elfcpp::Elf_sizes<size>::sym_size;
2555 }
2556 
2557 // Set the final value for all the symbols.  This is called after
2558 // Layout::finalize, so all the output sections have their final
2559 // address.
2560 
2561 template<int size>
2562 off_t
sized_finalize(off_t off,Stringpool * pool,unsigned int * plocal_symcount)2563 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
2564 			     unsigned int* plocal_symcount)
2565 {
2566   off = align_address(off, size >> 3);
2567   this->offset_ = off;
2568 
2569   unsigned int index = *plocal_symcount;
2570   const unsigned int orig_index = index;
2571 
2572   // First do all the symbols which have been forced to be local, as
2573   // they must appear before all global symbols.
2574   for (Forced_locals::iterator p = this->forced_locals_.begin();
2575        p != this->forced_locals_.end();
2576        ++p)
2577     {
2578       Symbol* sym = *p;
2579       gold_assert(sym->is_forced_local());
2580       if (this->sized_finalize_symbol<size>(sym))
2581 	{
2582 	  this->add_to_final_symtab<size>(sym, pool, &index, &off);
2583 	  ++*plocal_symcount;
2584 	}
2585     }
2586 
2587   // Now do all the remaining symbols.
2588   for (Symbol_table_type::iterator p = this->table_.begin();
2589        p != this->table_.end();
2590        ++p)
2591     {
2592       Symbol* sym = p->second;
2593       if (this->sized_finalize_symbol<size>(sym))
2594 	this->add_to_final_symtab<size>(sym, pool, &index, &off);
2595     }
2596 
2597   this->output_count_ = index - orig_index;
2598 
2599   return off;
2600 }
2601 
2602 // Compute the final value of SYM and store status in location PSTATUS.
2603 // During relaxation, this may be called multiple times for a symbol to
2604 // compute its would-be final value in each relaxation pass.
2605 
2606 template<int size>
2607 typename Sized_symbol<size>::Value_type
compute_final_value(const Sized_symbol<size> * sym,Compute_final_value_status * pstatus) const2608 Symbol_table::compute_final_value(
2609     const Sized_symbol<size>* sym,
2610     Compute_final_value_status* pstatus) const
2611 {
2612   typedef typename Sized_symbol<size>::Value_type Value_type;
2613   Value_type value;
2614 
2615   switch (sym->source())
2616     {
2617     case Symbol::FROM_OBJECT:
2618       {
2619 	bool is_ordinary;
2620 	unsigned int shndx = sym->shndx(&is_ordinary);
2621 
2622 	if (!is_ordinary
2623 	    && shndx != elfcpp::SHN_ABS
2624 	    && !Symbol::is_common_shndx(shndx))
2625 	  {
2626 	    *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
2627 	    return 0;
2628 	  }
2629 
2630 	Object* symobj = sym->object();
2631 	if (symobj->is_dynamic())
2632 	  {
2633 	    value = 0;
2634 	    shndx = elfcpp::SHN_UNDEF;
2635 	  }
2636 	else if (symobj->pluginobj() != NULL)
2637 	  {
2638 	    value = 0;
2639 	    shndx = elfcpp::SHN_UNDEF;
2640 	  }
2641 	else if (shndx == elfcpp::SHN_UNDEF)
2642 	  value = 0;
2643 	else if (!is_ordinary
2644 		 && (shndx == elfcpp::SHN_ABS
2645 		     || Symbol::is_common_shndx(shndx)))
2646 	  value = sym->value();
2647 	else
2648 	  {
2649 	    Relobj* relobj = static_cast<Relobj*>(symobj);
2650 	    Output_section* os = relobj->output_section(shndx);
2651 
2652             if (this->is_section_folded(relobj, shndx))
2653               {
2654                 gold_assert(os == NULL);
2655                 // Get the os of the section it is folded onto.
2656                 Section_id folded = this->icf_->get_folded_section(relobj,
2657                                                                    shndx);
2658                 gold_assert(folded.first != NULL);
2659                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
2660 		unsigned folded_shndx = folded.second;
2661 
2662                 os = folded_obj->output_section(folded_shndx);
2663                 gold_assert(os != NULL);
2664 
2665 		// Replace (relobj, shndx) with canonical ICF input section.
2666 		shndx = folded_shndx;
2667 		relobj = folded_obj;
2668               }
2669 
2670             uint64_t secoff64 = relobj->output_section_offset(shndx);
2671  	    if (os == NULL)
2672 	      {
2673                 bool static_or_reloc = (parameters->doing_static_link() ||
2674                                         parameters->options().relocatable());
2675                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
2676 
2677 		*pstatus = CFVS_NO_OUTPUT_SECTION;
2678 		return 0;
2679 	      }
2680 
2681             if (secoff64 == -1ULL)
2682               {
2683                 // The section needs special handling (e.g., a merge section).
