1 //
2 // The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that NVPTX uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "NVPTXISelLowering.h"
15 #include "NVPTX.h"
16 #include "NVPTXTargetMachine.h"
17 #include "NVPTXTargetObjectFile.h"
18 #include "NVPTXUtilities.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/MC/MCSectionELF.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <sstream>
39
40 #undef DEBUG_TYPE
41 #define DEBUG_TYPE "nvptx-lower"
42
43 using namespace llvm;
44
45 static unsigned int uniqueCallSite = 0;
46
47 static cl::opt<bool> sched4reg(
48 "nvptx-sched4reg",
49 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
50
51 static cl::opt<unsigned>
52 FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
53 cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
54 " 1: do it 2: do it aggressively"),
55 cl::init(2));
56
IsPTXVectorType(MVT VT)57 static bool IsPTXVectorType(MVT VT) {
58 switch (VT.SimpleTy) {
59 default:
60 return false;
61 case MVT::v2i1:
62 case MVT::v4i1:
63 case MVT::v2i8:
64 case MVT::v4i8:
65 case MVT::v2i16:
66 case MVT::v4i16:
67 case MVT::v2i32:
68 case MVT::v4i32:
69 case MVT::v2i64:
70 case MVT::v2f32:
71 case MVT::v4f32:
72 case MVT::v2f64:
73 return true;
74 }
75 }
76
77 /// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
78 /// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
79 /// into their primitive components.
80 /// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
81 /// same number of types as the Ins/Outs arrays in LowerFormalArguments,
82 /// LowerCall, and LowerReturn.
ComputePTXValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets=nullptr,uint64_t StartingOffset=0)83 static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
84 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
85 SmallVectorImpl<uint64_t> *Offsets = nullptr,
86 uint64_t StartingOffset = 0) {
87 SmallVector<EVT, 16> TempVTs;
88 SmallVector<uint64_t, 16> TempOffsets;
89
90 ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
91 for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
92 EVT VT = TempVTs[i];
93 uint64_t Off = TempOffsets[i];
94 if (VT.isVector())
95 for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
96 ValueVTs.push_back(VT.getVectorElementType());
97 if (Offsets)
98 Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
99 }
100 else {
101 ValueVTs.push_back(VT);
102 if (Offsets)
103 Offsets->push_back(Off);
104 }
105 }
106 }
107
108 // NVPTXTargetLowering Constructor.
NVPTXTargetLowering(const NVPTXTargetMachine & TM,const NVPTXSubtarget & STI)109 NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
110 const NVPTXSubtarget &STI)
111 : TargetLowering(TM), nvTM(&TM), STI(STI) {
112
113 // always lower memset, memcpy, and memmove intrinsics to load/store
114 // instructions, rather
115 // then generating calls to memset, mempcy or memmove.
116 MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
117 MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
118 MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
119
120 setBooleanContents(ZeroOrNegativeOneBooleanContent);
121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122
123 // Jump is Expensive. Don't create extra control flow for 'and', 'or'
124 // condition branches.
125 setJumpIsExpensive(true);
126
127 // Wide divides are _very_ slow. Try to reduce the width of the divide if
128 // possible.
129 addBypassSlowDiv(64, 32);
130
131 // By default, use the Source scheduling
132 if (sched4reg)
133 setSchedulingPreference(Sched::RegPressure);
134 else
135 setSchedulingPreference(Sched::Source);
136
137 addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
138 addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
139 addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
140 addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
141 addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
142 addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
143
144 // Operations not directly supported by NVPTX.
145 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
146 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
147 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
148 setOperationAction(ISD::SELECT_CC, MVT::i8, Expand);
149 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
150 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
151 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
152 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
153 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
154 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
155 setOperationAction(ISD::BR_CC, MVT::i8, Expand);
156 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
157 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
158 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
159 // Some SIGN_EXTEND_INREG can be done using cvt instruction.
160 // For others we will expand to a SHL/SRA pair.
161 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
162 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
163 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
164 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167 setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
168 setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
169 setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
170 setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
171 setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
172 setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
173
174 if (STI.hasROT64()) {
175 setOperationAction(ISD::ROTL, MVT::i64, Legal);
176 setOperationAction(ISD::ROTR, MVT::i64, Legal);
177 } else {
178 setOperationAction(ISD::ROTL, MVT::i64, Expand);
179 setOperationAction(ISD::ROTR, MVT::i64, Expand);
180 }
181 if (STI.hasROT32()) {
182 setOperationAction(ISD::ROTL, MVT::i32, Legal);
183 setOperationAction(ISD::ROTR, MVT::i32, Legal);
184 } else {
185 setOperationAction(ISD::ROTL, MVT::i32, Expand);
186 setOperationAction(ISD::ROTR, MVT::i32, Expand);
187 }
188
189 setOperationAction(ISD::ROTL, MVT::i16, Expand);
190 setOperationAction(ISD::ROTR, MVT::i16, Expand);
191 setOperationAction(ISD::ROTL, MVT::i8, Expand);
192 setOperationAction(ISD::ROTR, MVT::i8, Expand);
193 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
194 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
195 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
196
197 // Indirect branch is not supported.
198 // This also disables Jump Table creation.
199 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
200 setOperationAction(ISD::BRIND, MVT::Other, Expand);
201
202 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
203 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
204
205 // We want to legalize constant related memmove and memcopy
206 // intrinsics.
207 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
208
209 // Turn FP extload into load/fextend
210 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
211 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
212 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
213 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
214 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
215 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
216 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
217 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
218 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
219 // Turn FP truncstore into trunc + store.
220 // FIXME: vector types should also be expanded
221 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
222 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
223 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
224
225 // PTX does not support load / store predicate registers
226 setOperationAction(ISD::LOAD, MVT::i1, Custom);
227 setOperationAction(ISD::STORE, MVT::i1, Custom);
228
229 for (MVT VT : MVT::integer_valuetypes()) {
230 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
231 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
232 setTruncStoreAction(VT, MVT::i1, Expand);
233 }
234
235 // This is legal in NVPTX
236 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
237 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
238
239 // TRAP can be lowered to PTX trap
240 setOperationAction(ISD::TRAP, MVT::Other, Legal);
241
242 setOperationAction(ISD::ADDC, MVT::i64, Expand);
243 setOperationAction(ISD::ADDE, MVT::i64, Expand);
244
245 // Register custom handling for vector loads/stores
246 for (MVT VT : MVT::vector_valuetypes()) {
247 if (IsPTXVectorType(VT)) {
248 setOperationAction(ISD::LOAD, VT, Custom);
249 setOperationAction(ISD::STORE, VT, Custom);
250 setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
251 }
252 }
253
254 // Custom handling for i8 intrinsics
255 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
256
257 setOperationAction(ISD::CTLZ, MVT::i16, Legal);
258 setOperationAction(ISD::CTLZ, MVT::i32, Legal);
259 setOperationAction(ISD::CTLZ, MVT::i64, Legal);
260 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Legal);
261 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Legal);
262 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Legal);
263 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
264 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
265 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
266 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand);
267 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
268 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
269 setOperationAction(ISD::CTPOP, MVT::i16, Legal);
270 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
271 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
272
273 // PTX does not directly support SELP of i1, so promote to i32 first
274 setOperationAction(ISD::SELECT, MVT::i1, Custom);
275
276 // We have some custom DAG combine patterns for these nodes
277 setTargetDAGCombine(ISD::ADD);
278 setTargetDAGCombine(ISD::AND);
279 setTargetDAGCombine(ISD::FADD);
280 setTargetDAGCombine(ISD::MUL);
281 setTargetDAGCombine(ISD::SHL);
282 setTargetDAGCombine(ISD::SELECT);
283
284 // Now deduce the information based on the above mentioned
285 // actions
286 computeRegisterProperties(STI.getRegisterInfo());
287 }
288
getTargetNodeName(unsigned Opcode) const289 const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
290 switch ((NVPTXISD::NodeType)Opcode) {
291 case NVPTXISD::FIRST_NUMBER:
292 break;
293 case NVPTXISD::CALL:
294 return "NVPTXISD::CALL";
295 case NVPTXISD::RET_FLAG:
296 return "NVPTXISD::RET_FLAG";
297 case NVPTXISD::LOAD_PARAM:
298 return "NVPTXISD::LOAD_PARAM";
299 case NVPTXISD::Wrapper:
300 return "NVPTXISD::Wrapper";
301 case NVPTXISD::DeclareParam:
302 return "NVPTXISD::DeclareParam";
303 case NVPTXISD::DeclareScalarParam:
304 return "NVPTXISD::DeclareScalarParam";
305 case NVPTXISD::DeclareRet:
306 return "NVPTXISD::DeclareRet";
307 case NVPTXISD::DeclareScalarRet:
308 return "NVPTXISD::DeclareScalarRet";
309 case NVPTXISD::DeclareRetParam:
310 return "NVPTXISD::DeclareRetParam";
311 case NVPTXISD::PrintCall:
312 return "NVPTXISD::PrintCall";
313 case NVPTXISD::PrintCallUni:
314 return "NVPTXISD::PrintCallUni";
315 case NVPTXISD::LoadParam:
316 return "NVPTXISD::LoadParam";
317 case NVPTXISD::LoadParamV2:
318 return "NVPTXISD::LoadParamV2";
319 case NVPTXISD::LoadParamV4:
320 return "NVPTXISD::LoadParamV4";
321 case NVPTXISD::StoreParam:
322 return "NVPTXISD::StoreParam";
323 case NVPTXISD::StoreParamV2:
324 return "NVPTXISD::StoreParamV2";
325 case NVPTXISD::StoreParamV4:
326 return "NVPTXISD::StoreParamV4";
327 case NVPTXISD::StoreParamS32:
328 return "NVPTXISD::StoreParamS32";
329 case NVPTXISD::StoreParamU32:
330 return "NVPTXISD::StoreParamU32";
331 case NVPTXISD::CallArgBegin:
332 return "NVPTXISD::CallArgBegin";
333 case NVPTXISD::CallArg:
334 return "NVPTXISD::CallArg";
335 case NVPTXISD::LastCallArg:
336 return "NVPTXISD::LastCallArg";
337 case NVPTXISD::CallArgEnd:
338 return "NVPTXISD::CallArgEnd";
339 case NVPTXISD::CallVoid:
340 return "NVPTXISD::CallVoid";
341 case NVPTXISD::CallVal:
342 return "NVPTXISD::CallVal";
343 case NVPTXISD::CallSymbol:
344 return "NVPTXISD::CallSymbol";
345 case NVPTXISD::Prototype:
346 return "NVPTXISD::Prototype";
347 case NVPTXISD::MoveParam:
348 return "NVPTXISD::MoveParam";
349 case NVPTXISD::StoreRetval:
350 return "NVPTXISD::StoreRetval";
351 case NVPTXISD::StoreRetvalV2:
352 return "NVPTXISD::StoreRetvalV2";
353 case NVPTXISD::StoreRetvalV4:
354 return "NVPTXISD::StoreRetvalV4";
355 case NVPTXISD::PseudoUseParam:
356 return "NVPTXISD::PseudoUseParam";
357 case NVPTXISD::RETURN:
358 return "NVPTXISD::RETURN";
359 case NVPTXISD::CallSeqBegin:
360 return "NVPTXISD::CallSeqBegin";
361 case NVPTXISD::CallSeqEnd:
362 return "NVPTXISD::CallSeqEnd";
363 case NVPTXISD::CallPrototype:
364 return "NVPTXISD::CallPrototype";
365 case NVPTXISD::LoadV2:
366 return "NVPTXISD::LoadV2";
367 case NVPTXISD::LoadV4:
368 return "NVPTXISD::LoadV4";
369 case NVPTXISD::LDGV2:
370 return "NVPTXISD::LDGV2";
371 case NVPTXISD::LDGV4:
372 return "NVPTXISD::LDGV4";
373 case NVPTXISD::LDUV2:
374 return "NVPTXISD::LDUV2";
375 case NVPTXISD::LDUV4:
376 return "NVPTXISD::LDUV4";
377 case NVPTXISD::StoreV2:
378 return "NVPTXISD::StoreV2";
379 case NVPTXISD::StoreV4:
380 return "NVPTXISD::StoreV4";
381 case NVPTXISD::FUN_SHFL_CLAMP:
382 return "NVPTXISD::FUN_SHFL_CLAMP";
383 case NVPTXISD::FUN_SHFR_CLAMP:
384 return "NVPTXISD::FUN_SHFR_CLAMP";
385 case NVPTXISD::IMAD:
386 return "NVPTXISD::IMAD";
387 case NVPTXISD::Dummy:
388 return "NVPTXISD::Dummy";
389 case NVPTXISD::MUL_WIDE_SIGNED:
390 return "NVPTXISD::MUL_WIDE_SIGNED";
391 case NVPTXISD::MUL_WIDE_UNSIGNED:
392 return "NVPTXISD::MUL_WIDE_UNSIGNED";
393 case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32";
394 case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat";
395 case NVPTXISD::Tex1DFloatFloatLevel:
396 return "NVPTXISD::Tex1DFloatFloatLevel";
397 case NVPTXISD::Tex1DFloatFloatGrad:
398 return "NVPTXISD::Tex1DFloatFloatGrad";
399 case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32";
400 case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float";
401 case NVPTXISD::Tex1DS32FloatLevel:
402 return "NVPTXISD::Tex1DS32FloatLevel";
403 case NVPTXISD::Tex1DS32FloatGrad:
404 return "NVPTXISD::Tex1DS32FloatGrad";
405 case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32";
406 case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float";
407 case NVPTXISD::Tex1DU32FloatLevel:
408 return "NVPTXISD::Tex1DU32FloatLevel";
409 case NVPTXISD::Tex1DU32FloatGrad:
410 return "NVPTXISD::Tex1DU32FloatGrad";
411 case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32";
412 case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
413 case NVPTXISD::Tex1DArrayFloatFloatLevel:
414 return "NVPTXISD::Tex1DArrayFloatFloatLevel";
415 case NVPTXISD::Tex1DArrayFloatFloatGrad:
416 return "NVPTXISD::Tex1DArrayFloatFloatGrad";
417 case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32";
418 case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float";
419 case NVPTXISD::Tex1DArrayS32FloatLevel:
420 return "NVPTXISD::Tex1DArrayS32FloatLevel";
421 case NVPTXISD::Tex1DArrayS32FloatGrad:
422 return "NVPTXISD::Tex1DArrayS32FloatGrad";
423 case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32";
424 case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float";
425 case NVPTXISD::Tex1DArrayU32FloatLevel:
426 return "NVPTXISD::Tex1DArrayU32FloatLevel";
427 case NVPTXISD::Tex1DArrayU32FloatGrad:
428 return "NVPTXISD::Tex1DArrayU32FloatGrad";
429 case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32";
430 case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat";
431 case NVPTXISD::Tex2DFloatFloatLevel:
432 return "NVPTXISD::Tex2DFloatFloatLevel";
433 case NVPTXISD::Tex2DFloatFloatGrad:
434 return "NVPTXISD::Tex2DFloatFloatGrad";
435 case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32";
436 case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float";
437 case NVPTXISD::Tex2DS32FloatLevel:
438 return "NVPTXISD::Tex2DS32FloatLevel";
439 case NVPTXISD::Tex2DS32FloatGrad:
440 return "NVPTXISD::Tex2DS32FloatGrad";
441 case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32";
442 case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float";
443 case NVPTXISD::Tex2DU32FloatLevel:
444 return "NVPTXISD::Tex2DU32FloatLevel";
445 case NVPTXISD::Tex2DU32FloatGrad:
446 return "NVPTXISD::Tex2DU32FloatGrad";
447 case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32";
448 case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
449 case NVPTXISD::Tex2DArrayFloatFloatLevel:
450 return "NVPTXISD::Tex2DArrayFloatFloatLevel";
451 case NVPTXISD::Tex2DArrayFloatFloatGrad:
452 return "NVPTXISD::Tex2DArrayFloatFloatGrad";
453 case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32";
454 case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float";
455 case NVPTXISD::Tex2DArrayS32FloatLevel:
456 return "NVPTXISD::Tex2DArrayS32FloatLevel";
457 case NVPTXISD::Tex2DArrayS32FloatGrad:
458 return "NVPTXISD::Tex2DArrayS32FloatGrad";
459 case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32";
460 case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float";
461 case NVPTXISD::Tex2DArrayU32FloatLevel:
462 return "NVPTXISD::Tex2DArrayU32FloatLevel";
463 case NVPTXISD::Tex2DArrayU32FloatGrad:
464 return "NVPTXISD::Tex2DArrayU32FloatGrad";
465 case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32";
466 case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat";
467 case NVPTXISD::Tex3DFloatFloatLevel:
468 return "NVPTXISD::Tex3DFloatFloatLevel";
469 case NVPTXISD::Tex3DFloatFloatGrad:
470 return "NVPTXISD::Tex3DFloatFloatGrad";
471 case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32";
472 case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float";
473 case NVPTXISD::Tex3DS32FloatLevel:
474 return "NVPTXISD::Tex3DS32FloatLevel";
475 case NVPTXISD::Tex3DS32FloatGrad:
476 return "NVPTXISD::Tex3DS32FloatGrad";
477 case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32";
478 case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float";
479 case NVPTXISD::Tex3DU32FloatLevel:
480 return "NVPTXISD::Tex3DU32FloatLevel";
481 case NVPTXISD::Tex3DU32FloatGrad:
482 return "NVPTXISD::Tex3DU32FloatGrad";
483 case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat";
484 case NVPTXISD::TexCubeFloatFloatLevel:
485 return "NVPTXISD::TexCubeFloatFloatLevel";
486 case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float";
487 case NVPTXISD::TexCubeS32FloatLevel:
488 return "NVPTXISD::TexCubeS32FloatLevel";
489 case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float";
490 case NVPTXISD::TexCubeU32FloatLevel:
491 return "NVPTXISD::TexCubeU32FloatLevel";
492 case NVPTXISD::TexCubeArrayFloatFloat:
493 return "NVPTXISD::TexCubeArrayFloatFloat";
494 case NVPTXISD::TexCubeArrayFloatFloatLevel:
495 return "NVPTXISD::TexCubeArrayFloatFloatLevel";
496 case NVPTXISD::TexCubeArrayS32Float:
497 return "NVPTXISD::TexCubeArrayS32Float";
498 case NVPTXISD::TexCubeArrayS32FloatLevel:
499 return "NVPTXISD::TexCubeArrayS32FloatLevel";
500 case NVPTXISD::TexCubeArrayU32Float:
501 return "NVPTXISD::TexCubeArrayU32Float";
502 case NVPTXISD::TexCubeArrayU32FloatLevel:
503 return "NVPTXISD::TexCubeArrayU32FloatLevel";
504 case NVPTXISD::Tld4R2DFloatFloat:
505 return "NVPTXISD::Tld4R2DFloatFloat";
506 case NVPTXISD::Tld4G2DFloatFloat:
507 return "NVPTXISD::Tld4G2DFloatFloat";
508 case NVPTXISD::Tld4B2DFloatFloat:
509 return "NVPTXISD::Tld4B2DFloatFloat";
510 case NVPTXISD::Tld4A2DFloatFloat:
511 return "NVPTXISD::Tld4A2DFloatFloat";
512 case NVPTXISD::Tld4R2DS64Float:
513 return "NVPTXISD::Tld4R2DS64Float";
514 case NVPTXISD::Tld4G2DS64Float:
515 return "NVPTXISD::Tld4G2DS64Float";
516 case NVPTXISD::Tld4B2DS64Float:
517 return "NVPTXISD::Tld4B2DS64Float";
518 case NVPTXISD::Tld4A2DS64Float:
519 return "NVPTXISD::Tld4A2DS64Float";
520 case NVPTXISD::Tld4R2DU64Float:
521 return "NVPTXISD::Tld4R2DU64Float";
522 case NVPTXISD::Tld4G2DU64Float:
523 return "NVPTXISD::Tld4G2DU64Float";
524 case NVPTXISD::Tld4B2DU64Float:
525 return "NVPTXISD::Tld4B2DU64Float";
526 case NVPTXISD::Tld4A2DU64Float:
527 return "NVPTXISD::Tld4A2DU64Float";
528
529 case NVPTXISD::TexUnified1DFloatS32:
530 return "NVPTXISD::TexUnified1DFloatS32";
531 case NVPTXISD::TexUnified1DFloatFloat:
532 return "NVPTXISD::TexUnified1DFloatFloat";
533 case NVPTXISD::TexUnified1DFloatFloatLevel:
534 return "NVPTXISD::TexUnified1DFloatFloatLevel";
535 case NVPTXISD::TexUnified1DFloatFloatGrad:
536 return "NVPTXISD::TexUnified1DFloatFloatGrad";
537 case NVPTXISD::TexUnified1DS32S32:
538 return "NVPTXISD::TexUnified1DS32S32";
539 case NVPTXISD::TexUnified1DS32Float:
540 return "NVPTXISD::TexUnified1DS32Float";
541 case NVPTXISD::TexUnified1DS32FloatLevel:
542 return "NVPTXISD::TexUnified1DS32FloatLevel";
543 case NVPTXISD::TexUnified1DS32FloatGrad:
544 return "NVPTXISD::TexUnified1DS32FloatGrad";
545 case NVPTXISD::TexUnified1DU32S32:
546 return "NVPTXISD::TexUnified1DU32S32";
547 case NVPTXISD::TexUnified1DU32Float:
548 return "NVPTXISD::TexUnified1DU32Float";
549 case NVPTXISD::TexUnified1DU32FloatLevel:
550 return "NVPTXISD::TexUnified1DU32FloatLevel";
551 case NVPTXISD::TexUnified1DU32FloatGrad:
552 return "NVPTXISD::TexUnified1DU32FloatGrad";
553 case NVPTXISD::TexUnified1DArrayFloatS32:
554 return "NVPTXISD::TexUnified1DArrayFloatS32";
555 case NVPTXISD::TexUnified1DArrayFloatFloat:
556 return "NVPTXISD::TexUnified1DArrayFloatFloat";
557 case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
558 return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
559 case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
560 return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
561 case NVPTXISD::TexUnified1DArrayS32S32:
562 return "NVPTXISD::TexUnified1DArrayS32S32";
563 case NVPTXISD::TexUnified1DArrayS32Float:
564 return "NVPTXISD::TexUnified1DArrayS32Float";
565 case NVPTXISD::TexUnified1DArrayS32FloatLevel:
566 return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
567 case NVPTXISD::TexUnified1DArrayS32FloatGrad:
568 return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
569 case NVPTXISD::TexUnified1DArrayU32S32:
570 return "NVPTXISD::TexUnified1DArrayU32S32";
571 case NVPTXISD::TexUnified1DArrayU32Float:
572 return "NVPTXISD::TexUnified1DArrayU32Float";
573 case NVPTXISD::TexUnified1DArrayU32FloatLevel:
574 return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
575 case NVPTXISD::TexUnified1DArrayU32FloatGrad:
576 return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
577 case NVPTXISD::TexUnified2DFloatS32:
578 return "NVPTXISD::TexUnified2DFloatS32";
579 case NVPTXISD::TexUnified2DFloatFloat:
580 return "NVPTXISD::TexUnified2DFloatFloat";
581 case NVPTXISD::TexUnified2DFloatFloatLevel:
582 return "NVPTXISD::TexUnified2DFloatFloatLevel";
583 case NVPTXISD::TexUnified2DFloatFloatGrad:
584 return "NVPTXISD::TexUnified2DFloatFloatGrad";
585 case NVPTXISD::TexUnified2DS32S32:
586 return "NVPTXISD::TexUnified2DS32S32";
587 case NVPTXISD::TexUnified2DS32Float:
588 return "NVPTXISD::TexUnified2DS32Float";
589 case NVPTXISD::TexUnified2DS32FloatLevel:
590 return "NVPTXISD::TexUnified2DS32FloatLevel";
591 case NVPTXISD::TexUnified2DS32FloatGrad:
592 return "NVPTXISD::TexUnified2DS32FloatGrad";
593 case NVPTXISD::TexUnified2DU32S32:
594 return "NVPTXISD::TexUnified2DU32S32";
595 case NVPTXISD::TexUnified2DU32Float:
596 return "NVPTXISD::TexUnified2DU32Float";
597 case NVPTXISD::TexUnified2DU32FloatLevel:
598 return "NVPTXISD::TexUnified2DU32FloatLevel";
599 case NVPTXISD::TexUnified2DU32FloatGrad:
600 return "NVPTXISD::TexUnified2DU32FloatGrad";
601 case NVPTXISD::TexUnified2DArrayFloatS32:
602 return "NVPTXISD::TexUnified2DArrayFloatS32";
603 case NVPTXISD::TexUnified2DArrayFloatFloat:
604 return "NVPTXISD::TexUnified2DArrayFloatFloat";
605 case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
606 return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
607 case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
608 return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
609 case NVPTXISD::TexUnified2DArrayS32S32:
610 return "NVPTXISD::TexUnified2DArrayS32S32";
611 case NVPTXISD::TexUnified2DArrayS32Float:
612 return "NVPTXISD::TexUnified2DArrayS32Float";
613 case NVPTXISD::TexUnified2DArrayS32FloatLevel:
614 return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
615 case NVPTXISD::TexUnified2DArrayS32FloatGrad:
616 return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
617 case NVPTXISD::TexUnified2DArrayU32S32:
618 return "NVPTXISD::TexUnified2DArrayU32S32";
619 case NVPTXISD::TexUnified2DArrayU32Float:
620 return "NVPTXISD::TexUnified2DArrayU32Float";
621 case NVPTXISD::TexUnified2DArrayU32FloatLevel:
622 return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
623 case NVPTXISD::TexUnified2DArrayU32FloatGrad:
624 return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
625 case NVPTXISD::TexUnified3DFloatS32:
626 return "NVPTXISD::TexUnified3DFloatS32";
627 case NVPTXISD::TexUnified3DFloatFloat:
628 return "NVPTXISD::TexUnified3DFloatFloat";
629 case NVPTXISD::TexUnified3DFloatFloatLevel:
630 return "NVPTXISD::TexUnified3DFloatFloatLevel";
631 case NVPTXISD::TexUnified3DFloatFloatGrad:
632 return "NVPTXISD::TexUnified3DFloatFloatGrad";
633 case NVPTXISD::TexUnified3DS32S32:
634 return "NVPTXISD::TexUnified3DS32S32";
635 case NVPTXISD::TexUnified3DS32Float:
636 return "NVPTXISD::TexUnified3DS32Float";
637 case NVPTXISD::TexUnified3DS32FloatLevel:
638 return "NVPTXISD::TexUnified3DS32FloatLevel";
639 case NVPTXISD::TexUnified3DS32FloatGrad:
640 return "NVPTXISD::TexUnified3DS32FloatGrad";
641 case NVPTXISD::TexUnified3DU32S32:
642 return "NVPTXISD::TexUnified3DU32S32";
643 case NVPTXISD::TexUnified3DU32Float:
644 return "NVPTXISD::TexUnified3DU32Float";
645 case NVPTXISD::TexUnified3DU32FloatLevel:
646 return "NVPTXISD::TexUnified3DU32FloatLevel";
647 case NVPTXISD::TexUnified3DU32FloatGrad:
648 return "NVPTXISD::TexUnified3DU32FloatGrad";
649 case NVPTXISD::TexUnifiedCubeFloatFloat:
650 return "NVPTXISD::TexUnifiedCubeFloatFloat";
651 case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
652 return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
653 case NVPTXISD::TexUnifiedCubeS32Float:
654 return "NVPTXISD::TexUnifiedCubeS32Float";
655 case NVPTXISD::TexUnifiedCubeS32FloatLevel:
656 return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
657 case NVPTXISD::TexUnifiedCubeU32Float:
658 return "NVPTXISD::TexUnifiedCubeU32Float";
659 case NVPTXISD::TexUnifiedCubeU32FloatLevel:
660 return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
661 case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
662 return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
663 case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
664 return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
665 case NVPTXISD::TexUnifiedCubeArrayS32Float:
666 return "NVPTXISD::TexUnifiedCubeArrayS32Float";
667 case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
668 return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
669 case NVPTXISD::TexUnifiedCubeArrayU32Float:
670 return "NVPTXISD::TexUnifiedCubeArrayU32Float";
671 case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
672 return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
673 case NVPTXISD::Tld4UnifiedR2DFloatFloat:
674 return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
675 case NVPTXISD::Tld4UnifiedG2DFloatFloat:
676 return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
677 case NVPTXISD::Tld4UnifiedB2DFloatFloat:
678 return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
679 case NVPTXISD::Tld4UnifiedA2DFloatFloat:
680 return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
681 case NVPTXISD::Tld4UnifiedR2DS64Float:
682 return "NVPTXISD::Tld4UnifiedR2DS64Float";
683 case NVPTXISD::Tld4UnifiedG2DS64Float:
684 return "NVPTXISD::Tld4UnifiedG2DS64Float";
685 case NVPTXISD::Tld4UnifiedB2DS64Float:
686 return "NVPTXISD::Tld4UnifiedB2DS64Float";
687 case NVPTXISD::Tld4UnifiedA2DS64Float:
688 return "NVPTXISD::Tld4UnifiedA2DS64Float";
689 case NVPTXISD::Tld4UnifiedR2DU64Float:
690 return "NVPTXISD::Tld4UnifiedR2DU64Float";
691 case NVPTXISD::Tld4UnifiedG2DU64Float:
692 return "NVPTXISD::Tld4UnifiedG2DU64Float";
693 case NVPTXISD::Tld4UnifiedB2DU64Float:
694 return "NVPTXISD::Tld4UnifiedB2DU64Float";
695 case NVPTXISD::Tld4UnifiedA2DU64Float:
696 return "NVPTXISD::Tld4UnifiedA2DU64Float";
697
698 case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp";
699 case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp";
700 case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp";
701 case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp";
702 case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp";
703 case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp";
704 case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp";
705 case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp";
706 case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp";
707 case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp";
708 case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp";
709
710 case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp";
711 case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp";
712 case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp";
713 case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp";
714 case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
715 case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
716 case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
717 case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
718 case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
719 case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
720 case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
721
722 case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp";
723 case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp";
724 case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp";
725 case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp";
726 case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp";
727 case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp";
728 case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp";
729 case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp";
730 case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp";
731 case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp";
732 case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp";
733
734 case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp";
735 case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp";
736 case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp";
737 case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp";
738 case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
739 case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
740 case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
741 case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
742 case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
743 case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
744 case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
745
746 case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp";
747 case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp";
748 case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp";
749 case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp";
750 case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp";
751 case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp";
752 case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp";
753 case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp";
754 case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp";
755 case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp";
756 case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp";
757
758 case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap";
759 case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap";
760 case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap";
761 case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap";
762 case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap";
763 case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap";
764 case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap";
765 case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap";
766 case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap";
767 case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap";
768 case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap";
769
770 case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap";
771 case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap";
772 case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap";
773 case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap";
774 case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap";
775 case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap";
776 case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap";
777 case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap";
778 case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap";
779 case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap";
780 case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap";
781
782 case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap";
783 case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap";
784 case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap";
785 case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap";
786 case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap";
787 case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap";
788 case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap";
789 case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap";
790 case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap";
791 case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap";
792 case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap";
793
794 case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap";
795 case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap";
796 case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap";
797 case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap";
798 case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap";
799 case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap";
800 case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap";
801 case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap";
802 case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap";
803 case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap";
804 case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap";
805
806 case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap";
807 case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap";
808 case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap";
809 case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap";
810 case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap";
811 case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap";
812 case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap";
813 case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap";
814 case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap";
815 case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap";
816 case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap";
817
818 case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero";
819 case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero";
820 case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero";
821 case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero";
822 case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero";
823 case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero";
824 case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero";
825 case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero";
826 case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero";
827 case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero";
828 case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero";
829
830 case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero";
831 case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero";
832 case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero";
833 case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero";
834 case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero";
835 case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero";
836 case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero";
837 case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero";
838 case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero";
839 case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero";
840 case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero";
841
842 case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero";
843 case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero";
844 case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero";
845 case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero";
846 case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero";
847 case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero";
848 case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero";
849 case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero";
850 case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero";
851 case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero";
852 case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero";
853
854 case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero";
855 case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero";
856 case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero";
857 case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero";
858 case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero";
859 case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero";
860 case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero";
861 case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero";
862 case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero";
863 case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero";
864 case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero";
865
866 case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero";
867 case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero";
868 case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero";
869 case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero";
870 case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero";
871 case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero";
872 case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero";
873 case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero";
874 case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero";
875 case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero";
876 case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero";
877 }
878 return nullptr;
879 }
880
881 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const882 NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
883 if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
884 return TypeSplitVector;
885
886 return TargetLoweringBase::getPreferredVectorAction(VT);
887 }
888
889 SDValue
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const890 NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
891 SDLoc dl(Op);
892 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
893 auto PtrVT = getPointerTy(DAG.getDataLayout());
894 Op = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
895 return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
896 }
897
getPrototype(const DataLayout & DL,Type * retTy,const ArgListTy & Args,const SmallVectorImpl<ISD::OutputArg> & Outs,unsigned retAlignment,const ImmutableCallSite * CS) const898 std::string NVPTXTargetLowering::getPrototype(
899 const DataLayout &DL, Type *retTy, const ArgListTy &Args,
900 const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
901 const ImmutableCallSite *CS) const {
902 auto PtrVT = getPointerTy(DL);
903
904 bool isABI = (STI.getSmVersion() >= 20);
905 assert(isABI && "Non-ABI compilation is not supported");
906 if (!isABI)
907 return "";
908
909 std::stringstream O;
910 O << "prototype_" << uniqueCallSite << " : .callprototype ";
911
912 if (retTy->getTypeID() == Type::VoidTyID) {
913 O << "()";
914 } else {
915 O << "(";
916 if (retTy->isFloatingPointTy() || retTy->isIntegerTy()) {
917 unsigned size = 0;
918 if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
919 size = ITy->getBitWidth();
920 if (size < 32)
921 size = 32;
922 } else {
923 assert(retTy->isFloatingPointTy() &&
924 "Floating point type expected here");
925 size = retTy->getPrimitiveSizeInBits();
926 }
927
928 O << ".param .b" << size << " _";
929 } else if (isa<PointerType>(retTy)) {
930 O << ".param .b" << PtrVT.getSizeInBits() << " _";
931 } else if ((retTy->getTypeID() == Type::StructTyID) ||
932 isa<VectorType>(retTy)) {
933 auto &DL = CS->getCalledFunction()->getParent()->getDataLayout();
934 O << ".param .align " << retAlignment << " .b8 _["
935 << DL.getTypeAllocSize(retTy) << "]";
936 } else {
937 llvm_unreachable("Unknown return type");
938 }
939 O << ") ";
940 }
941 O << "_ (";
942
943 bool first = true;
944
945 unsigned OIdx = 0;
946 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
947 Type *Ty = Args[i].Ty;
948 if (!first) {
949 O << ", ";
950 }
951 first = false;
952
953 if (!Outs[OIdx].Flags.isByVal()) {
954 if (Ty->isAggregateType() || Ty->isVectorTy()) {
955 unsigned align = 0;
956 const CallInst *CallI = cast<CallInst>(CS->getInstruction());
957 // +1 because index 0 is reserved for return type alignment
958 if (!llvm::getAlign(*CallI, i + 1, align))
959 align = DL.getABITypeAlignment(Ty);
960 unsigned sz = DL.getTypeAllocSize(Ty);
961 O << ".param .align " << align << " .b8 ";
962 O << "_";
963 O << "[" << sz << "]";
964 // update the index for Outs
965 SmallVector<EVT, 16> vtparts;
966 ComputeValueVTs(*this, DL, Ty, vtparts);
967 if (unsigned len = vtparts.size())
968 OIdx += len - 1;
969 continue;
970 }
971 // i8 types in IR will be i16 types in SDAG
972 assert((getValueType(DL, Ty) == Outs[OIdx].VT ||
973 (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
974 "type mismatch between callee prototype and arguments");
975 // scalar type
976 unsigned sz = 0;
977 if (isa<IntegerType>(Ty)) {
978 sz = cast<IntegerType>(Ty)->getBitWidth();
979 if (sz < 32)
980 sz = 32;
981 } else if (isa<PointerType>(Ty))
982 sz = PtrVT.getSizeInBits();
983 else
984 sz = Ty->getPrimitiveSizeInBits();
985 O << ".param .b" << sz << " ";
986 O << "_";
987 continue;
988 }
989 auto *PTy = dyn_cast<PointerType>(Ty);
990 assert(PTy && "Param with byval attribute should be a pointer type");
991 Type *ETy = PTy->getElementType();
992
993 unsigned align = Outs[OIdx].Flags.getByValAlign();
994 unsigned sz = DL.getTypeAllocSize(ETy);
995 O << ".param .align " << align << " .b8 ";
996 O << "_";
997 O << "[" << sz << "]";
998 }
999 O << ");";
1000 return O.str();
1001 }
1002
1003 unsigned
getArgumentAlignment(SDValue Callee,const ImmutableCallSite * CS,Type * Ty,unsigned Idx) const1004 NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1005 const ImmutableCallSite *CS,
1006 Type *Ty,
1007 unsigned Idx) const {
1008 unsigned Align = 0;
1009 const Value *DirectCallee = CS->getCalledFunction();
1010
1011 if (!DirectCallee) {
1012 // We don't have a direct function symbol, but that may be because of
1013 // constant cast instructions in the call.
1014 const Instruction *CalleeI = CS->getInstruction();
1015 assert(CalleeI && "Call target is not a function or derived value?");
1016
1017 // With bitcast'd call targets, the instruction will be the call
1018 if (isa<CallInst>(CalleeI)) {
1019 // Check if we have call alignment metadata
1020 if (llvm::getAlign(*cast<CallInst>(CalleeI), Idx, Align))
1021 return Align;
1022
1023 const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
1024 // Ignore any bitcast instructions
1025 while(isa<ConstantExpr>(CalleeV)) {
1026 const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1027 if (!CE->isCast())
1028 break;
1029 // Look through the bitcast
1030 CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1031 }
1032
1033 // We have now looked past all of the bitcasts. Do we finally have a
1034 // Function?
1035 if (isa<Function>(CalleeV))
1036 DirectCallee = CalleeV;
1037 }
1038 }
1039
1040 // Check for function alignment information if we found that the
1041 // ultimate target is a Function
1042 if (DirectCallee)
1043 if (llvm::getAlign(*cast<Function>(DirectCallee), Idx, Align))
1044 return Align;
1045
1046 // Call is indirect or alignment information is not available, fall back to
1047 // the ABI type alignment
1048 auto &DL = CS->getCaller()->getParent()->getDataLayout();
1049 return DL.getABITypeAlignment(Ty);
1050 }
1051
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1052 SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1053 SmallVectorImpl<SDValue> &InVals) const {
1054 SelectionDAG &DAG = CLI.DAG;
1055 SDLoc dl = CLI.DL;
1056 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1057 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1058 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1059 SDValue Chain = CLI.Chain;
1060 SDValue Callee = CLI.Callee;
1061 bool &isTailCall = CLI.IsTailCall;
1062 ArgListTy &Args = CLI.getArgs();
1063 Type *retTy = CLI.RetTy;
1064 ImmutableCallSite *CS = CLI.CS;
1065
1066 bool isABI = (STI.getSmVersion() >= 20);
1067 assert(isABI && "Non-ABI compilation is not supported");
1068 if (!isABI)
1069 return Chain;
1070 MachineFunction &MF = DAG.getMachineFunction();
1071 const Function *F = MF.getFunction();
1072 auto &DL = MF.getDataLayout();
1073
1074 SDValue tempChain = Chain;
1075 Chain = DAG.getCALLSEQ_START(Chain,
1076 DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1077 dl);
1078 SDValue InFlag = Chain.getValue(1);
1079
1080 unsigned paramCount = 0;
1081 // Args.size() and Outs.size() need not match.
1082 // Outs.size() will be larger
1083 // * if there is an aggregate argument with multiple fields (each field
1084 // showing up separately in Outs)
1085 // * if there is a vector argument with more than typical vector-length
1086 // elements (generally if more than 4) where each vector element is
1087 // individually present in Outs.
1088 // So a different index should be used for indexing into Outs/OutVals.
1089 // See similar issue in LowerFormalArguments.
