1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/Module.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Frontend/FrontendDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include <algorithm>
35 
36 using namespace clang;
37 
getPrimaryMergedDecl(Decl * D)38 Decl *clang::getPrimaryMergedDecl(Decl *D) {
39   return D->getASTContext().getPrimaryMergedDecl(D);
40 }
41 
42 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const43 bool Decl::isOutOfLine() const {
44   return !getLexicalDeclContext()->Equals(getDeclContext());
45 }
46 
TranslationUnitDecl(ASTContext & ctx)47 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
48     : Decl(TranslationUnit, nullptr, SourceLocation()),
49       DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
50   Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
51 }
52 
53 //===----------------------------------------------------------------------===//
54 // NamedDecl Implementation
55 //===----------------------------------------------------------------------===//
56 
57 // Visibility rules aren't rigorously externally specified, but here
58 // are the basic principles behind what we implement:
59 //
60 // 1. An explicit visibility attribute is generally a direct expression
61 // of the user's intent and should be honored.  Only the innermost
62 // visibility attribute applies.  If no visibility attribute applies,
63 // global visibility settings are considered.
64 //
65 // 2. There is one caveat to the above: on or in a template pattern,
66 // an explicit visibility attribute is just a default rule, and
67 // visibility can be decreased by the visibility of template
68 // arguments.  But this, too, has an exception: an attribute on an
69 // explicit specialization or instantiation causes all the visibility
70 // restrictions of the template arguments to be ignored.
71 //
72 // 3. A variable that does not otherwise have explicit visibility can
73 // be restricted by the visibility of its type.
74 //
75 // 4. A visibility restriction is explicit if it comes from an
76 // attribute (or something like it), not a global visibility setting.
77 // When emitting a reference to an external symbol, visibility
78 // restrictions are ignored unless they are explicit.
79 //
80 // 5. When computing the visibility of a non-type, including a
81 // non-type member of a class, only non-type visibility restrictions
82 // are considered: the 'visibility' attribute, global value-visibility
83 // settings, and a few special cases like __private_extern.
84 //
85 // 6. When computing the visibility of a type, including a type member
86 // of a class, only type visibility restrictions are considered:
87 // the 'type_visibility' attribute and global type-visibility settings.
88 // However, a 'visibility' attribute counts as a 'type_visibility'
89 // attribute on any declaration that only has the former.
90 //
91 // The visibility of a "secondary" entity, like a template argument,
92 // is computed using the kind of that entity, not the kind of the
93 // primary entity for which we are computing visibility.  For example,
94 // the visibility of a specialization of either of these templates:
95 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
96 //   template <class T, bool (&compare)(T, X)> class matcher;
97 // is restricted according to the type visibility of the argument 'T',
98 // the type visibility of 'bool(&)(T,X)', and the value visibility of
99 // the argument function 'compare'.  That 'has_match' is a value
100 // and 'matcher' is a type only matters when looking for attributes
101 // and settings from the immediate context.
102 
103 const unsigned IgnoreExplicitVisibilityBit = 2;
104 const unsigned IgnoreAllVisibilityBit = 4;
105 
106 /// Kinds of LV computation.  The linkage side of the computation is
107 /// always the same, but different things can change how visibility is
108 /// computed.
109 enum LVComputationKind {
110   /// Do an LV computation for, ultimately, a type.
111   /// Visibility may be restricted by type visibility settings and
112   /// the visibility of template arguments.
113   LVForType = NamedDecl::VisibilityForType,
114 
115   /// Do an LV computation for, ultimately, a non-type declaration.
116   /// Visibility may be restricted by value visibility settings and
117   /// the visibility of template arguments.
118   LVForValue = NamedDecl::VisibilityForValue,
119 
120   /// Do an LV computation for, ultimately, a type that already has
121   /// some sort of explicit visibility.  Visibility may only be
122   /// restricted by the visibility of template arguments.
123   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
124 
125   /// Do an LV computation for, ultimately, a non-type declaration
126   /// that already has some sort of explicit visibility.  Visibility
127   /// may only be restricted by the visibility of template arguments.
128   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
129 
130   /// Do an LV computation when we only care about the linkage.
131   LVForLinkageOnly =
132       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
133 };
134 
135 /// Does this computation kind permit us to consider additional
136 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)137 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
138   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
139 }
140 
141 /// Given an LVComputationKind, return one of the same type/value sort
142 /// that records that it already has explicit visibility.
143 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)144 withExplicitVisibilityAlready(LVComputationKind oldKind) {
145   LVComputationKind newKind =
146     static_cast<LVComputationKind>(unsigned(oldKind) |
147                                    IgnoreExplicitVisibilityBit);
148   assert(oldKind != LVForType          || newKind == LVForExplicitType);
149   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
150   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
151   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
152   return newKind;
153 }
154 
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)155 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
156                                                   LVComputationKind kind) {
157   assert(!hasExplicitVisibilityAlready(kind) &&
158          "asking for explicit visibility when we shouldn't be");
159   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
160 }
161 
162 /// Is the given declaration a "type" or a "value" for the purposes of
163 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)164 static bool usesTypeVisibility(const NamedDecl *D) {
165   return isa<TypeDecl>(D) ||
166          isa<ClassTemplateDecl>(D) ||
167          isa<ObjCInterfaceDecl>(D);
168 }
169 
170 /// Does the given declaration have member specialization information,
171 /// and if so, is it an explicit specialization?
172 template <class T> static typename
173 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)174 isExplicitMemberSpecialization(const T *D) {
175   if (const MemberSpecializationInfo *member =
176         D->getMemberSpecializationInfo()) {
177     return member->isExplicitSpecialization();
178   }
179   return false;
180 }
181 
182 /// For templates, this question is easier: a member template can't be
183 /// explicitly instantiated, so there's a single bit indicating whether
184 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)185 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
186   return D->isMemberSpecialization();
187 }
188 
189 /// Given a visibility attribute, return the explicit visibility
190 /// associated with it.
191 template <class T>
getVisibilityFromAttr(const T * attr)192 static Visibility getVisibilityFromAttr(const T *attr) {
193   switch (attr->getVisibility()) {
194   case T::Default:
195     return DefaultVisibility;
196   case T::Hidden:
197     return HiddenVisibility;
198   case T::Protected:
199     return ProtectedVisibility;
200   }
201   llvm_unreachable("bad visibility kind");
202 }
203 
204 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)205 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
206                                     NamedDecl::ExplicitVisibilityKind kind) {
207   // If we're ultimately computing the visibility of a type, look for
208   // a 'type_visibility' attribute before looking for 'visibility'.
209   if (kind == NamedDecl::VisibilityForType) {
210     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
211       return getVisibilityFromAttr(A);
212     }
213   }
214 
215   // If this declaration has an explicit visibility attribute, use it.
216   if (const auto *A = D->getAttr<VisibilityAttr>()) {
217     return getVisibilityFromAttr(A);
218   }
219 
220   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
221   // implies visibility(default).
222   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
223     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
224       if (A->getPlatform()->getName().equals("macosx"))
225         return DefaultVisibility;
226   }
227 
228   return None;
229 }
230 
231 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)232 getLVForType(const Type &T, LVComputationKind computation) {
233   if (computation == LVForLinkageOnly)
234     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
235   return T.getLinkageAndVisibility();
236 }
237 
238 /// \brief Get the most restrictive linkage for the types in the given
239 /// template parameter list.  For visibility purposes, template
240 /// parameters are part of the signature of a template.
241 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)242 getLVForTemplateParameterList(const TemplateParameterList *Params,
243                               LVComputationKind computation) {
244   LinkageInfo LV;
245   for (const NamedDecl *P : *Params) {
246     // Template type parameters are the most common and never
247     // contribute to visibility, pack or not.
248     if (isa<TemplateTypeParmDecl>(P))
249       continue;
250 
251     // Non-type template parameters can be restricted by the value type, e.g.
252     //   template <enum X> class A { ... };
253     // We have to be careful here, though, because we can be dealing with
254     // dependent types.
255     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
256       // Handle the non-pack case first.
257       if (!NTTP->isExpandedParameterPack()) {
258         if (!NTTP->getType()->isDependentType()) {
259           LV.merge(getLVForType(*NTTP->getType(), computation));
260         }
261         continue;
262       }
263 
264       // Look at all the types in an expanded pack.
265       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
266         QualType type = NTTP->getExpansionType(i);
267         if (!type->isDependentType())
268           LV.merge(type->getLinkageAndVisibility());
269       }
270       continue;
271     }
272 
273     // Template template parameters can be restricted by their
274     // template parameters, recursively.
275     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
276 
277     // Handle the non-pack case first.
278     if (!TTP->isExpandedParameterPack()) {
279       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
280                                              computation));
281       continue;
282     }
283 
284     // Look at all expansions in an expanded pack.
285     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
286            i != n; ++i) {
287       LV.merge(getLVForTemplateParameterList(
288           TTP->getExpansionTemplateParameters(i), computation));
289     }
290   }
291 
292   return LV;
293 }
294 
295 /// getLVForDecl - Get the linkage and visibility for the given declaration.
296 static LinkageInfo getLVForDecl(const NamedDecl *D,
297                                 LVComputationKind computation);
298 
getOutermostFuncOrBlockContext(const Decl * D)299 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
300   const Decl *Ret = nullptr;
301   const DeclContext *DC = D->getDeclContext();
302   while (DC->getDeclKind() != Decl::TranslationUnit) {
303     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
304       Ret = cast<Decl>(DC);
305     DC = DC->getParent();
306   }
307   return Ret;
308 }
309 
310 /// \brief Get the most restrictive linkage for the types and
311 /// declarations in the given template argument list.
312 ///
313 /// Note that we don't take an LVComputationKind because we always
314 /// want to honor the visibility of template arguments in the same way.
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)315 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
316                                                 LVComputationKind computation) {
317   LinkageInfo LV;
318 
319   for (const TemplateArgument &Arg : Args) {
320     switch (Arg.getKind()) {
321     case TemplateArgument::Null:
322     case TemplateArgument::Integral:
323     case TemplateArgument::Expression:
324       continue;
325 
326     case TemplateArgument::Type:
327       LV.merge(getLVForType(*Arg.getAsType(), computation));
328       continue;
329 
330     case TemplateArgument::Declaration:
331       if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
332         assert(!usesTypeVisibility(ND));
333         LV.merge(getLVForDecl(ND, computation));
334       }
335       continue;
336 
337     case TemplateArgument::NullPtr:
338       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
339       continue;
340 
341     case TemplateArgument::Template:
342     case TemplateArgument::TemplateExpansion:
343       if (TemplateDecl *Template =
344               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
345         LV.merge(getLVForDecl(Template, computation));
346       continue;
347 
348     case TemplateArgument::Pack:
349       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
350       continue;
351     }
352     llvm_unreachable("bad template argument kind");
353   }
354 
355   return LV;
356 }
357 
358 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)359 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
360                              LVComputationKind computation) {
361   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
362 }
363 
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)364 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
365                         const FunctionTemplateSpecializationInfo *specInfo) {
366   // Include visibility from the template parameters and arguments
367   // only if this is not an explicit instantiation or specialization
368   // with direct explicit visibility.  (Implicit instantiations won't
369   // have a direct attribute.)
370   if (!specInfo->isExplicitInstantiationOrSpecialization())
371     return true;
372 
373   return !fn->hasAttr<VisibilityAttr>();
374 }
375 
376 /// Merge in template-related linkage and visibility for the given
377 /// function template specialization.
378 ///
379 /// We don't need a computation kind here because we can assume
380 /// LVForValue.
381 ///
382 /// \param[out] LV the computation to use for the parent
383 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)384 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
385                 const FunctionTemplateSpecializationInfo *specInfo,
386                 LVComputationKind computation) {
387   bool considerVisibility =
388     shouldConsiderTemplateVisibility(fn, specInfo);
389 
390   // Merge information from the template parameters.
391   FunctionTemplateDecl *temp = specInfo->getTemplate();
392   LinkageInfo tempLV =
393     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
394   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
395 
396   // Merge information from the template arguments.
397   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
398   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
399   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
400 }
401 
402 /// Does the given declaration have a direct visibility attribute
403 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)404 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
405                                          LVComputationKind computation) {
406   switch (computation) {
407   case LVForType:
408   case LVForExplicitType:
409     if (D->hasAttr<TypeVisibilityAttr>())
410       return true;
411     // fallthrough
412   case LVForValue:
413   case LVForExplicitValue:
414     if (D->hasAttr<VisibilityAttr>())
415       return true;
416     return false;
417   case LVForLinkageOnly:
418     return false;
419   }
420   llvm_unreachable("bad visibility computation kind");
421 }
422 
423 /// Should we consider visibility associated with the template
424 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)425 static bool shouldConsiderTemplateVisibility(
426                                  const ClassTemplateSpecializationDecl *spec,
427                                  LVComputationKind computation) {
428   // Include visibility from the template parameters and arguments
429   // only if this is not an explicit instantiation or specialization
430   // with direct explicit visibility (and note that implicit
431   // instantiations won't have a direct attribute).