2684 
2685 	        value = os->output_address(relobj, shndx, sym->value());
2686 	      }
2687             else
2688               {
2689                 Value_type secoff =
2690                   convert_types<Value_type, uint64_t>(secoff64);
2691 	        if (sym->type() == elfcpp::STT_TLS)
2692 	          value = sym->value() + os->tls_offset() + secoff;
2693 	        else
2694 	          value = sym->value() + os->address() + secoff;
2695 	      }
2696 	  }
2697       }
2698       break;
2699 
2700     case Symbol::IN_OUTPUT_DATA:
2701       {
2702 	Output_data* od = sym->output_data();
2703 	value = sym->value();
2704 	if (sym->type() != elfcpp::STT_TLS)
2705 	  value += od->address();
2706 	else
2707 	  {
2708 	    Output_section* os = od->output_section();
2709 	    gold_assert(os != NULL);
2710 	    value += os->tls_offset() + (od->address() - os->address());
2711 	  }
2712 	if (sym->offset_is_from_end())
2713 	  value += od->data_size();
2714       }
2715       break;
2716 
2717     case Symbol::IN_OUTPUT_SEGMENT:
2718       {
2719 	Output_segment* os = sym->output_segment();
2720 	value = sym->value();
2721         if (sym->type() != elfcpp::STT_TLS)
2722 	  value += os->vaddr();
2723 	switch (sym->offset_base())
2724 	  {
2725 	  case Symbol::SEGMENT_START:
2726 	    break;
2727 	  case Symbol::SEGMENT_END:
2728 	    value += os->memsz();
2729 	    break;
2730 	  case Symbol::SEGMENT_BSS:
2731 	    value += os->filesz();
2732 	    break;
2733 	  default:
2734 	    gold_unreachable();
2735 	  }
2736       }
2737       break;
2738 
2739     case Symbol::IS_CONSTANT:
2740       value = sym->value();
2741       break;
2742 
2743     case Symbol::IS_UNDEFINED:
2744       value = 0;
2745       break;
2746 
2747     default:
2748       gold_unreachable();
2749     }
2750 
2751   *pstatus = CFVS_OK;
2752   return value;
2753 }
2754 
2755 // Finalize the symbol SYM.  This returns true if the symbol should be
2756 // added to the symbol table, false otherwise.
2757 
2758 template<int size>
2759 bool
sized_finalize_symbol(Symbol * unsized_sym)2760 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
2761 {
2762   typedef typename Sized_symbol<size>::Value_type Value_type;
2763 
2764   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
2765 
2766   // The default version of a symbol may appear twice in the symbol
2767   // table.  We only need to finalize it once.
2768   if (sym->has_symtab_index())
2769     return false;
2770 
2771   if (!sym->in_reg())
2772     {
2773       gold_assert(!sym->has_symtab_index());
2774       sym->set_symtab_index(-1U);
2775       gold_assert(sym->dynsym_index() == -1U);
2776       return false;
2777     }
2778 
2779   // If the symbol is only present on plugin files, the plugin decided we
2780   // don't need it.
2781   if (!sym->in_real_elf())
2782     {
2783       gold_assert(!sym->has_symtab_index());
2784       sym->set_symtab_index(-1U);
2785       return false;
2786     }
2787 
2788   // Compute final symbol value.
2789   Compute_final_value_status status;
2790   Value_type value = this->compute_final_value(sym, &status);
2791 
2792   switch (status)
2793     {
2794     case CFVS_OK:
2795       break;
2796     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
2797       {
2798 	bool is_ordinary;
2799 	unsigned int shndx = sym->shndx(&is_ordinary);
2800 	gold_error(_("%s: unsupported symbol section 0x%x"),
2801 		   sym->demangled_name().c_str(), shndx);
2802       }
2803       break;
2804     case CFVS_NO_OUTPUT_SECTION:
2805       sym->set_symtab_index(-1U);
2806       return false;
2807     default:
2808       gold_unreachable();
2809     }
2810 
2811   sym->set_value(value);
2812 
2813   if (parameters->options().strip_all()
2814       || !parameters->options().should_retain_symbol(sym->name()))
2815     {
2816       sym->set_symtab_index(-1U);
2817       return false;
2818     }
2819 
2820   return true;
2821 }
2822 
2823 // Write out the global symbols.
2824 
2825 void
write_globals(const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,Output_file * of) const2826 Symbol_table::write_globals(const Stringpool* sympool,
2827 			    const Stringpool* dynpool,
2828 			    Output_symtab_xindex* symtab_xindex,
2829 			    Output_symtab_xindex* dynsym_xindex,
2830 			    Output_file* of) const
2831 {
2832   switch (parameters->size_and_endianness())
2833     {
2834 #ifdef HAVE_TARGET_32_LITTLE
2835     case Parameters::TARGET_32_LITTLE:
2836       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
2837 					   dynsym_xindex, of);
2838       break;
2839 #endif
2840 #ifdef HAVE_TARGET_32_BIG
2841     case Parameters::TARGET_32_BIG:
2842       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
2843 					  dynsym_xindex, of);
2844       break;
2845 #endif
2846 #ifdef HAVE_TARGET_64_LITTLE
2847     case Parameters::TARGET_64_LITTLE:
2848       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
2849 					   dynsym_xindex, of);
2850       break;
2851 #endif
2852 #ifdef HAVE_TARGET_64_BIG
2853     case Parameters::TARGET_64_BIG:
2854       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
2855 					  dynsym_xindex, of);
2856       break;
2857 #endif
2858     default:
2859       gold_unreachable();
2860     }
2861 }
2862 
2863 // Write out the global symbols.
