1 //===------ MemoryBuiltins.cpp - Identify calls to memory builtins --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/Metadata.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "memory-builtins"
33 
34 enum AllocType : uint8_t {
35   OpNewLike          = 1<<0, // allocates; never returns null
36   MallocLike         = 1<<1 | OpNewLike, // allocates; may return null
37   CallocLike         = 1<<2, // allocates + bzero
38   ReallocLike        = 1<<3, // reallocates
39   StrDupLike         = 1<<4,
40   AllocLike          = MallocLike | CallocLike | StrDupLike,
41   AnyAlloc           = AllocLike | ReallocLike
42 };
43 
44 struct AllocFnsTy {
45   LibFunc::Func Func;
46   AllocType AllocTy;
47   unsigned char NumParams;
48   // First and Second size parameters (or -1 if unused)
49   signed char FstParam, SndParam;
50 };
51 
52 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
53 // know which functions are nounwind, noalias, nocapture parameters, etc.
54 static const AllocFnsTy AllocationFnData[] = {
55   {LibFunc::malloc,              MallocLike,  1, 0,  -1},
56   {LibFunc::valloc,              MallocLike,  1, 0,  -1},
57   {LibFunc::Znwj,                OpNewLike,   1, 0,  -1}, // new(unsigned int)
58   {LibFunc::ZnwjRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new(unsigned int, nothrow)
59   {LibFunc::Znwm,                OpNewLike,   1, 0,  -1}, // new(unsigned long)
60   {LibFunc::ZnwmRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new(unsigned long, nothrow)
61   {LibFunc::Znaj,                OpNewLike,   1, 0,  -1}, // new[](unsigned int)
62   {LibFunc::ZnajRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new[](unsigned int, nothrow)
63   {LibFunc::Znam,                OpNewLike,   1, 0,  -1}, // new[](unsigned long)
64   {LibFunc::ZnamRKSt9nothrow_t,  MallocLike,  2, 0,  -1}, // new[](unsigned long, nothrow)
65   {LibFunc::msvc_new_int,         OpNewLike,   1, 0,  -1}, // new(unsigned int)
66   {LibFunc::msvc_new_int_nothrow, MallocLike,  2, 0,  -1}, // new(unsigned int, nothrow)
67   {LibFunc::msvc_new_longlong,         OpNewLike,   1, 0,  -1}, // new(unsigned long long)
68   {LibFunc::msvc_new_longlong_nothrow, MallocLike,  2, 0,  -1}, // new(unsigned long long, nothrow)
69   {LibFunc::msvc_new_array_int,         OpNewLike,   1, 0,  -1}, // new[](unsigned int)
70   {LibFunc::msvc_new_array_int_nothrow, MallocLike,  2, 0,  -1}, // new[](unsigned int, nothrow)
71   {LibFunc::msvc_new_array_longlong,         OpNewLike,   1, 0,  -1}, // new[](unsigned long long)
72   {LibFunc::msvc_new_array_longlong_nothrow, MallocLike,  2, 0,  -1}, // new[](unsigned long long, nothrow)
73   {LibFunc::calloc,              CallocLike,  2, 0,   1},
74   {LibFunc::realloc,             ReallocLike, 2, 1,  -1},
75   {LibFunc::reallocf,            ReallocLike, 2, 1,  -1},
76   {LibFunc::strdup,              StrDupLike,  1, -1, -1},
77   {LibFunc::strndup,             StrDupLike,  2, 1,  -1}
78   // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
79 };
80 
81 
getCalledFunction(const Value * V,bool LookThroughBitCast)82 static Function *getCalledFunction(const Value *V, bool LookThroughBitCast) {
83   if (LookThroughBitCast)
84     V = V->stripPointerCasts();
85 
86   CallSite CS(const_cast<Value*>(V));
87   if (!CS.getInstruction())
88     return nullptr;
89 
90   if (CS.isNoBuiltin())
91     return nullptr;
92 
93   Function *Callee = CS.getCalledFunction();
94   if (!Callee || !Callee->isDeclaration())
95     return nullptr;
96   return Callee;
97 }
98 
99 /// \brief Returns the allocation data for the given value if it is a call to a
100 /// known allocation function, and NULL otherwise.
getAllocationData(const Value * V,AllocType AllocTy,const TargetLibraryInfo * TLI,bool LookThroughBitCast=false)101 static const AllocFnsTy *getAllocationData(const Value *V, AllocType AllocTy,
102                                            const TargetLibraryInfo *TLI,
103                                            bool LookThroughBitCast = false) {
104   // Skip intrinsics
105   if (isa<IntrinsicInst>(V))
106     return nullptr;
107 
108   Function *Callee = getCalledFunction(V, LookThroughBitCast);
109   if (!Callee)
110     return nullptr;
111 
112   // Make sure that the function is available.
