1 //===-- CanonicalType.h - C Language Family Type Representation -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the CanQual class template, which provides access to
11 //  canonical types.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CLANG_AST_CANONICALTYPE_H
16 #define LLVM_CLANG_AST_CANONICALTYPE_H
17 
18 #include "clang/AST/Type.h"
19 #include "llvm/ADT/iterator.h"
20 #include "llvm/Support/Casting.h"
21 
22 namespace clang {
23 
24 template<typename T> class CanProxy;
25 template<typename T> struct CanProxyAdaptor;
26 
27 //----------------------------------------------------------------------------//
28 // Canonical, qualified type template
29 //----------------------------------------------------------------------------//
30 
31 /// \brief Represents a canonical, potentially-qualified type.
32 ///
33 /// The CanQual template is a lightweight smart pointer that provides access
34 /// to the canonical representation of a type, where all typedefs and other
35 /// syntactic sugar has been eliminated. A CanQualType may also have various
36 /// qualifiers (const, volatile, restrict) attached to it.
37 ///
38 /// The template type parameter @p T is one of the Type classes (PointerType,
39 /// BuiltinType, etc.). The type stored within @c CanQual<T> will be of that
40 /// type (or some subclass of that type). The typedef @c CanQualType is just
41 /// a shorthand for @c CanQual<Type>.
42 ///
43 /// An instance of @c CanQual<T> can be implicitly converted to a
44 /// @c CanQual<U> when T is derived from U, which essentially provides an
45 /// implicit upcast. For example, @c CanQual<LValueReferenceType> can be
46 /// converted to @c CanQual<ReferenceType>. Note that any @c CanQual type can
47 /// be implicitly converted to a QualType, but the reverse operation requires
48 /// a call to ASTContext::getCanonicalType().
49 ///
50 ///
51 template<typename T = Type>
52 class CanQual {
53   /// \brief The actual, canonical type.
54   QualType Stored;
55 
56 public:
57   /// \brief Constructs a NULL canonical type.
CanQual()58   CanQual() : Stored() { }
59 
60   /// \brief Converting constructor that permits implicit upcasting of
61   /// canonical type pointers.
62   template <typename U>
63   CanQual(const CanQual<U> &Other,
64           typename std::enable_if<std::is_base_of<T, U>::value, int>::type = 0);
65 
66   /// \brief Retrieve the underlying type pointer, which refers to a
67   /// canonical type.
68   ///
69   /// The underlying pointer must not be NULL.
getTypePtr()70   const T *getTypePtr() const { return cast<T>(Stored.getTypePtr()); }
71 
72   /// \brief Retrieve the underlying type pointer, which refers to a
73   /// canonical type, or NULL.
74   ///
getTypePtrOrNull()75   const T *getTypePtrOrNull() const {
76     return cast_or_null<T>(Stored.getTypePtrOrNull());
77   }
78 
79   /// \brief Implicit conversion to a qualified type.
QualType()80   operator QualType() const { return Stored; }
81 
82   /// \brief Implicit conversion to bool.
83   explicit operator bool() const { return !isNull(); }
84 
isNull()85   bool isNull() const {
86     return Stored.isNull();
87   }
88 
split()89   SplitQualType split() const { return Stored.split(); }
90 
91   /// \brief Retrieve a canonical type pointer with a different static type,
92   /// upcasting or downcasting as needed.
93   ///
94   /// The getAs() function is typically used to try to downcast to a
95   /// more specific (canonical) type in the type system. For example:
96   ///
97   /// @code
98   /// void f(CanQual<Type> T) {
99   ///   if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) {
100   ///     // look at Ptr's pointee type
101   ///   }
102   /// }
103   /// @endcode
104   ///
105   /// \returns A proxy pointer to the same type, but with the specified
106   /// static type (@p U). If the dynamic type is not the specified static type
107   /// or a derived class thereof, a NULL canonical type.
108   template<typename U> CanProxy<U> getAs() const;
109 
110   template<typename U> CanProxy<U> castAs() const;
111 
112   /// \brief Overloaded arrow operator that produces a canonical type
113   /// proxy.