432   //
433   // Furthermore, we want to ignore template parameters and arguments
434   // for an explicit specialization when computing the visibility of a
435   // member thereof with explicit visibility.
436   //
437   // This is a bit complex; let's unpack it.
438   //
439   // An explicit class specialization is an independent, top-level
440   // declaration.  As such, if it or any of its members has an
441   // explicit visibility attribute, that must directly express the
442   // user's intent, and we should honor it.  The same logic applies to
443   // an explicit instantiation of a member of such a thing.
444 
445   // Fast path: if this is not an explicit instantiation or
446   // specialization, we always want to consider template-related
447   // visibility restrictions.
448   if (!spec->isExplicitInstantiationOrSpecialization())
449     return true;
450 
451   // This is the 'member thereof' check.
452   if (spec->isExplicitSpecialization() &&
453       hasExplicitVisibilityAlready(computation))
454     return false;
455 
456   return !hasDirectVisibilityAttribute(spec, computation);
457 }
458 
459 /// Merge in template-related linkage and visibility for the given
460 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)461 static void mergeTemplateLV(LinkageInfo &LV,
462                             const ClassTemplateSpecializationDecl *spec,
463                             LVComputationKind computation) {
464   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
465 
466   // Merge information from the template parameters, but ignore
467   // visibility if we're only considering template arguments.
468 
469   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
470   LinkageInfo tempLV =
471     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
472   LV.mergeMaybeWithVisibility(tempLV,
473            considerVisibility && !hasExplicitVisibilityAlready(computation));
474 
475   // Merge information from the template arguments.  We ignore
476   // template-argument visibility if we've got an explicit
477   // instantiation with a visibility attribute.
478   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
479   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
480   if (considerVisibility)
481     LV.mergeVisibility(argsLV);
482   LV.mergeExternalVisibility(argsLV);
483 }
484 
485 /// Should we consider visibility associated with the template
486 /// arguments and parameters of the given variable template
487 /// specialization? As usual, follow class template specialization
488 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)489 static bool shouldConsiderTemplateVisibility(
490                                  const VarTemplateSpecializationDecl *spec,
491                                  LVComputationKind computation) {
492   // Include visibility from the template parameters and arguments
493   // only if this is not an explicit instantiation or specialization
494   // with direct explicit visibility (and note that implicit
495   // instantiations won't have a direct attribute).
496   if (!spec->isExplicitInstantiationOrSpecialization())
497     return true;
498 
499   // An explicit variable specialization is an independent, top-level
500   // declaration.  As such, if it has an explicit visibility attribute,
501   // that must directly express the user's intent, and we should honor
502   // it.
503   if (spec->isExplicitSpecialization() &&
504       hasExplicitVisibilityAlready(computation))
505     return false;
506 
507   return !hasDirectVisibilityAttribute(spec, computation);
508 }
509 
510 /// Merge in template-related linkage and visibility for the given
511 /// variable template specialization. As usual, follow class template
512 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)513 static void mergeTemplateLV(LinkageInfo &LV,
514                             const VarTemplateSpecializationDecl *spec,
515                             LVComputationKind computation) {
516   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
517 
518   // Merge information from the template parameters, but ignore
519   // visibility if we're only considering template arguments.
520 
521   VarTemplateDecl *temp = spec->getSpecializedTemplate();
522   LinkageInfo tempLV =
523     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
524   LV.mergeMaybeWithVisibility(tempLV,
525            considerVisibility && !hasExplicitVisibilityAlready(computation));
526 
527   // Merge information from the template arguments.  We ignore
528   // template-argument visibility if we've got an explicit
529   // instantiation with a visibility attribute.
530   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
531   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
532   if (considerVisibility)
533     LV.mergeVisibility(argsLV);
534   LV.mergeExternalVisibility(argsLV);
535 }
536 
useInlineVisibilityHidden(const NamedDecl * D)537 static bool useInlineVisibilityHidden(const NamedDecl *D) {
538   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
539   const LangOptions &Opts = D->getASTContext().getLangOpts();
540   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
541     return false;
542 
543   const auto *FD = dyn_cast<FunctionDecl>(D);
544   if (!FD)
545     return false;
546 
547   TemplateSpecializationKind TSK = TSK_Undeclared;
548   if (FunctionTemplateSpecializationInfo *spec
549       = FD->getTemplateSpecializationInfo()) {
550     TSK = spec->getTemplateSpecializationKind();
551   } else if (MemberSpecializationInfo *MSI =
552              FD->getMemberSpecializationInfo()) {
553     TSK = MSI->getTemplateSpecializationKind();
554   }
555 
556   const FunctionDecl *Def = nullptr;
557   // InlineVisibilityHidden only applies to definitions, and
558   // isInlined() only gives meaningful answers on definitions
559   // anyway.
560   return TSK != TSK_ExplicitInstantiationDeclaration &&
561     TSK != TSK_ExplicitInstantiationDefinition &&
562     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
563 }
564 
isFirstInExternCContext(T * D)565 template <typename T> static bool isFirstInExternCContext(T *D) {
566   const T *First = D->getFirstDecl();
567   return First->isInExternCContext();
568 }
569 
isSingleLineLanguageLinkage(const Decl & D)570 static bool isSingleLineLanguageLinkage(const Decl &D) {
571   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
572     if (!SD->hasBraces())
573       return true;
574   return false;
575 }
576 
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)577 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
578                                               LVComputationKind computation) {
579   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
580          "Not a name having namespace scope");
581   ASTContext &Context = D->getASTContext();
582 
583   // C++ [basic.link]p3:
584   //   A name having namespace scope (3.3.6) has internal linkage if it
585   //   is the name of
586   //     - an object, reference, function or function template that is
587   //       explicitly declared static; or,
588   // (This bullet corresponds to C99 6.2.2p3.)
589   if (const auto *Var = dyn_cast<VarDecl>(D)) {
590     // Explicitly declared static.
591     if (Var->getStorageClass() == SC_Static)
592       return LinkageInfo::internal();
593 
594     // - a non-volatile object or reference that is explicitly declared const
595     //   or constexpr and neither explicitly declared extern nor previously
596     //   declared to have external linkage; or (there is no equivalent in C99)
597     if (Context.getLangOpts().CPlusPlus &&
598         Var->getType().isConstQualified() &&
599         !Var->getType().isVolatileQualified()) {
600       const VarDecl *PrevVar = Var->getPreviousDecl();
601       if (PrevVar)
602         return getLVForDecl(PrevVar, computation);
603 
604       if (Var->getStorageClass() != SC_Extern &&
605           Var->getStorageClass() != SC_PrivateExtern &&
606           !isSingleLineLanguageLinkage(*Var))
607         return LinkageInfo::internal();
608     }
609 
610     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
611          PrevVar = PrevVar->getPreviousDecl()) {
612       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
613           Var->getStorageClass() == SC_None)
614         return PrevVar->getLinkageAndVisibility();
615       // Explicitly declared static.
616       if (PrevVar->getStorageClass() == SC_Static)
617         return LinkageInfo::internal();
618     }
619   } else if (const FunctionDecl *Function = D->getAsFunction()) {
620     // C++ [temp]p4:
621     //   A non-member function template can have internal linkage; any
622     //   other template name shall have external linkage.
623 
624     // Explicitly declared static.
625     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
626       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
627   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
628     //   - a data member of an anonymous union.
629     const VarDecl *VD = IFD->getVarDecl();
630     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
631     return getLVForNamespaceScopeDecl(VD, computation);
632   }
633   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
634 
635   if (D->isInAnonymousNamespace()) {
636     const auto *Var = dyn_cast<VarDecl>(D);
637     const auto *Func = dyn_cast<FunctionDecl>(D);
638     // FIXME: In C++11 onwards, anonymous namespaces should give decls
639     // within them internal linkage, not unique external linkage.
640     if ((!Var || !isFirstInExternCContext(Var)) &&
641         (!Func || !isFirstInExternCContext(Func)))
642       return LinkageInfo::uniqueExternal();
643   }
644 
645   // Set up the defaults.
646 
647   // C99 6.2.2p5:
648   //   If the declaration of an identifier for an object has file
649   //   scope and no storage-class specifier, its linkage is
650   //   external.
651   LinkageInfo LV;
652 
653   if (!hasExplicitVisibilityAlready(computation)) {
654     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
655       LV.mergeVisibility(*Vis, true);
656     } else {
657       // If we're declared in a namespace with a visibility attribute,
658       // use that namespace's visibility, and it still counts as explicit.
659       for (const DeclContext *DC = D->getDeclContext();
660            !isa<TranslationUnitDecl>(DC);
661            DC = DC->getParent()) {
662         const auto *ND = dyn_cast<NamespaceDecl>(DC);
663         if (!ND) continue;
664         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
665           LV.mergeVisibility(*Vis, true);
666           break;
667         }
668       }
669     }
670 
671     // Add in global settings if the above didn't give us direct visibility.
672     if (!LV.isVisibilityExplicit()) {
673       // Use global type/value visibility as appropriate.
674       Visibility globalVisibility;
675       if (computation == LVForValue) {
676         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
677       } else {
678         assert(computation == LVForType);
679         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
680       }
681       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
682 
683       // If we're paying attention to global visibility, apply
684       // -finline-visibility-hidden if this is an inline method.
685       if (useInlineVisibilityHidden(D))
686         LV.mergeVisibility(HiddenVisibility, true);
687     }
688   }
689 
690   // C++ [basic.link]p4:
691 
692   //   A name having namespace scope has external linkage if it is the
693   //   name of
694   //
695   //     - an object or reference, unless it has internal linkage; or
696   if (const auto *Var = dyn_cast<VarDecl>(D)) {
697     // GCC applies the following optimization to variables and static
698     // data members, but not to functions:
699     //
700     // Modify the variable's LV by the LV of its type unless this is
701     // C or extern "C".  This follows from [basic.link]p9:
702     //   A type without linkage shall not be used as the type of a
703     //   variable or function with external linkage unless
704     //    - the entity has C language linkage, or
705     //    - the entity is declared within an unnamed namespace, or
706     //    - the entity is not used or is defined in the same
707     //      translation unit.
708     // and [basic.link]p10:
709     //   ...the types specified by all declarations referring to a
710     //   given variable or function shall be identical...
711     // C does not have an equivalent rule.
712     //
713     // Ignore this if we've got an explicit attribute;  the user
714     // probably knows what they're doing.
715     //
716     // Note that we don't want to make the variable non-external
717     // because of this, but unique-external linkage suits us.
718     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
719       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
720       if (TypeLV.getLinkage() != ExternalLinkage)
721         return LinkageInfo::uniqueExternal();
722       if (!LV.isVisibilityExplicit())
723         LV.mergeVisibility(TypeLV);
724     }
725 
726     if (Var->getStorageClass() == SC_PrivateExtern)
727       LV.mergeVisibility(HiddenVisibility, true);
728 
729     // Note that Sema::MergeVarDecl already takes care of implementing
730     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
731     // to do it here.
732 
733     // As per function and class template specializations (below),
734     // consider LV for the template and template arguments.  We're at file
735     // scope, so we do not need to worry about nested specializations.
736     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
737       mergeTemplateLV(LV, spec, computation);
738     }
739 
740   //     - a function, unless it has internal linkage; or
741   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
742     // In theory, we can modify the function's LV by the LV of its
743     // type unless it has C linkage (see comment above about variables
744     // for justification).  In practice, GCC doesn't do this, so it's
745     // just too painful to make work.
746 
747     if (Function->getStorageClass() == SC_PrivateExtern)
748       LV.mergeVisibility(HiddenVisibility, true);
749 
750     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
751     // merging storage classes and visibility attributes, so we don't have to
752     // look at previous decls in here.
753 
754     // In C++, then if the type of the function uses a type with
755     // unique-external linkage, it's not legally usable from outside
756     // this translation unit.  However, we should use the C linkage
757     // rules instead for extern "C" declarations.
758     if (Context.getLangOpts().CPlusPlus &&
759         !Function->isInExternCContext()) {
760       // Only look at the type-as-written. If this function has an auto-deduced
761       // return type, we can't compute the linkage of that type because it could
762       // require looking at the linkage of this function, and we don't need this
763       // for correctness because the type is not part of the function's
764       // signature.
765       // FIXME: This is a hack. We should be able to solve this circularity and
766       // the one in getLVForClassMember for Functions some other way.
767       QualType TypeAsWritten = Function->getType();
768       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
769         TypeAsWritten = TSI->getType();
770       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
771         return LinkageInfo::uniqueExternal();
772     }
773 
774     // Consider LV from the template and the template arguments.
775     // We're at file scope, so we do not need to worry about nested
776     // specializations.