113   StringRef FnName = Callee->getName();
114   LibFunc::Func TLIFn;
115   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
116     return nullptr;
117 
118   const AllocFnsTy *FnData =
119       std::find_if(std::begin(AllocationFnData), std::end(AllocationFnData),
120                    [TLIFn](const AllocFnsTy &Fn) { return Fn.Func == TLIFn; });
121 
122   if (FnData == std::end(AllocationFnData))
123     return nullptr;
124 
125   if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
126     return nullptr;
127 
128   // Check function prototype.
129   int FstParam = FnData->FstParam;
130   int SndParam = FnData->SndParam;
131   FunctionType *FTy = Callee->getFunctionType();
132 
133   if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
134       FTy->getNumParams() == FnData->NumParams &&
135       (FstParam < 0 ||
136        (FTy->getParamType(FstParam)->isIntegerTy(32) ||
137         FTy->getParamType(FstParam)->isIntegerTy(64))) &&
138       (SndParam < 0 ||
139        FTy->getParamType(SndParam)->isIntegerTy(32) ||
140        FTy->getParamType(SndParam)->isIntegerTy(64)))
141     return FnData;
142   return nullptr;
143 }
144 
hasNoAliasAttr(const Value * V,bool LookThroughBitCast)145 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
146   ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
147   return CS && CS.hasFnAttr(Attribute::NoAlias);
148 }
149 
150 
151 /// \brief Tests if a value is a call or invoke to a library function that
152 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
153 /// like).
isAllocationFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)154 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
155                           bool LookThroughBitCast) {
156   return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast);
157 }
158 
159 /// \brief Tests if a value is a call or invoke to a function that returns a
160 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
isNoAliasFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)161 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
162                        bool LookThroughBitCast) {
163   // it's safe to consider realloc as noalias since accessing the original
164   // pointer is undefined behavior
165   return isAllocationFn(V, TLI, LookThroughBitCast) ||
166          hasNoAliasAttr(V, LookThroughBitCast);
167 }
168 
169 /// \brief Tests if a value is a call or invoke to a library function that
170 /// allocates uninitialized memory (such as malloc).
isMallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)171 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
172                           bool LookThroughBitCast) {
173   return getAllocationData(V, MallocLike, TLI, LookThroughBitCast);
174 }
175 
176 /// \brief Tests if a value is a call or invoke to a library function that
177 /// allocates zero-filled memory (such as calloc).
isCallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)178 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
179                           bool LookThroughBitCast) {
180   return getAllocationData(V, CallocLike, TLI, LookThroughBitCast);
181 }
182 
183 /// \brief Tests if a value is a call or invoke to a library function that
184 /// allocates memory (either malloc, calloc, or strdup like).
isAllocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)185 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
186                          bool LookThroughBitCast) {
187   return getAllocationData(V, AllocLike, TLI, LookThroughBitCast);
188 }
189 
190 /// \brief Tests if a value is a call or invoke to a library function that
191 /// reallocates memory (such as realloc).
isReallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)192 bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
193                            bool LookThroughBitCast) {
194   return getAllocationData(V, ReallocLike, TLI, LookThroughBitCast);
195 }
196 
197 /// \brief Tests if a value is a call or invoke to a library function that
198 /// allocates memory and never returns null (such as operator new).
isOperatorNewLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)199 bool llvm::isOperatorNewLikeFn(const Value *V, const TargetLibraryInfo *TLI,
200                                bool LookThroughBitCast) {
201   return getAllocationData(V, OpNewLike, TLI, LookThroughBitCast);
202 }
203 
204 /// extractMallocCall - Returns the corresponding CallInst if the instruction
205 /// is a malloc call.  Since CallInst::CreateMalloc() only creates calls, we
206 /// ignore InvokeInst here.
extractMallocCall(const Value * I,const TargetLibraryInfo * TLI)207 const CallInst *llvm::extractMallocCall(const Value *I,
208                                         const TargetLibraryInfo *TLI) {
209   return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
210 }
211 
computeArraySize(const CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt=false)212 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
213                                const TargetLibraryInfo *TLI,
214                                bool LookThroughSExt = false) {
215   if (!CI)
216     return nullptr;
217 
218   // The size of the malloc's result type must be known to determine array size.