1090 unsigned OIdx = 0;
1091 // Declare the .params or .reg need to pass values
1092 // to the function
1093 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1094 EVT VT = Outs[OIdx].VT;
1095 Type *Ty = Args[i].Ty;
1096
1097 if (!Outs[OIdx].Flags.isByVal()) {
1098 if (Ty->isAggregateType()) {
1099 // aggregate
1100 SmallVector<EVT, 16> vtparts;
1101 SmallVector<uint64_t, 16> Offsets;
1102 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &Offsets,
1103 0);
1104
1105 unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
1106 // declare .param .align <align> .b8 .param<n>[<size>];
1107 unsigned sz = DL.getTypeAllocSize(Ty);
1108 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1109 SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, dl,
1110 MVT::i32),
1111 DAG.getConstant(paramCount, dl, MVT::i32),
1112 DAG.getConstant(sz, dl, MVT::i32),
1113 InFlag };
1114 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1115 DeclareParamOps);
1116 InFlag = Chain.getValue(1);
1117 for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
1118 EVT elemtype = vtparts[j];
1119 unsigned ArgAlign = GreatestCommonDivisor64(align, Offsets[j]);
1120 if (elemtype.isInteger() && (sz < 8))
1121 sz = 8;
1122 SDValue StVal = OutVals[OIdx];
1123 if (elemtype.getSizeInBits() < 16) {
1124 StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1125 }
1126 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1127 SDValue CopyParamOps[] = { Chain,
1128 DAG.getConstant(paramCount, dl, MVT::i32),
1129 DAG.getConstant(Offsets[j], dl, MVT::i32),
1130 StVal, InFlag };
1131 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
1132 CopyParamVTs, CopyParamOps,
1133 elemtype, MachinePointerInfo(),
1134 ArgAlign);
1135 InFlag = Chain.getValue(1);
1136 ++OIdx;
1137 }
1138 if (vtparts.size() > 0)
1139 --OIdx;
1140 ++paramCount;
1141 continue;
1142 }
1143 if (Ty->isVectorTy()) {
1144 EVT ObjectVT = getValueType(DL, Ty);
1145 unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
1146 // declare .param .align <align> .b8 .param<n>[<size>];
1147 unsigned sz = DL.getTypeAllocSize(Ty);
1148 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1149 SDValue DeclareParamOps[] = { Chain,
1150 DAG.getConstant(align, dl, MVT::i32),
1151 DAG.getConstant(paramCount, dl, MVT::i32),
1152 DAG.getConstant(sz, dl, MVT::i32),
1153 InFlag };
1154 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1155 DeclareParamOps);
1156 InFlag = Chain.getValue(1);
1157 unsigned NumElts = ObjectVT.getVectorNumElements();
1158 EVT EltVT = ObjectVT.getVectorElementType();
1159 EVT MemVT = EltVT;
1160 bool NeedExtend = false;
1161 if (EltVT.getSizeInBits() < 16) {
1162 NeedExtend = true;
1163 EltVT = MVT::i16;
1164 }
1165
1166 // V1 store
1167 if (NumElts == 1) {
1168 SDValue Elt = OutVals[OIdx++];
1169 if (NeedExtend)
1170 Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt);
1171
1172 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1173 SDValue CopyParamOps[] = { Chain,
1174 DAG.getConstant(paramCount, dl, MVT::i32),
1175 DAG.getConstant(0, dl, MVT::i32), Elt,
1176 InFlag };
1177 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
1178 CopyParamVTs, CopyParamOps,
1179 MemVT, MachinePointerInfo());
1180 InFlag = Chain.getValue(1);
1181 } else if (NumElts == 2) {
1182 SDValue Elt0 = OutVals[OIdx++];
1183 SDValue Elt1 = OutVals[OIdx++];
1184 if (NeedExtend) {
1185 Elt0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt0);
1186 Elt1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt1);
1187 }
1188
1189 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1190 SDValue CopyParamOps[] = { Chain,
1191 DAG.getConstant(paramCount, dl, MVT::i32),
1192 DAG.getConstant(0, dl, MVT::i32), Elt0,
1193 Elt1, InFlag };
1194 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParamV2, dl,
1195 CopyParamVTs, CopyParamOps,
1196 MemVT, MachinePointerInfo());
1197 InFlag = Chain.getValue(1);
1198 } else {
1199 unsigned curOffset = 0;
1200 // V4 stores
1201 // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
1202 // the
1203 // vector will be expanded to a power of 2 elements, so we know we can
1204 // always round up to the next multiple of 4 when creating the vector
1205 // stores.
1206 // e.g. 4 elem => 1 st.v4
1207 // 6 elem => 2 st.v4
1208 // 8 elem => 2 st.v4
1209 // 11 elem => 3 st.v4
1210 unsigned VecSize = 4;
1211 if (EltVT.getSizeInBits() == 64)
1212 VecSize = 2;
1213
1214 // This is potentially only part of a vector, so assume all elements
1215 // are packed together.
1216 unsigned PerStoreOffset = MemVT.getStoreSizeInBits() / 8 * VecSize;
1217
1218 for (unsigned i = 0; i < NumElts; i += VecSize) {
1219 // Get values
1220 SDValue StoreVal;
1221 SmallVector<SDValue, 8> Ops;
1222 Ops.push_back(Chain);
1223 Ops.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1224 Ops.push_back(DAG.getConstant(curOffset, dl, MVT::i32));
1225
1226 unsigned Opc = NVPTXISD::StoreParamV2;
1227
1228 StoreVal = OutVals[OIdx++];
1229 if (NeedExtend)
1230 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1231 Ops.push_back(StoreVal);
1232
1233 if (i + 1 < NumElts) {
1234 StoreVal = OutVals[OIdx++];
1235 if (NeedExtend)
1236 StoreVal =
1237 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1238 } else {
1239 StoreVal = DAG.getUNDEF(EltVT);
1240 }
1241 Ops.push_back(StoreVal);
1242
1243 if (VecSize == 4) {
1244 Opc = NVPTXISD::StoreParamV4;
1245 if (i + 2 < NumElts) {
1246 StoreVal = OutVals[OIdx++];
1247 if (NeedExtend)
1248 StoreVal =
1249 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1250 } else {
1251 StoreVal = DAG.getUNDEF(EltVT);
1252 }
1253 Ops.push_back(StoreVal);
1254
1255 if (i + 3 < NumElts) {
1256 StoreVal = OutVals[OIdx++];
1257 if (NeedExtend)
1258 StoreVal =
1259 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1260 } else {
1261 StoreVal = DAG.getUNDEF(EltVT);
1262 }
1263 Ops.push_back(StoreVal);
1264 }
1265
1266 Ops.push_back(InFlag);
1267
1268 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1269 Chain = DAG.getMemIntrinsicNode(Opc, dl, CopyParamVTs, Ops,
1270 MemVT, MachinePointerInfo());
1271 InFlag = Chain.getValue(1);
1272 curOffset += PerStoreOffset;
1273 }
1274 }
1275 ++paramCount;
1276 --OIdx;
1277 continue;
1278 }
1279 // Plain scalar
1280 // for ABI, declare .param .b<size> .param<n>;
1281 unsigned sz = VT.getSizeInBits();
1282 bool needExtend = false;
1283 if (VT.isInteger()) {
1284 if (sz < 16)
1285 needExtend = true;
1286 if (sz < 32)
1287 sz = 32;
1288 }
1289 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1290 SDValue DeclareParamOps[] = { Chain,
1291 DAG.getConstant(paramCount, dl, MVT::i32),
1292 DAG.getConstant(sz, dl, MVT::i32),
1293 DAG.getConstant(0, dl, MVT::i32), InFlag };
1294 Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1295 DeclareParamOps);
1296 InFlag = Chain.getValue(1);
1297 SDValue OutV = OutVals[OIdx];
1298 if (needExtend) {
1299 // zext/sext i1 to i16
1300 unsigned opc = ISD::ZERO_EXTEND;
1301 if (Outs[OIdx].Flags.isSExt())
1302 opc = ISD::SIGN_EXTEND;
1303 OutV = DAG.getNode(opc, dl, MVT::i16, OutV);
1304 }
1305 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1306 SDValue CopyParamOps[] = { Chain,
1307 DAG.getConstant(paramCount, dl, MVT::i32),
1308 DAG.getConstant(0, dl, MVT::i32), OutV,
1309 InFlag };
1310
1311 unsigned opcode = NVPTXISD::StoreParam;
1312 if (Outs[OIdx].Flags.isZExt())
1313 opcode = NVPTXISD::StoreParamU32;
1314 else if (Outs[OIdx].Flags.isSExt())
1315 opcode = NVPTXISD::StoreParamS32;
1316 Chain = DAG.getMemIntrinsicNode(opcode, dl, CopyParamVTs, CopyParamOps,
1317 VT, MachinePointerInfo());
1318
1319 InFlag = Chain.getValue(1);
1320 ++paramCount;
1321 continue;
1322 }
1323 // struct or vector
1324 SmallVector<EVT, 16> vtparts;
1325 SmallVector<uint64_t, 16> Offsets;
1326 auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1327 assert(PTy && "Type of a byval parameter should be pointer");
1328 ComputePTXValueVTs(*this, DAG.getDataLayout(), PTy->getElementType(),
1329 vtparts, &Offsets, 0);
1330
1331 // declare .param .align <align> .b8 .param<n>[<size>];
1332 unsigned sz = Outs[OIdx].Flags.getByValSize();
1333 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1334 unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
1335 // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1336 // so we don't need to worry about natural alignment or not.
1337 // See TargetLowering::LowerCallTo().
1338 SDValue DeclareParamOps[] = {
1339 Chain, DAG.getConstant(Outs[OIdx].Flags.getByValAlign(), dl, MVT::i32),
1340 DAG.getConstant(paramCount, dl, MVT::i32),
1341 DAG.getConstant(sz, dl, MVT::i32), InFlag
1342 };
1343 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1344 DeclareParamOps);
1345 InFlag = Chain.getValue(1);
1346 for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
1347 EVT elemtype = vtparts[j];
1348 int curOffset = Offsets[j];
1349 unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
1350 auto PtrVT = getPointerTy(DAG.getDataLayout());
1351 SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1352 DAG.getConstant(curOffset, dl, PtrVT));
1353 SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1354 MachinePointerInfo(), false, false, false,
1355 PartAlign);
1356 if (elemtype.getSizeInBits() < 16) {
1357 theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1358 }
1359 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1360 SDValue CopyParamOps[] = { Chain,
1361 DAG.getConstant(paramCount, dl, MVT::i32),
1362 DAG.getConstant(curOffset, dl, MVT::i32),
1363 theVal, InFlag };
1364 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
1365 CopyParamOps, elemtype,
1366 MachinePointerInfo());
1367
1368 InFlag = Chain.getValue(1);
1369 }
1370 ++paramCount;
1371 }
1372
1373 GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1374 unsigned retAlignment = 0;
1375
1376 // Handle Result
1377 if (Ins.size() > 0) {
1378 SmallVector<EVT, 16> resvtparts;
1379 ComputeValueVTs(*this, DL, retTy, resvtparts);
1380
1381 // Declare
1382 // .param .align 16 .b8 retval0[<size-in-bytes>], or
1383 // .param .b<size-in-bits> retval0
1384 unsigned resultsz = DL.getTypeAllocSizeInBits(retTy);
1385 // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1386 // these three types to match the logic in
1387 // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1388 // Plus, this behavior is consistent with nvcc's.
1389 if (retTy->isFloatingPointTy() || retTy->isIntegerTy() ||
1390 retTy->isPointerTy()) {
1391 // Scalar needs to be at least 32bit wide
1392 if (resultsz < 32)
1393 resultsz = 32;
1394 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1395 SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1396 DAG.getConstant(resultsz, dl, MVT::i32),
1397 DAG.getConstant(0, dl, MVT::i32), InFlag };
1398 Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1399 DeclareRetOps);
1400 InFlag = Chain.getValue(1);
1401 } else {
1402 retAlignment = getArgumentAlignment(Callee, CS, retTy, 0);
1403 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1404 SDValue DeclareRetOps[] = { Chain,
1405 DAG.getConstant(retAlignment, dl, MVT::i32),
1406 DAG.getConstant(resultsz / 8, dl, MVT::i32),
1407 DAG.getConstant(0, dl, MVT::i32), InFlag };
1408 Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1409 DeclareRetOps);
1410 InFlag = Chain.getValue(1);
1411 }
1412 }
1413
1414 if (!Func) {
1415 // This is indirect function call case : PTX requires a prototype of the
1416 // form
1417 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1418 // to be emitted, and the label has to used as the last arg of call
1419 // instruction.
1420 // The prototype is embedded in a string and put as the operand for a
1421 // CallPrototype SDNode which will print out to the value of the string.
1422 SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1423 std::string Proto =
1424 getPrototype(DAG.getDataLayout(), retTy, Args, Outs, retAlignment, CS);
1425 const char *ProtoStr =
1426 nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1427 SDValue ProtoOps[] = {
1428 Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1429 };
1430 Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1431 InFlag = Chain.getValue(1);
1432 }
1433 // Op to just print "call"
1434 SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1435 SDValue PrintCallOps[] = {
1436 Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
1437 };
1438 Chain = DAG.getNode(Func ? (NVPTXISD::PrintCallUni) : (NVPTXISD::PrintCall),
1439 dl, PrintCallVTs, PrintCallOps);
1440 InFlag = Chain.getValue(1);
1441
1442 // Ops to print out the function name
1443 SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1444 SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1445 Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1446 InFlag = Chain.getValue(1);
1447
1448 // Ops to print out the param list
1449 SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1450 SDValue CallArgBeginOps[] = { Chain, InFlag };
1451 Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1452 CallArgBeginOps);
1453 InFlag = Chain.getValue(1);
1454
1455 for (unsigned i = 0, e = paramCount; i != e; ++i) {
1456 unsigned opcode;
1457 if (i == (e - 1))
1458 opcode = NVPTXISD::LastCallArg;
1459 else
1460 opcode = NVPTXISD::CallArg;
1461 SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1462 SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1463 DAG.getConstant(i, dl, MVT::i32), InFlag };
1464 Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1465 InFlag = Chain.getValue(1);
1466 }
1467 SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1468 SDValue CallArgEndOps[] = { Chain,
1469 DAG.getConstant(Func ? 1 : 0, dl, MVT::i32),
1470 InFlag };
1471 Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1472 InFlag = Chain.getValue(1);
1473
1474 if (!Func) {
1475 SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1476 SDValue PrototypeOps[] = { Chain,
1477 DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1478 InFlag };
1479 Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1480 InFlag = Chain.getValue(1);
1481 }
1482
1483 // Generate loads from param memory/moves from registers for result
1484 if (Ins.size() > 0) {
1485 if (retTy && retTy->isVectorTy()) {
1486 EVT ObjectVT = getValueType(DL, retTy);
1487 unsigned NumElts = ObjectVT.getVectorNumElements();
1488 EVT EltVT = ObjectVT.getVectorElementType();
1489 assert(STI.getTargetLowering()->getNumRegisters(F->getContext(),
1490 ObjectVT) == NumElts &&
1491 "Vector was not scalarized");
1492 unsigned sz = EltVT.getSizeInBits();
1493 bool needTruncate = sz < 8;
1494
1495 if (NumElts == 1) {
1496 // Just a simple load
1497 SmallVector<EVT, 4> LoadRetVTs;
1498 if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1499 // If loading i1/i8 result, generate
1500 // load.b8 i16
1501 // if i1
1502 // trunc i16 to i1
1503 LoadRetVTs.push_back(MVT::i16);
1504 } else
1505 LoadRetVTs.push_back(EltVT);
1506 LoadRetVTs.push_back(MVT::Other);
1507 LoadRetVTs.push_back(MVT::Glue);
1508 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1509 DAG.getConstant(0, dl, MVT::i32), InFlag};
1510 SDValue retval = DAG.getMemIntrinsicNode(
1511 NVPTXISD::LoadParam, dl,
1512 DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
1513 Chain = retval.getValue(1);
1514 InFlag = retval.getValue(2);
1515 SDValue Ret0 = retval;
1516 if (needTruncate)
1517 Ret0 = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ret0);
1518 InVals.push_back(Ret0);
1519 } else if (NumElts == 2) {
1520 // LoadV2
1521 SmallVector<EVT, 4> LoadRetVTs;
1522 if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1523 // If loading i1/i8 result, generate
1524 // load.b8 i16
1525 // if i1
1526 // trunc i16 to i1
1527 LoadRetVTs.push_back(MVT::i16);
1528 LoadRetVTs.push_back(MVT::i16);
1529 } else {
1530 LoadRetVTs.push_back(EltVT);
1531 LoadRetVTs.push_back(EltVT);
1532 }
1533 LoadRetVTs.push_back(MVT::Other);
1534 LoadRetVTs.push_back(MVT::Glue);
1535 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1536 DAG.getConstant(0, dl, MVT::i32), InFlag};
1537 SDValue retval = DAG.getMemIntrinsicNode(
1538 NVPTXISD::LoadParamV2, dl,
1539 DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
1540 Chain = retval.getValue(2);
1541 InFlag = retval.getValue(3);
1542 SDValue Ret0 = retval.getValue(0);
1543 SDValue Ret1 = retval.getValue(1);
1544 if (needTruncate) {
1545 Ret0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret0);
1546 InVals.push_back(Ret0);
1547 Ret1 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret1);
1548 InVals.push_back(Ret1);
1549 } else {
1550 InVals.push_back(Ret0);
1551 InVals.push_back(Ret1);
1552 }
1553 } else {
1554 // Split into N LoadV4
1555 unsigned Ofst = 0;
1556 unsigned VecSize = 4;
1557 unsigned Opc = NVPTXISD::LoadParamV4;
1558 if (EltVT.getSizeInBits() == 64) {
1559 VecSize = 2;
1560 Opc = NVPTXISD::LoadParamV2;
1561 }
1562 EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
1563 for (unsigned i = 0; i < NumElts; i += VecSize) {
1564 SmallVector<EVT, 8> LoadRetVTs;
1565 if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1566 // If loading i1/i8 result, generate
1567 // load.b8 i16
1568 // if i1
1569 // trunc i16 to i1
1570 for (unsigned j = 0; j < VecSize; ++j)
1571 LoadRetVTs.push_back(MVT::i16);
1572 } else {
1573 for (unsigned j = 0; j < VecSize; ++j)
1574 LoadRetVTs.push_back(EltVT);
1575 }
1576 LoadRetVTs.push_back(MVT::Other);
1577 LoadRetVTs.push_back(MVT::Glue);
1578 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1579 DAG.getConstant(Ofst, dl, MVT::i32), InFlag};
1580 SDValue retval = DAG.getMemIntrinsicNode(
1581 Opc, dl, DAG.getVTList(LoadRetVTs),
1582 LoadRetOps, EltVT, MachinePointerInfo());
1583 if (VecSize == 2) {
1584 Chain = retval.getValue(2);
1585 InFlag = retval.getValue(3);
1586 } else {
1587 Chain = retval.getValue(4);
1588 InFlag = retval.getValue(5);
1589 }
1590
1591 for (unsigned j = 0; j < VecSize; ++j) {
1592 if (i + j >= NumElts)
1593 break;
1594 SDValue Elt = retval.getValue(j);
1595 if (needTruncate)
1596 Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
1597 InVals.push_back(Elt);
1598 }
1599 Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
1600 }
1601 }
1602 } else {
1603 SmallVector<EVT, 16> VTs;
1604 SmallVector<uint64_t, 16> Offsets;
1605 ComputePTXValueVTs(*this, DAG.getDataLayout(), retTy, VTs, &Offsets, 0);
1606 assert(VTs.size() == Ins.size() && "Bad value decomposition");
1607 unsigned RetAlign = getArgumentAlignment(Callee, CS, retTy, 0);
1608 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
1609 unsigned sz = VTs[i].getSizeInBits();
1610 unsigned AlignI = GreatestCommonDivisor64(RetAlign, Offsets[i]);
1611 bool needTruncate = sz < 8;
1612 if (VTs[i].isInteger() && (sz < 8))
1613 sz = 8;
1614
1615 SmallVector<EVT, 4> LoadRetVTs;
1616 EVT TheLoadType = VTs[i];
1617 if (retTy->isIntegerTy() && DL.getTypeAllocSizeInBits(retTy) < 32) {
1618 // This is for integer types only, and specifically not for
1619 // aggregates.