2864 
2865 template<int size, bool big_endian>
2866 void
sized_write_globals(const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,Output_file * of) const2867 Symbol_table::sized_write_globals(const Stringpool* sympool,
2868 				  const Stringpool* dynpool,
2869 				  Output_symtab_xindex* symtab_xindex,
2870 				  Output_symtab_xindex* dynsym_xindex,
2871 				  Output_file* of) const
2872 {
2873   const Target& target = parameters->target();
2874 
2875   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2876 
2877   const unsigned int output_count = this->output_count_;
2878   const section_size_type oview_size = output_count * sym_size;
2879   const unsigned int first_global_index = this->first_global_index_;
2880   unsigned char* psyms;
2881   if (this->offset_ == 0 || output_count == 0)
2882     psyms = NULL;
2883   else
2884     psyms = of->get_output_view(this->offset_, oview_size);
2885 
2886   const unsigned int dynamic_count = this->dynamic_count_;
2887   const section_size_type dynamic_size = dynamic_count * sym_size;
2888   const unsigned int first_dynamic_global_index =
2889     this->first_dynamic_global_index_;
2890   unsigned char* dynamic_view;
2891   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
2892     dynamic_view = NULL;
2893   else
2894     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
2895 
2896   for (Symbol_table_type::const_iterator p = this->table_.begin();
2897        p != this->table_.end();
2898        ++p)
2899     {
2900       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
2901 
2902       // Possibly warn about unresolved symbols in shared libraries.
2903       this->warn_about_undefined_dynobj_symbol(sym);
2904 
2905       unsigned int sym_index = sym->symtab_index();
2906       unsigned int dynsym_index;
2907       if (dynamic_view == NULL)
2908 	dynsym_index = -1U;
2909       else
2910 	dynsym_index = sym->dynsym_index();
2911 
2912       if (sym_index == -1U && dynsym_index == -1U)
2913 	{
2914 	  // This symbol is not included in the output file.
2915 	  continue;
2916 	}
2917 
2918       unsigned int shndx;
2919       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
2920       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
2921       elfcpp::STB binding = sym->binding();
2922 
2923       // If --weak-unresolved-symbols is set, change binding of unresolved
2924       // global symbols to STB_WEAK.
2925       if (parameters->options().weak_unresolved_symbols()
2926 	  && binding == elfcpp::STB_GLOBAL
2927 	  && sym->is_undefined())
2928 	binding = elfcpp::STB_WEAK;
2929 
2930       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
2931       if (binding == elfcpp::STB_GNU_UNIQUE
2932 	  && !parameters->options().gnu_unique())
2933 	binding = elfcpp::STB_GLOBAL;
2934 
2935       switch (sym->source())
2936 	{
2937 	case Symbol::FROM_OBJECT:
2938 	  {
2939 	    bool is_ordinary;
2940 	    unsigned int in_shndx = sym->shndx(&is_ordinary);
2941 
2942 	    if (!is_ordinary
2943 		&& in_shndx != elfcpp::SHN_ABS
2944 		&& !Symbol::is_common_shndx(in_shndx))
2945 	      {
2946 		gold_error(_("%s: unsupported symbol section 0x%x"),
2947 			   sym->demangled_name().c_str(), in_shndx);
2948 		shndx = in_shndx;
2949 	      }
2950 	    else
2951 	      {
2952 		Object* symobj = sym->object();
2953 		if (symobj->is_dynamic())
2954 		  {
2955 		    if (sym->needs_dynsym_value())
2956 		      dynsym_value = target.dynsym_value(sym);
2957 		    shndx = elfcpp::SHN_UNDEF;
2958 		    if (sym->is_undef_binding_weak())
2959 		      binding = elfcpp::STB_WEAK;
2960 		    else
2961 		      binding = elfcpp::STB_GLOBAL;
2962 		  }
2963 		else if (symobj->pluginobj() != NULL)
2964 		  shndx = elfcpp::SHN_UNDEF;
2965 		else if (in_shndx == elfcpp::SHN_UNDEF
2966 			 || (!is_ordinary
2967 			     && (in_shndx == elfcpp::SHN_ABS
2968 				 || Symbol::is_common_shndx(in_shndx))))
2969 		  shndx = in_shndx;
2970 		else
2971 		  {
2972 		    Relobj* relobj = static_cast<Relobj*>(symobj);
2973 		    Output_section* os = relobj->output_section(in_shndx);
2974                     if (this->is_section_folded(relobj, in_shndx))
2975                       {
2976                         // This global symbol must be written out even though
2977                         // it is folded.
2978                         // Get the os of the section it is folded onto.
2979                         Section_id folded =
2980                              this->icf_->get_folded_section(relobj, in_shndx);
2981                         gold_assert(folded.first !=NULL);
2982                         Relobj* folded_obj =
2983                           reinterpret_cast<Relobj*>(folded.first);
2984                         os = folded_obj->output_section(folded.second);
2985                         gold_assert(os != NULL);
2986                       }
2987 		    gold_assert(os != NULL);
2988 		    shndx = os->out_shndx();
2989 
2990 		    if (shndx >= elfcpp::SHN_LORESERVE)
2991 		      {
2992 			if (sym_index != -1U)
2993 			  symtab_xindex->add(sym_index, shndx);
2994 			if (dynsym_index != -1U)
2995 			  dynsym_xindex->add(dynsym_index, shndx);
2996 			shndx = elfcpp::SHN_XINDEX;
2997 		      }
2998 
2999 		    // In object files symbol values are section
3000 		    // relative.