777     if (FunctionTemplateSpecializationInfo *specInfo
778                                = Function->getTemplateSpecializationInfo()) {
779       mergeTemplateLV(LV, Function, specInfo, computation);
780     }
781 
782   //     - a named class (Clause 9), or an unnamed class defined in a
783   //       typedef declaration in which the class has the typedef name
784   //       for linkage purposes (7.1.3); or
785   //     - a named enumeration (7.2), or an unnamed enumeration
786   //       defined in a typedef declaration in which the enumeration
787   //       has the typedef name for linkage purposes (7.1.3); or
788   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
789     // Unnamed tags have no linkage.
790     if (!Tag->hasNameForLinkage())
791       return LinkageInfo::none();
792 
793     // If this is a class template specialization, consider the
794     // linkage of the template and template arguments.  We're at file
795     // scope, so we do not need to worry about nested specializations.
796     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
797       mergeTemplateLV(LV, spec, computation);
798     }
799 
800   //     - an enumerator belonging to an enumeration with external linkage;
801   } else if (isa<EnumConstantDecl>(D)) {
802     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
803                                       computation);
804     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
805       return LinkageInfo::none();
806     LV.merge(EnumLV);
807 
808   //     - a template, unless it is a function template that has
809   //       internal linkage (Clause 14);
810   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
811     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
812     LinkageInfo tempLV =
813       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
814     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
815 
816   //     - a namespace (7.3), unless it is declared within an unnamed
817   //       namespace.
818   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
819     return LV;
820 
821   // By extension, we assign external linkage to Objective-C
822   // interfaces.
823   } else if (isa<ObjCInterfaceDecl>(D)) {
824     // fallout
825 
826   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
827     // A typedef declaration has linkage if it gives a type a name for
828     // linkage purposes.
829     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
830       return LinkageInfo::none();
831 
832   // Everything not covered here has no linkage.
833   } else {
834     return LinkageInfo::none();
835   }
836 
837   // If we ended up with non-external linkage, visibility should
838   // always be default.
839   if (LV.getLinkage() != ExternalLinkage)
840     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
841 
842   return LV;
843 }
844 
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)845 static LinkageInfo getLVForClassMember(const NamedDecl *D,
846                                        LVComputationKind computation) {
847   // Only certain class members have linkage.  Note that fields don't
848   // really have linkage, but it's convenient to say they do for the
849   // purposes of calculating linkage of pointer-to-data-member
850   // template arguments.
851   //
852   // Templates also don't officially have linkage, but since we ignore
853   // the C++ standard and look at template arguments when determining
854   // linkage and visibility of a template specialization, we might hit
855   // a template template argument that way. If we do, we need to
856   // consider its linkage.
857   if (!(isa<CXXMethodDecl>(D) ||
858         isa<VarDecl>(D) ||
859         isa<FieldDecl>(D) ||
860         isa<IndirectFieldDecl>(D) ||
861         isa<TagDecl>(D) ||
862         isa<TemplateDecl>(D)))
863     return LinkageInfo::none();
864 
865   LinkageInfo LV;
866 
867   // If we have an explicit visibility attribute, merge that in.
868   if (!hasExplicitVisibilityAlready(computation)) {
869     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
870       LV.mergeVisibility(*Vis, true);
871     // If we're paying attention to global visibility, apply
872     // -finline-visibility-hidden if this is an inline method.
873     //
874     // Note that we do this before merging information about
875     // the class visibility.
876     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
877       LV.mergeVisibility(HiddenVisibility, true);
878   }
879 
880   // If this class member has an explicit visibility attribute, the only
881   // thing that can change its visibility is the template arguments, so
882   // only look for them when processing the class.
883   LVComputationKind classComputation = computation;
884   if (LV.isVisibilityExplicit())
885     classComputation = withExplicitVisibilityAlready(computation);
886 
887   LinkageInfo classLV =
888     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
889   // If the class already has unique-external linkage, we can't improve.
890   if (classLV.getLinkage() == UniqueExternalLinkage)
891     return LinkageInfo::uniqueExternal();
892 
893   if (!isExternallyVisible(classLV.getLinkage()))
894     return LinkageInfo::none();
895 
896 
897   // Otherwise, don't merge in classLV yet, because in certain cases
898   // we need to completely ignore the visibility from it.
899 
900   // Specifically, if this decl exists and has an explicit attribute.
901   const NamedDecl *explicitSpecSuppressor = nullptr;
902 
903   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
904     // If the type of the function uses a type with unique-external
905     // linkage, it's not legally usable from outside this translation unit.
906     // But only look at the type-as-written. If this function has an
907     // auto-deduced return type, we can't compute the linkage of that type
908     // because it could require looking at the linkage of this function, and we
909     // don't need this for correctness because the type is not part of the
910     // function's signature.
911     // FIXME: This is a hack. We should be able to solve this circularity and
912     // the one in getLVForNamespaceScopeDecl for Functions some other way.
913     {
914       QualType TypeAsWritten = MD->getType();
915       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
916         TypeAsWritten = TSI->getType();
917       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
918         return LinkageInfo::uniqueExternal();
919     }
920     // If this is a method template specialization, use the linkage for
921     // the template parameters and arguments.
922     if (FunctionTemplateSpecializationInfo *spec
923            = MD->getTemplateSpecializationInfo()) {
924       mergeTemplateLV(LV, MD, spec, computation);
925       if (spec->isExplicitSpecialization()) {
926         explicitSpecSuppressor = MD;
927       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
928         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
929       }
930     } else if (isExplicitMemberSpecialization(MD)) {
931       explicitSpecSuppressor = MD;
932     }
933 
934   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
935     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
936       mergeTemplateLV(LV, spec, computation);
937       if (spec->isExplicitSpecialization()) {
938         explicitSpecSuppressor = spec;
939       } else {
940         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
941         if (isExplicitMemberSpecialization(temp)) {
942           explicitSpecSuppressor = temp->getTemplatedDecl();
943         }
944       }
945     } else if (isExplicitMemberSpecialization(RD)) {
946       explicitSpecSuppressor = RD;
947     }
948 
949   // Static data members.
950   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
951     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
952       mergeTemplateLV(LV, spec, computation);
953 
954     // Modify the variable's linkage by its type, but ignore the
955     // type's visibility unless it's a definition.
956     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
957     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
958       LV.mergeVisibility(typeLV);
959     LV.mergeExternalVisibility(typeLV);
960 
961     if (isExplicitMemberSpecialization(VD)) {
962       explicitSpecSuppressor = VD;
963     }
964 
965   // Template members.
966   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
967     bool considerVisibility =
968       (!LV.isVisibilityExplicit() &&
969        !classLV.isVisibilityExplicit() &&
970        !hasExplicitVisibilityAlready(computation));
971     LinkageInfo tempLV =
972       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
973     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
974 
975     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
976       if (isExplicitMemberSpecialization(redeclTemp)) {
977         explicitSpecSuppressor = temp->getTemplatedDecl();
978       }
979     }
980   }
981 
982   // We should never be looking for an attribute directly on a template.
983   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
984 
985   // If this member is an explicit member specialization, and it has
986   // an explicit attribute, ignore visibility from the parent.
987   bool considerClassVisibility = true;
988   if (explicitSpecSuppressor &&
989       // optimization: hasDVA() is true only with explicit visibility.
990       LV.isVisibilityExplicit() &&
991       classLV.getVisibility() != DefaultVisibility &&
992       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
993     considerClassVisibility = false;
994   }
995 
996   // Finally, merge in information from the class.
997   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
998   return LV;
999 }
1000 
anchor()1001 void NamedDecl::anchor() { }
1002 
1003 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1004                                     LVComputationKind computation);
1005 
isLinkageValid() const1006 bool NamedDecl::isLinkageValid() const {
1007   if (!hasCachedLinkage())
1008     return true;
1009 
1010   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1011          getCachedLinkage();
1012 }
1013 
getObjCFStringFormattingFamily() const1014 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1015   StringRef name = getName();
1016   if (name.empty()) return SFF_None;
1017 
1018   if (name.front() == 'C')
1019     if (name == "CFStringCreateWithFormat" ||
1020         name == "CFStringCreateWithFormatAndArguments" ||
1021         name == "CFStringAppendFormat" ||
1022         name == "CFStringAppendFormatAndArguments")
1023       return SFF_CFString;
1024   return SFF_None;
1025 }
1026 
getLinkageInternal() const1027 Linkage NamedDecl::getLinkageInternal() const {
1028   // We don't care about visibility here, so ask for the cheapest
1029   // possible visibility analysis.
1030   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1031 }
1032 
getLinkageAndVisibility() const1033 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1034   LVComputationKind computation =
1035     (usesTypeVisibility(this) ? LVForType : LVForValue);
1036   return getLVForDecl(this, computation);
1037 }
1038 
1039 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1040 getExplicitVisibilityAux(const NamedDecl *ND,
1041                          NamedDecl::ExplicitVisibilityKind kind,
1042                          bool IsMostRecent) {
1043   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1044 
1045   // Check the declaration itself first.
1046   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1047     return V;
1048 
1049   // If this is a member class of a specialization of a class template
1050   // and the corresponding decl has explicit visibility, use that.
1051   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1052     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1053     if (InstantiatedFrom)
1054       return getVisibilityOf(InstantiatedFrom, kind);
1055   }
1056 
1057   // If there wasn't explicit visibility there, and this is a
1058   // specialization of a class template, check for visibility
1059   // on the pattern.
1060   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1061     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1062                            kind);
1063 
1064   // Use the most recent declaration.
1065   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1066     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1067     if (MostRecent != ND)
1068       return getExplicitVisibilityAux(MostRecent, kind, true);
1069   }
1070 
1071   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1072     if (Var->isStaticDataMember()) {
1073       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1074       if (InstantiatedFrom)
1075         return getVisibilityOf(InstantiatedFrom, kind);
1076     }
1077 
1078     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1079       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1080                              kind);
1081 
1082     return None;
1083   }
1084   // Also handle function template specializations.
1085   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1086     // If the function is a specialization of a template with an
1087     // explicit visibility attribute, use that.
1088     if (FunctionTemplateSpecializationInfo *templateInfo
1089           = fn->getTemplateSpecializationInfo())
1090       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1091                              kind);
1092 
1093     // If the function is a member of a specialization of a class template
1094     // and the corresponding decl has explicit visibility, use that.
1095     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1096     if (InstantiatedFrom)
1097       return getVisibilityOf(InstantiatedFrom, kind);
1098 
1099     return None;
1100   }
1101 
1102   // The visibility of a template is stored in the templated decl.
1103   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1104     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1105 
1106   return None;
1107 }
1108 
1109 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1110 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1111   return getExplicitVisibilityAux(this, kind, false);
1112 }
1113 
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1114 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1115                                    LVComputationKind computation) {
1116   // This lambda has its linkage/visibility determined by its owner.
1117   if (ContextDecl) {
1118     if (isa<ParmVarDecl>(ContextDecl))
1119       DC = ContextDecl->getDeclContext()->getRedeclContext();
1120     else
1121       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1122   }
1123 
1124   if (const auto *ND = dyn_cast<NamedDecl>(DC))
1125     return getLVForDecl(ND, computation);
1126 
1127   return LinkageInfo::external();
1128 }
1129 
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1130 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1131                                      LVComputationKind computation) {
1132   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1133     if (Function->isInAnonymousNamespace() &&
1134         !Function->isInExternCContext())
1135       return LinkageInfo::uniqueExternal();
1136 
1137     // This is a "void f();" which got merged with a file static.
1138     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1139       return LinkageInfo::internal();
1140 
1141     LinkageInfo LV;
1142     if (!hasExplicitVisibilityAlready(computation)) {
1143       if (Optional<Visibility> Vis =
1144               getExplicitVisibility(Function, computation))
1145         LV.mergeVisibility(*Vis, true);
1146     }
1147 
1148     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1149     // merging storage classes and visibility attributes, so we don't have to
1150     // look at previous decls in here.