219   Type *T = getMallocAllocatedType(CI, TLI);
220   if (!T || !T->isSized())
221     return nullptr;
222 
223   unsigned ElementSize = DL.getTypeAllocSize(T);
224   if (StructType *ST = dyn_cast<StructType>(T))
225     ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
226 
227   // If malloc call's arg can be determined to be a multiple of ElementSize,
228   // return the multiple.  Otherwise, return NULL.
229   Value *MallocArg = CI->getArgOperand(0);
230   Value *Multiple = nullptr;
231   if (ComputeMultiple(MallocArg, ElementSize, Multiple,
232                       LookThroughSExt))
233     return Multiple;
234 
235   return nullptr;
236 }
237 
238 /// getMallocType - Returns the PointerType resulting from the malloc call.
239 /// The PointerType depends on the number of bitcast uses of the malloc call:
240 ///   0: PointerType is the calls' return type.
241 ///   1: PointerType is the bitcast's result type.
242 ///  >1: Unique PointerType cannot be determined, return NULL.
getMallocType(const CallInst * CI,const TargetLibraryInfo * TLI)243 PointerType *llvm::getMallocType(const CallInst *CI,
244                                  const TargetLibraryInfo *TLI) {
245   assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
246 
247   PointerType *MallocType = nullptr;
248   unsigned NumOfBitCastUses = 0;
249 
250   // Determine if CallInst has a bitcast use.
251   for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
252        UI != E;)
253     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
254       MallocType = cast<PointerType>(BCI->getDestTy());
255       NumOfBitCastUses++;
256     }
257 
258   // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
259   if (NumOfBitCastUses == 1)
260     return MallocType;
261 
262   // Malloc call was not bitcast, so type is the malloc function's return type.
263   if (NumOfBitCastUses == 0)
264     return cast<PointerType>(CI->getType());
265 
266   // Type could not be determined.
267   return nullptr;
268 }
269 
270 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
271 /// The Type depends on the number of bitcast uses of the malloc call:
272 ///   0: PointerType is the malloc calls' return type.
273 ///   1: PointerType is the bitcast's result type.
274 ///  >1: Unique PointerType cannot be determined, return NULL.
getMallocAllocatedType(const CallInst * CI,const TargetLibraryInfo * TLI)275 Type *llvm::getMallocAllocatedType(const CallInst *CI,
276                                    const TargetLibraryInfo *TLI) {
277   PointerType *PT = getMallocType(CI, TLI);
278   return PT ? PT->getElementType() : nullptr;
279 }
280 
281 /// getMallocArraySize - Returns the array size of a malloc call.  If the
282 /// argument passed to malloc is a multiple of the size of the malloced type,
283 /// then return that multiple.  For non-array mallocs, the multiple is
284 /// constant 1.  Otherwise, return NULL for mallocs whose array size cannot be
285 /// determined.
getMallocArraySize(CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt)286 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
287                                 const TargetLibraryInfo *TLI,
288                                 bool LookThroughSExt) {
289   assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
290   return computeArraySize(CI, DL, TLI, LookThroughSExt);
291 }
292 
293 
294 /// extractCallocCall - Returns the corresponding CallInst if the instruction
295 /// is a calloc call.