3001 		    if (parameters->options().relocatable())
3002 		      sym_value -= os->address();
3003 		  }
3004 	      }
3005 	  }
3006 	  break;
3007 
3008 	case Symbol::IN_OUTPUT_DATA:
3009 	  {
3010 	    Output_data* od = sym->output_data();
3011 
3012 	    shndx = od->out_shndx();
3013 	    if (shndx >= elfcpp::SHN_LORESERVE)
3014 	      {
3015 		if (sym_index != -1U)
3016 		  symtab_xindex->add(sym_index, shndx);
3017 		if (dynsym_index != -1U)
3018 		  dynsym_xindex->add(dynsym_index, shndx);
3019 		shndx = elfcpp::SHN_XINDEX;
3020 	      }
3021 
3022 	    // In object files symbol values are section
3023 	    // relative.
3024 	    if (parameters->options().relocatable())
3025 	      sym_value -= od->address();
3026 	  }
3027 	  break;
3028 
3029 	case Symbol::IN_OUTPUT_SEGMENT:
3030 	  shndx = elfcpp::SHN_ABS;
3031 	  break;
3032 
3033 	case Symbol::IS_CONSTANT:
3034 	  shndx = elfcpp::SHN_ABS;
3035 	  break;
3036 
3037 	case Symbol::IS_UNDEFINED:
3038 	  shndx = elfcpp::SHN_UNDEF;
3039 	  break;
3040 
3041 	default:
3042 	  gold_unreachable();
3043 	}
3044 
3045       if (sym_index != -1U)
3046 	{
3047 	  sym_index -= first_global_index;
3048 	  gold_assert(sym_index < output_count);
3049 	  unsigned char* ps = psyms + (sym_index * sym_size);
3050 	  this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
3051 						     binding, sympool, ps);
3052 	}
3053 
3054       if (dynsym_index != -1U)
3055 	{
3056 	  dynsym_index -= first_dynamic_global_index;
3057 	  gold_assert(dynsym_index < dynamic_count);
3058 	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
3059 	  this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
3060 						     binding, dynpool, pd);
3061           // Allow a target to adjust dynamic symbol value.
3062           parameters->target().adjust_dyn_symbol(sym, pd);
3063 	}
3064     }
3065 
3066   of->write_output_view(this->offset_, oview_size, psyms);
3067   if (dynamic_view != NULL)
3068     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
3069 }
3070 
3071 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
3072 // strtab holding the name.
3073 
3074 template<int size, bool big_endian>
3075 void
sized_write_symbol(Sized_symbol<size> * sym,typename elfcpp::Elf_types<size>::Elf_Addr value,unsigned int shndx,elfcpp::STB binding,const Stringpool * pool,unsigned char * p) const3076 Symbol_table::sized_write_symbol(
3077     Sized_symbol<size>* sym,
3078     typename elfcpp::Elf_types<size>::Elf_Addr value,
3079     unsigned int shndx,
3080     elfcpp::STB binding,
3081     const Stringpool* pool,
3082     unsigned char* p) const
3083 {
3084   elfcpp::Sym_write<size, big_endian> osym(p);
3085   if (sym->version() == NULL || !parameters->options().relocatable())
3086     osym.put_st_name(pool->get_offset(sym->name()));
3087   else
3088     osym.put_st_name(pool->get_offset(sym->versioned_name()));
3089   osym.put_st_value(value);
3090   // Use a symbol size of zero for undefined symbols from shared libraries.
3091   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
3092     osym.put_st_size(0);
3093   else
3094     osym.put_st_size(sym->symsize());
3095   elfcpp::STT type = sym->type();
3096   // Turn IFUNC symbols from shared libraries into normal FUNC symbols.
3097   if (type == elfcpp::STT_GNU_IFUNC
3098       && sym->is_from_dynobj())
3099     type = elfcpp::STT_FUNC;
3100   // A version script may have overridden the default binding.
3101   if (sym->is_forced_local())
3102     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
3103   else
3104     osym.put_st_info(elfcpp::elf_st_info(binding, type));
3105   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
3106   osym.put_st_shndx(shndx);
3107 }
3108 
3109 // Check for unresolved symbols in shared libraries.  This is
3110 // controlled by the --allow-shlib-undefined option.
3111 
3112 // We only warn about libraries for which we have seen all the
3113 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
3114 // which were not seen in this link.  If we didn't see a DT_NEEDED
3115 // entry, we aren't going to be able to reliably report whether the
3116 // symbol is undefined.
3117 
3118 // We also don't warn about libraries found in a system library
3119 // directory (e.g., /lib or /usr/lib); we assume that those libraries
3120 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
3121 // can have undefined references satisfied by ld-linux.so.
3122 
3123 inline void
warn_about_undefined_dynobj_symbol(Symbol * sym) const3124 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
3125 {
3126   bool dummy;
3127   if (sym->source() == Symbol::FROM_OBJECT
3128       && sym->object()->is_dynamic()
3129       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
3130       && sym->binding() != elfcpp::STB_WEAK
3131       && !parameters->options().allow_shlib_undefined()
3132       && !parameters->target().is_defined_by_abi(sym)
3133       && !sym->object()->is_in_system_directory())
3134     {
3135       // A very ugly cast.
3136       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
3137       if (!dynobj->has_unknown_needed_entries())
3138         gold_undefined_symbol(sym);
3139     }
3140 }
3141 
3142 // Write out a section symbol.  Return the update offset.
