1 #include "opencv2/core.hpp"
2 #include "opencv2/imgproc.hpp"
3 
4 #include "HOGfeatures.h"
5 #include "cascadeclassifier.h"
6 
7 using namespace std;
8 using namespace cv;
9 
CvHOGFeatureParams()10 CvHOGFeatureParams::CvHOGFeatureParams()
11 {
12     maxCatCount = 0;
13     name = HOGF_NAME;
14     featSize = N_BINS * N_CELLS;
15 }
16 
init(const CvFeatureParams * _featureParams,int _maxSampleCount,Size _winSize)17 void CvHOGEvaluator::init(const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize)
18 {
19     CV_Assert( _maxSampleCount > 0);
20     int cols = (_winSize.width + 1) * (_winSize.height + 1);
21     for (int bin = 0; bin < N_BINS; bin++)
22     {
23         hist.push_back(Mat(_maxSampleCount, cols, CV_32FC1));
24     }
25     normSum.create( (int)_maxSampleCount, cols, CV_32FC1 );
26     CvFeatureEvaluator::init( _featureParams, _maxSampleCount, _winSize );
27 }
28 
setImage(const Mat & img,uchar clsLabel,int idx)29 void CvHOGEvaluator::setImage(const Mat &img, uchar clsLabel, int idx)
30 {
31     CV_DbgAssert( !hist.empty());
32     CvFeatureEvaluator::setImage( img, clsLabel, idx );
33     vector<Mat> integralHist;
34     for (int bin = 0; bin < N_BINS; bin++)
35     {
36         integralHist.push_back( Mat(winSize.height + 1, winSize.width + 1, hist[bin].type(), hist[bin].ptr<float>((int)idx)) );
37     }
38     Mat integralNorm(winSize.height + 1, winSize.width + 1, normSum.type(), normSum.ptr<float>((int)idx));
39     integralHistogram(img, integralHist, integralNorm, (int)N_BINS);
40 }
41 
42 //void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
43 //{
44 //    _writeFeatures( features, fs, featureMap );
45 //}
46 
writeFeatures(FileStorage & fs,const Mat & featureMap) const47 void CvHOGEvaluator::writeFeatures( FileStorage &fs, const Mat& featureMap ) const
48 {
49     int featIdx;
50     int componentIdx;
51     const Mat_<int>& featureMap_ = (const Mat_<int>&)featureMap;
52     fs << FEATURES << "[";
53     for ( int fi = 0; fi < featureMap.cols; fi++ )
54         if ( featureMap_(0, fi) >= 0 )
55         {
56             fs << "{";
57             featIdx = fi / getFeatureSize();
58             componentIdx = fi % getFeatureSize();
59             features[featIdx].write( fs, componentIdx );
60             fs << "}";
61         }
62     fs << "]";
63 }
64 
generateFeatures()65 void CvHOGEvaluator::generateFeatures()
66 {
67     int offset = winSize.width + 1;
68     Size blockStep;
69     int x, y, t, w, h;
70 
71     for (t = 8; t <= winSize.width/2; t+=8) //t = size of a cell. blocksize = 4*cellSize
72     {
73         blockStep = Size(4,4);
74         w = 2*t; //width of a block
75         h = 2*t; //height of a block
76         for (x = 0; x <= winSize.width - w; x += blockStep.width)
77         {
78             for (y = 0; y <= winSize.height - h; y += blockStep.height)
79             {
80                 features.push_back(Feature(offset, x, y, t, t));
81             }
82         }
83         w = 2*t;
84         h = 4*t;
85         for (x = 0; x <= winSize.width - w; x += blockStep.width)
86         {
87             for (y = 0; y <= winSize.height - h; y += blockStep.height)
88             {
89                 features.push_back(Feature(offset, x, y, t, 2*t));
90             }
91         }
92         w = 4*t;
93         h = 2*t;
94         for (x = 0; x <= winSize.width - w; x += blockStep.width)
95         {
96             for (y = 0; y <= winSize.height - h; y += blockStep.height)
97             {
98                 features.push_back(Feature(offset, x, y, 2*t, t));
99             }
100         }
101     }
102 
103     numFeatures = (int)features.size();
104 }
105 
Feature()106 CvHOGEvaluator::Feature::Feature()
107 {
108     for (int i = 0; i < N_CELLS; i++)
109     {
110         rect[i] = Rect(0, 0, 0, 0);
111     }
112 }
113 
Feature(int offset,int x,int y,int cellW,int cellH)114 CvHOGEvaluator::Feature::Feature( int offset, int x, int y, int cellW, int cellH )
115 {
116     rect[0] = Rect(x, y, cellW, cellH); //cell0
117     rect[1] = Rect(x+cellW, y, cellW, cellH); //cell1
118     rect[2] = Rect(x, y+cellH, cellW, cellH); //cell2
119     rect[3] = Rect(x+cellW, y+cellH, cellW, cellH); //cell3
120 
121     for (int i = 0; i < N_CELLS; i++)
122     {
123         CV_SUM_OFFSETS(fastRect[i].p0, fastRect[i].p1, fastRect[i].p2, fastRect[i].p3, rect[i], offset);
124     }
125 }
126 
write(FileStorage & fs) const127 void CvHOGEvaluator::Feature::write(FileStorage &fs) const
128 {
129     fs << CC_RECTS << "[";
130     for( int i = 0; i < N_CELLS; i++ )