1151 
1152     return LV;
1153   }
1154 
1155   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1156     if (Var->hasExternalStorage()) {
1157       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1158         return LinkageInfo::uniqueExternal();
1159 
1160       LinkageInfo LV;
1161       if (Var->getStorageClass() == SC_PrivateExtern)
1162         LV.mergeVisibility(HiddenVisibility, true);
1163       else if (!hasExplicitVisibilityAlready(computation)) {
1164         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1165           LV.mergeVisibility(*Vis, true);
1166       }
1167 
1168       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1169         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1170         if (PrevLV.getLinkage())
1171           LV.setLinkage(PrevLV.getLinkage());
1172         LV.mergeVisibility(PrevLV);
1173       }
1174 
1175       return LV;
1176     }
1177 
1178     if (!Var->isStaticLocal())
1179       return LinkageInfo::none();
1180   }
1181 
1182   ASTContext &Context = D->getASTContext();
1183   if (!Context.getLangOpts().CPlusPlus)
1184     return LinkageInfo::none();
1185 
1186   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1187   if (!OuterD)
1188     return LinkageInfo::none();
1189 
1190   LinkageInfo LV;
1191   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1192     if (!BD->getBlockManglingNumber())
1193       return LinkageInfo::none();
1194 
1195     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1196                          BD->getBlockManglingContextDecl(), computation);
1197   } else {
1198     const auto *FD = cast<FunctionDecl>(OuterD);
1199     if (!FD->isInlined() &&
1200         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1201       return LinkageInfo::none();
1202 
1203     LV = getLVForDecl(FD, computation);
1204   }
1205   if (!isExternallyVisible(LV.getLinkage()))
1206     return LinkageInfo::none();
1207   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1208                      LV.isVisibilityExplicit());
1209 }
1210 
1211 static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl * Record)1212 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1213   const CXXRecordDecl *Ret = Record;
1214   while (Record && Record->isLambda()) {
1215     Ret = Record;
1216     if (!Record->getParent()) break;
1217     // Get the Containing Class of this Lambda Class
1218     Record = dyn_cast_or_null<CXXRecordDecl>(
1219       Record->getParent()->getParent());
1220   }
1221   return Ret;
1222 }
1223 
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1224 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1225                                     LVComputationKind computation) {
1226   // Internal_linkage attribute overrides other considerations.
1227   if (D->hasAttr<InternalLinkageAttr>())
1228     return LinkageInfo::internal();
1229 
1230   // Objective-C: treat all Objective-C declarations as having external
1231   // linkage.
1232   switch (D->getKind()) {
1233     default:
1234       break;
1235 
1236     // Per C++ [basic.link]p2, only the names of objects, references,
1237     // functions, types, templates, namespaces, and values ever have linkage.
1238     //
1239     // Note that the name of a typedef, namespace alias, using declaration,
1240     // and so on are not the name of the corresponding type, namespace, or
1241     // declaration, so they do *not* have linkage.
1242     case Decl::ImplicitParam:
1243     case Decl::Label:
1244     case Decl::NamespaceAlias:
1245     case Decl::ParmVar:
1246     case Decl::Using:
1247     case Decl::UsingShadow:
1248     case Decl::UsingDirective:
1249       return LinkageInfo::none();
1250 
1251     case Decl::EnumConstant:
1252       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1253       return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1254 
1255     case Decl::Typedef:
1256     case Decl::TypeAlias:
1257       // A typedef declaration has linkage if it gives a type a name for
1258       // linkage purposes.
1259       if (!D->getASTContext().getLangOpts().CPlusPlus ||
1260           !cast<TypedefNameDecl>(D)
1261                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1262         return LinkageInfo::none();
1263       break;
1264 
1265     case Decl::TemplateTemplateParm: // count these as external
1266     case Decl::NonTypeTemplateParm:
1267     case Decl::ObjCAtDefsField:
1268     case Decl::ObjCCategory:
1269     case Decl::ObjCCategoryImpl:
1270     case Decl::ObjCCompatibleAlias:
1271     case Decl::ObjCImplementation:
1272     case Decl::ObjCMethod:
1273     case Decl::ObjCProperty:
1274     case Decl::ObjCPropertyImpl:
1275     case Decl::ObjCProtocol:
1276       return LinkageInfo::external();
1277 
1278     case Decl::CXXRecord: {
1279       const auto *Record = cast<CXXRecordDecl>(D);
1280       if (Record->isLambda()) {
1281         if (!Record->getLambdaManglingNumber()) {
1282           // This lambda has no mangling number, so it's internal.
1283           return LinkageInfo::internal();
1284         }
1285 
1286         // This lambda has its linkage/visibility determined:
1287         //  - either by the outermost lambda if that lambda has no mangling
1288         //    number.
1289         //  - or by the parent of the outer most lambda
1290         // This prevents infinite recursion in settings such as nested lambdas
1291         // used in NSDMI's, for e.g.
1292         //  struct L {
1293         //    int t{};
1294         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1295         //  };
1296         const CXXRecordDecl *OuterMostLambda =
1297             getOutermostEnclosingLambda(Record);
1298         if (!OuterMostLambda->getLambdaManglingNumber())
1299           return LinkageInfo::internal();
1300 
1301         return getLVForClosure(
1302                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1303                   OuterMostLambda->getLambdaContextDecl(), computation);
1304       }
1305 
1306       break;
1307     }
1308   }
1309 
1310   // Handle linkage for namespace-scope names.
1311   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1312     return getLVForNamespaceScopeDecl(D, computation);
1313 
1314   // C++ [basic.link]p5:
1315   //   In addition, a member function, static data member, a named
1316   //   class or enumeration of class scope, or an unnamed class or
1317   //   enumeration defined in a class-scope typedef declaration such
1318   //   that the class or enumeration has the typedef name for linkage
1319   //   purposes (7.1.3), has external linkage if the name of the class
1320   //   has external linkage.
1321   if (D->getDeclContext()->isRecord())
1322     return getLVForClassMember(D, computation);
1323 
1324   // C++ [basic.link]p6:
1325   //   The name of a function declared in block scope and the name of
1326   //   an object declared by a block scope extern declaration have
1327   //   linkage. If there is a visible declaration of an entity with
1328   //   linkage having the same name and type, ignoring entities
1329   //   declared outside the innermost enclosing namespace scope, the
1330   //   block scope declaration declares that same entity and receives
1331   //   the linkage of the previous declaration. If there is more than
1332   //   one such matching entity, the program is ill-formed. Otherwise,
1333   //   if no matching entity is found, the block scope entity receives
1334   //   external linkage.
1335   if (D->getDeclContext()->isFunctionOrMethod())
1336     return getLVForLocalDecl(D, computation);
1337 
1338   // C++ [basic.link]p6:
1339   //   Names not covered by these rules have no linkage.
1340   return LinkageInfo::none();
1341 }
1342 
1343 namespace clang {
1344 class LinkageComputer {
1345 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1346   static LinkageInfo getLVForDecl(const NamedDecl *D,
1347                                   LVComputationKind computation) {
1348     // Internal_linkage attribute overrides other considerations.
1349     if (D->hasAttr<InternalLinkageAttr>())
1350       return LinkageInfo::internal();
1351 
1352     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1353       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1354 
1355     LinkageInfo LV = computeLVForDecl(D, computation);
1356     if (D->hasCachedLinkage())
1357       assert(D->getCachedLinkage() == LV.getLinkage());
1358 
1359     D->setCachedLinkage(LV.getLinkage());
1360 
1361 #ifndef NDEBUG
1362     // In C (because of gnu inline) and in c++ with microsoft extensions an
1363     // static can follow an extern, so we can have two decls with different
1364     // linkages.
1365     const LangOptions &Opts = D->getASTContext().getLangOpts();
1366     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1367       return LV;
1368 
1369     // We have just computed the linkage for this decl. By induction we know
1370     // that all other computed linkages match, check that the one we just
1371     // computed also does.
1372     NamedDecl *Old = nullptr;
1373     for (auto I : D->redecls()) {
1374       auto *T = cast<NamedDecl>(I);
1375       if (T == D)
1376         continue;
1377       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1378         Old = T;
1379         break;
1380       }
1381     }
1382     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1383 #endif
1384 
1385     return LV;
1386   }
1387 };
1388 }
1389 
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1390 static LinkageInfo getLVForDecl(const NamedDecl *D,
1391                                 LVComputationKind computation) {
1392   return clang::LinkageComputer::getLVForDecl(D, computation);
1393 }
1394 
getQualifiedNameAsString() const1395 std::string NamedDecl::getQualifiedNameAsString() const {
1396   std::string QualName;
1397   llvm::raw_string_ostream OS(QualName);
1398   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1399   return OS.str();
1400 }
1401 
printQualifiedName(raw_ostream & OS) const1402 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1403   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1404 }
1405 
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1406 void NamedDecl::printQualifiedName(raw_ostream &OS,
1407                                    const PrintingPolicy &P) const {
1408   const DeclContext *Ctx = getDeclContext();
1409 
1410   if (Ctx->isFunctionOrMethod()) {
1411     printName(OS);
1412     return;
1413   }
1414 
1415   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1416   ContextsTy Contexts;
1417 
1418   // Collect contexts.
1419   while (Ctx && isa<NamedDecl>(Ctx)) {
1420     Contexts.push_back(Ctx);
1421     Ctx = Ctx->getParent();
1422   }
1423 
1424   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1425        I != E; ++I) {
1426     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1427       OS << Spec->getName();
1428       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1429       TemplateSpecializationType::PrintTemplateArgumentList(OS,
1430                                                             TemplateArgs.data(),
1431                                                             TemplateArgs.size(),
1432                                                             P);
1433     } else if (const auto *ND = dyn_cast<NamespaceDecl>(*I)) {
1434       if (P.SuppressUnwrittenScope &&
1435           (ND->isAnonymousNamespace() || ND->isInline()))
1436         continue;
1437       if (ND->isAnonymousNamespace()) {
1438         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1439                                 : "(anonymous namespace)");
1440       }
1441       else
1442         OS << *ND;
1443     } else if (const auto *RD = dyn_cast<RecordDecl>(*I)) {
1444       if (!RD->getIdentifier())
1445         OS << "(anonymous " << RD->getKindName() << ')';
1446       else
1447         OS << *RD;
1448     } else if (const auto *FD = dyn_cast<FunctionDecl>(*I)) {
1449       const FunctionProtoType *FT = nullptr;
1450       if (FD->hasWrittenPrototype())
1451         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1452 
1453       OS << *FD << '(';
1454       if (FT) {
1455         unsigned NumParams = FD->getNumParams();
1456         for (unsigned i = 0; i < NumParams; ++i) {
1457           if (i)
1458             OS << ", ";
1459           OS << FD->getParamDecl(i)->getType().stream(P);
1460         }
1461 
1462         if (FT->isVariadic()) {
1463           if (NumParams > 0)
1464             OS << ", ";
1465           OS << "...";
1466         }
1467       }
1468       OS << ')';
1469     } else if (const auto *ED = dyn_cast<EnumDecl>(*I)) {
1470       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1471       // enumerator is declared in the scope that immediately contains
1472       // the enum-specifier. Each scoped enumerator is declared in the
1473       // scope of the enumeration.
1474       if (ED->isScoped() || ED->getIdentifier())
1475         OS << *ED;
1476       else
1477         continue;
1478     } else {
1479       OS << *cast<NamedDecl>(*I);
1480     }
1481     OS << "::";
1482   }
1483 
1484   if (getDeclName())
1485     OS << *this;
1486   else
1487     OS << "(anonymous)";
1488 }
1489 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1490 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1491                                      const PrintingPolicy &Policy,
1492                                      bool Qualified) const {
1493   if (Qualified)
1494     printQualifiedName(OS, Policy);
1495   else
1496     printName(OS);
1497 }
1498 
isRedeclarableImpl(Redeclarable<T> *)1499 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1500   return true;
1501 }
isRedeclarableImpl(...)1502 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1503 static bool isRedeclarable(Decl::Kind K) {
1504   switch (K) {
1505 #define DECL(Type, Base) \
1506   case Decl::Type: \
1507     return isRedeclarableImpl((Type##Decl *)nullptr);
1508 #define ABSTRACT_DECL(DECL)
1509 #include "clang/AST/DeclNodes.inc"
1510   }
1511   llvm_unreachable("unknown decl kind");
1512 }
1513 
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1514 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1515   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1516 
1517   // Never replace one imported declaration with another; we need both results
1518   // when re-exporting.
1519   if (OldD->isFromASTFile() && isFromASTFile())
1520     return false;
1521 
1522   // A kind mismatch implies that the declaration is not replaced.
1523   if (OldD->getKind() != getKind())
1524     return false;
1525 
1526   // For method declarations, we never replace. (Why?)
1527   if (isa<ObjCMethodDecl>(this))
1528     return false;
1529 
1530   // For parameters, pick the newer one. This is either an error or (in
1531   // Objective-C) permitted as an extension.
1532   if (isa<ParmVarDecl>(this))
1533     return true;
1534 
1535   // Inline namespaces can give us two declarations with the same
1536   // name and kind in the same scope but different contexts; we should
1537   // keep both declarations in this case.
1538   if (!this->getDeclContext()->getRedeclContext()->Equals(
1539           OldD->getDeclContext()->getRedeclContext()))
1540     return false;
1541 
1542   // Using declarations can be replaced if they import the same name from the
1543   // same context.
1544   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1545     ASTContext &Context = getASTContext();
1546     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1547            Context.getCanonicalNestedNameSpecifier(
1548                cast<UsingDecl>(OldD)->getQualifier());
1549   }
1550   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1551     ASTContext &Context = getASTContext();
1552     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1553            Context.getCanonicalNestedNameSpecifier(
1554                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1555   }
1556 
1557   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1558   // They can be replaced if they nominate the same namespace.