extractCallocCall(const Value * I,const TargetLibraryInfo * TLI)296 const CallInst *llvm::extractCallocCall(const Value *I,
297                                         const TargetLibraryInfo *TLI) {
298   return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
299 }
300 
301 
302 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
isFreeCall(const Value * I,const TargetLibraryInfo * TLI)303 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
304   const CallInst *CI = dyn_cast<CallInst>(I);
305   if (!CI || isa<IntrinsicInst>(CI))
306     return nullptr;
307   Function *Callee = CI->getCalledFunction();
308   if (Callee == nullptr)
309     return nullptr;
310 
311   StringRef FnName = Callee->getName();
312   LibFunc::Func TLIFn;
313   if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
314     return nullptr;
315 
316   unsigned ExpectedNumParams;
317   if (TLIFn == LibFunc::free ||
318       TLIFn == LibFunc::ZdlPv || // operator delete(void*)
319       TLIFn == LibFunc::ZdaPv || // operator delete[](void*)
320       TLIFn == LibFunc::msvc_delete_ptr32 || // operator delete(void*)
321       TLIFn == LibFunc::msvc_delete_ptr64 || // operator delete(void*)
322       TLIFn == LibFunc::msvc_delete_array_ptr32 || // operator delete[](void*)
323       TLIFn == LibFunc::msvc_delete_array_ptr64)   // operator delete[](void*)
324     ExpectedNumParams = 1;
325   else if (TLIFn == LibFunc::ZdlPvj ||              // delete(void*, uint)
326            TLIFn == LibFunc::ZdlPvm ||              // delete(void*, ulong)
327            TLIFn == LibFunc::ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
328            TLIFn == LibFunc::ZdaPvj ||              // delete[](void*, uint)
329            TLIFn == LibFunc::ZdaPvm ||              // delete[](void*, ulong)
330            TLIFn == LibFunc::ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
331            TLIFn == LibFunc::msvc_delete_ptr32_int ||      // delete(void*, uint)
332            TLIFn == LibFunc::msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
333            TLIFn == LibFunc::msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
334            TLIFn == LibFunc::msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
335            TLIFn == LibFunc::msvc_delete_array_ptr32_int ||      // delete[](void*, uint)
336            TLIFn == LibFunc::msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
337            TLIFn == LibFunc::msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
338            TLIFn == LibFunc::msvc_delete_array_ptr64_nothrow)   // delete[](void*, nothrow)
339     ExpectedNumParams = 2;
340   else
341     return nullptr;
342 
343   // Check free prototype.
344   // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
345   // attribute will exist.
346   FunctionType *FTy = Callee->getFunctionType();
347   if (!FTy->getReturnType()->isVoidTy())
348     return nullptr;
349   if (FTy->getNumParams() != ExpectedNumParams)
350     return nullptr;
351   if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
352     return nullptr;
353 
354   return CI;
355 }
356 
357 
358 
359 //===----------------------------------------------------------------------===//
360 //  Utility functions to compute size of objects.
361 //
362 
363 
364 /// \brief Compute the size of the object pointed by Ptr. Returns true and the
365 /// object size in Size if successful, and false otherwise.
366 /// If RoundToAlign is true, then Size is rounded up to the aligment of allocas,
367 /// byval arguments, and global variables.
getObjectSize(const Value * Ptr,uint64_t & Size,const DataLayout & DL,const TargetLibraryInfo * TLI,bool RoundToAlign)368 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
369                          const TargetLibraryInfo *TLI, bool RoundToAlign) {
370   ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), RoundToAlign);
371   SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
372   if (!Visitor.bothKnown(Data))
373     return false;
374 
375   APInt ObjSize = Data.first, Offset = Data.second;
376   // check for overflow
377   if (Offset.slt(0) || ObjSize.ult(Offset))
378     Size = 0;
379   else
380     Size = (ObjSize - Offset).getZExtValue();
381   return true;
382 }
383 
384 
385 STATISTIC(ObjectVisitorArgument,
386           "Number of arguments with unsolved size and offset");
387 STATISTIC(ObjectVisitorLoad,
388           "Number of load instructions with unsolved size and offset");
389 
390 
align(APInt Size,uint64_t Align)391 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
392   if (RoundToAlign && Align)
393     return APInt(IntTyBits, RoundUpToAlignment(Size.getZExtValue(), Align));
394   return Size;
395 }
396 
ObjectSizeOffsetVisitor(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,bool RoundToAlign)397 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
398                                                  const TargetLibraryInfo *TLI,
399                                                  LLVMContext &Context,
400                                                  bool RoundToAlign)
401     : DL(DL), TLI(TLI), RoundToAlign(RoundToAlign) {
402   // Pointer size must be rechecked for each object visited since it could have
403   // a different address space.