3143 
3144 void
write_section_symbol(const Output_section * os,Output_symtab_xindex * symtab_xindex,Output_file * of,off_t offset) const3145 Symbol_table::write_section_symbol(const Output_section* os,
3146 				   Output_symtab_xindex* symtab_xindex,
3147 				   Output_file* of,
3148 				   off_t offset) const
3149 {
3150   switch (parameters->size_and_endianness())
3151     {
3152 #ifdef HAVE_TARGET_32_LITTLE
3153     case Parameters::TARGET_32_LITTLE:
3154       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
3155 						  offset);
3156       break;
3157 #endif
3158 #ifdef HAVE_TARGET_32_BIG
3159     case Parameters::TARGET_32_BIG:
3160       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
3161 						 offset);
3162       break;
3163 #endif
3164 #ifdef HAVE_TARGET_64_LITTLE
3165     case Parameters::TARGET_64_LITTLE:
3166       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
3167 						  offset);
3168       break;
3169 #endif
3170 #ifdef HAVE_TARGET_64_BIG
3171     case Parameters::TARGET_64_BIG:
3172       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
3173 						 offset);
3174       break;
3175 #endif
3176     default:
3177       gold_unreachable();
3178     }
3179 }
3180 
3181 // Write out a section symbol, specialized for size and endianness.
3182 
3183 template<int size, bool big_endian>
3184 void
sized_write_section_symbol(const Output_section * os,Output_symtab_xindex * symtab_xindex,Output_file * of,off_t offset) const3185 Symbol_table::sized_write_section_symbol(const Output_section* os,
3186 					 Output_symtab_xindex* symtab_xindex,
3187 					 Output_file* of,
3188 					 off_t offset) const
3189 {
3190   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
3191 
3192   unsigned char* pov = of->get_output_view(offset, sym_size);
3193 
3194   elfcpp::Sym_write<size, big_endian> osym(pov);
3195   osym.put_st_name(0);
3196   if (parameters->options().relocatable())
3197     osym.put_st_value(0);
3198   else
3199     osym.put_st_value(os->address());
3200   osym.put_st_size(0);
3201   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
3202 				       elfcpp::STT_SECTION));
3203   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
3204 
3205   unsigned int shndx = os->out_shndx();
3206   if (shndx >= elfcpp::SHN_LORESERVE)
3207     {
3208       symtab_xindex->add(os->symtab_index(), shndx);
3209       shndx = elfcpp::SHN_XINDEX;
3210     }
3211   osym.put_st_shndx(shndx);
3212 
3213   of->write_output_view(offset, sym_size, pov);
3214 }
3215 
3216 // Print statistical information to stderr.  This is used for --stats.
3217 
3218 void
print_stats() const3219 Symbol_table::print_stats() const
3220 {
3221 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
3222   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
3223 	  program_name, this->table_.size(), this->table_.bucket_count());
3224 #else
3225   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
3226 	  program_name, this->table_.size());
3227 #endif
3228   this->namepool_.print_stats("symbol table stringpool");
3229 }
3230 
3231 // We check for ODR violations by looking for symbols with the same
3232 // name for which the debugging information reports that they were
3233 // defined in disjoint source locations.  When comparing the source
3234 // location, we consider instances with the same base filename to be
3235 // the same.  This is because different object files/shared libraries
3236 // can include the same header file using different paths, and
3237 // different optimization settings can make the line number appear to
3238 // be a couple lines off, and we don't want to report an ODR violation
3239 // in those cases.
3240 
3241 // This struct is used to compare line information, as returned by
3242 // Dwarf_line_info::one_addr2line.  It implements a < comparison
3243 // operator used with std::sort.
3244 
3245 struct Odr_violation_compare
3246 {
3247   bool
operator ()gold::Odr_violation_compare3248   operator()(const std::string& s1, const std::string& s2) const
3249   {
3250     // Inputs should be of the form "dirname/filename:linenum" where
3251     // "dirname/" is optional.  We want to compare just the filename:linenum.
3252 
3253     // Find the last '/' in each string.
3254     std::string::size_type s1begin = s1.rfind('/');
3255     std::string::size_type s2begin = s2.rfind('/');
3256     // If there was no '/' in a string, start at the beginning.
3257     if (s1begin == std::string::npos)
3258       s1begin = 0;
3259     if (s2begin == std::string::npos)
3260       s2begin = 0;
3261     return s1.compare(s1begin, std::string::npos,
3262 		      s2, s2begin, std::string::npos) < 0;
3263   }
3264 };
3265 
3266 // Returns all of the lines attached to LOC, not just the one the
3267 // instruction actually came from.
3268 std::vector<std::string>
linenos_from_loc(const Task * task,const Symbol_location & loc)3269 Symbol_table::linenos_from_loc(const Task* task,
3270                                const Symbol_location& loc)
3271 {
3272   // We need to lock the object in order to read it.  This
3273   // means that we have to run in a singleton Task.  If we
3274   // want to run this in a general Task for better
3275   // performance, we will need one Task for object, plus
3276   // appropriate locking to ensure that we don't conflict with
3277   // other uses of the object.  Also note, one_addr2line is not
3278   // currently thread-safe.
3279   Task_lock_obj<Object> tl(task, loc.object);
3280 
3281   std::vector<std::string> result;
3282   Symbol_location code_loc = loc;
3283   parameters->target().function_location(&code_loc);
3284   // 16 is the size of the object-cache that one_addr2line should use.
3285   std::string canonical_result = Dwarf_line_info::one_addr2line(
3286       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
3287   if (!canonical_result.empty())
3288     result.push_back(canonical_result);
3289   return result;
3290 }
3291 
3292 // OutputIterator that records if it was ever assigned to.  This
3293 // allows it to be used with std::set_intersection() to check for
3294 // intersection rather than computing the intersection.