1559   // FIXME: Is this true even if they have different module visibility?
1560   if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1561     return UD->getNominatedNamespace()->getOriginalNamespace() ==
1562            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1563                ->getOriginalNamespace();
1564 
1565   if (isRedeclarable(getKind())) {
1566     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1567       return false;
1568 
1569     if (IsKnownNewer)
1570       return true;
1571 
1572     // Check whether this is actually newer than OldD. We want to keep the
1573     // newer declaration. This loop will usually only iterate once, because
1574     // OldD is usually the previous declaration.
1575     for (auto D : redecls()) {
1576       if (D == OldD)
1577         break;
1578 
1579       // If we reach the canonical declaration, then OldD is not actually older
1580       // than this one.
1581       //
1582       // FIXME: In this case, we should not add this decl to the lookup table.
1583       if (D->isCanonicalDecl())
1584         return false;
1585     }
1586 
1587     // It's a newer declaration of the same kind of declaration in the same
1588     // scope: we want this decl instead of the existing one.
1589     return true;
1590   }
1591 
1592   // In all other cases, we need to keep both declarations in case they have
1593   // different visibility. Any attempt to use the name will result in an
1594   // ambiguity if more than one is visible.
1595   return false;
1596 }
1597 
hasLinkage() const1598 bool NamedDecl::hasLinkage() const {
1599   return getFormalLinkage() != NoLinkage;
1600 }
1601 
getUnderlyingDeclImpl()1602 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1603   NamedDecl *ND = this;
1604   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1605     ND = UD->getTargetDecl();
1606 
1607   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1608     return AD->getClassInterface();
1609 
1610   return ND;
1611 }
1612 
isCXXInstanceMember() const1613 bool NamedDecl::isCXXInstanceMember() const {
1614   if (!isCXXClassMember())
1615     return false;
1616 
1617   const NamedDecl *D = this;
1618   if (isa<UsingShadowDecl>(D))
1619     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1620 
1621   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1622     return true;
1623   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1624     return MD->isInstance();
1625   return false;
1626 }
1627 
1628 //===----------------------------------------------------------------------===//
1629 // DeclaratorDecl Implementation
1630 //===----------------------------------------------------------------------===//
1631 
1632 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1633 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1634   if (decl->getNumTemplateParameterLists() > 0)
1635     return decl->getTemplateParameterList(0)->getTemplateLoc();
1636   else
1637     return decl->getInnerLocStart();
1638 }
1639 
getTypeSpecStartLoc() const1640 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1641   TypeSourceInfo *TSI = getTypeSourceInfo();
1642   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1643   return SourceLocation();
1644 }
1645 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1646 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1647   if (QualifierLoc) {
1648     // Make sure the extended decl info is allocated.
1649     if (!hasExtInfo()) {
1650       // Save (non-extended) type source info pointer.
1651       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1652       // Allocate external info struct.
1653       DeclInfo = new (getASTContext()) ExtInfo;
1654       // Restore savedTInfo into (extended) decl info.
1655       getExtInfo()->TInfo = savedTInfo;
1656     }
1657     // Set qualifier info.
1658     getExtInfo()->QualifierLoc = QualifierLoc;
1659   } else {
1660     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1661     if (hasExtInfo()) {
1662       if (getExtInfo()->NumTemplParamLists == 0) {
1663         // Save type source info pointer.
1664         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1665         // Deallocate the extended decl info.
1666         getASTContext().Deallocate(getExtInfo());
1667         // Restore savedTInfo into (non-extended) decl info.
1668         DeclInfo = savedTInfo;
1669       }
1670       else
1671         getExtInfo()->QualifierLoc = QualifierLoc;
1672     }
1673   }
1674 }
1675 
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1676 void DeclaratorDecl::setTemplateParameterListsInfo(
1677     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1678   assert(!TPLists.empty());
1679   // Make sure the extended decl info is allocated.
1680   if (!hasExtInfo()) {
1681     // Save (non-extended) type source info pointer.
1682     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1683     // Allocate external info struct.
1684     DeclInfo = new (getASTContext()) ExtInfo;
1685     // Restore savedTInfo into (extended) decl info.
1686     getExtInfo()->TInfo = savedTInfo;
1687   }
1688   // Set the template parameter lists info.
1689   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1690 }
1691 
getOuterLocStart() const1692 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1693   return getTemplateOrInnerLocStart(this);
1694 }
1695 
1696 namespace {
1697 
1698 // Helper function: returns true if QT is or contains a type
1699 // having a postfix component.
typeIsPostfix(clang::QualType QT)1700 bool typeIsPostfix(clang::QualType QT) {
1701   while (true) {
1702     const Type* T = QT.getTypePtr();
1703     switch (T->getTypeClass()) {
1704     default:
1705       return false;
1706     case Type::Pointer:
1707       QT = cast<PointerType>(T)->getPointeeType();
1708       break;
1709     case Type::BlockPointer:
1710       QT = cast<BlockPointerType>(T)->getPointeeType();
1711       break;
1712     case Type::MemberPointer:
1713       QT = cast<MemberPointerType>(T)->getPointeeType();
1714       break;
1715     case Type::LValueReference:
1716     case Type::RValueReference:
1717       QT = cast<ReferenceType>(T)->getPointeeType();
1718       break;
1719     case Type::PackExpansion:
1720       QT = cast<PackExpansionType>(T)->getPattern();
1721       break;
1722     case Type::Paren:
1723     case Type::ConstantArray:
1724     case Type::DependentSizedArray:
1725     case Type::IncompleteArray:
1726     case Type::VariableArray:
1727     case Type::FunctionProto:
1728     case Type::FunctionNoProto:
1729       return true;
1730     }
1731   }
1732 }
1733 
1734 } // namespace
1735 
getSourceRange() const1736 SourceRange DeclaratorDecl::getSourceRange() const {
1737   SourceLocation RangeEnd = getLocation();
1738   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1739     // If the declaration has no name or the type extends past the name take the
1740     // end location of the type.
1741     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1742       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1743   }
1744   return SourceRange(getOuterLocStart(), RangeEnd);
1745 }
1746 
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1747 void QualifierInfo::setTemplateParameterListsInfo(
1748     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1749   // Free previous template parameters (if any).
1750   if (NumTemplParamLists > 0) {
1751     Context.Deallocate(TemplParamLists);
1752     TemplParamLists = nullptr;
1753     NumTemplParamLists = 0;
1754   }
1755   // Set info on matched template parameter lists (if any).
1756   if (!TPLists.empty()) {
1757     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1758     NumTemplParamLists = TPLists.size();
1759     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1760   }
1761 }
1762 
1763 //===----------------------------------------------------------------------===//
1764 // VarDecl Implementation
1765 //===----------------------------------------------------------------------===//
1766 
getStorageClassSpecifierString(StorageClass SC)1767 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1768   switch (SC) {
1769   case SC_None:                 break;
1770   case SC_Auto:                 return "auto";
1771   case SC_Extern:               return "extern";
1772   case SC_PrivateExtern:        return "__private_extern__";
1773   case SC_Register:             return "register";
1774   case SC_Static:               return "static";
1775   }
1776 
1777   llvm_unreachable("Invalid storage class");
1778 }
1779 
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1780 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1781                  SourceLocation StartLoc, SourceLocation IdLoc,
1782                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1783                  StorageClass SC)
1784     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1785       redeclarable_base(C), Init() {
1786   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1787                 "VarDeclBitfields too large!");
1788   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1789                 "ParmVarDeclBitfields too large!");
1790   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1791                 "NonParmVarDeclBitfields too large!");
1792   AllBits = 0;
1793   VarDeclBits.SClass = SC;
1794   // Everything else is implicitly initialized to false.
1795 }
1796 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1797 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1798                          SourceLocation StartL, SourceLocation IdL,
1799                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1800                          StorageClass S) {
1801   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1802 }
1803 
CreateDeserialized(ASTContext & C,unsigned ID)1804 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1805   return new (C, ID)
1806       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1807               QualType(), nullptr, SC_None);
1808 }
1809 
setStorageClass(StorageClass SC)1810 void VarDecl::setStorageClass(StorageClass SC) {
1811   assert(isLegalForVariable(SC));
1812   VarDeclBits.SClass = SC;
1813 }
1814 
getTLSKind() const1815 VarDecl::TLSKind VarDecl::getTLSKind() const {
1816   switch (VarDeclBits.TSCSpec) {
1817   case TSCS_unspecified:
1818     if (!hasAttr<ThreadAttr>() &&
1819         !(getASTContext().getLangOpts().OpenMPUseTLS &&
1820           getASTContext().getTargetInfo().isTLSSupported() &&
1821           hasAttr<OMPThreadPrivateDeclAttr>()))
1822       return TLS_None;
1823     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1824                 LangOptions::MSVC2015)) ||
1825             hasAttr<OMPThreadPrivateDeclAttr>())
1826                ? TLS_Dynamic
1827                : TLS_Static;
1828   case TSCS___thread: // Fall through.
1829   case TSCS__Thread_local:
1830     return TLS_Static;
1831   case TSCS_thread_local:
1832     return TLS_Dynamic;
1833   }
1834   llvm_unreachable("Unknown thread storage class specifier!");
1835 }
1836 
getSourceRange() const1837 SourceRange VarDecl::getSourceRange() const {
1838   if (const Expr *Init = getInit()) {
1839     SourceLocation InitEnd = Init->getLocEnd();
1840     // If Init is implicit, ignore its source range and fallback on
1841     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1842     if (InitEnd.isValid() && InitEnd != getLocation())
1843       return SourceRange(getOuterLocStart(), InitEnd);
1844   }
1845   return DeclaratorDecl::getSourceRange();
1846 }
1847 
1848 template<typename T>
getDeclLanguageLinkage(const T & D)1849 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1850   // C++ [dcl.link]p1: All function types, function names with external linkage,
1851   // and variable names with external linkage have a language linkage.
1852   if (!D.hasExternalFormalLinkage())
1853     return NoLanguageLinkage;
1854 
1855   // Language linkage is a C++ concept, but saying that everything else in C has
1856   // C language linkage fits the implementation nicely.
1857   ASTContext &Context = D.getASTContext();
1858   if (!Context.getLangOpts().CPlusPlus)
1859     return CLanguageLinkage;
1860 
1861   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1862   // language linkage of the names of class members and the function type of
1863   // class member functions.
1864   const DeclContext *DC = D.getDeclContext();
1865   if (DC->isRecord())
1866     return CXXLanguageLinkage;
1867 
1868   // If the first decl is in an extern "C" context, any other redeclaration
1869   // will have C language linkage. If the first one is not in an extern "C"
1870   // context, we would have reported an error for any other decl being in one.
1871   if (isFirstInExternCContext(&D))
1872     return CLanguageLinkage;
1873   return CXXLanguageLinkage;
1874 }
1875 
1876 template<typename T>
isDeclExternC(const T & D)1877 static bool isDeclExternC(const T &D) {
1878   // Since the context is ignored for class members, they can only have C++
1879   // language linkage or no language linkage.
1880   const DeclContext *DC = D.getDeclContext();
1881   if (DC->isRecord()) {
1882     assert(D.getASTContext().getLangOpts().CPlusPlus);
1883     return false;
1884   }
1885 
1886   return D.getLanguageLinkage() == CLanguageLinkage;
1887 }
1888 
getLanguageLinkage() const1889 LanguageLinkage VarDecl::getLanguageLinkage() const {
1890   return getDeclLanguageLinkage(*this);
1891 }
1892 
isExternC() const1893 bool VarDecl::isExternC() const {
1894   return isDeclExternC(*this);
1895 }
1896 
isInExternCContext() const1897 bool VarDecl::isInExternCContext() const {
1898   return getLexicalDeclContext()->isExternCContext();
1899 }
1900 
isInExternCXXContext() const1901 bool VarDecl::isInExternCXXContext() const {
1902   return getLexicalDeclContext()->isExternCXXContext();
1903 }
1904 
getCanonicalDecl()1905 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1906 
1907 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const1908 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1909   // C++ [basic.def]p2:
1910   //   A declaration is a definition unless [...] it contains the 'extern'
1911   //   specifier or a linkage-specification and neither an initializer [...],
1912   //   it declares a static data member in a class declaration [...].
1913   // C++1y [temp.expl.spec]p15:
1914   //   An explicit specialization of a static data member or an explicit
1915   //   specialization of a static data member template is a definition if the
1916   //   declaration includes an initializer; otherwise, it is a declaration.
1917   //
1918   // FIXME: How do you declare (but not define) a partial specialization of
1919   // a static data member template outside the containing class?
1920   if (isStaticDataMember()) {
1921     if (isOutOfLine() &&
1922         (hasInit() ||
1923          // If the first declaration is out-of-line, this may be an
1924          // instantiation of an out-of-line partial specialization of a variable
1925          // template for which we have not yet instantiated the initializer.