404 }
405 
compute(Value * V)406 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
407   IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
408   Zero = APInt::getNullValue(IntTyBits);
409 
410   V = V->stripPointerCasts();
411   if (Instruction *I = dyn_cast<Instruction>(V)) {
412     // If we have already seen this instruction, bail out. Cycles can happen in
413     // unreachable code after constant propagation.
414     if (!SeenInsts.insert(I).second)
415       return unknown();
416 
417     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
418       return visitGEPOperator(*GEP);
419     return visit(*I);
420   }
421   if (Argument *A = dyn_cast<Argument>(V))
422     return visitArgument(*A);
423   if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
424     return visitConstantPointerNull(*P);
425   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
426     return visitGlobalAlias(*GA);
427   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
428     return visitGlobalVariable(*GV);
429   if (UndefValue *UV = dyn_cast<UndefValue>(V))
430     return visitUndefValue(*UV);
431   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
432     if (CE->getOpcode() == Instruction::IntToPtr)
433       return unknown(); // clueless
434     if (CE->getOpcode() == Instruction::GetElementPtr)
435       return visitGEPOperator(cast<GEPOperator>(*CE));
436   }
437 
438   DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " << *V
439         << '\n');
440   return unknown();
441 }
442 
visitAllocaInst(AllocaInst & I)443 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
444   if (!I.getAllocatedType()->isSized())
445     return unknown();
446 
447   APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
448   if (!I.isArrayAllocation())
449     return std::make_pair(align(Size, I.getAlignment()), Zero);
450 
451   Value *ArraySize = I.getArraySize();
452   if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
453     Size *= C->getValue().zextOrSelf(IntTyBits);
454     return std::make_pair(align(Size, I.getAlignment()), Zero);
455   }
456   return unknown();
457 }
458 
visitArgument(Argument & A)459 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
460   // no interprocedural analysis is done at the moment
461   if (!A.hasByValOrInAllocaAttr()) {
462     ++ObjectVisitorArgument;
463     return unknown();
464   }
465   PointerType *PT = cast<PointerType>(A.getType());
466   APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
467   return std::make_pair(align(Size, A.getParamAlignment()), Zero);
468 }
469 
visitCallSite(CallSite CS)470 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
471   const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
472                                                TLI);
473   if (!FnData)
474     return unknown();
475 
476   // handle strdup-like functions separately
477   if (FnData->AllocTy == StrDupLike) {
478     APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
479     if (!Size)
480       return unknown();
481 
482     // strndup limits strlen
483     if (FnData->FstParam > 0) {
484       ConstantInt *Arg= dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
485       if (!Arg)
486         return unknown();
487 
488       APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
489       if (Size.ugt(MaxSize))
490         Size = MaxSize + 1;
491     }
492     return std::make_pair(Size, Zero);
493   }
494 
495   ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
496   if (!Arg)
497     return unknown();
498 
499   APInt Size = Arg->getValue().zextOrSelf(IntTyBits);
500   // size determined by just 1 parameter
501   if (FnData->SndParam < 0)
502     return std::make_pair(Size, Zero);
503 
504   Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
505   if (!Arg)
506     return unknown();
507 
508   Size *= Arg->getValue().zextOrSelf(IntTyBits);
509   return std::make_pair(Size, Zero);
510 
511   // TODO: handle more standard functions (+ wchar cousins):
512   // - strdup / strndup
513   // - strcpy / strncpy
514   // - strcat / strncat
515   // - memcpy / memmove
516   // - strcat / strncat
517   // - memset
518 }
519 
520 SizeOffsetType
visitConstantPointerNull(ConstantPointerNull &)521 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull&) {
522   return std::make_pair(Zero, Zero);
523 }
524 
525 SizeOffsetType
visitExtractElementInst(ExtractElementInst &)526 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
527   return unknown();
528 }
529 
530 SizeOffsetType
visitExtractValueInst(ExtractValueInst &)531 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
532   // Easy cases were already folded by previous passes.