114   CanProxy<T> operator->() const;
115 
116   /// \brief Retrieve all qualifiers.
getQualifiers()117   Qualifiers getQualifiers() const { return Stored.getLocalQualifiers(); }
118 
119   /// \brief Retrieve the const/volatile/restrict qualifiers.
getCVRQualifiers()120   unsigned getCVRQualifiers() const { return Stored.getLocalCVRQualifiers(); }
121 
122   /// \brief Determines whether this type has any qualifiers
hasQualifiers()123   bool hasQualifiers() const { return Stored.hasLocalQualifiers(); }
124 
isConstQualified()125   bool isConstQualified() const {
126     return Stored.isLocalConstQualified();
127   }
isVolatileQualified()128   bool isVolatileQualified() const {
129     return Stored.isLocalVolatileQualified();
130   }
isRestrictQualified()131   bool isRestrictQualified() const {
132     return Stored.isLocalRestrictQualified();
133   }
134 
135   /// \brief Determines if this canonical type is furthermore
136   /// canonical as a parameter.  The parameter-canonicalization
137   /// process decays arrays to pointers and drops top-level qualifiers.
isCanonicalAsParam()138   bool isCanonicalAsParam() const {
139     return Stored.isCanonicalAsParam();
140   }
141 
142   /// \brief Retrieve the unqualified form of this type.
143   CanQual<T> getUnqualifiedType() const;
144 
145   /// \brief Retrieves a version of this type with const applied.
146   /// Note that this does not always yield a canonical type.
withConst()147   QualType withConst() const {
148     return Stored.withConst();
149   }
150 
151   /// \brief Determines whether this canonical type is more qualified than
152   /// the @p Other canonical type.
isMoreQualifiedThan(CanQual<T> Other)153   bool isMoreQualifiedThan(CanQual<T> Other) const {
154     return Stored.isMoreQualifiedThan(Other.Stored);
155   }
156 
157   /// \brief Determines whether this canonical type is at least as qualified as
158   /// the @p Other canonical type.
isAtLeastAsQualifiedAs(CanQual<T> Other)159   bool isAtLeastAsQualifiedAs(CanQual<T> Other) const {
160     return Stored.isAtLeastAsQualifiedAs(Other.Stored);
161   }
162 
163   /// \brief If the canonical type is a reference type, returns the type that
164   /// it refers to; otherwise, returns the type itself.
165   CanQual<Type> getNonReferenceType() const;
166 
167   /// \brief Retrieve the internal representation of this canonical type.
getAsOpaquePtr()168   void *getAsOpaquePtr() const { return Stored.getAsOpaquePtr(); }
169 
170   /// \brief Construct a canonical type from its internal representation.
171   static CanQual<T> getFromOpaquePtr(void *Ptr);
172 
173   /// \brief Builds a canonical type from a QualType.
174   ///
175   /// This routine is inherently unsafe, because it requires the user to
176   /// ensure that the given type is a canonical type with the correct
177   // (dynamic) type.
178   static CanQual<T> CreateUnsafe(QualType Other);
179 
dump()180   void dump() const { Stored.dump(); }
181 
Profile(llvm::FoldingSetNodeID & ID)182   void Profile(llvm::FoldingSetNodeID &ID) const {
183     ID.AddPointer(getAsOpaquePtr());
184   }
185 };
186 
187 template<typename T, typename U>
188 inline bool operator==(CanQual<T> x, CanQual<U> y) {
189   return x.getAsOpaquePtr() == y.getAsOpaquePtr();
190 }
191 
192 template<typename T, typename U>
193 inline bool operator!=(CanQual<T> x, CanQual<U> y) {
194   return x.getAsOpaquePtr() != y.getAsOpaquePtr();
195 }
196 
197 /// \brief Represents a canonical, potentially-qualified type.