1926          (getFirstDecl()->isOutOfLine()
1927               ? getTemplateSpecializationKind() == TSK_Undeclared
1928               : getTemplateSpecializationKind() !=
1929                     TSK_ExplicitSpecialization) ||
1930          isa<VarTemplatePartialSpecializationDecl>(this)))
1931       return Definition;
1932     else
1933       return DeclarationOnly;
1934   }
1935   // C99 6.7p5:
1936   //   A definition of an identifier is a declaration for that identifier that
1937   //   [...] causes storage to be reserved for that object.
1938   // Note: that applies for all non-file-scope objects.
1939   // C99 6.9.2p1:
1940   //   If the declaration of an identifier for an object has file scope and an
1941   //   initializer, the declaration is an external definition for the identifier
1942   if (hasInit())
1943     return Definition;
1944 
1945   if (hasAttr<AliasAttr>())
1946     return Definition;
1947 
1948   if (const auto *SAA = getAttr<SelectAnyAttr>())
1949     if (!SAA->isInherited())
1950       return Definition;
1951 
1952   // A variable template specialization (other than a static data member
1953   // template or an explicit specialization) is a declaration until we
1954   // instantiate its initializer.
1955   if (isa<VarTemplateSpecializationDecl>(this) &&
1956       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1957     return DeclarationOnly;
1958 
1959   if (hasExternalStorage())
1960     return DeclarationOnly;
1961 
1962   // [dcl.link] p7:
1963   //   A declaration directly contained in a linkage-specification is treated
1964   //   as if it contains the extern specifier for the purpose of determining
1965   //   the linkage of the declared name and whether it is a definition.
1966   if (isSingleLineLanguageLinkage(*this))
1967     return DeclarationOnly;
1968 
1969   // C99 6.9.2p2:
1970   //   A declaration of an object that has file scope without an initializer,
1971   //   and without a storage class specifier or the scs 'static', constitutes
1972   //   a tentative definition.
1973   // No such thing in C++.
1974   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1975     return TentativeDefinition;
1976 
1977   // What's left is (in C, block-scope) declarations without initializers or
1978   // external storage. These are definitions.
1979   return Definition;
1980 }
1981 
getActingDefinition()1982 VarDecl *VarDecl::getActingDefinition() {
1983   DefinitionKind Kind = isThisDeclarationADefinition();
1984   if (Kind != TentativeDefinition)
1985     return nullptr;
1986 
1987   VarDecl *LastTentative = nullptr;
1988   VarDecl *First = getFirstDecl();
1989   for (auto I : First->redecls()) {
1990     Kind = I->isThisDeclarationADefinition();
1991     if (Kind == Definition)
1992       return nullptr;
1993     else if (Kind == TentativeDefinition)
1994       LastTentative = I;
1995   }
1996   return LastTentative;
1997 }
1998 
getDefinition(ASTContext & C)1999 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2000   VarDecl *First = getFirstDecl();
2001   for (auto I : First->redecls()) {
2002     if (I->isThisDeclarationADefinition(C) == Definition)
2003       return I;
2004   }
2005   return nullptr;
2006 }
2007 
hasDefinition(ASTContext & C) const2008 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2009   DefinitionKind Kind = DeclarationOnly;
2010 
2011   const VarDecl *First = getFirstDecl();
2012   for (auto I : First->redecls()) {
2013     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2014     if (Kind == Definition)
2015       break;
2016   }
2017 
2018   return Kind;
2019 }
2020 
getAnyInitializer(const VarDecl * & D) const2021 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2022   for (auto I : redecls()) {
2023     if (auto Expr = I->getInit()) {
2024       D = I;
2025       return Expr;
2026     }
2027   }
2028   return nullptr;
2029 }
2030 
isOutOfLine() const2031 bool VarDecl::isOutOfLine() const {
2032   if (Decl::isOutOfLine())
2033     return true;
2034 
2035   if (!isStaticDataMember())
2036     return false;
2037 
2038   // If this static data member was instantiated from a static data member of
2039   // a class template, check whether that static data member was defined
2040   // out-of-line.
2041   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2042     return VD->isOutOfLine();
2043 
2044   return false;
2045 }
2046 
getOutOfLineDefinition()2047 VarDecl *VarDecl::getOutOfLineDefinition() {
2048   if (!isStaticDataMember())
2049     return nullptr;
2050 
2051   for (auto RD : redecls()) {
2052     if (RD->getLexicalDeclContext()->isFileContext())
2053       return RD;
2054   }
2055 
2056   return nullptr;
2057 }
2058 
setInit(Expr * I)2059 void VarDecl::setInit(Expr *I) {
2060   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2061     Eval->~EvaluatedStmt();
2062     getASTContext().Deallocate(Eval);
2063   }
2064 
2065   Init = I;
2066 }
2067 
isUsableInConstantExpressions(ASTContext & C) const2068 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2069   const LangOptions &Lang = C.getLangOpts();
2070 
2071   if (!Lang.CPlusPlus)
2072     return false;
2073 
2074   // In C++11, any variable of reference type can be used in a constant
2075   // expression if it is initialized by a constant expression.
2076   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2077     return true;
2078 
2079   // Only const objects can be used in constant expressions in C++. C++98 does
2080   // not require the variable to be non-volatile, but we consider this to be a
2081   // defect.
2082   if (!getType().isConstQualified() || getType().isVolatileQualified())
2083     return false;
2084 
2085   // In C++, const, non-volatile variables of integral or enumeration types
2086   // can be used in constant expressions.
2087   if (getType()->isIntegralOrEnumerationType())
2088     return true;
2089 
2090   // Additionally, in C++11, non-volatile constexpr variables can be used in
2091   // constant expressions.
2092   return Lang.CPlusPlus11 && isConstexpr();
2093 }
2094 
2095 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2096 /// form, which contains extra information on the evaluated value of the
2097 /// initializer.
ensureEvaluatedStmt() const2098 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2099   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2100   if (!Eval) {
2101     auto *S = Init.get<Stmt *>();
2102     // Note: EvaluatedStmt contains an APValue, which usually holds
2103     // resources not allocated from the ASTContext.  We need to do some
2104     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2105     // where we can detect whether there's anything to clean up or not.
2106     Eval = new (getASTContext()) EvaluatedStmt;
2107     Eval->Value = S;
2108     Init = Eval;
2109   }
2110   return Eval;
2111 }
2112 
evaluateValue() const2113 APValue *VarDecl::evaluateValue() const {
2114   SmallVector<PartialDiagnosticAt, 8> Notes;
2115   return evaluateValue(Notes);
2116 }
2117 
2118 namespace {
2119 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)2120 void DestroyAPValue(void* UntypedValue) {
2121   static_cast<APValue*>(UntypedValue)->~APValue();
2122 }
2123 } // namespace
2124 
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2125 APValue *VarDecl::evaluateValue(
2126     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2127   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2128 
2129   // We only produce notes indicating why an initializer is non-constant the
2130   // first time it is evaluated. FIXME: The notes won't always be emitted the
2131   // first time we try evaluation, so might not be produced at all.
2132   if (Eval->WasEvaluated)
2133     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2134 
2135   const auto *Init = cast<Expr>(Eval->Value);
2136   assert(!Init->isValueDependent());
2137 
2138   if (Eval->IsEvaluating) {
2139     // FIXME: Produce a diagnostic for self-initialization.
2140     Eval->CheckedICE = true;
2141     Eval->IsICE = false;
2142     return nullptr;
2143   }
2144 
2145   Eval->IsEvaluating = true;
2146 
2147   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2148                                             this, Notes);
2149 
2150   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2151   // or that it's empty (so that there's nothing to clean up) if evaluation
2152   // failed.
2153   if (!Result)
2154     Eval->Evaluated = APValue();
2155   else if (Eval->Evaluated.needsCleanup())
2156     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2157 
2158   Eval->IsEvaluating = false;
2159   Eval->WasEvaluated = true;
2160 
2161   // In C++11, we have determined whether the initializer was a constant
2162   // expression as a side-effect.
2163   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2164     Eval->CheckedICE = true;
2165     Eval->IsICE = Result && Notes.empty();
2166   }
2167 
2168   return Result ? &Eval->Evaluated : nullptr;
2169 }
2170 
checkInitIsICE() const2171 bool VarDecl::checkInitIsICE() const {
2172   // Initializers of weak variables are never ICEs.
2173   if (isWeak())
2174     return false;
2175 
2176   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2177   if (Eval->CheckedICE)
2178     // We have already checked whether this subexpression is an
2179     // integral constant expression.
2180     return Eval->IsICE;
2181 
2182   const auto *Init = cast<Expr>(Eval->Value);
2183   assert(!Init->isValueDependent());
2184 
2185   // In C++11, evaluate the initializer to check whether it's a constant
2186   // expression.
2187   if (getASTContext().getLangOpts().CPlusPlus11) {
2188     SmallVector<PartialDiagnosticAt, 8> Notes;
2189     evaluateValue(Notes);
2190     return Eval->IsICE;
2191   }
2192 
2193   // It's an ICE whether or not the definition we found is
2194   // out-of-line.  See DR 721 and the discussion in Clang PR
2195   // 6206 for details.
2196 
2197   if (Eval->CheckingICE)
2198     return false;
2199   Eval->CheckingICE = true;
2200 
2201   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2202   Eval->CheckingICE = false;
2203   Eval->CheckedICE = true;
2204   return Eval->IsICE;
2205 }
2206 
getInstantiatedFromStaticDataMember() const2207 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2208   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2209     return cast<VarDecl>(MSI->getInstantiatedFrom());
2210 
2211   return nullptr;
2212 }
2213 
getTemplateSpecializationKind() const2214 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2215   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2216     return Spec->getSpecializationKind();
2217 
2218   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2219     return MSI->getTemplateSpecializationKind();
2220 
2221   return TSK_Undeclared;
2222 }
2223 
getPointOfInstantiation() const2224 SourceLocation VarDecl::getPointOfInstantiation() const {
2225   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2226     return Spec->getPointOfInstantiation();
2227 
2228   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2229     return MSI->getPointOfInstantiation();
2230 
2231   return SourceLocation();
2232 }
2233 
getDescribedVarTemplate() const2234 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2235   return getASTContext().getTemplateOrSpecializationInfo(this)
2236       .dyn_cast<VarTemplateDecl *>();
2237 }
2238 
setDescribedVarTemplate(VarTemplateDecl * Template)2239 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2240   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2241 }
2242 
getMemberSpecializationInfo() const2243 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2244   if (isStaticDataMember())
2245     // FIXME: Remove ?
2246     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2247     return getASTContext().getTemplateOrSpecializationInfo(this)
2248         .dyn_cast<MemberSpecializationInfo *>();
2249   return nullptr;
2250 }
2251 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2252 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2253                                          SourceLocation PointOfInstantiation) {
2254   assert((isa<VarTemplateSpecializationDecl>(this) ||
2255           getMemberSpecializationInfo()) &&
2256          "not a variable or static data member template specialization");
2257 
2258   if (VarTemplateSpecializationDecl *Spec =
2259           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2260     Spec->setSpecializationKind(TSK);
2261     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2262         Spec->getPointOfInstantiation().isInvalid())
2263       Spec->setPointOfInstantiation(PointOfInstantiation);
2264   }
2265 
2266   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2267     MSI->setTemplateSpecializationKind(TSK);
2268     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2269         MSI->getPointOfInstantiation().isInvalid())
2270       MSI->setPointOfInstantiation(PointOfInstantiation);
2271   }
2272 }
2273 
2274 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2275 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2276                                             TemplateSpecializationKind TSK) {
2277   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2278          "Previous template or instantiation?");
2279   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2280 }
2281 
2282 //===----------------------------------------------------------------------===//
2283 // ParmVarDecl Implementation
2284 //===----------------------------------------------------------------------===//
2285 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2286 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2287                                  SourceLocation StartLoc,
2288                                  SourceLocation IdLoc, IdentifierInfo *Id,
2289                                  QualType T, TypeSourceInfo *TInfo,
2290                                  StorageClass S, Expr *DefArg) {
2291   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2292                                  S, DefArg);
2293 }
2294 
getOriginalType() const2295 QualType ParmVarDecl::getOriginalType() const {
2296   TypeSourceInfo *TSI = getTypeSourceInfo();
2297   QualType T = TSI ? TSI->getType() : getType();
2298   if (const auto *DT = dyn_cast<DecayedType>(T))
2299     return DT->getOriginalType();
2300   return T;
2301 }
2302 
CreateDeserialized(ASTContext & C,unsigned ID)2303 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2304   return new (C, ID)
2305       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2306                   nullptr, QualType(), nullptr, SC_None, nullptr);
2307 }
2308 
getSourceRange() const2309 SourceRange ParmVarDecl::getSourceRange() const {
2310   if (!hasInheritedDefaultArg()) {
2311     SourceRange ArgRange = getDefaultArgRange();
2312     if (ArgRange.isValid())
2313       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2314   }
2315 
2316   // DeclaratorDecl considers the range of postfix types as overlapping with the
2317   // declaration name, but this is not the case with parameters in ObjC methods.