1620 LoadRetVTs.push_back(MVT::i32);
1621 TheLoadType = MVT::i32;
1622 } else if (sz < 16) {
1623 // If loading i1/i8 result, generate
1624 // load i8 (-> i16)
1625 // trunc i16 to i1/i8
1626 LoadRetVTs.push_back(MVT::i16);
1627 } else
1628 LoadRetVTs.push_back(Ins[i].VT);
1629 LoadRetVTs.push_back(MVT::Other);
1630 LoadRetVTs.push_back(MVT::Glue);
1631
1632 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1633 DAG.getConstant(Offsets[i], dl, MVT::i32),
1634 InFlag};
1635 SDValue retval = DAG.getMemIntrinsicNode(
1636 NVPTXISD::LoadParam, dl,
1637 DAG.getVTList(LoadRetVTs), LoadRetOps,
1638 TheLoadType, MachinePointerInfo(), AlignI);
1639 Chain = retval.getValue(1);
1640 InFlag = retval.getValue(2);
1641 SDValue Ret0 = retval.getValue(0);
1642 if (needTruncate)
1643 Ret0 = DAG.getNode(ISD::TRUNCATE, dl, Ins[i].VT, Ret0);
1644 InVals.push_back(Ret0);
1645 }
1646 }
1647 }
1648
1649 Chain = DAG.getCALLSEQ_END(Chain,
1650 DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1651 DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1652 true),
1653 InFlag, dl);
1654 uniqueCallSite++;
1655
1656 // set isTailCall to false for now, until we figure out how to express
1657 // tail call optimization in PTX
1658 isTailCall = false;
1659 return Chain;
1660 }
1661
1662 // By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1663 // (see LegalizeDAG.cpp). This is slow and uses local memory.
1664 // We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1665 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const1666 NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1667 SDNode *Node = Op.getNode();
1668 SDLoc dl(Node);
1669 SmallVector<SDValue, 8> Ops;
1670 unsigned NumOperands = Node->getNumOperands();
1671 for (unsigned i = 0; i < NumOperands; ++i) {
1672 SDValue SubOp = Node->getOperand(i);
1673 EVT VVT = SubOp.getNode()->getValueType(0);
1674 EVT EltVT = VVT.getVectorElementType();
1675 unsigned NumSubElem = VVT.getVectorNumElements();
1676 for (unsigned j = 0; j < NumSubElem; ++j) {
1677 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1678 DAG.getIntPtrConstant(j, dl)));
1679 }
1680 }
1681 return DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Ops);
1682 }
1683
1684 /// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1685 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1686 /// amount, or
1687 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1688 /// amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const1689 SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1690 SelectionDAG &DAG) const {
1691 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1692 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
1693
1694 EVT VT = Op.getValueType();
1695 unsigned VTBits = VT.getSizeInBits();
1696 SDLoc dl(Op);
1697 SDValue ShOpLo = Op.getOperand(0);
1698 SDValue ShOpHi = Op.getOperand(1);
1699 SDValue ShAmt = Op.getOperand(2);
1700 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1701
1702 if (VTBits == 32 && STI.getSmVersion() >= 35) {
1703
1704 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1705 // {dHi, dLo} = {aHi, aLo} >> Amt
1706 // dHi = aHi >> Amt
1707 // dLo = shf.r.clamp aLo, aHi, Amt
1708
1709 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1710 SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1711 ShAmt);
1712
1713 SDValue Ops[2] = { Lo, Hi };
1714 return DAG.getMergeValues(Ops, dl);
1715 }
1716 else {
1717
1718 // {dHi, dLo} = {aHi, aLo} >> Amt
1719 // - if (Amt>=size) then
1720 // dLo = aHi >> (Amt-size)
1721 // dHi = aHi >> Amt (this is either all 0 or all 1)
1722 // else
1723 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1724 // dHi = aHi >> Amt
1725
1726 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1727 DAG.getConstant(VTBits, dl, MVT::i32),
1728 ShAmt);
1729 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1730 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1731 DAG.getConstant(VTBits, dl, MVT::i32));
1732 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1733 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1734 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
1735
1736 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1737 DAG.getConstant(VTBits, dl, MVT::i32),
1738 ISD::SETGE);
1739 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1740 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1741
1742 SDValue Ops[2] = { Lo, Hi };
1743 return DAG.getMergeValues(Ops, dl);
1744 }
1745 }
1746
1747 /// LowerShiftLeftParts - Lower SHL_PARTS, which
1748 /// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1749 /// amount, or
1750 /// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1751 /// amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const1752 SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
1753 SelectionDAG &DAG) const {
1754 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
1755 assert(Op.getOpcode() == ISD::SHL_PARTS);
1756
1757 EVT VT = Op.getValueType();
1758 unsigned VTBits = VT.getSizeInBits();
1759 SDLoc dl(Op);
1760 SDValue ShOpLo = Op.getOperand(0);
1761 SDValue ShOpHi = Op.getOperand(1);
1762 SDValue ShAmt = Op.getOperand(2);
1763
1764 if (VTBits == 32 && STI.getSmVersion() >= 35) {
1765
1766 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1767 // {dHi, dLo} = {aHi, aLo} << Amt
1768 // dHi = shf.l.clamp aLo, aHi, Amt
1769 // dLo = aLo << Amt
1770
1771 SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
1772 ShAmt);
1773 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1774
1775 SDValue Ops[2] = { Lo, Hi };
1776 return DAG.getMergeValues(Ops, dl);
1777 }
1778 else {
1779
1780 // {dHi, dLo} = {aHi, aLo} << Amt
1781 // - if (Amt>=size) then
1782 // dLo = aLo << Amt (all 0)
1783 // dLo = aLo << (Amt-size)
1784 // else
1785 // dLo = aLo << Amt
1786 // dHi = (aHi << Amt) | (aLo >> (size-Amt))
1787
1788 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1789 DAG.getConstant(VTBits, dl, MVT::i32),
1790 ShAmt);
1791 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1792 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1793 DAG.getConstant(VTBits, dl, MVT::i32));
1794 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1795 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1796 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1797
1798 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1799 DAG.getConstant(VTBits, dl, MVT::i32),
1800 ISD::SETGE);
1801 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1802 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1803
1804 SDValue Ops[2] = { Lo, Hi };
1805 return DAG.getMergeValues(Ops, dl);
1806 }
1807 }
1808
1809 SDValue
LowerOperation(SDValue Op,SelectionDAG & DAG) const1810 NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1811 switch (Op.getOpcode()) {
1812 case ISD::RETURNADDR:
1813 return SDValue();
1814 case ISD::FRAMEADDR:
1815 return SDValue();
1816 case ISD::GlobalAddress:
1817 return LowerGlobalAddress(Op, DAG);
1818 case ISD::INTRINSIC_W_CHAIN:
1819 return Op;
1820 case ISD::BUILD_VECTOR:
1821 case ISD::EXTRACT_SUBVECTOR:
1822 return Op;
1823 case ISD::CONCAT_VECTORS:
1824 return LowerCONCAT_VECTORS(Op, DAG);
1825 case ISD::STORE:
1826 return LowerSTORE(Op, DAG);
1827 case ISD::LOAD:
1828 return LowerLOAD(Op, DAG);
1829 case ISD::SHL_PARTS:
1830 return LowerShiftLeftParts(Op, DAG);
1831 case ISD::SRA_PARTS:
1832 case ISD::SRL_PARTS:
1833 return LowerShiftRightParts(Op, DAG);
1834 case ISD::SELECT:
1835 return LowerSelect(Op, DAG);
1836 default:
1837 llvm_unreachable("Custom lowering not defined for operation");
1838 }
1839 }
1840
LowerSelect(SDValue Op,SelectionDAG & DAG) const1841 SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
1842 SDValue Op0 = Op->getOperand(0);
1843 SDValue Op1 = Op->getOperand(1);
1844 SDValue Op2 = Op->getOperand(2);
1845 SDLoc DL(Op.getNode());
1846
1847 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1");
1848
1849 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
1850 Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
1851 SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
1852 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
1853
1854 return Trunc;
1855 }
1856
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1857 SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1858 if (Op.getValueType() == MVT::i1)
1859 return LowerLOADi1(Op, DAG);
1860 else
1861 return SDValue();
1862 }
1863
1864 // v = ld i1* addr
1865 // =>
1866 // v1 = ld i8* addr (-> i16)
1867 // v = trunc i16 to i1
LowerLOADi1(SDValue Op,SelectionDAG & DAG) const1868 SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
1869 SDNode *Node = Op.getNode();
1870 LoadSDNode *LD = cast<LoadSDNode>(Node);
1871 SDLoc dl(Node);
1872 assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
1873 assert(Node->getValueType(0) == MVT::i1 &&
1874 "Custom lowering for i1 load only");
1875 SDValue newLD =
1876 DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
1877 LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(),
1878 LD->isInvariant(), LD->getAlignment());
1879 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
1880 // The legalizer (the caller) is expecting two values from the legalized
1881 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
1882 // in LegalizeDAG.cpp which also uses MergeValues.
1883 SDValue Ops[] = { result, LD->getChain() };
1884 return DAG.getMergeValues(Ops, dl);
1885 }
1886
LowerSTORE(SDValue Op,SelectionDAG & DAG) const1887 SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1888 EVT ValVT = Op.getOperand(1).getValueType();
1889 if (ValVT == MVT::i1)
1890 return LowerSTOREi1(Op, DAG);
1891 else if (ValVT.isVector())
1892 return LowerSTOREVector(Op, DAG);
1893 else
1894 return SDValue();
1895 }
1896
1897 SDValue
LowerSTOREVector(SDValue Op,SelectionDAG & DAG) const1898 NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
1899 SDNode *N = Op.getNode();
1900 SDValue Val = N->getOperand(1);
1901 SDLoc DL(N);
1902 EVT ValVT = Val.getValueType();
1903
1904 if (ValVT.isVector()) {
1905 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
1906 // legal. We can (and should) split that into 2 stores of <2 x double> here
1907 // but I'm leaving that as a TODO for now.
1908 if (!ValVT.isSimple())
1909 return SDValue();
1910 switch (ValVT.getSimpleVT().SimpleTy) {
1911 default:
1912 return SDValue();
1913 case MVT::v2i8:
1914 case MVT::v2i16:
1915 case MVT::v2i32:
1916 case MVT::v2i64:
1917 case MVT::v2f32:
1918 case MVT::v2f64:
1919 case MVT::v4i8:
1920 case MVT::v4i16:
1921 case MVT::v4i32:
1922 case MVT::v4f32:
1923 // This is a "native" vector type
1924 break;
1925 }
1926
1927 MemSDNode *MemSD = cast<MemSDNode>(N);
1928 const DataLayout &TD = DAG.getDataLayout();
1929
1930 unsigned Align = MemSD->getAlignment();
1931 unsigned PrefAlign =
1932 TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
1933 if (Align < PrefAlign) {
1934 // This store is not sufficiently aligned, so bail out and let this vector
1935 // store be scalarized. Note that we may still be able to emit smaller
1936 // vector stores. For example, if we are storing a <4 x float> with an
1937 // alignment of 8, this check will fail but the legalizer will try again
1938 // with 2 x <2 x float>, which will succeed with an alignment of 8.
1939 return SDValue();
1940 }
1941
1942 unsigned Opcode = 0;
1943 EVT EltVT = ValVT.getVectorElementType();
1944 unsigned NumElts = ValVT.getVectorNumElements();
1945
1946 // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
1947 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
1948 // stored type to i16 and propagate the "real" type as the memory type.
1949 bool NeedExt = false;
1950 if (EltVT.getSizeInBits() < 16)
1951 NeedExt = true;
1952
1953 switch (NumElts) {
1954 default:
1955 return SDValue();
1956 case 2:
1957 Opcode = NVPTXISD::StoreV2;
1958 break;
1959 case 4: {
1960 Opcode = NVPTXISD::StoreV4;
1961 break;
1962 }
1963 }
1964
1965 SmallVector<SDValue, 8> Ops;
1966
1967 // First is the chain
1968 Ops.push_back(N->getOperand(0));
1969
1970 // Then the split values
1971 for (unsigned i = 0; i < NumElts; ++i) {
1972 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
1973 DAG.getIntPtrConstant(i, DL));
1974 if (NeedExt)
1975 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
1976 Ops.push_back(ExtVal);
1977 }
1978
1979 // Then any remaining arguments
1980 Ops.append(N->op_begin() + 2, N->op_end());
1981
1982 SDValue NewSt = DAG.getMemIntrinsicNode(
1983 Opcode, DL, DAG.getVTList(MVT::Other), Ops,
1984 MemSD->getMemoryVT(), MemSD->getMemOperand());
1985
1986 //return DCI.CombineTo(N, NewSt, true);
1987 return NewSt;
1988 }
1989
1990 return SDValue();
1991 }
1992
1993 // st i1 v, addr
1994 // =>
1995 // v1 = zxt v to i16
1996 // st.u8 i16, addr
LowerSTOREi1(SDValue Op,SelectionDAG & DAG) const1997 SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
1998 SDNode *Node = Op.getNode();
1999 SDLoc dl(Node);
2000 StoreSDNode *ST = cast<StoreSDNode>(Node);
2001 SDValue Tmp1 = ST->getChain();
2002 SDValue Tmp2 = ST->getBasePtr();
2003 SDValue Tmp3 = ST->getValue();
2004 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
2005 unsigned Alignment = ST->getAlignment();
2006 bool isVolatile = ST->isVolatile();
2007 bool isNonTemporal = ST->isNonTemporal();
2008 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2009 SDValue Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
2010 ST->getPointerInfo(), MVT::i8, isNonTemporal,
2011 isVolatile, Alignment);
2012 return Result;
2013 }
2014
2015 SDValue
getParamSymbol(SelectionDAG & DAG,int idx,EVT v) const2016 NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2017 std::string ParamSym;
2018 raw_string_ostream ParamStr(ParamSym);
2019
2020 ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2021 ParamStr.flush();
2022
2023 std::string *SavedStr =
2024 nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2025 return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2026 }
2027
2028 // Check to see if the kernel argument is image*_t or sampler_t
2029
isImageOrSamplerVal(const Value * arg,const Module * context)2030 bool llvm::isImageOrSamplerVal(const Value *arg, const Module *context) {
2031 static const char *const specialTypes[] = { "struct._image2d_t",
2032 "struct._image3d_t",
2033 "struct._sampler_t" };
2034
2035 Type *Ty = arg->getType();
2036 auto *PTy = dyn_cast<PointerType>(Ty);
2037
2038 if (!PTy)
2039 return false;
2040
2041 if (!context)
2042 return false;
2043
2044 auto *STy = dyn_cast<StructType>(PTy->getElementType());
2045 const std::string TypeName = STy && !STy->isLiteral() ? STy->getName() : "";
2046
2047 return std::find(std::begin(specialTypes), std::end(specialTypes),
2048 TypeName) != std::end(specialTypes);
2049 }
2050
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SDLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2051 SDValue NVPTXTargetLowering::LowerFormalArguments(
2052 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2053 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
2054 SmallVectorImpl<SDValue> &InVals) const {
2055 MachineFunction &MF = DAG.getMachineFunction();
2056 const DataLayout &DL = DAG.getDataLayout();
2057 auto PtrVT = getPointerTy(DAG.getDataLayout());
2058
2059 const Function *F = MF.getFunction();
2060 const AttributeSet &PAL = F->getAttributes();
2061 const TargetLowering *TLI = STI.getTargetLowering();
2062
2063 SDValue Root = DAG.getRoot();
2064 std::vector<SDValue> OutChains;
2065
2066 bool isKernel = llvm::isKernelFunction(*F);
2067 bool isABI = (STI.getSmVersion() >= 20);
2068 assert(isABI && "Non-ABI compilation is not supported");
2069 if (!isABI)
2070 return Chain;
2071
2072 std::vector<Type *> argTypes;
2073 std::vector<const Argument *> theArgs;
2074 for (const Argument &I : F->args()) {
2075 theArgs.push_back(&I);
2076 argTypes.push_back(I.getType());
2077 }
2078 // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2079 // Ins.size() will be larger
2080 // * if there is an aggregate argument with multiple fields (each field
2081 // showing up separately in Ins)
2082 // * if there is a vector argument with more than typical vector-length
2083 // elements (generally if more than 4) where each vector element is
2084 // individually present in Ins.
2085 // So a different index should be used for indexing into Ins.
2086 // See similar issue in LowerCall.
2087 unsigned InsIdx = 0;
2088
2089 int idx = 0;
2090 for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2091 Type *Ty = argTypes[i];
2092
2093 // If the kernel argument is image*_t or sampler_t, convert it to
2094 // a i32 constant holding the parameter position. This can later
2095 // matched in the AsmPrinter to output the correct mangled name.
2096 if (isImageOrSamplerVal(
2097 theArgs[i],
2098 (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2099 : nullptr))) {
2100 assert(isKernel && "Only kernels can have image/sampler params");
2101 InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2102 continue;
2103 }
2104
2105 if (theArgs[i]->use_empty()) {
2106 // argument is dead
2107 if (Ty->isAggregateType()) {
2108 SmallVector<EVT, 16> vtparts;
2109
2110 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2111 assert(vtparts.size() > 0 && "empty aggregate type not expected");
2112 for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2113 ++parti) {
2114 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2115 ++InsIdx;
2116 }
2117 if (vtparts.size() > 0)
2118 --InsIdx;
2119 continue;
2120 }
2121 if (Ty->isVectorTy()) {
2122 EVT ObjectVT = getValueType(DL, Ty);
2123 unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2124 for (unsigned parti = 0; parti < NumRegs; ++parti) {
2125 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2126 ++InsIdx;
2127 }
2128 if (NumRegs > 0)
2129 --InsIdx;
2130 continue;
2131 }
2132 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2133 continue;
2134 }
2135
2136 // In the following cases, assign a node order of "idx+1"
2137 // to newly created nodes. The SDNodes for params have to
2138 // appear in the same order as their order of appearance
2139 // in the original function. "idx+1" holds that order.
2140 if (!PAL.hasAttribute(i + 1, Attribute::ByVal)) {
2141 if (Ty->isAggregateType()) {
2142 SmallVector<EVT, 16> vtparts;
2143 SmallVector<uint64_t, 16> offsets;
2144
2145 // NOTE: Here, we lose the ability to issue vector loads for vectors
2146 // that are a part of a struct. This should be investigated in the
2147 // future.
2148 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &offsets,
2149 0);
2150 assert(vtparts.size() > 0 && "empty aggregate type not expected");
2151 bool aggregateIsPacked = false;
2152 if (StructType *STy = llvm::dyn_cast<StructType>(Ty))
2153 aggregateIsPacked = STy->isPacked();
2154
2155 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2156 for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2157 ++parti) {
2158 EVT partVT = vtparts[parti];
2159 Value *srcValue = Constant::getNullValue(
2160 PointerType::get(partVT.getTypeForEVT(F->getContext()),
2161 llvm::ADDRESS_SPACE_PARAM));
2162 SDValue srcAddr =
2163 DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2164 DAG.getConstant(offsets[parti], dl, PtrVT));
2165 unsigned partAlign = aggregateIsPacked
2166 ? 1
2167 : DL.getABITypeAlignment(
2168 partVT.getTypeForEVT(F->getContext()));
2169 SDValue p;
2170 if (Ins[InsIdx].VT.getSizeInBits() > partVT.getSizeInBits()) {
2171 ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
2172 ISD::SEXTLOAD : ISD::ZEXTLOAD;
2173 p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
2174 MachinePointerInfo(srcValue), partVT, false,
2175 false, false, partAlign);
2176 } else {
2177 p = DAG.getLoad(partVT, dl, Root, srcAddr,
2178 MachinePointerInfo(srcValue), false, false, false,
2179 partAlign);
2180 }
2181 if (p.getNode())
2182 p.getNode()->setIROrder(idx + 1);
2183 InVals.push_back(p);
2184 ++InsIdx;
2185 }
2186 if (vtparts.size() > 0)
2187 --InsIdx;
2188 continue;
2189 }
2190 if (Ty->isVectorTy()) {
2191 EVT ObjectVT = getValueType(DL, Ty);
2192 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2193 unsigned NumElts = ObjectVT.getVectorNumElements();
2194 assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&
2195 "Vector was not scalarized");
2196 EVT EltVT = ObjectVT.getVectorElementType();
2197
2198 // V1 load
2199 // f32 = load ...