198 typedef CanQual<Type> CanQualType;
199 
getCanonicalTypeUnqualified()200 inline CanQualType Type::getCanonicalTypeUnqualified() const {
201   return CanQualType::CreateUnsafe(getCanonicalTypeInternal());
202 }
203 
204 inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
205                                            CanQualType T) {
206   DB << static_cast<QualType>(T);
207   return DB;
208 }
209 
210 //----------------------------------------------------------------------------//
211 // Internal proxy classes used by canonical types
212 //----------------------------------------------------------------------------//
213 
214 #define LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(Accessor)                    \
215 CanQualType Accessor() const {                                           \
216 return CanQualType::CreateUnsafe(this->getTypePtr()->Accessor());      \
217 }
218 
219 #define LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type, Accessor)             \
220 Type Accessor() const { return this->getTypePtr()->Accessor(); }
221 
222 /// \brief Base class of all canonical proxy types, which is responsible for
223 /// storing the underlying canonical type and providing basic conversions.
224 template<typename T>
225 class CanProxyBase {
226 protected:
227   CanQual<T> Stored;
228 
229 public:
230   /// \brief Retrieve the pointer to the underlying Type
getTypePtr()231   const T *getTypePtr() const { return Stored.getTypePtr(); }
232 
233   /// \brief Implicit conversion to the underlying pointer.
234   ///
235   /// Also provides the ability to use canonical type proxies in a Boolean
236   // context,e.g.,
237   /// @code
238   ///   if (CanQual<PointerType> Ptr = T->getAs<PointerType>()) { ... }
239   /// @endcode
240   operator const T*() const { return this->Stored.getTypePtrOrNull(); }
241 
242   /// \brief Try to convert the given canonical type to a specific structural
243   /// type.
getAs()244   template<typename U> CanProxy<U> getAs() const {
245     return this->Stored.template getAs<U>();
246   }
247 
248   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Type::TypeClass, getTypeClass)
249 
250   // Type predicates
251   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjectType)
252   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteType)
253   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIncompleteOrObjectType)
254   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariablyModifiedType)
255   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegerType)
256   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isEnumeralType)
257   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBooleanType)
258   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isCharType)
259   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isWideCharType)
260   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralType)
261   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isIntegralOrEnumerationType)
262   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealFloatingType)
263   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexType)
264   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyComplexType)
265   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFloatingType)
266   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isRealType)
267   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArithmeticType)
268   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidType)
269   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDerivedType)
270   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isScalarType)
271   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAggregateType)
272   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isAnyPointerType)
273   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVoidPointerType)
274   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isFunctionPointerType)
275   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isMemberFunctionPointerType)
276   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isClassType)
277   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureType)
278   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isInterfaceType)
279   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isStructureOrClassType)
280   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnionType)
281   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isComplexIntegerType)
282   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isNullPtrType)
283   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isDependentType)
284   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isOverloadableType)
285   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isArrayType)
286   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasPointerRepresentation)
287   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasObjCPointerRepresentation)
288   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasIntegerRepresentation)
289   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasSignedIntegerRepresentation)
290   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasUnsignedIntegerRepresentation)
291   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasFloatingRepresentation)
292   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isPromotableIntegerType)
293   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerType)
294   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerType)
295   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSignedIntegerOrEnumerationType)
296   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isUnsignedIntegerOrEnumerationType)
297   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isConstantSizeType)
298   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isSpecifierType)
299   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(CXXRecordDecl*, getAsCXXRecordDecl)
300 
301   /// \brief Retrieve the proxy-adaptor type.
302   ///
303   /// This arrow operator is used when CanProxyAdaptor has been specialized
304   /// for the given type T. In that case, we reference members of the
305   /// CanProxyAdaptor specialization. Otherwise, this operator will be hidden
306   /// by the arrow operator in the primary CanProxyAdaptor template.
307   const CanProxyAdaptor<T> *operator->() const {
308     return static_cast<const CanProxyAdaptor<T> *>(this);
309   }
310 };
311 
312 /// \brief Replacable canonical proxy adaptor class that provides the link
313 /// between a canonical type and the accessors of the type.
314 ///
315 /// The CanProxyAdaptor is a replaceable class template that is instantiated
316 /// as part of each canonical proxy type. The primary template merely provides
317 /// redirection to the underlying type (T), e.g., @c PointerType. One can
318 /// provide specializations of this class template for each underlying type
319 /// that provide accessors returning canonical types (@c CanQualType) rather
320 /// than the more typical @c QualType, to propagate the notion of "canonical"
321 /// through the system.