2318   if (isa<ObjCMethodDecl>(getDeclContext()))
2319     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2320 
2321   return DeclaratorDecl::getSourceRange();
2322 }
2323 
getDefaultArg()2324 Expr *ParmVarDecl::getDefaultArg() {
2325   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2326   assert(!hasUninstantiatedDefaultArg() &&
2327          "Default argument is not yet instantiated!");
2328 
2329   Expr *Arg = getInit();
2330   if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2331     return E->getSubExpr();
2332 
2333   return Arg;
2334 }
2335 
getDefaultArgRange() const2336 SourceRange ParmVarDecl::getDefaultArgRange() const {
2337   if (const Expr *E = getInit())
2338     return E->getSourceRange();
2339 
2340   if (hasUninstantiatedDefaultArg())
2341     return getUninstantiatedDefaultArg()->getSourceRange();
2342 
2343   return SourceRange();
2344 }
2345 
isParameterPack() const2346 bool ParmVarDecl::isParameterPack() const {
2347   return isa<PackExpansionType>(getType());
2348 }
2349 
setParameterIndexLarge(unsigned parameterIndex)2350 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2351   getASTContext().setParameterIndex(this, parameterIndex);
2352   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2353 }
2354 
getParameterIndexLarge() const2355 unsigned ParmVarDecl::getParameterIndexLarge() const {
2356   return getASTContext().getParameterIndex(this);
2357 }
2358 
2359 //===----------------------------------------------------------------------===//
2360 // FunctionDecl Implementation
2361 //===----------------------------------------------------------------------===//
2362 
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2363 void FunctionDecl::getNameForDiagnostic(
2364     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2365   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2366   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2367   if (TemplateArgs)
2368     TemplateSpecializationType::PrintTemplateArgumentList(
2369         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2370 }
2371 
isVariadic() const2372 bool FunctionDecl::isVariadic() const {
2373   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2374     return FT->isVariadic();
2375   return false;
2376 }
2377 
hasBody(const FunctionDecl * & Definition) const2378 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2379   for (auto I : redecls()) {
2380     if (I->Body || I->IsLateTemplateParsed) {
2381       Definition = I;
2382       return true;
2383     }
2384   }
2385 
2386   return false;
2387 }
2388 
hasTrivialBody() const2389 bool FunctionDecl::hasTrivialBody() const
2390 {
2391   Stmt *S = getBody();
2392   if (!S) {
2393     // Since we don't have a body for this function, we don't know if it's
2394     // trivial or not.
2395     return false;
2396   }
2397 
2398   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2399     return true;
2400   return false;
2401 }
2402 
isDefined(const FunctionDecl * & Definition) const2403 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2404   for (auto I : redecls()) {
2405     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2406         I->hasAttr<AliasAttr>()) {
2407       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2408       return true;
2409     }
2410   }
2411 
2412   return false;
2413 }
2414 
getBody(const FunctionDecl * & Definition) const2415 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2416   if (!hasBody(Definition))
2417     return nullptr;
2418 
2419   if (Definition->Body)
2420     return Definition->Body.get(getASTContext().getExternalSource());
2421 
2422   return nullptr;
2423 }
2424 
setBody(Stmt * B)2425 void FunctionDecl::setBody(Stmt *B) {
2426   Body = B;
2427   if (B)
2428     EndRangeLoc = B->getLocEnd();
2429 }
2430 
setPure(bool P)2431 void FunctionDecl::setPure(bool P) {
2432   IsPure = P;
2433   if (P)
2434     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2435       Parent->markedVirtualFunctionPure();
2436 }
2437 
2438 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2439 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2440   IdentifierInfo *II = ND->getIdentifier();
2441   return II && II->isStr(Str);
2442 }
2443 
isMain() const2444 bool FunctionDecl::isMain() const {
2445   const TranslationUnitDecl *tunit =
2446     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2447   return tunit &&
2448          !tunit->getASTContext().getLangOpts().Freestanding &&
2449          isNamed(this, "main");
2450 }
2451 
isMSVCRTEntryPoint() const2452 bool FunctionDecl::isMSVCRTEntryPoint() const {
2453   const TranslationUnitDecl *TUnit =
2454       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2455   if (!TUnit)
2456     return false;
2457 
2458   // Even though we aren't really targeting MSVCRT if we are freestanding,
2459   // semantic analysis for these functions remains the same.
2460 
2461   // MSVCRT entry points only exist on MSVCRT targets.
2462   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2463     return false;
2464 
2465   // Nameless functions like constructors cannot be entry points.
2466   if (!getIdentifier())
2467     return false;
2468 
2469   return llvm::StringSwitch<bool>(getName())
2470       .Cases("main",     // an ANSI console app
2471              "wmain",    // a Unicode console App
2472              "WinMain",  // an ANSI GUI app
2473              "wWinMain", // a Unicode GUI app
2474              "DllMain",  // a DLL
2475              true)
2476       .Default(false);
2477 }
2478 
isReservedGlobalPlacementOperator() const2479 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2480   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2481   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2482          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2483          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2484          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2485 
2486   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2487     return false;
2488 
2489   const auto *proto = getType()->castAs<FunctionProtoType>();
2490   if (proto->getNumParams() != 2 || proto->isVariadic())
2491     return false;
2492 
2493   ASTContext &Context =
2494     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2495       ->getASTContext();
2496 
2497   // The result type and first argument type are constant across all
2498   // these operators.  The second argument must be exactly void*.
2499   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2500 }
2501 
isReplaceableGlobalAllocationFunction() const2502 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2503   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2504     return false;
2505   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2506       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2507       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2508       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2509     return false;
2510 
2511   if (isa<CXXRecordDecl>(getDeclContext()))
2512     return false;
2513 
2514   // This can only fail for an invalid 'operator new' declaration.
2515   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2516     return false;
2517 
2518   const auto *FPT = getType()->castAs<FunctionProtoType>();
2519   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2520     return false;
2521 
2522   // If this is a single-parameter function, it must be a replaceable global
2523   // allocation or deallocation function.
2524   if (FPT->getNumParams() == 1)
2525     return true;
2526 
2527   // Otherwise, we're looking for a second parameter whose type is
2528   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2529   QualType Ty = FPT->getParamType(1);
2530   ASTContext &Ctx = getASTContext();
2531   if (Ctx.getLangOpts().SizedDeallocation &&
2532       Ctx.hasSameType(Ty, Ctx.getSizeType()))
2533     return true;
2534   if (!Ty->isReferenceType())
2535     return false;
2536   Ty = Ty->getPointeeType();
2537   if (Ty.getCVRQualifiers() != Qualifiers::Const)
2538     return false;
2539   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2540   return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2541 }
2542 
getLanguageLinkage() const2543 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2544   return getDeclLanguageLinkage(*this);
2545 }
2546 
isExternC() const2547 bool FunctionDecl::isExternC() const {
2548   return isDeclExternC(*this);
2549 }
2550 
isInExternCContext() const2551 bool FunctionDecl::isInExternCContext() const {
2552   return getLexicalDeclContext()->isExternCContext();
2553 }
2554 
isInExternCXXContext() const2555 bool FunctionDecl::isInExternCXXContext() const {
2556   return getLexicalDeclContext()->isExternCXXContext();
2557 }
2558 
isGlobal() const2559 bool FunctionDecl::isGlobal() const {
2560   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2561     return Method->isStatic();
2562 
2563   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2564     return false;
2565 
2566   for (const DeclContext *DC = getDeclContext();
2567        DC->isNamespace();
2568        DC = DC->getParent()) {
2569     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2570       if (!Namespace->getDeclName())
2571         return false;
2572       break;
2573     }
2574   }
2575 
2576   return true;
2577 }
2578 
isNoReturn() const2579 bool FunctionDecl::isNoReturn() const {
2580   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2581          hasAttr<C11NoReturnAttr>() ||
2582          getType()->getAs<FunctionType>()->getNoReturnAttr();
2583 }
2584 
2585 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2586 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2587   redeclarable_base::setPreviousDecl(PrevDecl);
2588 
2589   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2590     FunctionTemplateDecl *PrevFunTmpl
2591       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2592     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2593     FunTmpl->setPreviousDecl(PrevFunTmpl);
2594   }
2595 
2596   if (PrevDecl && PrevDecl->IsInline)
2597     IsInline = true;
2598 }
2599 
getCanonicalDecl()2600 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2601 
2602 /// \brief Returns a value indicating whether this function
2603 /// corresponds to a builtin function.
2604 ///
2605 /// The function corresponds to a built-in function if it is
2606 /// declared at translation scope or within an extern "C" block and
2607 /// its name matches with the name of a builtin. The returned value
2608 /// will be 0 for functions that do not correspond to a builtin, a
2609 /// value of type \c Builtin::ID if in the target-independent range
2610 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2611 unsigned FunctionDecl::getBuiltinID() const {
2612   if (!getIdentifier())
2613     return 0;
2614 
2615   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2616   if (!BuiltinID)
2617     return 0;
2618 
2619   ASTContext &Context = getASTContext();
2620   if (Context.getLangOpts().CPlusPlus) {
2621     const auto *LinkageDecl =
2622         dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
2623     // In C++, the first declaration of a builtin is always inside an implicit
2624     // extern "C".
2625     // FIXME: A recognised library function may not be directly in an extern "C"
2626     // declaration, for instance "extern "C" { namespace std { decl } }".
2627     if (!LinkageDecl) {
2628       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2629           Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2630           isInStdNamespace())
2631         return Builtin::BI__GetExceptionInfo;
2632       return 0;
2633     }
2634     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2635       return 0;
2636   }
2637 
2638   // If the function is marked "overloadable", it has a different mangled name
2639   // and is not the C library function.
2640   if (hasAttr<OverloadableAttr>())
2641     return 0;
2642 
2643   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2644     return BuiltinID;
2645 
2646   // This function has the name of a known C library
2647   // function. Determine whether it actually refers to the C library
2648   // function or whether it just has the same name.
2649 
2650   // If this is a static function, it's not a builtin.
2651   if (getStorageClass() == SC_Static)
2652     return 0;
2653 
2654   return BuiltinID;
2655 }
2656 
2657 
2658 /// getNumParams - Return the number of parameters this function must have
2659 /// based on its FunctionType.  This is the length of the ParamInfo array
2660 /// after it has been created.
getNumParams() const2661 unsigned FunctionDecl::getNumParams() const {
2662   const auto *FPT = getType()->getAs<FunctionProtoType>();
2663   return FPT ? FPT->getNumParams() : 0;
2664 }
2665 
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2666 void FunctionDecl::setParams(ASTContext &C,
2667                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2668   assert(!ParamInfo && "Already has param info!");
2669   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2670 
2671   // Zero params -> null pointer.
2672   if (!NewParamInfo.empty()) {
2673     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2674     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2675   }
2676 }
2677 
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2678 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2679   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2680 
2681   if (!NewDecls.empty()) {
2682     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2683     std::copy(NewDecls.begin(), NewDecls.end(), A);
2684     DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2685     // Move declarations introduced in prototype to the function context.
2686     for (auto I : NewDecls) {
2687       DeclContext *DC = I->getDeclContext();
2688       // Forward-declared reference to an enumeration is not added to
2689       // declaration scope, so skip declaration that is absent from its
2690       // declaration contexts.
2691       if (DC->containsDecl(I)) {
2692           DC->removeDecl(I);
2693           I->setDeclContext(this);
2694           addDecl(I);
2695       }
2696     }
2697   }
2698 }
2699 
2700 /// getMinRequiredArguments - Returns the minimum number of arguments
2701 /// needed to call this function. This may be fewer than the number of
2702 /// function parameters, if some of the parameters have default
2703 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const2704 unsigned FunctionDecl::getMinRequiredArguments() const {
2705   if (!getASTContext().getLangOpts().CPlusPlus)
2706     return getNumParams();
2707 
2708   unsigned NumRequiredArgs = 0;
2709   for (auto *Param : params())
2710     if (!Param->isParameterPack() && !Param->hasDefaultArg())
2711       ++NumRequiredArgs;
2712   return NumRequiredArgs;
2713 }
2714 
2715 /// \brief The combination of the extern and inline keywords under MSVC forces
2716 /// the function to be required.