533   return unknown();
534 }
535 
visitGEPOperator(GEPOperator & GEP)536 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
537   SizeOffsetType PtrData = compute(GEP.getPointerOperand());
538   APInt Offset(IntTyBits, 0);
539   if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
540     return unknown();
541 
542   return std::make_pair(PtrData.first, PtrData.second + Offset);
543 }
544 
visitGlobalAlias(GlobalAlias & GA)545 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
546   if (GA.mayBeOverridden())
547     return unknown();
548   return compute(GA.getAliasee());
549 }
550 
visitGlobalVariable(GlobalVariable & GV)551 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
552   if (!GV.hasDefinitiveInitializer())
553     return unknown();
554 
555   APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
556   return std::make_pair(align(Size, GV.getAlignment()), Zero);
557 }
558 
visitIntToPtrInst(IntToPtrInst &)559 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
560   // clueless
561   return unknown();
562 }
563 
visitLoadInst(LoadInst &)564 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
565   ++ObjectVisitorLoad;
566   return unknown();
567 }
568 
visitPHINode(PHINode &)569 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
570   // too complex to analyze statically.
571   return unknown();
572 }
573 
visitSelectInst(SelectInst & I)574 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
575   SizeOffsetType TrueSide  = compute(I.getTrueValue());
576   SizeOffsetType FalseSide = compute(I.getFalseValue());
577   if (bothKnown(TrueSide) && bothKnown(FalseSide) && TrueSide == FalseSide)
578     return TrueSide;
579   return unknown();
580 }
581 
visitUndefValue(UndefValue &)582 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
583   return std::make_pair(Zero, Zero);
584 }
585 
visitInstruction(Instruction & I)586 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
587   DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I << '\n');
588   return unknown();
589 }
590 
ObjectSizeOffsetEvaluator(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,bool RoundToAlign)591 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
592     const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
593     bool RoundToAlign)
594     : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
595       RoundToAlign(RoundToAlign) {
596   // IntTy and Zero must be set for each compute() since the address space may
597   // be different for later objects.
598 }
599 
compute(Value * V)600 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
601   // XXX - Are vectors of pointers possible here?
602   IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
603   Zero = ConstantInt::get(IntTy, 0);
604 
605   SizeOffsetEvalType Result = compute_(V);
606 
607   if (!bothKnown(Result)) {
608     // erase everything that was computed in this iteration from the cache, so
609     // that no dangling references are left behind. We could be a bit smarter if
610     // we kept a dependency graph. It's probably not worth the complexity.
611     for (PtrSetTy::iterator I=SeenVals.begin(), E=SeenVals.end(); I != E; ++I) {
612       CacheMapTy::iterator CacheIt = CacheMap.find(*I);
613       // non-computable results can be safely cached
614       if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
615         CacheMap.erase(CacheIt);
616     }
617   }
618 
619   SeenVals.clear();
620   return Result;
621 }
622 
compute_(Value * V)623 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
624   ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, RoundToAlign);
625   SizeOffsetType Const = Visitor.compute(V);
626   if (Visitor.bothKnown(Const))
627     return std::make_pair(ConstantInt::get(Context, Const.first),
628                           ConstantInt::get(Context, Const.second));
629 
630   V = V->stripPointerCasts();
631 
632   // check cache
633   CacheMapTy::iterator CacheIt = CacheMap.find(V);
634   if (CacheIt != CacheMap.end())
635     return CacheIt->second;
636 
637   // always generate code immediately before the instruction being
638   // processed, so that the generated code dominates the same BBs
639   BuilderTy::InsertPointGuard Guard(Builder);
640   if (Instruction *I = dyn_cast<Instruction>(V))
641     Builder.SetInsertPoint(I);
642 
643   // now compute the size and offset
644   SizeOffsetEvalType Result;
645 
646   // Record the pointers that were handled in this run, so that they can be
647   // cleaned later if something fails. We also use this set to break cycles that
648   // can occur in dead code.
649   if (!SeenVals.insert(V).second) {
650     Result = unknown();
651   } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
652     Result = visitGEPOperator(*GEP);
653   } else if (Instruction *I = dyn_cast<Instruction>(V)) {
654     Result = visit(*I);
655   } else if (isa<Argument>(V) ||
656              (isa<ConstantExpr>(V) &&
657               cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
658              isa<GlobalAlias>(V) ||
659              isa<GlobalVariable>(V)) {
660     // ignore values where we cannot do more than what ObjectSizeVisitor can
661     Result = unknown();
662   } else {
663     DEBUG(dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: "
664           << *V << '\n');
665     Result = unknown();
666   }
667 
668   // Don't reuse CacheIt since it may be invalid at this point.