322 template<typename T>
323 struct CanProxyAdaptor : CanProxyBase<T> { };
324 
325 /// \brief Canonical proxy type returned when retrieving the members of a
326 /// canonical type or as the result of the @c CanQual<T>::getAs member
327 /// function.
328 ///
329 /// The CanProxy type mainly exists as a proxy through which operator-> will
330 /// look to either map down to a raw T* (e.g., PointerType*) or to a proxy
331 /// type that provides canonical-type access to the fields of the type.
332 template<typename T>
333 class CanProxy : public CanProxyAdaptor<T> {
334 public:
335   /// \brief Build a NULL proxy.
CanProxy()336   CanProxy() { }
337 
338   /// \brief Build a proxy to the given canonical type.
CanProxy(CanQual<T> Stored)339   CanProxy(CanQual<T> Stored) { this->Stored = Stored; }
340 
341   /// \brief Implicit conversion to the stored canonical type.
342   operator CanQual<T>() const { return this->Stored; }
343 };
344 
345 } // end namespace clang
346 
347 namespace llvm {
348 
349 /// Implement simplify_type for CanQual<T>, so that we can dyn_cast from
350 /// CanQual<T> to a specific Type class. We're prefer isa/dyn_cast/cast/etc.
351 /// to return smart pointer (proxies?).
352 template<typename T>
353 struct simplify_type< ::clang::CanQual<T> > {
354   typedef const T *SimpleType;
355   static SimpleType getSimplifiedValue(::clang::CanQual<T> Val) {
356     return Val.getTypePtr();
357   }
358 };
359 
360 // Teach SmallPtrSet that CanQual<T> is "basically a pointer".
361 template<typename T>
362 class PointerLikeTypeTraits<clang::CanQual<T> > {
363 public:
364   static inline void *getAsVoidPointer(clang::CanQual<T> P) {
365     return P.getAsOpaquePtr();
366   }
367   static inline clang::CanQual<T> getFromVoidPointer(void *P) {
368     return clang::CanQual<T>::getFromOpaquePtr(P);
369   }
370   // qualifier information is encoded in the low bits.
371   enum { NumLowBitsAvailable = 0 };
372 };
373 
374 } // end namespace llvm
375 
376 namespace clang {
377 
378 //----------------------------------------------------------------------------//
379 // Canonical proxy adaptors for canonical type nodes.
380 //----------------------------------------------------------------------------//
381 
382 /// \brief Iterator adaptor that turns an iterator over canonical QualTypes
383 /// into an iterator over CanQualTypes.
384 template <typename InputIterator>
385 struct CanTypeIterator
386     : llvm::iterator_adaptor_base<
387           CanTypeIterator<InputIterator>, InputIterator,
388           typename std::iterator_traits<InputIterator>::iterator_category,
389           CanQualType,
390           typename std::iterator_traits<InputIterator>::difference_type,
391           CanProxy<Type>, CanQualType> {
392   CanTypeIterator() {}
393   explicit CanTypeIterator(InputIterator Iter)
394       : CanTypeIterator::iterator_adaptor_base(std::move(Iter)) {}
395 
396   CanQualType operator*() const { return CanQualType::CreateUnsafe(*this->I); }
397   CanProxy<Type> operator->() const;
398 };
399 
400 template<>
401 struct CanProxyAdaptor<ComplexType> : public CanProxyBase<ComplexType> {
402   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
403 };
404 
405 template<>
406 struct CanProxyAdaptor<PointerType> : public CanProxyBase<PointerType> {
407   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
408 };
409 
410 template<>
411 struct CanProxyAdaptor<BlockPointerType>
412   : public CanProxyBase<BlockPointerType> {
413   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
414 };
415 
416 template<>
417 struct CanProxyAdaptor<ReferenceType> : public CanProxyBase<ReferenceType> {
418   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
419 };
420 
421 template<>
422 struct CanProxyAdaptor<LValueReferenceType>
423   : public CanProxyBase<LValueReferenceType> {
424   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
425 };
426 
427 template<>
428 struct CanProxyAdaptor<RValueReferenceType>
429   : public CanProxyBase<RValueReferenceType> {
430   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
431 };
432 
433 template<>
434 struct CanProxyAdaptor<MemberPointerType>
435   : public CanProxyBase<MemberPointerType> {
436   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
437   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Type *, getClass)
438 };
439 
440 // CanProxyAdaptors for arrays are intentionally unimplemented because
441 // they are not safe.