131     {
132         fs << "[:" << rect[i].x << rect[i].y << rect[i].width << rect[i].height << "]";
133     }
134     fs << "]";
135 }
136 
137 //cell and bin idx writing
138 //void CvHOGEvaluator::Feature::write(FileStorage &fs, int varIdx) const
139 //{
140 //    int featComponent = varIdx % (N_CELLS * N_BINS);
141 //    int cellIdx = featComponent / N_BINS;
142 //    int binIdx = featComponent % N_BINS;
143 //
144 //    fs << CC_RECTS << "[:" << rect[cellIdx].x << rect[cellIdx].y <<
145 //        rect[cellIdx].width << rect[cellIdx].height << binIdx << "]";
146 //}
147 
148 //cell[0] and featComponent idx writing. By cell[0] it's possible to recover all block
149 //All block is nessesary for block normalization
write(FileStorage & fs,int featComponentIdx) const150 void CvHOGEvaluator::Feature::write(FileStorage &fs, int featComponentIdx) const
151 {
152     fs << CC_RECT << "[:" << rect[0].x << rect[0].y <<
153         rect[0].width << rect[0].height << featComponentIdx << "]";
154 }
155 
156 
integralHistogram(const Mat & img,vector<Mat> & histogram,Mat & norm,int nbins) const157 void CvHOGEvaluator::integralHistogram(const Mat &img, vector<Mat> &histogram, Mat &norm, int nbins) const
158 {
159     CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
160     int x, y, binIdx;
161 
162     Size gradSize(img.size());
163     Size histSize(histogram[0].size());
164     Mat grad(gradSize, CV_32F);
165     Mat qangle(gradSize, CV_8U);
166 
167     AutoBuffer<int> mapbuf(gradSize.width + gradSize.height + 4);
168     int* xmap = (int*)mapbuf + 1;
169     int* ymap = xmap + gradSize.width + 2;
170 
171     const int borderType = (int)BORDER_REPLICATE;
172 
173     for( x = -1; x < gradSize.width + 1; x++ )
174         xmap[x] = borderInterpolate(x, gradSize.width, borderType);
175     for( y = -1; y < gradSize.height + 1; y++ )
176         ymap[y] = borderInterpolate(y, gradSize.height, borderType);
177 
178     int width = gradSize.width;
179     AutoBuffer<float> _dbuf(width*4);
180     float* dbuf = _dbuf;
181     Mat Dx(1, width, CV_32F, dbuf);
182     Mat Dy(1, width, CV_32F, dbuf + width);
183     Mat Mag(1, width, CV_32F, dbuf + width*2);
184     Mat Angle(1, width, CV_32F, dbuf + width*3);
185 
186     float angleScale = (float)(nbins/CV_PI);
187 
188     for( y = 0; y < gradSize.height; y++ )
189     {
190         const uchar* currPtr = img.ptr(ymap[y]);
191         const uchar* prevPtr = img.ptr(ymap[y-1]);
192         const uchar* nextPtr = img.ptr(ymap[y+1]);
193         float* gradPtr = grad.ptr<float>(y);
194         uchar* qanglePtr = qangle.ptr(y);
195 
196         for( x = 0; x < width; x++ )
197         {
198             dbuf[x] = (float)(currPtr[xmap[x+1]] - currPtr[xmap[x-1]]);
199             dbuf[width + x] = (float)(nextPtr[xmap[x]] - prevPtr[xmap[x]]);
200         }
201         cartToPolar( Dx, Dy, Mag, Angle, false );
202         for( x = 0; x < width; x++ )
203         {
204             float mag = dbuf[x+width*2];
205             float angle = dbuf[x+width*3];
206             angle = angle*angleScale - 0.5f;
207             int bidx = cvFloor(angle);
208             angle -= bidx;
209             if( bidx < 0 )
210                 bidx += nbins;
211             else if( bidx >= nbins )
212                 bidx -= nbins;
213 
214             qanglePtr[x] = (uchar)bidx;
215             gradPtr[x] = mag;
216         }
217     }
218     integral(grad, norm, grad.depth());
219 
220     float* histBuf;
221     const float* magBuf;
222     const uchar* binsBuf;
223 
224     int binsStep = (int)( qangle.step / sizeof(uchar) );
225     int histStep = (int)( histogram[0].step / sizeof(float) );
226     int magStep = (int)( grad.step / sizeof(float) );
227     for( binIdx = 0; binIdx < nbins; binIdx++ )
228     {
229         histBuf = histogram[binIdx].ptr<float>();
230         magBuf = grad.ptr<float>();
231         binsBuf = qangle.ptr();
232 
233         memset( histBuf, 0, histSize.width * sizeof(histBuf[0]) );
234         histBuf += histStep + 1;
235         for( y = 0; y < qangle.rows; y++ )
236         {
237             histBuf[-1] = 0.f;
238             float strSum = 0.f;
239             for( x = 0; x < qangle.cols; x++ )
240             {
241                 if( binsBuf[x] == binIdx )
242                     strSum += magBuf[x];
243                 histBuf[x] = histBuf[-histStep + x] + strSum;
244             }
245             histBuf += histStep;
246             binsBuf += binsStep;
247             magBuf += magStep;
248         }
249     }
250 }
251