2200 if (NumElts == 1) {
2201 // We only have one element, so just directly load it
2202 Value *SrcValue = Constant::getNullValue(PointerType::get(
2203 EltVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
2204 SDValue P = DAG.getLoad(
2205 EltVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false, false,
2206 true,
2207 DL.getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())));
2208 if (P.getNode())
2209 P.getNode()->setIROrder(idx + 1);
2210
2211 if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
2212 P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
2213 InVals.push_back(P);
2214 ++InsIdx;
2215 } else if (NumElts == 2) {
2216 // V2 load
2217 // f32,f32 = load ...
2218 EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
2219 Value *SrcValue = Constant::getNullValue(PointerType::get(
2220 VecVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
2221 SDValue P = DAG.getLoad(
2222 VecVT, dl, Root, Arg, MachinePointerInfo(SrcValue), false, false,
2223 true,
2224 DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
2225 if (P.getNode())
2226 P.getNode()->setIROrder(idx + 1);
2227
2228 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2229 DAG.getIntPtrConstant(0, dl));
2230 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2231 DAG.getIntPtrConstant(1, dl));
2232
2233 if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits()) {
2234 Elt0 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt0);
2235 Elt1 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt1);
2236 }
2237
2238 InVals.push_back(Elt0);
2239 InVals.push_back(Elt1);
2240 InsIdx += 2;
2241 } else {
2242 // V4 loads
2243 // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
2244 // the
2245 // vector will be expanded to a power of 2 elements, so we know we can
2246 // always round up to the next multiple of 4 when creating the vector
2247 // loads.
2248 // e.g. 4 elem => 1 ld.v4
2249 // 6 elem => 2 ld.v4
2250 // 8 elem => 2 ld.v4
2251 // 11 elem => 3 ld.v4
2252 unsigned VecSize = 4;
2253 if (EltVT.getSizeInBits() == 64) {
2254 VecSize = 2;
2255 }
2256 EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
2257 unsigned Ofst = 0;
2258 for (unsigned i = 0; i < NumElts; i += VecSize) {
2259 Value *SrcValue = Constant::getNullValue(
2260 PointerType::get(VecVT.getTypeForEVT(F->getContext()),
2261 llvm::ADDRESS_SPACE_PARAM));
2262 SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2263 DAG.getConstant(Ofst, dl, PtrVT));
2264 SDValue P = DAG.getLoad(
2265 VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
2266 false, true,
2267 DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
2268 if (P.getNode())
2269 P.getNode()->setIROrder(idx + 1);
2270
2271 for (unsigned j = 0; j < VecSize; ++j) {
2272 if (i + j >= NumElts)
2273 break;
2274 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2275 DAG.getIntPtrConstant(j, dl));
2276 if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
2277 Elt = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt);
2278 InVals.push_back(Elt);
2279 }
2280 Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
2281 }
2282 InsIdx += NumElts;
2283 }
2284
2285 if (NumElts > 0)
2286 --InsIdx;
2287 continue;
2288 }
2289 // A plain scalar.
2290 EVT ObjectVT = getValueType(DL, Ty);
2291 // If ABI, load from the param symbol
2292 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2293 Value *srcValue = Constant::getNullValue(PointerType::get(
2294 ObjectVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
2295 SDValue p;
2296 if (ObjectVT.getSizeInBits() < Ins[InsIdx].VT.getSizeInBits()) {
2297 ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
2298 ISD::SEXTLOAD : ISD::ZEXTLOAD;
2299 p = DAG.getExtLoad(
2300 ExtOp, dl, Ins[InsIdx].VT, Root, Arg, MachinePointerInfo(srcValue),
2301 ObjectVT, false, false, false,
2302 DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
2303 } else {
2304 p = DAG.getLoad(
2305 Ins[InsIdx].VT, dl, Root, Arg, MachinePointerInfo(srcValue), false,
2306 false, false,
2307 DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
2308 }
2309 if (p.getNode())
2310 p.getNode()->setIROrder(idx + 1);
2311 InVals.push_back(p);
2312 continue;
2313 }
2314
2315 // Param has ByVal attribute
2316 // Return MoveParam(param symbol).
2317 // Ideally, the param symbol can be returned directly,
2318 // but when SDNode builder decides to use it in a CopyToReg(),
2319 // machine instruction fails because TargetExternalSymbol
2320 // (not lowered) is target dependent, and CopyToReg assumes
2321 // the source is lowered.
2322 EVT ObjectVT = getValueType(DL, Ty);
2323 assert(ObjectVT == Ins[InsIdx].VT &&
2324 "Ins type did not match function type");
2325 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2326 SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2327 if (p.getNode())
2328 p.getNode()->setIROrder(idx + 1);
2329 if (isKernel)
2330 InVals.push_back(p);
2331 else {
2332 SDValue p2 = DAG.getNode(
2333 ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
2334 DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, dl, MVT::i32), p);
2335 InVals.push_back(p2);
2336 }
2337 }
2338
2339 // Clang will check explicit VarArg and issue error if any. However, Clang
2340 // will let code with
2341 // implicit var arg like f() pass. See bug 617733.
2342 // We treat this case as if the arg list is empty.
2343 // if (F.isVarArg()) {
2344 // assert(0 && "VarArg not supported yet!");
2345 //}
2346
2347 if (!OutChains.empty())
2348 DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2349
2350 return Chain;
2351 }
2352
2353
2354 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,SDLoc dl,SelectionDAG & DAG) const2355 NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2356 bool isVarArg,
2357 const SmallVectorImpl<ISD::OutputArg> &Outs,
2358 const SmallVectorImpl<SDValue> &OutVals,
2359 SDLoc dl, SelectionDAG &DAG) const {
2360 MachineFunction &MF = DAG.getMachineFunction();
2361 const Function *F = MF.getFunction();
2362 Type *RetTy = F->getReturnType();
2363 const DataLayout &TD = DAG.getDataLayout();
2364
2365 bool isABI = (STI.getSmVersion() >= 20);
2366 assert(isABI && "Non-ABI compilation is not supported");
2367 if (!isABI)
2368 return Chain;
2369
2370 if (VectorType *VTy = dyn_cast<VectorType>(RetTy)) {
2371 // If we have a vector type, the OutVals array will be the scalarized
2372 // components and we have combine them into 1 or more vector stores.
2373 unsigned NumElts = VTy->getNumElements();
2374 assert(NumElts == Outs.size() && "Bad scalarization of return value");
2375
2376 // const_cast can be removed in later LLVM versions
2377 EVT EltVT = getValueType(TD, RetTy).getVectorElementType();
2378 bool NeedExtend = false;
2379 if (EltVT.getSizeInBits() < 16)
2380 NeedExtend = true;
2381
2382 // V1 store
2383 if (NumElts == 1) {
2384 SDValue StoreVal = OutVals[0];
2385 // We only have one element, so just directly store it
2386 if (NeedExtend)
2387 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
2388 SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal };
2389 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
2390 DAG.getVTList(MVT::Other), Ops,
2391 EltVT, MachinePointerInfo());
2392
2393 } else if (NumElts == 2) {
2394 // V2 store
2395 SDValue StoreVal0 = OutVals[0];
2396 SDValue StoreVal1 = OutVals[1];
2397
2398 if (NeedExtend) {
2399 StoreVal0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal0);
2400 StoreVal1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal1);
2401 }
2402
2403 SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal0,
2404 StoreVal1 };
2405 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetvalV2, dl,
2406 DAG.getVTList(MVT::Other), Ops,
2407 EltVT, MachinePointerInfo());
2408 } else {
2409 // V4 stores
2410 // We have at least 4 elements (<3 x Ty> expands to 4 elements) and the
2411 // vector will be expanded to a power of 2 elements, so we know we can
2412 // always round up to the next multiple of 4 when creating the vector
2413 // stores.
2414 // e.g. 4 elem => 1 st.v4
2415 // 6 elem => 2 st.v4
2416 // 8 elem => 2 st.v4
2417 // 11 elem => 3 st.v4
2418
2419 unsigned VecSize = 4;
2420 if (OutVals[0].getValueType().getSizeInBits() == 64)
2421 VecSize = 2;
2422
2423 unsigned Offset = 0;
2424
2425 EVT VecVT =
2426 EVT::getVectorVT(F->getContext(), EltVT, VecSize);
2427 unsigned PerStoreOffset =
2428 TD.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
2429
2430 for (unsigned i = 0; i < NumElts; i += VecSize) {
2431 // Get values
2432 SDValue StoreVal;
2433 SmallVector<SDValue, 8> Ops;
2434 Ops.push_back(Chain);
2435 Ops.push_back(DAG.getConstant(Offset, dl, MVT::i32));
2436 unsigned Opc = NVPTXISD::StoreRetvalV2;
2437 EVT ExtendedVT = (NeedExtend) ? MVT::i16 : OutVals[0].getValueType();
2438
2439 StoreVal = OutVals[i];
2440 if (NeedExtend)
2441 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2442 Ops.push_back(StoreVal);
2443
2444 if (i + 1 < NumElts) {
2445 StoreVal = OutVals[i + 1];
2446 if (NeedExtend)
2447 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2448 } else {
2449 StoreVal = DAG.getUNDEF(ExtendedVT);
2450 }
2451 Ops.push_back(StoreVal);
2452
2453 if (VecSize == 4) {
2454 Opc = NVPTXISD::StoreRetvalV4;
2455 if (i + 2 < NumElts) {
2456 StoreVal = OutVals[i + 2];
2457 if (NeedExtend)
2458 StoreVal =
2459 DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2460 } else {
2461 StoreVal = DAG.getUNDEF(ExtendedVT);
2462 }
2463 Ops.push_back(StoreVal);
2464
2465 if (i + 3 < NumElts) {
2466 StoreVal = OutVals[i + 3];
2467 if (NeedExtend)
2468 StoreVal =
2469 DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2470 } else {
2471 StoreVal = DAG.getUNDEF(ExtendedVT);
2472 }
2473 Ops.push_back(StoreVal);
2474 }
2475
2476 // Chain = DAG.getNode(Opc, dl, MVT::Other, &Ops[0], Ops.size());
2477 Chain =
2478 DAG.getMemIntrinsicNode(Opc, dl, DAG.getVTList(MVT::Other), Ops,
2479 EltVT, MachinePointerInfo());
2480 Offset += PerStoreOffset;
2481 }
2482 }
2483 } else {
2484 SmallVector<EVT, 16> ValVTs;
2485 SmallVector<uint64_t, 16> Offsets;
2486 ComputePTXValueVTs(*this, DAG.getDataLayout(), RetTy, ValVTs, &Offsets, 0);
2487 assert(ValVTs.size() == OutVals.size() && "Bad return value decomposition");
2488
2489 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2490 SDValue theVal = OutVals[i];
2491 EVT TheValType = theVal.getValueType();
2492 unsigned numElems = 1;
2493 if (TheValType.isVector())
2494 numElems = TheValType.getVectorNumElements();
2495 for (unsigned j = 0, je = numElems; j != je; ++j) {
2496 SDValue TmpVal = theVal;
2497 if (TheValType.isVector())
2498 TmpVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2499 TheValType.getVectorElementType(), TmpVal,
2500 DAG.getIntPtrConstant(j, dl));
2501 EVT TheStoreType = ValVTs[i];
2502 if (RetTy->isIntegerTy() && TD.getTypeAllocSizeInBits(RetTy) < 32) {
2503 // The following zero-extension is for integer types only, and
2504 // specifically not for aggregates.
2505 TmpVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, TmpVal);
2506 TheStoreType = MVT::i32;
2507 }
2508 else if (TmpVal.getValueType().getSizeInBits() < 16)
2509 TmpVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, TmpVal);
2510
2511 SDValue Ops[] = {
2512 Chain,
2513 DAG.getConstant(Offsets[i], dl, MVT::i32),
2514 TmpVal };
2515 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
2516 DAG.getVTList(MVT::Other), Ops,
2517 TheStoreType,
2518 MachinePointerInfo());
2519 }
2520 }
2521 }
2522
2523 return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2524 }
2525
2526
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const2527 void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2528 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2529 SelectionDAG &DAG) const {
2530 if (Constraint.length() > 1)
2531 return;
2532 else
2533 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2534 }
2535
getOpcForTextureInstr(unsigned Intrinsic)2536 static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2537 switch (Intrinsic) {
2538 default:
2539 return 0;
2540
2541 case Intrinsic::nvvm_tex_1d_v4f32_s32:
2542 return NVPTXISD::Tex1DFloatS32;
2543 case Intrinsic::nvvm_tex_1d_v4f32_f32:
2544 return NVPTXISD::Tex1DFloatFloat;
2545 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2546 return NVPTXISD::Tex1DFloatFloatLevel;
2547 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2548 return NVPTXISD::Tex1DFloatFloatGrad;
2549 case Intrinsic::nvvm_tex_1d_v4s32_s32:
2550 return NVPTXISD::Tex1DS32S32;
2551 case Intrinsic::nvvm_tex_1d_v4s32_f32:
2552 return NVPTXISD::Tex1DS32Float;
2553 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2554 return NVPTXISD::Tex1DS32FloatLevel;
2555 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2556 return NVPTXISD::Tex1DS32FloatGrad;
2557 case Intrinsic::nvvm_tex_1d_v4u32_s32:
2558 return NVPTXISD::Tex1DU32S32;
2559 case Intrinsic::nvvm_tex_1d_v4u32_f32:
2560 return NVPTXISD::Tex1DU32Float;
2561 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2562 return NVPTXISD::Tex1DU32FloatLevel;
2563 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2564 return NVPTXISD::Tex1DU32FloatGrad;
2565
2566 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2567 return NVPTXISD::Tex1DArrayFloatS32;
2568 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2569 return NVPTXISD::Tex1DArrayFloatFloat;
2570 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2571 return NVPTXISD::Tex1DArrayFloatFloatLevel;
2572 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2573 return NVPTXISD::Tex1DArrayFloatFloatGrad;
2574 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2575 return NVPTXISD::Tex1DArrayS32S32;
2576 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2577 return NVPTXISD::Tex1DArrayS32Float;
2578 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2579 return NVPTXISD::Tex1DArrayS32FloatLevel;
2580 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2581 return NVPTXISD::Tex1DArrayS32FloatGrad;
2582 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2583 return NVPTXISD::Tex1DArrayU32S32;
2584 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2585 return NVPTXISD::Tex1DArrayU32Float;
2586 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2587 return NVPTXISD::Tex1DArrayU32FloatLevel;
2588 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2589 return NVPTXISD::Tex1DArrayU32FloatGrad;
2590
2591 case Intrinsic::nvvm_tex_2d_v4f32_s32:
2592 return NVPTXISD::Tex2DFloatS32;
2593 case Intrinsic::nvvm_tex_2d_v4f32_f32:
2594 return NVPTXISD::Tex2DFloatFloat;
2595 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2596 return NVPTXISD::Tex2DFloatFloatLevel;
2597 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2598 return NVPTXISD::Tex2DFloatFloatGrad;
2599 case Intrinsic::nvvm_tex_2d_v4s32_s32:
2600 return NVPTXISD::Tex2DS32S32;
2601 case Intrinsic::nvvm_tex_2d_v4s32_f32:
2602 return NVPTXISD::Tex2DS32Float;
2603 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2604 return NVPTXISD::Tex2DS32FloatLevel;
2605 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2606 return NVPTXISD::Tex2DS32FloatGrad;
2607 case Intrinsic::nvvm_tex_2d_v4u32_s32:
2608 return NVPTXISD::Tex2DU32S32;
2609 case Intrinsic::nvvm_tex_2d_v4u32_f32:
2610 return NVPTXISD::Tex2DU32Float;
2611 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2612 return NVPTXISD::Tex2DU32FloatLevel;
2613 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2614 return NVPTXISD::Tex2DU32FloatGrad;
2615
2616 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2617 return NVPTXISD::Tex2DArrayFloatS32;
2618 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2619 return NVPTXISD::Tex2DArrayFloatFloat;
2620 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2621 return NVPTXISD::Tex2DArrayFloatFloatLevel;
2622 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2623 return NVPTXISD::Tex2DArrayFloatFloatGrad;
2624 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2625 return NVPTXISD::Tex2DArrayS32S32;
2626 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2627 return NVPTXISD::Tex2DArrayS32Float;
2628 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2629 return NVPTXISD::Tex2DArrayS32FloatLevel;
2630 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2631 return NVPTXISD::Tex2DArrayS32FloatGrad;
2632 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2633 return NVPTXISD::Tex2DArrayU32S32;
2634 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2635 return NVPTXISD::Tex2DArrayU32Float;
2636 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2637 return NVPTXISD::Tex2DArrayU32FloatLevel;
2638 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2639 return NVPTXISD::Tex2DArrayU32FloatGrad;
2640
2641 case Intrinsic::nvvm_tex_3d_v4f32_s32:
2642 return NVPTXISD::Tex3DFloatS32;
2643 case Intrinsic::nvvm_tex_3d_v4f32_f32:
2644 return NVPTXISD::Tex3DFloatFloat;
2645 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2646 return NVPTXISD::Tex3DFloatFloatLevel;
2647 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2648 return NVPTXISD::Tex3DFloatFloatGrad;
2649 case Intrinsic::nvvm_tex_3d_v4s32_s32:
2650 return NVPTXISD::Tex3DS32S32;
2651 case Intrinsic::nvvm_tex_3d_v4s32_f32:
2652 return NVPTXISD::Tex3DS32Float;
2653 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2654 return NVPTXISD::Tex3DS32FloatLevel;
2655 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2656 return NVPTXISD::Tex3DS32FloatGrad;
2657 case Intrinsic::nvvm_tex_3d_v4u32_s32:
2658 return NVPTXISD::Tex3DU32S32;
2659 case Intrinsic::nvvm_tex_3d_v4u32_f32:
2660 return NVPTXISD::Tex3DU32Float;
2661 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2662 return NVPTXISD::Tex3DU32FloatLevel;
2663 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2664 return NVPTXISD::Tex3DU32FloatGrad;
2665
2666 case Intrinsic::nvvm_tex_cube_v4f32_f32:
2667 return NVPTXISD::TexCubeFloatFloat;
2668 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2669 return NVPTXISD::TexCubeFloatFloatLevel;
2670 case Intrinsic::nvvm_tex_cube_v4s32_f32:
2671 return NVPTXISD::TexCubeS32Float;
2672 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2673 return NVPTXISD::TexCubeS32FloatLevel;
2674 case Intrinsic::nvvm_tex_cube_v4u32_f32:
2675 return NVPTXISD::TexCubeU32Float;
2676 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2677 return NVPTXISD::TexCubeU32FloatLevel;
2678
2679 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2680 return NVPTXISD::TexCubeArrayFloatFloat;
2681 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2682 return NVPTXISD::TexCubeArrayFloatFloatLevel;
2683 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2684 return NVPTXISD::TexCubeArrayS32Float;
2685 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2686 return NVPTXISD::TexCubeArrayS32FloatLevel;
2687 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2688 return NVPTXISD::TexCubeArrayU32Float;
2689 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2690 return NVPTXISD::TexCubeArrayU32FloatLevel;
2691
2692 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2693 return NVPTXISD::Tld4R2DFloatFloat;
2694 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2695 return NVPTXISD::Tld4G2DFloatFloat;
2696 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2697 return NVPTXISD::Tld4B2DFloatFloat;
2698 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2699 return NVPTXISD::Tld4A2DFloatFloat;
2700 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2701 return NVPTXISD::Tld4R2DS64Float;
2702 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2703 return NVPTXISD::Tld4G2DS64Float;
2704 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2705 return NVPTXISD::Tld4B2DS64Float;
2706 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2707 return NVPTXISD::Tld4A2DS64Float;
2708 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2709 return NVPTXISD::Tld4R2DU64Float;
2710 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2711 return NVPTXISD::Tld4G2DU64Float;
2712 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2713 return NVPTXISD::Tld4B2DU64Float;
2714 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2715 return NVPTXISD::Tld4A2DU64Float;
2716
2717 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2718 return NVPTXISD::TexUnified1DFloatS32;
2719 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2720 return NVPTXISD::TexUnified1DFloatFloat;
2721 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2722 return NVPTXISD::TexUnified1DFloatFloatLevel;
2723 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2724 return NVPTXISD::TexUnified1DFloatFloatGrad;
2725 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2726 return NVPTXISD::TexUnified1DS32S32;
2727 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2728 return NVPTXISD::TexUnified1DS32Float;
2729 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2730 return NVPTXISD::TexUnified1DS32FloatLevel;
2731 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2732 return NVPTXISD::TexUnified1DS32FloatGrad;
2733 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2734 return NVPTXISD::TexUnified1DU32S32;
2735 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2736 return NVPTXISD::TexUnified1DU32Float;
2737 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2738 return NVPTXISD::TexUnified1DU32FloatLevel;
2739 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2740 return NVPTXISD::TexUnified1DU32FloatGrad;
2741
2742 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2743 return NVPTXISD::TexUnified1DArrayFloatS32;
2744 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2745 return NVPTXISD::TexUnified1DArrayFloatFloat;
2746 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2747 return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2748 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2749 return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2750 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2751 return NVPTXISD::TexUnified1DArrayS32S32;
2752 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2753 return NVPTXISD::TexUnified1DArrayS32Float;
2754 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2755 return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2756 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2757 return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2758 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2759 return NVPTXISD::TexUnified1DArrayU32S32;
2760 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2761 return NVPTXISD::TexUnified1DArrayU32Float;
2762 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2763 return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2764 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2765 return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2766
2767 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2768 return NVPTXISD::TexUnified2DFloatS32;
2769 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2770 return NVPTXISD::TexUnified2DFloatFloat;
2771 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2772 return NVPTXISD::TexUnified2DFloatFloatLevel;
2773 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2774 return NVPTXISD::TexUnified2DFloatFloatGrad;
2775 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2776 return NVPTXISD::TexUnified2DS32S32;
2777 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
2778 return NVPTXISD::TexUnified2DS32Float;
2779 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
2780 return NVPTXISD::TexUnified2DS32FloatLevel;
2781 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
2782 return NVPTXISD::TexUnified2DS32FloatGrad;
2783 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
2784 return NVPTXISD::TexUnified2DU32S32;
2785 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
2786 return NVPTXISD::TexUnified2DU32Float;
2787 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
2788 return NVPTXISD::TexUnified2DU32FloatLevel;
2789 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
2790 return NVPTXISD::TexUnified2DU32FloatGrad;
2791
2792 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
2793 return NVPTXISD::TexUnified2DArrayFloatS32;
2794 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
2795 return NVPTXISD::TexUnified2DArrayFloatFloat;
2796 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
2797 return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
2798 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
2799 return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
2800 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
2801 return NVPTXISD::TexUnified2DArrayS32S32;
2802 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
2803 return NVPTXISD::TexUnified2DArrayS32Float;
2804 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
2805 return NVPTXISD::TexUnified2DArrayS32FloatLevel;
2806 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
2807 return NVPTXISD::TexUnified2DArrayS32FloatGrad;
2808 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
2809 return NVPTXISD::TexUnified2DArrayU32S32;
2810 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
2811 return NVPTXISD::TexUnified2DArrayU32Float;
2812 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
2813 return NVPTXISD::TexUnified2DArrayU32FloatLevel;
2814 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
2815 return NVPTXISD::TexUnified2DArrayU32FloatGrad;
2816
2817 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
2818 return NVPTXISD::TexUnified3DFloatS32;
2819 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
2820 return NVPTXISD::TexUnified3DFloatFloat;