3295 struct Check_intersection
3296 {
Check_intersectiongold::Check_intersection3297   Check_intersection()
3298     : value_(false)
3299   {}
3300 
had_intersectiongold::Check_intersection3301   bool had_intersection() const
3302   { return this->value_; }
3303 
operator ++gold::Check_intersection3304   Check_intersection& operator++()
3305   { return *this; }
3306 
operator *gold::Check_intersection3307   Check_intersection& operator*()
3308   { return *this; }
3309 
3310   template<typename T>
operator =gold::Check_intersection3311   Check_intersection& operator=(const T&)
3312   {
3313     this->value_ = true;
3314     return *this;
3315   }
3316 
3317  private:
3318   bool value_;
3319 };
3320 
3321 // Check candidate_odr_violations_ to find symbols with the same name
3322 // but apparently different definitions (different source-file/line-no
3323 // for each line assigned to the first instruction).
3324 
3325 void
detect_odr_violations(const Task * task,const char * output_file_name) const3326 Symbol_table::detect_odr_violations(const Task* task,
3327 				    const char* output_file_name) const
3328 {
3329   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
3330        it != candidate_odr_violations_.end();
3331        ++it)
3332     {
3333       const char* const symbol_name = it->first;
3334 
3335       std::string first_object_name;
3336       std::vector<std::string> first_object_linenos;
3337 
3338       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3339           locs = it->second.begin();
3340       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
3341           locs_end = it->second.end();
3342       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
3343         {
3344           // Save the line numbers from the first definition to
3345           // compare to the other definitions.  Ideally, we'd compare
3346           // every definition to every other, but we don't want to
3347           // take O(N^2) time to do this.  This shortcut may cause
3348           // false negatives that appear or disappear depending on the
3349           // link order, but it won't cause false positives.
3350           first_object_name = locs->object->name();
3351           first_object_linenos = this->linenos_from_loc(task, *locs);
3352         }
3353       if (first_object_linenos.empty())
3354 	continue;
3355 
3356       // Sort by Odr_violation_compare to make std::set_intersection work.
3357       std::string first_object_canonical_result = first_object_linenos.back();
3358       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
3359                 Odr_violation_compare());
3360 
3361       for (; locs != locs_end; ++locs)
3362         {
3363           std::vector<std::string> linenos =
3364               this->linenos_from_loc(task, *locs);
3365           // linenos will be empty if we couldn't parse the debug info.
3366           if (linenos.empty())
3367             continue;
3368           // Sort by Odr_violation_compare to make std::set_intersection work.
3369           gold_assert(!linenos.empty());
3370           std::string second_object_canonical_result = linenos.back();
3371           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
3372 
3373           Check_intersection intersection_result =
3374               std::set_intersection(first_object_linenos.begin(),
3375                                     first_object_linenos.end(),
3376                                     linenos.begin(),
3377                                     linenos.end(),
3378                                     Check_intersection(),
3379                                     Odr_violation_compare());
3380           if (!intersection_result.had_intersection())
3381             {
3382               gold_warning(_("while linking %s: symbol '%s' defined in "
3383                              "multiple places (possible ODR violation):"),
3384                            output_file_name, demangle(symbol_name).c_str());
3385               // This only prints one location from each definition,
3386               // which may not be the location we expect to intersect
3387               // with another definition.  We could print the whole
3388               // set of locations, but that seems too verbose.
3389               fprintf(stderr, _("  %s from %s\n"),
3390                       first_object_canonical_result.c_str(),
3391                       first_object_name.c_str());
3392               fprintf(stderr, _("  %s from %s\n"),
3393                       second_object_canonical_result.c_str(),
3394                       locs->object->name().c_str());
3395               // Only print one broken pair, to avoid needing to
3396               // compare against a list of the disjoint definition
3397               // locations we've found so far.  (If we kept comparing
3398               // against just the first one, we'd get a lot of
3399               // redundant complaints about the second definition
3400               // location.)
3401               break;
3402             }
3403         }
3404     }
3405   // We only call one_addr2line() in this function, so we can clear its cache.
3406   Dwarf_line_info::clear_addr2line_cache();
3407 }
3408 
3409 // Warnings functions.
3410 
3411 // Add a new warning.
3412 
3413 void
add_warning(Symbol_table * symtab,const char * name,Object * obj,const std::string & warning)3414 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
3415 		      const std::string& warning)
3416 {
3417   name = symtab->canonicalize_name(name);
3418   this->warnings_[name].set(obj, warning);
3419 }
3420 
3421 // Look through the warnings and mark the symbols for which we should
3422 // warn.  This is called during Layout::finalize when we know the
3423 // sources for all the symbols.
3424 
3425 void
note_warnings(Symbol_table * symtab)3426 Warnings::note_warnings(Symbol_table* symtab)
3427 {
3428   for (Warning_table::iterator p = this->warnings_.begin();
3429        p != this->warnings_.end();
3430        ++p)
3431     {
3432       Symbol* sym = symtab->lookup(p->first, NULL);
3433       if (sym != NULL
3434 	  && sym->source() == Symbol::FROM_OBJECT
3435 	  && sym->object() == p->second.object)
3436 	sym->set_has_warning();
3437     }
3438 }
3439 
3440 // Issue a warning.  This is called when we see a relocation against a
3441 // symbol for which has a warning.