442 template<> struct CanProxyAdaptor<ArrayType>;
443 template<> struct CanProxyAdaptor<ConstantArrayType>;
444 template<> struct CanProxyAdaptor<IncompleteArrayType>;
445 template<> struct CanProxyAdaptor<VariableArrayType>;
446 template<> struct CanProxyAdaptor<DependentSizedArrayType>;
447 
448 template<>
449 struct CanProxyAdaptor<DependentSizedExtVectorType>
450   : public CanProxyBase<DependentSizedExtVectorType> {
451   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
452   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const Expr *, getSizeExpr)
453   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(SourceLocation, getAttributeLoc)
454 };
455 
456 template<>
457 struct CanProxyAdaptor<VectorType> : public CanProxyBase<VectorType> {
458   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
459   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
460 };
461 
462 template<>
463 struct CanProxyAdaptor<ExtVectorType> : public CanProxyBase<ExtVectorType> {
464   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getElementType)
465   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumElements)
466 };
467 
468 template<>
469 struct CanProxyAdaptor<FunctionType> : public CanProxyBase<FunctionType> {
470   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
471   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
472 };
473 
474 template<>
475 struct CanProxyAdaptor<FunctionNoProtoType>
476   : public CanProxyBase<FunctionNoProtoType> {
477   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
478   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
479 };
480 
481 template<>
482 struct CanProxyAdaptor<FunctionProtoType>
483   : public CanProxyBase<FunctionProtoType> {
484   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getReturnType)
485   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(FunctionType::ExtInfo, getExtInfo)
486   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumParams)
487   CanQualType getParamType(unsigned i) const {
488     return CanQualType::CreateUnsafe(this->getTypePtr()->getParamType(i));
489   }
490 
491   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isVariadic)
492   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getTypeQuals)
493 
494   typedef CanTypeIterator<FunctionProtoType::param_type_iterator>
495   param_type_iterator;
496 
497   param_type_iterator param_type_begin() const {
498     return param_type_iterator(this->getTypePtr()->param_type_begin());
499   }
500 
501   param_type_iterator param_type_end() const {
502     return param_type_iterator(this->getTypePtr()->param_type_end());
503   }
504 
505   // Note: canonical function types never have exception specifications
506 };
507 
508 template<>
509 struct CanProxyAdaptor<TypeOfType> : public CanProxyBase<TypeOfType> {
510   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
511 };
512 
513 template<>
514 struct CanProxyAdaptor<DecltypeType> : public CanProxyBase<DecltypeType> {
515   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(Expr *, getUnderlyingExpr)
516   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
517 };
518 
519 template <>
520 struct CanProxyAdaptor<UnaryTransformType>
521     : public CanProxyBase<UnaryTransformType> {
522   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
523   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getUnderlyingType)
524   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(UnaryTransformType::UTTKind, getUTTKind)
525 };
526 
527 template<>
528 struct CanProxyAdaptor<TagType> : public CanProxyBase<TagType> {
529   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TagDecl *, getDecl)
530   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
531 };
532 
533 template<>
534 struct CanProxyAdaptor<RecordType> : public CanProxyBase<RecordType> {
535   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(RecordDecl *, getDecl)
536   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
537   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, hasConstFields)
538 };
539 
540 template<>
541 struct CanProxyAdaptor<EnumType> : public CanProxyBase<EnumType> {
542   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(EnumDecl *, getDecl)
543   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isBeingDefined)
544 };
545 
546 template<>
547 struct CanProxyAdaptor<TemplateTypeParmType>
548   : public CanProxyBase<TemplateTypeParmType> {
549   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getDepth)