2821 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
2822 return NVPTXISD::TexUnified3DFloatFloatLevel;
2823 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
2824 return NVPTXISD::TexUnified3DFloatFloatGrad;
2825 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
2826 return NVPTXISD::TexUnified3DS32S32;
2827 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
2828 return NVPTXISD::TexUnified3DS32Float;
2829 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
2830 return NVPTXISD::TexUnified3DS32FloatLevel;
2831 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
2832 return NVPTXISD::TexUnified3DS32FloatGrad;
2833 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
2834 return NVPTXISD::TexUnified3DU32S32;
2835 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
2836 return NVPTXISD::TexUnified3DU32Float;
2837 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
2838 return NVPTXISD::TexUnified3DU32FloatLevel;
2839 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
2840 return NVPTXISD::TexUnified3DU32FloatGrad;
2841
2842 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
2843 return NVPTXISD::TexUnifiedCubeFloatFloat;
2844 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
2845 return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
2846 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
2847 return NVPTXISD::TexUnifiedCubeS32Float;
2848 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
2849 return NVPTXISD::TexUnifiedCubeS32FloatLevel;
2850 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
2851 return NVPTXISD::TexUnifiedCubeU32Float;
2852 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
2853 return NVPTXISD::TexUnifiedCubeU32FloatLevel;
2854
2855 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
2856 return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
2857 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
2858 return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
2859 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
2860 return NVPTXISD::TexUnifiedCubeArrayS32Float;
2861 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
2862 return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
2863 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
2864 return NVPTXISD::TexUnifiedCubeArrayU32Float;
2865 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
2866 return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
2867
2868 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
2869 return NVPTXISD::Tld4UnifiedR2DFloatFloat;
2870 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
2871 return NVPTXISD::Tld4UnifiedG2DFloatFloat;
2872 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
2873 return NVPTXISD::Tld4UnifiedB2DFloatFloat;
2874 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
2875 return NVPTXISD::Tld4UnifiedA2DFloatFloat;
2876 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
2877 return NVPTXISD::Tld4UnifiedR2DS64Float;
2878 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
2879 return NVPTXISD::Tld4UnifiedG2DS64Float;
2880 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
2881 return NVPTXISD::Tld4UnifiedB2DS64Float;
2882 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
2883 return NVPTXISD::Tld4UnifiedA2DS64Float;
2884 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
2885 return NVPTXISD::Tld4UnifiedR2DU64Float;
2886 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
2887 return NVPTXISD::Tld4UnifiedG2DU64Float;
2888 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
2889 return NVPTXISD::Tld4UnifiedB2DU64Float;
2890 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
2891 return NVPTXISD::Tld4UnifiedA2DU64Float;
2892 }
2893 }
2894
getOpcForSurfaceInstr(unsigned Intrinsic)2895 static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
2896 switch (Intrinsic) {
2897 default:
2898 return 0;
2899 case Intrinsic::nvvm_suld_1d_i8_clamp:
2900 return NVPTXISD::Suld1DI8Clamp;
2901 case Intrinsic::nvvm_suld_1d_i16_clamp:
2902 return NVPTXISD::Suld1DI16Clamp;
2903 case Intrinsic::nvvm_suld_1d_i32_clamp:
2904 return NVPTXISD::Suld1DI32Clamp;
2905 case Intrinsic::nvvm_suld_1d_i64_clamp:
2906 return NVPTXISD::Suld1DI64Clamp;
2907 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
2908 return NVPTXISD::Suld1DV2I8Clamp;
2909 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
2910 return NVPTXISD::Suld1DV2I16Clamp;
2911 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
2912 return NVPTXISD::Suld1DV2I32Clamp;
2913 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
2914 return NVPTXISD::Suld1DV2I64Clamp;
2915 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
2916 return NVPTXISD::Suld1DV4I8Clamp;
2917 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
2918 return NVPTXISD::Suld1DV4I16Clamp;
2919 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
2920 return NVPTXISD::Suld1DV4I32Clamp;
2921 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
2922 return NVPTXISD::Suld1DArrayI8Clamp;
2923 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
2924 return NVPTXISD::Suld1DArrayI16Clamp;
2925 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
2926 return NVPTXISD::Suld1DArrayI32Clamp;
2927 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
2928 return NVPTXISD::Suld1DArrayI64Clamp;
2929 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
2930 return NVPTXISD::Suld1DArrayV2I8Clamp;
2931 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
2932 return NVPTXISD::Suld1DArrayV2I16Clamp;
2933 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
2934 return NVPTXISD::Suld1DArrayV2I32Clamp;
2935 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
2936 return NVPTXISD::Suld1DArrayV2I64Clamp;
2937 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
2938 return NVPTXISD::Suld1DArrayV4I8Clamp;
2939 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
2940 return NVPTXISD::Suld1DArrayV4I16Clamp;
2941 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
2942 return NVPTXISD::Suld1DArrayV4I32Clamp;
2943 case Intrinsic::nvvm_suld_2d_i8_clamp:
2944 return NVPTXISD::Suld2DI8Clamp;
2945 case Intrinsic::nvvm_suld_2d_i16_clamp:
2946 return NVPTXISD::Suld2DI16Clamp;
2947 case Intrinsic::nvvm_suld_2d_i32_clamp:
2948 return NVPTXISD::Suld2DI32Clamp;
2949 case Intrinsic::nvvm_suld_2d_i64_clamp:
2950 return NVPTXISD::Suld2DI64Clamp;
2951 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
2952 return NVPTXISD::Suld2DV2I8Clamp;
2953 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
2954 return NVPTXISD::Suld2DV2I16Clamp;
2955 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
2956 return NVPTXISD::Suld2DV2I32Clamp;
2957 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
2958 return NVPTXISD::Suld2DV2I64Clamp;
2959 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
2960 return NVPTXISD::Suld2DV4I8Clamp;
2961 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
2962 return NVPTXISD::Suld2DV4I16Clamp;
2963 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
2964 return NVPTXISD::Suld2DV4I32Clamp;
2965 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
2966 return NVPTXISD::Suld2DArrayI8Clamp;
2967 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
2968 return NVPTXISD::Suld2DArrayI16Clamp;
2969 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
2970 return NVPTXISD::Suld2DArrayI32Clamp;
2971 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
2972 return NVPTXISD::Suld2DArrayI64Clamp;
2973 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
2974 return NVPTXISD::Suld2DArrayV2I8Clamp;
2975 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
2976 return NVPTXISD::Suld2DArrayV2I16Clamp;
2977 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
2978 return NVPTXISD::Suld2DArrayV2I32Clamp;
2979 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
2980 return NVPTXISD::Suld2DArrayV2I64Clamp;
2981 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
2982 return NVPTXISD::Suld2DArrayV4I8Clamp;
2983 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
2984 return NVPTXISD::Suld2DArrayV4I16Clamp;
2985 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
2986 return NVPTXISD::Suld2DArrayV4I32Clamp;
2987 case Intrinsic::nvvm_suld_3d_i8_clamp:
2988 return NVPTXISD::Suld3DI8Clamp;
2989 case Intrinsic::nvvm_suld_3d_i16_clamp:
2990 return NVPTXISD::Suld3DI16Clamp;
2991 case Intrinsic::nvvm_suld_3d_i32_clamp:
2992 return NVPTXISD::Suld3DI32Clamp;
2993 case Intrinsic::nvvm_suld_3d_i64_clamp:
2994 return NVPTXISD::Suld3DI64Clamp;
2995 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
2996 return NVPTXISD::Suld3DV2I8Clamp;
2997 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
2998 return NVPTXISD::Suld3DV2I16Clamp;
2999 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3000 return NVPTXISD::Suld3DV2I32Clamp;
3001 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3002 return NVPTXISD::Suld3DV2I64Clamp;
3003 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3004 return NVPTXISD::Suld3DV4I8Clamp;
3005 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3006 return NVPTXISD::Suld3DV4I16Clamp;
3007 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3008 return NVPTXISD::Suld3DV4I32Clamp;
3009 case Intrinsic::nvvm_suld_1d_i8_trap:
3010 return NVPTXISD::Suld1DI8Trap;
3011 case Intrinsic::nvvm_suld_1d_i16_trap:
3012 return NVPTXISD::Suld1DI16Trap;
3013 case Intrinsic::nvvm_suld_1d_i32_trap:
3014 return NVPTXISD::Suld1DI32Trap;
3015 case Intrinsic::nvvm_suld_1d_i64_trap:
3016 return NVPTXISD::Suld1DI64Trap;
3017 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3018 return NVPTXISD::Suld1DV2I8Trap;
3019 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3020 return NVPTXISD::Suld1DV2I16Trap;
3021 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3022 return NVPTXISD::Suld1DV2I32Trap;
3023 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3024 return NVPTXISD::Suld1DV2I64Trap;
3025 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3026 return NVPTXISD::Suld1DV4I8Trap;
3027 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3028 return NVPTXISD::Suld1DV4I16Trap;
3029 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3030 return NVPTXISD::Suld1DV4I32Trap;
3031 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3032 return NVPTXISD::Suld1DArrayI8Trap;
3033 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3034 return NVPTXISD::Suld1DArrayI16Trap;
3035 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3036 return NVPTXISD::Suld1DArrayI32Trap;
3037 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3038 return NVPTXISD::Suld1DArrayI64Trap;
3039 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3040 return NVPTXISD::Suld1DArrayV2I8Trap;
3041 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3042 return NVPTXISD::Suld1DArrayV2I16Trap;
3043 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3044 return NVPTXISD::Suld1DArrayV2I32Trap;
3045 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3046 return NVPTXISD::Suld1DArrayV2I64Trap;
3047 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3048 return NVPTXISD::Suld1DArrayV4I8Trap;
3049 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3050 return NVPTXISD::Suld1DArrayV4I16Trap;
3051 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3052 return NVPTXISD::Suld1DArrayV4I32Trap;
3053 case Intrinsic::nvvm_suld_2d_i8_trap:
3054 return NVPTXISD::Suld2DI8Trap;
3055 case Intrinsic::nvvm_suld_2d_i16_trap:
3056 return NVPTXISD::Suld2DI16Trap;
3057 case Intrinsic::nvvm_suld_2d_i32_trap:
3058 return NVPTXISD::Suld2DI32Trap;
3059 case Intrinsic::nvvm_suld_2d_i64_trap:
3060 return NVPTXISD::Suld2DI64Trap;
3061 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3062 return NVPTXISD::Suld2DV2I8Trap;
3063 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3064 return NVPTXISD::Suld2DV2I16Trap;
3065 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3066 return NVPTXISD::Suld2DV2I32Trap;
3067 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3068 return NVPTXISD::Suld2DV2I64Trap;
3069 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3070 return NVPTXISD::Suld2DV4I8Trap;
3071 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3072 return NVPTXISD::Suld2DV4I16Trap;
3073 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3074 return NVPTXISD::Suld2DV4I32Trap;
3075 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3076 return NVPTXISD::Suld2DArrayI8Trap;
3077 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3078 return NVPTXISD::Suld2DArrayI16Trap;
3079 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3080 return NVPTXISD::Suld2DArrayI32Trap;
3081 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3082 return NVPTXISD::Suld2DArrayI64Trap;
3083 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3084 return NVPTXISD::Suld2DArrayV2I8Trap;
3085 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3086 return NVPTXISD::Suld2DArrayV2I16Trap;
3087 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3088 return NVPTXISD::Suld2DArrayV2I32Trap;
3089 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3090 return NVPTXISD::Suld2DArrayV2I64Trap;
3091 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3092 return NVPTXISD::Suld2DArrayV4I8Trap;
3093 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3094 return NVPTXISD::Suld2DArrayV4I16Trap;
3095 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3096 return NVPTXISD::Suld2DArrayV4I32Trap;
3097 case Intrinsic::nvvm_suld_3d_i8_trap:
3098 return NVPTXISD::Suld3DI8Trap;
3099 case Intrinsic::nvvm_suld_3d_i16_trap:
3100 return NVPTXISD::Suld3DI16Trap;
3101 case Intrinsic::nvvm_suld_3d_i32_trap:
3102 return NVPTXISD::Suld3DI32Trap;
3103 case Intrinsic::nvvm_suld_3d_i64_trap:
3104 return NVPTXISD::Suld3DI64Trap;
3105 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3106 return NVPTXISD::Suld3DV2I8Trap;
3107 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3108 return NVPTXISD::Suld3DV2I16Trap;
3109 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3110 return NVPTXISD::Suld3DV2I32Trap;
3111 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3112 return NVPTXISD::Suld3DV2I64Trap;
3113 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3114 return NVPTXISD::Suld3DV4I8Trap;
3115 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3116 return NVPTXISD::Suld3DV4I16Trap;
3117 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3118 return NVPTXISD::Suld3DV4I32Trap;
3119 case Intrinsic::nvvm_suld_1d_i8_zero:
3120 return NVPTXISD::Suld1DI8Zero;
3121 case Intrinsic::nvvm_suld_1d_i16_zero:
3122 return NVPTXISD::Suld1DI16Zero;
3123 case Intrinsic::nvvm_suld_1d_i32_zero:
3124 return NVPTXISD::Suld1DI32Zero;
3125 case Intrinsic::nvvm_suld_1d_i64_zero:
3126 return NVPTXISD::Suld1DI64Zero;
3127 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3128 return NVPTXISD::Suld1DV2I8Zero;
3129 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3130 return NVPTXISD::Suld1DV2I16Zero;
3131 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3132 return NVPTXISD::Suld1DV2I32Zero;
3133 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3134 return NVPTXISD::Suld1DV2I64Zero;
3135 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3136 return NVPTXISD::Suld1DV4I8Zero;
3137 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3138 return NVPTXISD::Suld1DV4I16Zero;
3139 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3140 return NVPTXISD::Suld1DV4I32Zero;
3141 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3142 return NVPTXISD::Suld1DArrayI8Zero;
3143 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3144 return NVPTXISD::Suld1DArrayI16Zero;
3145 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3146 return NVPTXISD::Suld1DArrayI32Zero;
3147 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3148 return NVPTXISD::Suld1DArrayI64Zero;
3149 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3150 return NVPTXISD::Suld1DArrayV2I8Zero;
3151 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3152 return NVPTXISD::Suld1DArrayV2I16Zero;
3153 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3154 return NVPTXISD::Suld1DArrayV2I32Zero;
3155 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3156 return NVPTXISD::Suld1DArrayV2I64Zero;
3157 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3158 return NVPTXISD::Suld1DArrayV4I8Zero;
3159 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3160 return NVPTXISD::Suld1DArrayV4I16Zero;
3161 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3162 return NVPTXISD::Suld1DArrayV4I32Zero;
3163 case Intrinsic::nvvm_suld_2d_i8_zero:
3164 return NVPTXISD::Suld2DI8Zero;
3165 case Intrinsic::nvvm_suld_2d_i16_zero:
3166 return NVPTXISD::Suld2DI16Zero;
3167 case Intrinsic::nvvm_suld_2d_i32_zero:
3168 return NVPTXISD::Suld2DI32Zero;
3169 case Intrinsic::nvvm_suld_2d_i64_zero:
3170 return NVPTXISD::Suld2DI64Zero;
3171 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3172 return NVPTXISD::Suld2DV2I8Zero;
3173 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3174 return NVPTXISD::Suld2DV2I16Zero;
3175 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3176 return NVPTXISD::Suld2DV2I32Zero;
3177 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3178 return NVPTXISD::Suld2DV2I64Zero;
3179 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3180 return NVPTXISD::Suld2DV4I8Zero;
3181 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3182 return NVPTXISD::Suld2DV4I16Zero;
3183 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3184 return NVPTXISD::Suld2DV4I32Zero;
3185 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3186 return NVPTXISD::Suld2DArrayI8Zero;
3187 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3188 return NVPTXISD::Suld2DArrayI16Zero;
3189 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3190 return NVPTXISD::Suld2DArrayI32Zero;
3191 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3192 return NVPTXISD::Suld2DArrayI64Zero;
3193 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3194 return NVPTXISD::Suld2DArrayV2I8Zero;
3195 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3196 return NVPTXISD::Suld2DArrayV2I16Zero;
3197 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3198 return NVPTXISD::Suld2DArrayV2I32Zero;
3199 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3200 return NVPTXISD::Suld2DArrayV2I64Zero;
3201 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3202 return NVPTXISD::Suld2DArrayV4I8Zero;
3203 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3204 return NVPTXISD::Suld2DArrayV4I16Zero;
3205 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3206 return NVPTXISD::Suld2DArrayV4I32Zero;
3207 case Intrinsic::nvvm_suld_3d_i8_zero:
3208 return NVPTXISD::Suld3DI8Zero;
3209 case Intrinsic::nvvm_suld_3d_i16_zero:
3210 return NVPTXISD::Suld3DI16Zero;
3211 case Intrinsic::nvvm_suld_3d_i32_zero:
3212 return NVPTXISD::Suld3DI32Zero;
3213 case Intrinsic::nvvm_suld_3d_i64_zero:
3214 return NVPTXISD::Suld3DI64Zero;
3215 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3216 return NVPTXISD::Suld3DV2I8Zero;
3217 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3218 return NVPTXISD::Suld3DV2I16Zero;
3219 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3220 return NVPTXISD::Suld3DV2I32Zero;
3221 case Intrinsic::nvvm_suld_3d_v2i64_zero:
3222 return NVPTXISD::Suld3DV2I64Zero;
3223 case Intrinsic::nvvm_suld_3d_v4i8_zero:
3224 return NVPTXISD::Suld3DV4I8Zero;
3225 case Intrinsic::nvvm_suld_3d_v4i16_zero:
3226 return NVPTXISD::Suld3DV4I16Zero;
3227 case Intrinsic::nvvm_suld_3d_v4i32_zero:
3228 return NVPTXISD::Suld3DV4I32Zero;
3229 }
3230 }
3231
3232 // llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3233 // TgtMemIntrinsic
3234 // because we need the information that is only available in the "Value" type
3235 // of destination
3236 // pointer. In particular, the address space information.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const3237 bool NVPTXTargetLowering::getTgtMemIntrinsic(
3238 IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const {
3239 switch (Intrinsic) {
3240 default:
3241 return false;
3242
3243 case Intrinsic::nvvm_atomic_load_add_f32:
3244 Info.opc = ISD::INTRINSIC_W_CHAIN;
3245 Info.memVT = MVT::f32;
3246 Info.ptrVal = I.getArgOperand(0);
3247 Info.offset = 0;
3248 Info.vol = 0;
3249 Info.readMem = true;
3250 Info.writeMem = true;
3251 Info.align = 0;
3252 return true;
3253
3254 case Intrinsic::nvvm_atomic_load_inc_32:
3255 case Intrinsic::nvvm_atomic_load_dec_32:
3256 Info.opc = ISD::INTRINSIC_W_CHAIN;
3257 Info.memVT = MVT::i32;
3258 Info.ptrVal = I.getArgOperand(0);
3259 Info.offset = 0;
3260 Info.vol = 0;
3261 Info.readMem = true;
3262 Info.writeMem = true;
3263 Info.align = 0;
3264 return true;
3265
3266 case Intrinsic::nvvm_ldu_global_i:
3267 case Intrinsic::nvvm_ldu_global_f:
3268 case Intrinsic::nvvm_ldu_global_p: {
3269 auto &DL = I.getModule()->getDataLayout();
3270 Info.opc = ISD::INTRINSIC_W_CHAIN;
3271 if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3272 Info.memVT = getValueType(DL, I.getType());
3273 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3274 Info.memVT = getPointerTy(DL);
3275 else
3276 Info.memVT = getValueType(DL, I.getType());
3277 Info.ptrVal = I.getArgOperand(0);
3278 Info.offset = 0;
3279 Info.vol = 0;
3280 Info.readMem = true;
3281 Info.writeMem = false;
3282 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3283
3284 return true;
3285 }
3286 case Intrinsic::nvvm_ldg_global_i:
3287 case Intrinsic::nvvm_ldg_global_f:
3288 case Intrinsic::nvvm_ldg_global_p: {
3289 auto &DL = I.getModule()->getDataLayout();
3290
3291 Info.opc = ISD::INTRINSIC_W_CHAIN;
3292 if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3293 Info.memVT = getValueType(DL, I.getType());
3294 else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3295 Info.memVT = getPointerTy(DL);
3296 else
3297 Info.memVT = getValueType(DL, I.getType());
3298 Info.ptrVal = I.getArgOperand(0);
3299 Info.offset = 0;
3300 Info.vol = 0;
3301 Info.readMem = true;
3302 Info.writeMem = false;
3303 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3304
3305 return true;
3306 }
3307
3308 case Intrinsic::nvvm_tex_1d_v4f32_s32:
3309 case Intrinsic::nvvm_tex_1d_v4f32_f32:
3310 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3311 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3312 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3313 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3314 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3315 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3316 case Intrinsic::nvvm_tex_2d_v4f32_s32:
3317 case Intrinsic::nvvm_tex_2d_v4f32_f32:
3318 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3319 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3320 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3321 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3322 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3323 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3324 case Intrinsic::nvvm_tex_3d_v4f32_s32:
3325 case Intrinsic::nvvm_tex_3d_v4f32_f32:
3326 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3327 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3328 case Intrinsic::nvvm_tex_cube_v4f32_f32:
3329 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3330 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3331 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3332 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3333 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3334 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3335 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3336 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3337 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3338 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3339 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3340 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3341 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3342 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3343 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3344 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3345 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3346 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3347 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3348 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3349 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3350 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3351 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3352 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3353 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3354 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3355 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3356 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3357 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3358 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3359 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3360 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3361 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3362 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3363 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32: {
3364 Info.opc = getOpcForTextureInstr(Intrinsic);
3365 Info.memVT = MVT::v4f32;
3366 Info.ptrVal = nullptr;
3367 Info.offset = 0;
3368 Info.vol = 0;
3369 Info.readMem = true;
3370 Info.writeMem = false;
3371 Info.align = 16;
3372 return true;
3373 }
3374 case Intrinsic::nvvm_tex_1d_v4s32_s32:
3375 case Intrinsic::nvvm_tex_1d_v4s32_f32:
3376 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3377 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3378 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3379 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3380 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3381 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3382 case Intrinsic::nvvm_tex_2d_v4s32_s32:
3383 case Intrinsic::nvvm_tex_2d_v4s32_f32:
3384 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3385 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3386 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3387 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3388 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3389 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3390 case Intrinsic::nvvm_tex_3d_v4s32_s32:
3391 case Intrinsic::nvvm_tex_3d_v4s32_f32:
3392 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3393 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3394 case Intrinsic::nvvm_tex_cube_v4s32_f32:
3395 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3396 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3397 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3398 case Intrinsic::nvvm_tex_cube_v4u32_f32:
3399 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3400 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3401 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3402 case Intrinsic::nvvm_tex_1d_v4u32_s32:
3403 case Intrinsic::nvvm_tex_1d_v4u32_f32:
3404 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3405 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3406 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3407 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3408 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3409 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3410 case Intrinsic::nvvm_tex_2d_v4u32_s32:
3411 case Intrinsic::nvvm_tex_2d_v4u32_f32:
3412 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3413 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3414 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3415 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3416 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3417 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3418 case Intrinsic::nvvm_tex_3d_v4u32_s32:
3419 case Intrinsic::nvvm_tex_3d_v4u32_f32:
3420 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3421 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3422 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3423 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3424 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3425 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3426 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3427 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3428 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3429 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3430 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3431 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3432 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3433 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3434 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3435 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3436 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3437 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3438 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3439 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3440 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3441 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3442 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3443 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3444 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3445 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3446 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3447 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3448 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3449 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3450 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3451 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3452 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3453 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3454 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3455 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3456 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3457 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3458 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3459 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3460 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3461 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3462 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3463 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3464 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3465 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3466 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3467 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3468 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3469 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3470 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3471 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3472 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3473 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3474 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3475 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3476 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3477 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3478 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3479 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3480 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3481 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3482 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3483 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3484 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3485 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32: {
3486 Info.opc = getOpcForTextureInstr(Intrinsic);
3487 Info.memVT = MVT::v4i32;
3488 Info.ptrVal = nullptr;
3489 Info.offset = 0;
3490 Info.vol = 0;
3491 Info.readMem = true;
3492 Info.writeMem = false;
3493 Info.align = 16;
3494 return true;
3495 }
3496 case Intrinsic::nvvm_suld_1d_i8_clamp:
3497 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3498 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3499 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3500 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3501 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3502 case Intrinsic::nvvm_suld_2d_i8_clamp:
3503 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3504 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3505 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3506 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3507 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3508 case Intrinsic::nvvm_suld_3d_i8_clamp:
3509 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3510 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3511 case Intrinsic::nvvm_suld_1d_i8_trap:
3512 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3513 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3514 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3515 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3516 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3517 case Intrinsic::nvvm_suld_2d_i8_trap:
3518 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3519 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3520 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3521 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3522 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3523 case Intrinsic::nvvm_suld_3d_i8_trap:
3524 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3525 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3526 case Intrinsic::nvvm_suld_1d_i8_zero:
3527 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3528 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3529 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3530 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3531 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3532 case Intrinsic::nvvm_suld_2d_i8_zero:
3533 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3534 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3535 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3536 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3537 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3538 case Intrinsic::nvvm_suld_3d_i8_zero:
3539 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3540 case Intrinsic::nvvm_suld_3d_v4i8_zero: {
3541 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3542 Info.memVT = MVT::i8;
3543 Info.ptrVal = nullptr;
3544 Info.offset = 0;
3545 Info.vol = 0;
3546 Info.readMem = true;
3547 Info.writeMem = false;
3548 Info.align = 16;
3549 return true;
3550 }
3551 case Intrinsic::nvvm_suld_1d_i16_clamp:
3552 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3553 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3554 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3555 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3556 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3557 case Intrinsic::nvvm_suld_2d_i16_clamp:
3558 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3559 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3560 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3561 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3562 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3563 case Intrinsic::nvvm_suld_3d_i16_clamp:
3564 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3565 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3566 case Intrinsic::nvvm_suld_1d_i16_trap:
3567 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3568 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3569 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3570 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3571 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3572 case Intrinsic::nvvm_suld_2d_i16_trap:
3573 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3574 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3575 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3576 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3577 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3578 case Intrinsic::nvvm_suld_3d_i16_trap:
3579 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3580 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3581 case Intrinsic::nvvm_suld_1d_i16_zero:
3582 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3583 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3584 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3585 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3586 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3587 case Intrinsic::nvvm_suld_2d_i16_zero:
3588 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3589 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3590 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3591 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3592 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3593 case Intrinsic::nvvm_suld_3d_i16_zero:
3594 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3595 case Intrinsic::nvvm_suld_3d_v4i16_zero: {
3596 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3597 Info.memVT = MVT::i16;
3598 Info.ptrVal = nullptr;
3599 Info.offset = 0;
3600 Info.vol = 0;
3601 Info.readMem = true;
3602 Info.writeMem = false;
3603 Info.align = 16;
3604 return true;
3605 }
3606 case Intrinsic::nvvm_suld_1d_i32_clamp:
3607 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3608 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3609 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3610 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3611 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3612 case Intrinsic::nvvm_suld_2d_i32_clamp:
3613 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3614 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3615 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3616 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3617 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3618 case Intrinsic::nvvm_suld_3d_i32_clamp:
3619 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3620 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3621 case Intrinsic::nvvm_suld_1d_i32_trap:
3622 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3623 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3624 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3625 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3626 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3627 case Intrinsic::nvvm_suld_2d_i32_trap:
3628 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3629 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3630 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3631 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3632 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3633 case Intrinsic::nvvm_suld_3d_i32_trap:
3634 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3635 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3636 case Intrinsic::nvvm_suld_1d_i32_zero:
3637 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3638 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3639 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3640 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3641 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3642 case Intrinsic::nvvm_suld_2d_i32_zero:
3643 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3644 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3645 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3646 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3647 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3648 case Intrinsic::nvvm_suld_3d_i32_zero:
3649 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3650 case Intrinsic::nvvm_suld_3d_v4i32_zero: {
3651 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3652 Info.memVT = MVT::i32;
3653 Info.ptrVal = nullptr;
3654 Info.offset = 0;
3655 Info.vol = 0;
3656 Info.readMem = true;
3657 Info.writeMem = false;
3658 Info.align = 16;
3659 return true;
3660 }
3661 case Intrinsic::nvvm_suld_1d_i64_clamp:
3662 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3663 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3664 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3665 case Intrinsic::nvvm_suld_2d_i64_clamp:
3666 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3667 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3668 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3669 case Intrinsic::nvvm_suld_3d_i64_clamp:
3670 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3671 case Intrinsic::nvvm_suld_1d_i64_trap:
3672 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3673 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3674 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3675 case Intrinsic::nvvm_suld_2d_i64_trap:
3676 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3677 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3678 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3679 case Intrinsic::nvvm_suld_3d_i64_trap:
3680 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3681 case Intrinsic::nvvm_suld_1d_i64_zero:
3682 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3683 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3684 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3685 case Intrinsic::nvvm_suld_2d_i64_zero:
3686 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3687 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3688 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3689 case Intrinsic::nvvm_suld_3d_i64_zero:
3690 case Intrinsic::nvvm_suld_3d_v2i64_zero: {
3691 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3692 Info.memVT = MVT::i64;
3693 Info.ptrVal = nullptr;
3694 Info.offset = 0;
3695 Info.vol = 0;
3696 Info.readMem = true;
3697 Info.writeMem = false;
3698 Info.align = 16;
3699 return true;
3700 }
3701 }
3702 return false;
3703 }
3704
3705 /// isLegalAddressingMode - Return true if the addressing mode represented
3706 /// by AM is legal for this target, for a load/store of the specified type.
3707 /// Used to guide target specific optimizations, like loop strength reduction
3708 /// (LoopStrengthReduce.cpp) and memory optimization for address mode
3709 /// (CodeGenPrepare.cpp)
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const3710 bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3711 const AddrMode &AM, Type *Ty,
3712 unsigned AS) const {
3713
3714 // AddrMode - This represents an addressing mode of:
3715 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
3716 //
3717 // The legal address modes are
3718 // - [avar]
3719 // - [areg]
3720 // - [areg+immoff]
3721 // - [immAddr]
3722
3723 if (AM.BaseGV) {
3724 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
3725 }
3726
3727 switch (AM.Scale) {
3728 case 0: // "r", "r+i" or "i" is allowed
3729 break;
3730 case 1:
3731 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
3732 return false;
3733 // Otherwise we have r+i.
3734 break;
3735 default:
3736 // No scale > 1 is allowed
3737 return false;
3738 }
3739 return true;
3740 }
3741
3742 //===----------------------------------------------------------------------===//
3743 // NVPTX Inline Assembly Support
3744 //===----------------------------------------------------------------------===//
3745
3746 /// getConstraintType - Given a constraint letter, return the type of
3747 /// constraint it is for this target.
3748 NVPTXTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3749 NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
3750 if (Constraint.size() == 1) {
3751 switch (Constraint[0]) {
3752 default:
3753 break;
3754 case 'b':
3755 case 'r':
3756 case 'h':
3757 case 'c':
3758 case 'l':
3759 case 'f':
3760 case 'd':
3761 case '0':
3762 case 'N':
3763 return C_RegisterClass;
3764 }
3765 }
3766 return TargetLowering::getConstraintType(Constraint);
3767 }
3768
3769 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3770 NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3771 StringRef Constraint,
3772 MVT VT) const {
3773 if (Constraint.size() == 1) {
3774 switch (Constraint[0]) {
3775 case 'b':
3776 return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
3777 case 'c':
3778 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
3779 case 'h':
3780 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
3781 case 'r':
3782 return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
3783 case 'l':
3784 case 'N':
3785 return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
3786 case 'f':
3787 return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
3788 case 'd':
3789 return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
3790 }
3791 }
3792 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3793 }
3794
3795 //===----------------------------------------------------------------------===//
3796 // NVPTX DAG Combining
3797 //===----------------------------------------------------------------------===//
3798
allowFMA(MachineFunction & MF,CodeGenOpt::Level OptLevel) const3799 bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
3800 CodeGenOpt::Level OptLevel) const {
3801 const Function *F = MF.getFunction();
3802 const TargetOptions &TO = MF.getTarget().Options;
3803
3804 // Always honor command-line argument
3805 if (FMAContractLevelOpt.getNumOccurrences() > 0) {
3806 return FMAContractLevelOpt > 0;
3807 } else if (OptLevel == 0) {
3808 // Do not contract if we're not optimizing the code
3809 return false;
3810 } else if (TO.AllowFPOpFusion == FPOpFusion::Fast || TO.UnsafeFPMath) {
3811 // Honor TargetOptions flags that explicitly say fusion is okay
3812 return true;
3813 } else if (F->hasFnAttribute("unsafe-fp-math")) {
3814 // Check for unsafe-fp-math=true coming from Clang
3815 Attribute Attr = F->getFnAttribute("unsafe-fp-math");
3816 StringRef Val = Attr.getValueAsString();
3817 if (Val == "true")
3818 return true;
3819 }
3820
3821 // We did not have a clear indication that fusion is allowed, so assume not
3822 return false;
3823 }
3824
3825 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
3826 /// operands N0 and N1. This is a helper for PerformADDCombine that is
3827 /// called with the default operands, and if that fails, with commuted
3828 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)3829 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
3830 TargetLowering::DAGCombinerInfo &DCI,
3831 const NVPTXSubtarget &Subtarget,
3832 CodeGenOpt::Level OptLevel) {
3833 SelectionDAG &DAG = DCI.DAG;
3834 // Skip non-integer, non-scalar case
3835 EVT VT=N0.getValueType();
3836 if (VT.isVector())
3837 return SDValue();
3838
3839 // fold (add (mul a, b), c) -> (mad a, b, c)
3840 //
3841 if (N0.getOpcode() == ISD::MUL) {
3842 assert (VT.isInteger());
3843 // For integer:
3844 // Since integer multiply-add costs the same as integer multiply
3845 // but is more costly than integer add, do the fusion only when
3846 // the mul is only used in the add.
3847 if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
3848 !N0.getNode()->hasOneUse())
3849 return SDValue();
3850
3851 // Do the folding
3852 return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
3853 N0.getOperand(0), N0.getOperand(1), N1);
3854 }
3855 else if (N0.getOpcode() == ISD::FMUL) {
3856 if (VT == MVT::f32 || VT == MVT::f64) {
3857 const auto *TLI = static_cast<const NVPTXTargetLowering *>(
3858 &DAG.getTargetLoweringInfo());
3859 if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
3860 return SDValue();
3861
3862 // For floating point:
3863 // Do the fusion only when the mul has less than 5 uses and all
3864 // are add.
3865 // The heuristic is that if a use is not an add, then that use
3866 // cannot be fused into fma, therefore mul is still needed anyway.
3867 // If there are more than 4 uses, even if they are all add, fusing
3868 // them will increase register pressue.
3869 //
3870 int numUses = 0;
3871 int nonAddCount = 0;
3872 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
3873 UE = N0.getNode()->use_end();
3874 UI != UE; ++UI) {
3875 numUses++;
3876 SDNode *User = *UI;
3877 if (User->getOpcode() != ISD::FADD)
3878 ++nonAddCount;
3879 }
3880 if (numUses >= 5)
3881 return SDValue();
3882 if (nonAddCount) {
3883 int orderNo = N->getIROrder();
3884 int orderNo2 = N0.getNode()->getIROrder();
3885 // simple heuristics here for considering potential register
3886 // pressure, the logics here is that the differnce are used
3887 // to measure the distance between def and use, the longer distance
3888 // more likely cause register pressure.
3889 if (orderNo - orderNo2 < 500)
3890 return SDValue();
3891
3892 // Now, check if at least one of the FMUL's operands is live beyond the node N,
3893 // which guarantees that the FMA will not increase register pressure at node N.
3894 bool opIsLive = false;
3895 const SDNode *left = N0.getOperand(0).getNode();
3896 const SDNode *right = N0.getOperand(1).getNode();
3897
3898 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
3899 opIsLive = true;
3900
3901 if (!opIsLive)
3902 for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
3903 SDNode *User = *UI;
3904 int orderNo3 = User->getIROrder();
3905 if (orderNo3 > orderNo) {
3906 opIsLive = true;
3907 break;
3908 }
3909 }
3910
3911 if (!opIsLive)
3912 for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
3913 SDNode *User = *UI;
3914 int orderNo3 = User->getIROrder();
3915 if (orderNo3 > orderNo) {
3916 opIsLive = true;
3917 break;
3918 }
3919 }
3920
3921 if (!opIsLive)
3922 return SDValue();
3923 }
3924
3925 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
3926 N0.getOperand(0), N0.getOperand(1), N1);
3927 }
3928 }
3929
3930 return SDValue();
3931 }
3932
3933 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
3934 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const NVPTXSubtarget & Subtarget,CodeGenOpt::Level OptLevel)3935 static SDValue PerformADDCombine(SDNode *N,
3936 TargetLowering::DAGCombinerInfo &DCI,
3937 const NVPTXSubtarget &Subtarget,
3938 CodeGenOpt::Level OptLevel) {
3939 SDValue N0 = N->getOperand(0);
3940 SDValue N1 = N->getOperand(1);
3941
3942 // First try with the default operand order.
3943 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget,
3944 OptLevel);
3945 if (Result.getNode())
3946 return Result;
3947
3948 // If that didn't work, try again with the operands commuted.
3949 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
3950 }
3951
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)3952 static SDValue PerformANDCombine(SDNode *N,
3953 TargetLowering::DAGCombinerInfo &DCI) {
3954 // The type legalizer turns a vector load of i8 values into a zextload to i16
3955 // registers, optionally ANY_EXTENDs it (if target type is integer),
3956 // and ANDs off the high 8 bits. Since we turn this load into a
3957 // target-specific DAG node, the DAG combiner fails to eliminate these AND
3958 // nodes. Do that here.