3442 
3443 template<int size, bool big_endian>
3444 void
issue_warning(const Symbol * sym,const Relocate_info<size,big_endian> * relinfo,size_t relnum,off_t reloffset) const3445 Warnings::issue_warning(const Symbol* sym,
3446 			const Relocate_info<size, big_endian>* relinfo,
3447 			size_t relnum, off_t reloffset) const
3448 {
3449   gold_assert(sym->has_warning());
3450 
3451   // We don't want to issue a warning for a relocation against the
3452   // symbol in the same object file in which the symbol is defined.
3453   if (sym->object() == relinfo->object)
3454     return;
3455 
3456   Warning_table::const_iterator p = this->warnings_.find(sym->name());
3457   gold_assert(p != this->warnings_.end());
3458   gold_warning_at_location(relinfo, relnum, reloffset,
3459 			   "%s", p->second.text.c_str());
3460 }
3461 
3462 // Instantiate the templates we need.  We could use the configure
3463 // script to restrict this to only the ones needed for implemented
3464 // targets.
3465 
3466 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3467 template
3468 void
3469 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
3470 #endif
3471 
3472 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3473 template
3474 void
3475 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
3476 #endif
3477 
3478 #ifdef HAVE_TARGET_32_LITTLE
3479 template
3480 void
3481 Symbol_table::add_from_relobj<32, false>(
3482     Sized_relobj_file<32, false>* relobj,
3483     const unsigned char* syms,
3484     size_t count,
3485     size_t symndx_offset,
3486     const char* sym_names,
3487     size_t sym_name_size,
3488     Sized_relobj_file<32, false>::Symbols* sympointers,
3489     size_t* defined);
3490 #endif
3491 
3492 #ifdef HAVE_TARGET_32_BIG
3493 template
3494 void
3495 Symbol_table::add_from_relobj<32, true>(
3496     Sized_relobj_file<32, true>* relobj,
3497     const unsigned char* syms,
3498     size_t count,
3499     size_t symndx_offset,
3500     const char* sym_names,
3501     size_t sym_name_size,
3502     Sized_relobj_file<32, true>::Symbols* sympointers,
3503     size_t* defined);
3504 #endif
3505 
3506 #ifdef HAVE_TARGET_64_LITTLE
3507 template
3508 void
3509 Symbol_table::add_from_relobj<64, false>(
3510     Sized_relobj_file<64, false>* relobj,
3511     const unsigned char* syms,
3512     size_t count,
3513     size_t symndx_offset,
3514     const char* sym_names,
3515     size_t sym_name_size,
3516     Sized_relobj_file<64, false>::Symbols* sympointers,
3517     size_t* defined);
3518 #endif
3519 
3520 #ifdef HAVE_TARGET_64_BIG
3521 template
3522 void
3523 Symbol_table::add_from_relobj<64, true>(
3524     Sized_relobj_file<64, true>* relobj,
3525     const unsigned char* syms,
3526     size_t count,
3527     size_t symndx_offset,
3528     const char* sym_names,
3529     size_t sym_name_size,
3530     Sized_relobj_file<64, true>::Symbols* sympointers,
3531     size_t* defined);
3532 #endif
3533 
3534 #ifdef HAVE_TARGET_32_LITTLE
3535 template
3536 Symbol*
3537 Symbol_table::add_from_pluginobj<32, false>(
3538     Sized_pluginobj<32, false>* obj,
3539     const char* name,
3540     const char* ver,
3541     elfcpp::Sym<32, false>* sym);
3542 #endif
3543 
3544 #ifdef HAVE_TARGET_32_BIG
3545 template
3546 Symbol*
3547 Symbol_table::add_from_pluginobj<32, true>(
3548     Sized_pluginobj<32, true>* obj,
3549     const char* name,
3550     const char* ver,
3551     elfcpp::Sym<32, true>* sym);
3552 #endif
3553 
3554 #ifdef HAVE_TARGET_64_LITTLE
3555 template
3556 Symbol*
3557 Symbol_table::add_from_pluginobj<64, false>(
3558     Sized_pluginobj<64, false>* obj,
3559     const char* name,
3560     const char* ver,
3561     elfcpp::Sym<64, false>* sym);
3562 #endif
3563 
3564 #ifdef HAVE_TARGET_64_BIG
3565 template
3566 Symbol*
3567 Symbol_table::add_from_pluginobj<64, true>(
3568     Sized_pluginobj<64, true>* obj,
3569     const char* name,
3570     const char* ver,
3571     elfcpp::Sym<64, true>* sym);
3572 #endif
3573 
3574 #ifdef HAVE_TARGET_32_LITTLE
3575 template
3576 void
3577 Symbol_table::add_from_dynobj<32, false>(
3578     Sized_dynobj<32, false>* dynobj,
3579     const unsigned char* syms,
3580     size_t count,
3581     const char* sym_names,
3582     size_t sym_name_size,
3583     const unsigned char* versym,
3584     size_t versym_size,
3585     const std::vector<const char*>* version_map,
3586     Sized_relobj_file<32, false>::Symbols* sympointers,
3587     size_t* defined);
3588 #endif
3589 
3590 #ifdef HAVE_TARGET_32_BIG
3591 template
3592 void
3593 Symbol_table::add_from_dynobj<32, true>(
3594     Sized_dynobj<32, true>* dynobj,
3595     const unsigned char* syms,