550   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getIndex)
551   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isParameterPack)
552   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(TemplateTypeParmDecl *, getDecl)
553   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(IdentifierInfo *, getIdentifier)
554 };
555 
556 template<>
557 struct CanProxyAdaptor<ObjCObjectType>
558   : public CanProxyBase<ObjCObjectType> {
559   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getBaseType)
560   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceDecl *,
561                                       getInterface)
562   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedId)
563   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCUnqualifiedClass)
564   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedId)
565   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClass)
566 
567   typedef ObjCObjectPointerType::qual_iterator qual_iterator;
568   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
569   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
570   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
571   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
572 };
573 
574 template<>
575 struct CanProxyAdaptor<ObjCObjectPointerType>
576   : public CanProxyBase<ObjCObjectPointerType> {
577   LLVM_CLANG_CANPROXY_TYPE_ACCESSOR(getPointeeType)
578   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(const ObjCInterfaceType *,
579                                       getInterfaceType)
580   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCIdType)
581   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCClassType)
582   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedIdType)
583   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, isObjCQualifiedClassType)
584 
585   typedef ObjCObjectPointerType::qual_iterator qual_iterator;
586   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_begin)
587   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(qual_iterator, qual_end)
588   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(bool, qual_empty)
589   LLVM_CLANG_CANPROXY_SIMPLE_ACCESSOR(unsigned, getNumProtocols)
590 };
591 
592 //----------------------------------------------------------------------------//
593 // Method and function definitions
594 //----------------------------------------------------------------------------//
595 template<typename T>
596 inline CanQual<T> CanQual<T>::getUnqualifiedType() const {
597   return CanQual<T>::CreateUnsafe(Stored.getLocalUnqualifiedType());
598 }
599 
600 template<typename T>
601 inline CanQual<Type> CanQual<T>::getNonReferenceType() const {
602   if (CanQual<ReferenceType> RefType = getAs<ReferenceType>())
603     return RefType->getPointeeType();
604   else
605     return *this;
606 }
607 
608 template<typename T>
609 CanQual<T> CanQual<T>::getFromOpaquePtr(void *Ptr) {
610   CanQual<T> Result;
611   Result.Stored = QualType::getFromOpaquePtr(Ptr);
612   assert((!Result || Result.Stored.getAsOpaquePtr() == (void*)-1 ||
613           Result.Stored.isCanonical()) && "Type is not canonical!");
614   return Result;
615 }
616 
617 template<typename T>
618 CanQual<T> CanQual<T>::CreateUnsafe(QualType Other) {
619   assert((Other.isNull() || Other.isCanonical()) && "Type is not canonical!");
620   assert((Other.isNull() || isa<T>(Other.getTypePtr())) &&
621          "Dynamic type does not meet the static type's requires");
622   CanQual<T> Result;
623   Result.Stored = Other;
624   return Result;
625 }
626 
627 template<typename T>
628 template<typename U>
629 CanProxy<U> CanQual<T>::getAs() const {
630   ArrayType_cannot_be_used_with_getAs<U> at;
631   (void)at;
632 
633   if (Stored.isNull())
634     return CanProxy<U>();
635 
636   if (isa<U>(Stored.getTypePtr()))
637     return CanQual<U>::CreateUnsafe(Stored);
638 
639   return CanProxy<U>();
640 }
641 
642 template<typename T>
643 template<typename U>
644 CanProxy<U> CanQual<T>::castAs() const {
645   ArrayType_cannot_be_used_with_getAs<U> at;
646   (void)at;
647 
648   assert(!Stored.isNull() && isa<U>(Stored.getTypePtr()));
649   return CanQual<U>::CreateUnsafe(Stored);
650 }
651 
652 template<typename T>
653 CanProxy<T> CanQual<T>::operator->() const {
654   return CanProxy<T>(*this);
655 }
656 
657 template <typename InputIterator>
658 CanProxy<Type> CanTypeIterator<InputIterator>::operator->() const {
659   return CanProxy<Type>(*this);
660 }
661 
662 }
663 
664 
665 #endif
666