3959 SDValue Val = N->getOperand(0);
3960 SDValue Mask = N->getOperand(1);
3961
3962 if (isa<ConstantSDNode>(Val)) {
3963 std::swap(Val, Mask);
3964 }
3965
3966 SDValue AExt;
3967 // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
3968 if (Val.getOpcode() == ISD::ANY_EXTEND) {
3969 AExt = Val;
3970 Val = Val->getOperand(0);
3971 }
3972
3973 if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
3974 Val = Val->getOperand(0);
3975 }
3976
3977 if (Val->getOpcode() == NVPTXISD::LoadV2 ||
3978 Val->getOpcode() == NVPTXISD::LoadV4) {
3979 ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
3980 if (!MaskCnst) {
3981 // Not an AND with a constant
3982 return SDValue();
3983 }
3984
3985 uint64_t MaskVal = MaskCnst->getZExtValue();
3986 if (MaskVal != 0xff) {
3987 // Not an AND that chops off top 8 bits
3988 return SDValue();
3989 }
3990
3991 MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
3992 if (!Mem) {
3993 // Not a MemSDNode?!?
3994 return SDValue();
3995 }
3996
3997 EVT MemVT = Mem->getMemoryVT();
3998 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
3999 // We only handle the i8 case
4000 return SDValue();
4001 }
4002
4003 unsigned ExtType =
4004 cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4005 getZExtValue();
4006 if (ExtType == ISD::SEXTLOAD) {
4007 // If for some reason the load is a sextload, the and is needed to zero
4008 // out the high 8 bits
4009 return SDValue();
4010 }
4011
4012 bool AddTo = false;
4013 if (AExt.getNode() != 0) {
4014 // Re-insert the ext as a zext.
4015 Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4016 AExt.getValueType(), Val);
4017 AddTo = true;
4018 }
4019
4020 // If we get here, the AND is unnecessary. Just replace it with the load
4021 DCI.CombineTo(N, Val, AddTo);
4022 }
4023
4024 return SDValue();
4025 }
4026
PerformSELECTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4027 static SDValue PerformSELECTCombine(SDNode *N,
4028 TargetLowering::DAGCombinerInfo &DCI) {
4029 // Currently this detects patterns for integer min and max and
4030 // lowers them to PTX-specific intrinsics that enable hardware
4031 // support.
4032
4033 const SDValue Cond = N->getOperand(0);
4034 if (Cond.getOpcode() != ISD::SETCC) return SDValue();
4035
4036 const SDValue LHS = Cond.getOperand(0);
4037 const SDValue RHS = Cond.getOperand(1);
4038 const SDValue True = N->getOperand(1);
4039 const SDValue False = N->getOperand(2);
4040 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
4041 return SDValue();
4042
4043 const EVT VT = N->getValueType(0);
4044 if (VT != MVT::i32 && VT != MVT::i64) return SDValue();
4045
4046 const ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4047 SDValue Larger; // The larger of LHS and RHS when condition is true.
4048 switch (CC) {
4049 case ISD::SETULT:
4050 case ISD::SETULE:
4051 case ISD::SETLT:
4052 case ISD::SETLE:
4053 Larger = RHS;
4054 break;
4055
4056 case ISD::SETGT:
4057 case ISD::SETGE:
4058 case ISD::SETUGT:
4059 case ISD::SETUGE:
4060 Larger = LHS;
4061 break;
4062
4063 default:
4064 return SDValue();
4065 }
4066 const bool IsMax = (Larger == True);
4067 const bool IsSigned = ISD::isSignedIntSetCC(CC);
4068
4069 unsigned IntrinsicId;
4070 if (VT == MVT::i32) {
4071 if (IsSigned)
4072 IntrinsicId = IsMax ? Intrinsic::nvvm_max_i : Intrinsic::nvvm_min_i;
4073 else
4074 IntrinsicId = IsMax ? Intrinsic::nvvm_max_ui : Intrinsic::nvvm_min_ui;
4075 } else {
4076 assert(VT == MVT::i64);
4077 if (IsSigned)
4078 IntrinsicId = IsMax ? Intrinsic::nvvm_max_ll : Intrinsic::nvvm_min_ll;
4079 else
4080 IntrinsicId = IsMax ? Intrinsic::nvvm_max_ull : Intrinsic::nvvm_min_ull;
4081 }
4082
4083 SDLoc DL(N);
4084 return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
4085 DCI.DAG.getConstant(IntrinsicId, DL, VT), LHS, RHS);
4086 }
4087
4088 enum OperandSignedness {
4089 Signed = 0,
4090 Unsigned,
4091 Unknown
4092 };
4093
4094 /// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4095 /// that can be demoted to \p OptSize bits without loss of information. The
4096 /// signedness of the operand, if determinable, is placed in \p S.
IsMulWideOperandDemotable(SDValue Op,unsigned OptSize,OperandSignedness & S)4097 static bool IsMulWideOperandDemotable(SDValue Op,
4098 unsigned OptSize,
4099 OperandSignedness &S) {
4100 S = Unknown;
4101
4102 if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4103 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4104 EVT OrigVT = Op.getOperand(0).getValueType();
4105 if (OrigVT.getSizeInBits() <= OptSize) {
4106 S = Signed;
4107 return true;
4108 }
4109 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4110 EVT OrigVT = Op.getOperand(0).getValueType();
4111 if (OrigVT.getSizeInBits() <= OptSize) {
4112 S = Unsigned;
4113 return true;
4114 }
4115 }
4116
4117 return false;
4118 }
4119
4120 /// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4121 /// be demoted to \p OptSize bits without loss of information. If the operands
4122 /// contain a constant, it should appear as the RHS operand. The signedness of
4123 /// the operands is placed in \p IsSigned.
AreMulWideOperandsDemotable(SDValue LHS,SDValue RHS,unsigned OptSize,bool & IsSigned)4124 static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4125 unsigned OptSize,
4126 bool &IsSigned) {
4127
4128 OperandSignedness LHSSign;
4129
4130 // The LHS operand must be a demotable op
4131 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4132 return false;
4133
4134 // We should have been able to determine the signedness from the LHS
4135 if (LHSSign == Unknown)
4136 return false;
4137
4138 IsSigned = (LHSSign == Signed);
4139
4140 // The RHS can be a demotable op or a constant
4141 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4142 APInt Val = CI->getAPIntValue();
4143 if (LHSSign == Unsigned) {
4144 return Val.isIntN(OptSize);
4145 } else {
4146 return Val.isSignedIntN(OptSize);
4147 }
4148 } else {
4149 OperandSignedness RHSSign;
4150 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4151 return false;
4152
4153 return LHSSign == RHSSign;
4154 }
4155 }
4156
4157 /// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4158 /// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4159 /// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4160 /// amount.
TryMULWIDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)4161 static SDValue TryMULWIDECombine(SDNode *N,
4162 TargetLowering::DAGCombinerInfo &DCI) {
4163 EVT MulType = N->getValueType(0);
4164 if (MulType != MVT::i32 && MulType != MVT::i64) {
4165 return SDValue();
4166 }
4167
4168 SDLoc DL(N);
4169 unsigned OptSize = MulType.getSizeInBits() >> 1;
4170 SDValue LHS = N->getOperand(0);
4171 SDValue RHS = N->getOperand(1);
4172
4173 // Canonicalize the multiply so the constant (if any) is on the right
4174 if (N->getOpcode() == ISD::MUL) {
4175 if (isa<ConstantSDNode>(LHS)) {
4176 std::swap(LHS, RHS);
4177 }
4178 }
4179
4180 // If we have a SHL, determine the actual multiply amount
4181 if (N->getOpcode() == ISD::SHL) {
4182 ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4183 if (!ShlRHS) {
4184 return SDValue();
4185 }
4186
4187 APInt ShiftAmt = ShlRHS->getAPIntValue();
4188 unsigned BitWidth = MulType.getSizeInBits();
4189 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4190 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4191 RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4192 } else {
4193 return SDValue();
4194 }
4195 }
4196
4197 bool Signed;
4198 // Verify that our operands are demotable
4199 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4200 return SDValue();
4201 }
4202
4203 EVT DemotedVT;
4204 if (MulType == MVT::i32) {
4205 DemotedVT = MVT::i16;
4206 } else {
4207 DemotedVT = MVT::i32;
4208 }
4209
4210 // Truncate the operands to the correct size. Note that these are just for
4211 // type consistency and will (likely) be eliminated in later phases.
4212 SDValue TruncLHS =
4213 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4214 SDValue TruncRHS =
4215 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4216
4217 unsigned Opc;
4218 if (Signed) {
4219 Opc = NVPTXISD::MUL_WIDE_SIGNED;
4220 } else {
4221 Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4222 }
4223
4224 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4225 }
4226
4227 /// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4228 static SDValue PerformMULCombine(SDNode *N,
4229 TargetLowering::DAGCombinerInfo &DCI,
4230 CodeGenOpt::Level OptLevel) {
4231 if (OptLevel > 0) {
4232 // Try mul.wide combining at OptLevel > 0
4233 SDValue Ret = TryMULWIDECombine(N, DCI);
4234 if (Ret.getNode())
4235 return Ret;
4236 }
4237
4238 return SDValue();
4239 }
4240
4241 /// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
PerformSHLCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,CodeGenOpt::Level OptLevel)4242 static SDValue PerformSHLCombine(SDNode *N,
4243 TargetLowering::DAGCombinerInfo &DCI,
4244 CodeGenOpt::Level OptLevel) {
4245 if (OptLevel > 0) {
4246 // Try mul.wide combining at OptLevel > 0
4247 SDValue Ret = TryMULWIDECombine(N, DCI);
4248 if (Ret.getNode())
4249 return Ret;
4250 }
4251
4252 return SDValue();
4253 }
4254
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const4255 SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4256 DAGCombinerInfo &DCI) const {
4257 CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4258 switch (N->getOpcode()) {
4259 default: break;
4260 case ISD::ADD:
4261 case ISD::FADD:
4262 return PerformADDCombine(N, DCI, STI, OptLevel);
4263 case ISD::MUL:
4264 return PerformMULCombine(N, DCI, OptLevel);
4265 case ISD::SHL:
4266 return PerformSHLCombine(N, DCI, OptLevel);
4267 case ISD::AND:
4268 return PerformANDCombine(N, DCI);
4269 case ISD::SELECT:
4270 return PerformSELECTCombine(N, DCI);
4271 }
4272 return SDValue();
4273 }
4274
4275 /// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
ReplaceLoadVector(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4276 static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4277 SmallVectorImpl<SDValue> &Results) {
4278 EVT ResVT = N->getValueType(0);
4279 SDLoc DL(N);
4280
4281 assert(ResVT.isVector() && "Vector load must have vector type");
4282
4283 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4284 // legal. We can (and should) split that into 2 loads of <2 x double> here
4285 // but I'm leaving that as a TODO for now.
4286 assert(ResVT.isSimple() && "Can only handle simple types");
4287 switch (ResVT.getSimpleVT().SimpleTy) {
4288 default:
4289 return;
4290 case MVT::v2i8:
4291 case MVT::v2i16:
4292 case MVT::v2i32:
4293 case MVT::v2i64:
4294 case MVT::v2f32:
4295 case MVT::v2f64:
4296 case MVT::v4i8:
4297 case MVT::v4i16:
4298 case MVT::v4i32:
4299 case MVT::v4f32:
4300 // This is a "native" vector type
4301 break;
4302 }
4303
4304 LoadSDNode *LD = cast<LoadSDNode>(N);
4305
4306 unsigned Align = LD->getAlignment();
4307 auto &TD = DAG.getDataLayout();
4308 unsigned PrefAlign =
4309 TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
4310 if (Align < PrefAlign) {
4311 // This load is not sufficiently aligned, so bail out and let this vector
4312 // load be scalarized. Note that we may still be able to emit smaller
4313 // vector loads. For example, if we are loading a <4 x float> with an
4314 // alignment of 8, this check will fail but the legalizer will try again
4315 // with 2 x <2 x float>, which will succeed with an alignment of 8.
4316 return;
4317 }
4318
4319 EVT EltVT = ResVT.getVectorElementType();
4320 unsigned NumElts = ResVT.getVectorNumElements();
4321
4322 // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4323 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4324 // loaded type to i16 and propagate the "real" type as the memory type.
4325 bool NeedTrunc = false;
4326 if (EltVT.getSizeInBits() < 16) {
4327 EltVT = MVT::i16;
4328 NeedTrunc = true;
4329 }
4330
4331 unsigned Opcode = 0;
4332 SDVTList LdResVTs;
4333
4334 switch (NumElts) {
4335 default:
4336 return;
4337 case 2:
4338 Opcode = NVPTXISD::LoadV2;
4339 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4340 break;
4341 case 4: {
4342 Opcode = NVPTXISD::LoadV4;
4343 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4344 LdResVTs = DAG.getVTList(ListVTs);
4345 break;
4346 }
4347 }
4348
4349 // Copy regular operands
4350 SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4351
4352 // The select routine does not have access to the LoadSDNode instance, so
4353 // pass along the extension information
4354 OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4355
4356 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4357 LD->getMemoryVT(),
4358 LD->getMemOperand());
4359
4360 SmallVector<SDValue, 4> ScalarRes;
4361
4362 for (unsigned i = 0; i < NumElts; ++i) {
4363 SDValue Res = NewLD.getValue(i);
4364 if (NeedTrunc)
4365 Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4366 ScalarRes.push_back(Res);
4367 }
4368
4369 SDValue LoadChain = NewLD.getValue(NumElts);
4370
4371 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
4372
4373 Results.push_back(BuildVec);
4374 Results.push_back(LoadChain);
4375 }
4376
ReplaceINTRINSIC_W_CHAIN(SDNode * N,SelectionDAG & DAG,SmallVectorImpl<SDValue> & Results)4377 static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4378 SmallVectorImpl<SDValue> &Results) {
4379 SDValue Chain = N->getOperand(0);
4380 SDValue Intrin = N->getOperand(1);
4381 SDLoc DL(N);
4382
4383 // Get the intrinsic ID
4384 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4385 switch (IntrinNo) {
4386 default:
4387 return;
4388 case Intrinsic::nvvm_ldg_global_i:
4389 case Intrinsic::nvvm_ldg_global_f:
4390 case Intrinsic::nvvm_ldg_global_p:
4391 case Intrinsic::nvvm_ldu_global_i:
4392 case Intrinsic::nvvm_ldu_global_f:
4393 case Intrinsic::nvvm_ldu_global_p: {
4394 EVT ResVT = N->getValueType(0);
4395
4396 if (ResVT.isVector()) {
4397 // Vector LDG/LDU
4398
4399 unsigned NumElts = ResVT.getVectorNumElements();
4400 EVT EltVT = ResVT.getVectorElementType();
4401
4402 // Since LDU/LDG are target nodes, we cannot rely on DAG type
4403 // legalization.
4404 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4405 // loaded type to i16 and propagate the "real" type as the memory type.
4406 bool NeedTrunc = false;
4407 if (EltVT.getSizeInBits() < 16) {
4408 EltVT = MVT::i16;
4409 NeedTrunc = true;
4410 }
4411
4412 unsigned Opcode = 0;
4413 SDVTList LdResVTs;
4414
4415 switch (NumElts) {
4416 default:
4417 return;
4418 case 2:
4419 switch (IntrinNo) {
4420 default:
4421 return;
4422 case Intrinsic::nvvm_ldg_global_i:
4423 case Intrinsic::nvvm_ldg_global_f:
4424 case Intrinsic::nvvm_ldg_global_p:
4425 Opcode = NVPTXISD::LDGV2;
4426 break;
4427 case Intrinsic::nvvm_ldu_global_i:
4428 case Intrinsic::nvvm_ldu_global_f:
4429 case Intrinsic::nvvm_ldu_global_p:
4430 Opcode = NVPTXISD::LDUV2;
4431 break;
4432 }
4433 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4434 break;
4435 case 4: {
4436 switch (IntrinNo) {
4437 default:
4438 return;
4439 case Intrinsic::nvvm_ldg_global_i:
4440 case Intrinsic::nvvm_ldg_global_f:
4441 case Intrinsic::nvvm_ldg_global_p:
4442 Opcode = NVPTXISD::LDGV4;
4443 break;
4444 case Intrinsic::nvvm_ldu_global_i:
4445 case Intrinsic::nvvm_ldu_global_f:
4446 case Intrinsic::nvvm_ldu_global_p:
4447 Opcode = NVPTXISD::LDUV4;
4448 break;
4449 }
4450 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4451 LdResVTs = DAG.getVTList(ListVTs);
4452 break;
4453 }
4454 }
4455
4456 SmallVector<SDValue, 8> OtherOps;
4457
4458 // Copy regular operands
4459
4460 OtherOps.push_back(Chain); // Chain
4461 // Skip operand 1 (intrinsic ID)
4462 // Others
4463 OtherOps.append(N->op_begin() + 2, N->op_end());
4464
4465 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4466
4467 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4468 MemSD->getMemoryVT(),
4469 MemSD->getMemOperand());
4470
4471 SmallVector<SDValue, 4> ScalarRes;
4472
4473 for (unsigned i = 0; i < NumElts; ++i) {
4474 SDValue Res = NewLD.getValue(i);
4475 if (NeedTrunc)
4476 Res =
4477 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4478 ScalarRes.push_back(Res);
4479 }
4480
4481 SDValue LoadChain = NewLD.getValue(NumElts);
4482
4483 SDValue BuildVec =
4484 DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, ScalarRes);
4485
4486 Results.push_back(BuildVec);
4487 Results.push_back(LoadChain);
4488 } else {
4489 // i8 LDG/LDU
4490 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
4491 "Custom handling of non-i8 ldu/ldg?");
4492
4493 // Just copy all operands as-is
4494 SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
4495
4496 // Force output to i16
4497 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
4498
4499 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4500
4501 // We make sure the memory type is i8, which will be used during isel
4502 // to select the proper instruction.
4503 SDValue NewLD =
4504 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
4505 MVT::i8, MemSD->getMemOperand());
4506
4507 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
4508 NewLD.getValue(0)));
4509 Results.push_back(NewLD.getValue(1));
4510 }
4511 }
4512 }
4513 }
4514
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const4515 void NVPTXTargetLowering::ReplaceNodeResults(
4516 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
4517 switch (N->getOpcode()) {
4518 default:
4519 report_fatal_error("Unhandled custom legalization");
4520 case ISD::LOAD:
4521 ReplaceLoadVector(N, DAG, Results);
4522 return;
4523 case ISD::INTRINSIC_W_CHAIN:
4524 ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
4525 return;
4526 }
4527 }
4528
4529 // Pin NVPTXSection's and NVPTXTargetObjectFile's vtables to this file.
anchor()4530 void NVPTXSection::anchor() {}
4531
~NVPTXTargetObjectFile()4532 NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {
4533 delete static_cast<NVPTXSection *>(TextSection);
4534 delete static_cast<NVPTXSection *>(DataSection);
4535 delete static_cast<NVPTXSection *>(BSSSection);
4536 delete static_cast<NVPTXSection *>(ReadOnlySection);
4537
4538 delete static_cast<NVPTXSection *>(StaticCtorSection);
4539 delete static_cast<NVPTXSection *>(StaticDtorSection);
4540 delete static_cast<NVPTXSection *>(LSDASection);
4541 delete static_cast<NVPTXSection *>(EHFrameSection);
4542 delete static_cast<NVPTXSection *>(DwarfAbbrevSection);
4543 delete static_cast<NVPTXSection *>(DwarfInfoSection);
4544 delete static_cast<NVPTXSection *>(DwarfLineSection);
4545 delete static_cast<NVPTXSection *>(DwarfFrameSection);
4546 delete static_cast<NVPTXSection *>(DwarfPubTypesSection);
4547 delete static_cast<const NVPTXSection *>(DwarfDebugInlineSection);
4548 delete static_cast<NVPTXSection *>(DwarfStrSection);
4549 delete static_cast<NVPTXSection *>(DwarfLocSection);
4550 delete static_cast<NVPTXSection *>(DwarfARangesSection);
4551 delete static_cast<NVPTXSection *>(DwarfRangesSection);
4552 }
4553
4554 MCSection *
SelectSectionForGlobal(const GlobalValue * GV,SectionKind Kind,Mangler & Mang,const TargetMachine & TM) const4555 NVPTXTargetObjectFile::SelectSectionForGlobal(const GlobalValue *GV,
4556 SectionKind Kind, Mangler &Mang,
4557 const TargetMachine &TM) const {
4558 return getDataSection();
4559 }
4560