3596     size_t count,
3597     const char* sym_names,
3598     size_t sym_name_size,
3599     const unsigned char* versym,
3600     size_t versym_size,
3601     const std::vector<const char*>* version_map,
3602     Sized_relobj_file<32, true>::Symbols* sympointers,
3603     size_t* defined);
3604 #endif
3605 
3606 #ifdef HAVE_TARGET_64_LITTLE
3607 template
3608 void
3609 Symbol_table::add_from_dynobj<64, false>(
3610     Sized_dynobj<64, false>* dynobj,
3611     const unsigned char* syms,
3612     size_t count,
3613     const char* sym_names,
3614     size_t sym_name_size,
3615     const unsigned char* versym,
3616     size_t versym_size,
3617     const std::vector<const char*>* version_map,
3618     Sized_relobj_file<64, false>::Symbols* sympointers,
3619     size_t* defined);
3620 #endif
3621 
3622 #ifdef HAVE_TARGET_64_BIG
3623 template
3624 void
3625 Symbol_table::add_from_dynobj<64, true>(
3626     Sized_dynobj<64, true>* dynobj,
3627     const unsigned char* syms,
3628     size_t count,
3629     const char* sym_names,
3630     size_t sym_name_size,
3631     const unsigned char* versym,
3632     size_t versym_size,
3633     const std::vector<const char*>* version_map,
3634     Sized_relobj_file<64, true>::Symbols* sympointers,
3635     size_t* defined);
3636 #endif
3637 
3638 #ifdef HAVE_TARGET_32_LITTLE
3639 template
3640 Sized_symbol<32>*
3641 Symbol_table::add_from_incrobj(
3642     Object* obj,
3643     const char* name,
3644     const char* ver,
3645     elfcpp::Sym<32, false>* sym);
3646 #endif
3647 
3648 #ifdef HAVE_TARGET_32_BIG
3649 template
3650 Sized_symbol<32>*
3651 Symbol_table::add_from_incrobj(
3652     Object* obj,
3653     const char* name,
3654     const char* ver,
3655     elfcpp::Sym<32, true>* sym);
3656 #endif
3657 
3658 #ifdef HAVE_TARGET_64_LITTLE
3659 template
3660 Sized_symbol<64>*
3661 Symbol_table::add_from_incrobj(
3662     Object* obj,
3663     const char* name,
3664     const char* ver,
3665     elfcpp::Sym<64, false>* sym);
3666 #endif
3667 
3668 #ifdef HAVE_TARGET_64_BIG
3669 template
3670 Sized_symbol<64>*
3671 Symbol_table::add_from_incrobj(
3672     Object* obj,
3673     const char* name,
3674     const char* ver,
3675     elfcpp::Sym<64, true>* sym);
3676 #endif
3677 
3678 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3679 template
3680 void
3681 Symbol_table::define_with_copy_reloc<32>(
3682     Sized_symbol<32>* sym,
3683     Output_data* posd,
3684     elfcpp::Elf_types<32>::Elf_Addr value);
3685 #endif
3686 
3687 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3688 template
3689 void
3690 Symbol_table::define_with_copy_reloc<64>(
3691     Sized_symbol<64>* sym,
3692     Output_data* posd,
3693     elfcpp::Elf_types<64>::Elf_Addr value);
3694 #endif
3695 
3696 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
3697 template
3698 void
3699 Sized_symbol<32>::init_output_data(const char* name, const char* version,
3700 				   Output_data* od, Value_type value,
3701 				   Size_type symsize, elfcpp::STT type,
3702 				   elfcpp::STB binding,
3703 				   elfcpp::STV visibility,
3704 				   unsigned char nonvis,
3705 				   bool offset_is_from_end,
3706 				   bool is_predefined);
3707 #endif
3708 
3709 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
3710 template
3711 void
3712 Sized_symbol<64>::init_output_data(const char* name, const char* version,
3713 				   Output_data* od, Value_type value,
3714 				   Size_type symsize, elfcpp::STT type,
3715 				   elfcpp::STB binding,
3716 				   elfcpp::STV visibility,
3717 				   unsigned char nonvis,
3718 				   bool offset_is_from_end,
3719 				   bool is_predefined);
3720 #endif
3721 
3722 #ifdef HAVE_TARGET_32_LITTLE
3723 template
3724 void
3725 Warnings::issue_warning<32, false>(const Symbol* sym,
3726 				   const Relocate_info<32, false>* relinfo,
3727 				   size_t relnum, off_t reloffset) const;
3728 #endif
3729 
3730 #ifdef HAVE_TARGET_32_BIG
3731 template
3732 void
3733 Warnings::issue_warning<32, true>(const Symbol* sym,
3734 				  const Relocate_info<32, true>* relinfo,
3735 				  size_t relnum, off_t reloffset) const;
3736 #endif
3737 
3738 #ifdef HAVE_TARGET_64_LITTLE
3739 template
3740 void
3741 Warnings::issue_warning<64, false>(const Symbol* sym,
3742 				   const Relocate_info<64, false>* relinfo,
3743 				   size_t relnum, off_t reloffset) const;
3744 #endif
3745 
3746 #ifdef HAVE_TARGET_64_BIG
3747 template
3748 void
3749 Warnings::issue_warning<64, true>(const Symbol* sym,
3750 				  const Relocate_info<64, true>* relinfo,
3751 				  size_t relnum, off_t reloffset) const;
3752 #endif
3753 
3754 } // End namespace gold.
3755