669   CacheMap[V] = Result;
670   return Result;
671 }
672 
visitAllocaInst(AllocaInst & I)673 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
674   if (!I.getAllocatedType()->isSized())
675     return unknown();
676 
677   // must be a VLA
678   assert(I.isArrayAllocation());
679   Value *ArraySize = I.getArraySize();
680   Value *Size = ConstantInt::get(ArraySize->getType(),
681                                  DL.getTypeAllocSize(I.getAllocatedType()));
682   Size = Builder.CreateMul(Size, ArraySize);
683   return std::make_pair(Size, Zero);
684 }
685 
visitCallSite(CallSite CS)686 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
687   const AllocFnsTy *FnData = getAllocationData(CS.getInstruction(), AnyAlloc,
688                                                TLI);
689   if (!FnData)
690     return unknown();
691 
692   // handle strdup-like functions separately
693   if (FnData->AllocTy == StrDupLike) {
694     // TODO
695     return unknown();
696   }
697 
698   Value *FirstArg = CS.getArgument(FnData->FstParam);
699   FirstArg = Builder.CreateZExt(FirstArg, IntTy);
700   if (FnData->SndParam < 0)
701     return std::make_pair(FirstArg, Zero);
702 
703   Value *SecondArg = CS.getArgument(FnData->SndParam);
704   SecondArg = Builder.CreateZExt(SecondArg, IntTy);
705   Value *Size = Builder.CreateMul(FirstArg, SecondArg);
706   return std::make_pair(Size, Zero);
707 
708   // TODO: handle more standard functions (+ wchar cousins):
709   // - strdup / strndup
710   // - strcpy / strncpy
711   // - strcat / strncat
712   // - memcpy / memmove
713   // - strcat / strncat
714   // - memset
715 }
716 
717 SizeOffsetEvalType
visitExtractElementInst(ExtractElementInst &)718 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
719   return unknown();
720 }
721 
722 SizeOffsetEvalType
visitExtractValueInst(ExtractValueInst &)723 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
724   return unknown();
725 }
726 
727 SizeOffsetEvalType
visitGEPOperator(GEPOperator & GEP)728 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
729   SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
730   if (!bothKnown(PtrData))
731     return unknown();
732 
733   Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
734   Offset = Builder.CreateAdd(PtrData.second, Offset);
735   return std::make_pair(PtrData.first, Offset);
736 }
737 
visitIntToPtrInst(IntToPtrInst &)738 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
739   // clueless
740   return unknown();
741 }
742 
visitLoadInst(LoadInst &)743 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
744   return unknown();
745 }
746 
visitPHINode(PHINode & PHI)747 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
748   // create 2 PHIs: one for size and another for offset
749   PHINode *SizePHI   = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
750   PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
751 
752   // insert right away in the cache to handle recursive PHIs
753   CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
754 
755   // compute offset/size for each PHI incoming pointer
756   for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
757     Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
758     SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
759 
760     if (!bothKnown(EdgeData)) {
761       OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
762       OffsetPHI->eraseFromParent();
763       SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
764       SizePHI->eraseFromParent();
765       return unknown();
766     }
767     SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
768     OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
769   }
770 
771   Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
772   if ((Tmp = SizePHI->hasConstantValue())) {
773     Size = Tmp;
774     SizePHI->replaceAllUsesWith(Size);
775     SizePHI->eraseFromParent();
776   }
777   if ((Tmp = OffsetPHI->hasConstantValue())) {
778     Offset = Tmp;
779     OffsetPHI->replaceAllUsesWith(Offset);
780     OffsetPHI->eraseFromParent();
781   }
782   return std::make_pair(Size, Offset);
783 }
784 
visitSelectInst(SelectInst & I)785 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
786   SizeOffsetEvalType TrueSide  = compute_(I.getTrueValue());
787   SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
788 
789   if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
790     return unknown();
791   if (TrueSide == FalseSide)
792     return TrueSide;
793 
794   Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
795                                      FalseSide.first);
796   Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
797                                        FalseSide.second);
798   return std::make_pair(Size, Offset);
799 }
800 
visitInstruction(Instruction & I)801 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
802   DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I <<'\n');
803   return unknown();
804 }
805