2717 ///
2718 /// Note: This function assumes that we will only get called when isInlined()
2719 /// would return true for this FunctionDecl.
isMSExternInline() const2720 bool FunctionDecl::isMSExternInline() const {
2721   assert(isInlined() && "expected to get called on an inlined function!");
2722 
2723   const ASTContext &Context = getASTContext();
2724   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2725       !hasAttr<DLLExportAttr>())
2726     return false;
2727 
2728   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2729        FD = FD->getPreviousDecl())
2730     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2731       return true;
2732 
2733   return false;
2734 }
2735 
redeclForcesDefMSVC(const FunctionDecl * Redecl)2736 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2737   if (Redecl->getStorageClass() != SC_Extern)
2738     return false;
2739 
2740   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2741        FD = FD->getPreviousDecl())
2742     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2743       return false;
2744 
2745   return true;
2746 }
2747 
RedeclForcesDefC99(const FunctionDecl * Redecl)2748 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2749   // Only consider file-scope declarations in this test.
2750   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2751     return false;
2752 
2753   // Only consider explicit declarations; the presence of a builtin for a
2754   // libcall shouldn't affect whether a definition is externally visible.
2755   if (Redecl->isImplicit())
2756     return false;
2757 
2758   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2759     return true; // Not an inline definition
2760 
2761   return false;
2762 }
2763 
2764 /// \brief For a function declaration in C or C++, determine whether this
2765 /// declaration causes the definition to be externally visible.
2766 ///
2767 /// For instance, this determines if adding the current declaration to the set
2768 /// of redeclarations of the given functions causes
2769 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2770 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2771   assert(!doesThisDeclarationHaveABody() &&
2772          "Must have a declaration without a body.");
2773 
2774   ASTContext &Context = getASTContext();
2775 
2776   if (Context.getLangOpts().MSVCCompat) {
2777     const FunctionDecl *Definition;
2778     if (hasBody(Definition) && Definition->isInlined() &&
2779         redeclForcesDefMSVC(this))
2780       return true;
2781   }
2782 
2783   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2784     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2785     // an externally visible definition.
2786     //
2787     // FIXME: What happens if gnu_inline gets added on after the first
2788     // declaration?
2789     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2790       return false;
2791 
2792     const FunctionDecl *Prev = this;
2793     bool FoundBody = false;
2794     while ((Prev = Prev->getPreviousDecl())) {
2795       FoundBody |= Prev->Body.isValid();
2796 
2797       if (Prev->Body) {
2798         // If it's not the case that both 'inline' and 'extern' are
2799         // specified on the definition, then it is always externally visible.
2800         if (!Prev->isInlineSpecified() ||
2801             Prev->getStorageClass() != SC_Extern)
2802           return false;
2803       } else if (Prev->isInlineSpecified() &&
2804                  Prev->getStorageClass() != SC_Extern) {
2805         return false;
2806       }
2807     }
2808     return FoundBody;
2809   }
2810 
2811   if (Context.getLangOpts().CPlusPlus)
2812     return false;
2813 
2814   // C99 6.7.4p6:
2815   //   [...] If all of the file scope declarations for a function in a
2816   //   translation unit include the inline function specifier without extern,
2817   //   then the definition in that translation unit is an inline definition.
2818   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2819     return false;
2820   const FunctionDecl *Prev = this;
2821   bool FoundBody = false;
2822   while ((Prev = Prev->getPreviousDecl())) {
2823     FoundBody |= Prev->Body.isValid();
2824     if (RedeclForcesDefC99(Prev))
2825       return false;
2826   }
2827   return FoundBody;
2828 }
2829 
getReturnTypeSourceRange() const2830 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2831   const TypeSourceInfo *TSI = getTypeSourceInfo();
2832   if (!TSI)
2833     return SourceRange();
2834   FunctionTypeLoc FTL =
2835       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2836   if (!FTL)
2837     return SourceRange();
2838 
2839   // Skip self-referential return types.
2840   const SourceManager &SM = getASTContext().getSourceManager();
2841   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2842   SourceLocation Boundary = getNameInfo().getLocStart();
2843   if (RTRange.isInvalid() || Boundary.isInvalid() ||
2844       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2845     return SourceRange();
2846 
2847   return RTRange;
2848 }
2849 
hasUnusedResultAttr() const2850 bool FunctionDecl::hasUnusedResultAttr() const {
2851   QualType RetType = getReturnType();
2852   if (RetType->isRecordType()) {
2853     const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2854     const auto *MD = dyn_cast<CXXMethodDecl>(this);
2855     if (Ret && Ret->hasAttr<WarnUnusedResultAttr>() &&
2856         !(MD && MD->getCorrespondingMethodInClass(Ret, true)))
2857       return true;
2858   }
2859   return hasAttr<WarnUnusedResultAttr>();
2860 }
2861 
2862 /// \brief For an inline function definition in C, or for a gnu_inline function
2863 /// in C++, determine whether the definition will be externally visible.
2864 ///
2865 /// Inline function definitions are always available for inlining optimizations.
2866 /// However, depending on the language dialect, declaration specifiers, and
2867 /// attributes, the definition of an inline function may or may not be
2868 /// "externally" visible to other translation units in the program.
2869 ///
2870 /// In C99, inline definitions are not externally visible by default. However,
2871 /// if even one of the global-scope declarations is marked "extern inline", the
2872 /// inline definition becomes externally visible (C99 6.7.4p6).
2873 ///
2874 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2875 /// definition, we use the GNU semantics for inline, which are nearly the
2876 /// opposite of C99 semantics. In particular, "inline" by itself will create
2877 /// an externally visible symbol, but "extern inline" will not create an
2878 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2879 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2880   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2881   assert(isInlined() && "Function must be inline");
2882   ASTContext &Context = getASTContext();
2883 
2884   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2885     // Note: If you change the logic here, please change
2886     // doesDeclarationForceExternallyVisibleDefinition as well.
2887     //
2888     // If it's not the case that both 'inline' and 'extern' are
2889     // specified on the definition, then this inline definition is
2890     // externally visible.
2891     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2892       return true;
2893 
2894     // If any declaration is 'inline' but not 'extern', then this definition
2895     // is externally visible.
2896     for (auto Redecl : redecls()) {
2897       if (Redecl->isInlineSpecified() &&
2898           Redecl->getStorageClass() != SC_Extern)
2899         return true;
2900     }
2901 
2902     return false;
2903   }
2904 
2905   // The rest of this function is C-only.
2906   assert(!Context.getLangOpts().CPlusPlus &&
2907          "should not use C inline rules in C++");
2908 
2909   // C99 6.7.4p6:
2910   //   [...] If all of the file scope declarations for a function in a
2911   //   translation unit include the inline function specifier without extern,
2912   //   then the definition in that translation unit is an inline definition.
2913   for (auto Redecl : redecls()) {
2914     if (RedeclForcesDefC99(Redecl))
2915       return true;
2916   }
2917 
2918   // C99 6.7.4p6:
2919   //   An inline definition does not provide an external definition for the
2920   //   function, and does not forbid an external definition in another
2921   //   translation unit.
2922   return false;
2923 }
2924 
2925 /// getOverloadedOperator - Which C++ overloaded operator this
2926 /// function represents, if any.
getOverloadedOperator() const2927 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2928   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2929     return getDeclName().getCXXOverloadedOperator();
2930   else
2931     return OO_None;
2932 }
2933 
2934 /// getLiteralIdentifier - The literal suffix identifier this function
2935 /// represents, if any.
getLiteralIdentifier() const2936 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2937   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2938     return getDeclName().getCXXLiteralIdentifier();
2939   else
2940     return nullptr;
2941 }
2942 
getTemplatedKind() const2943 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2944   if (TemplateOrSpecialization.isNull())
2945     return TK_NonTemplate;
2946   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2947     return TK_FunctionTemplate;
2948   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2949     return TK_MemberSpecialization;
2950   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2951     return TK_FunctionTemplateSpecialization;
2952   if (TemplateOrSpecialization.is
2953                                <DependentFunctionTemplateSpecializationInfo*>())
2954     return TK_DependentFunctionTemplateSpecialization;
2955 
2956   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2957 }
2958 
getInstantiatedFromMemberFunction() const2959 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2960   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2961     return cast<FunctionDecl>(Info->getInstantiatedFrom());
2962 
2963   return nullptr;
2964 }
2965 
2966 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)2967 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2968                                                FunctionDecl *FD,
2969                                                TemplateSpecializationKind TSK) {
2970   assert(TemplateOrSpecialization.isNull() &&
2971          "Member function is already a specialization");
2972   MemberSpecializationInfo *Info
2973     = new (C) MemberSpecializationInfo(FD, TSK);
2974   TemplateOrSpecialization = Info;
2975 }
2976 
isImplicitlyInstantiable() const2977 bool FunctionDecl::isImplicitlyInstantiable() const {
2978   // If the function is invalid, it can't be implicitly instantiated.
2979   if (isInvalidDecl())
2980     return false;
2981 
2982   switch (getTemplateSpecializationKind()) {
2983   case TSK_Undeclared:
2984   case TSK_ExplicitInstantiationDefinition:
2985     return false;
2986 
2987   case TSK_ImplicitInstantiation:
2988     return true;
2989 
2990   // It is possible to instantiate TSK_ExplicitSpecialization kind
2991   // if the FunctionDecl has a class scope specialization pattern.
2992   case TSK_ExplicitSpecialization:
2993     return getClassScopeSpecializationPattern() != nullptr;
2994 
2995   case TSK_ExplicitInstantiationDeclaration:
2996     // Handled below.
2997     break;
2998   }
2999 
3000   // Find the actual template from which we will instantiate.
3001   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3002   bool HasPattern = false;
3003   if (PatternDecl)
3004     HasPattern = PatternDecl->hasBody(PatternDecl);
3005 
3006   // C++0x [temp.explicit]p9:
3007   //   Except for inline functions, other explicit instantiation declarations
3008   //   have the effect of suppressing the implicit instantiation of the entity
3009   //   to which they refer.
3010   if (!HasPattern || !PatternDecl)
3011     return true;
3012 
3013   return PatternDecl->isInlined();
3014 }
3015 
isTemplateInstantiation() const3016 bool FunctionDecl::isTemplateInstantiation() const {
3017   switch (getTemplateSpecializationKind()) {
3018     case TSK_Undeclared:
3019     case TSK_ExplicitSpecialization:
3020       return false;
3021     case TSK_ImplicitInstantiation:
3022     case TSK_ExplicitInstantiationDeclaration:
3023     case TSK_ExplicitInstantiationDefinition:
3024       return true;
3025   }
3026   llvm_unreachable("All TSK values handled.");
3027 }
3028 
getTemplateInstantiationPattern() const3029 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3030   // Handle class scope explicit specialization special case.
3031   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3032     return getClassScopeSpecializationPattern();
3033 
3034   // If this is a generic lambda call operator specialization, its
3035   // instantiation pattern is always its primary template's pattern
3036   // even if its primary template was instantiated from another
3037   // member template (which happens with nested generic lambdas).
3038   // Since a lambda's call operator's body is transformed eagerly,
3039   // we don't have to go hunting for a prototype definition template
3040   // (i.e. instantiated-from-member-template) to use as an instantiation
3041   // pattern.
3042 
3043   if (isGenericLambdaCallOperatorSpecialization(
3044           dyn_cast<CXXMethodDecl>(this))) {
3045     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3046                                    "generated from a primary call operator "
3047                                    "template");
3048     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3049            "A generic lambda call operator template must always have a body - "
3050            "even if instantiated from a prototype (i.e. as written) member "
3051            "template");
3052     return getPrimaryTemplate()->getTemplatedDecl();
3053   }
3054 
3055   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3056     while (Primary->getInstantiatedFromMemberTemplate()) {
3057       // If we have hit a point where the user provided a specialization of
3058       // this template, we're done looking.
3059       if (Primary->isMemberSpecialization())
3060         break;
3061       Primary = Primary->getInstantiatedFromMemberTemplate();
3062     }
3063 
3064     return Primary->getTemplatedDecl();
3065   }
3066 
3067   return getInstantiatedFromMemberFunction();
3068 }
3069 
getPrimaryTemplate() const3070 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3071   if (FunctionTemplateSpecializationInfo *Info
3072         = TemplateOrSpecialization
3073             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3074     return Info->Template.getPointer();
3075   }
3076   return nullptr;
3077 }
3078 
getClassScopeSpecializationPattern() const3079 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3080     return getASTContext().getClassScopeSpecializationPattern(this);
3081 }
3082 
3083 const TemplateArgumentList *
getTemplateSpecializationArgs() const3084 FunctionDecl::getTemplateSpecializationArgs() const {
3085   if (FunctionTemplateSpecializationInfo *Info
3086         = TemplateOrSpecialization
3087             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3088     return Info->TemplateArguments;
3089   }
3090   return nullptr;
3091 }
3092 
3093 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3094 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3095   if (FunctionTemplateSpecializationInfo *Info
3096         = TemplateOrSpecialization
3097             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3098     return Info->TemplateArgumentsAsWritten;
3099   }
3100   return nullptr;
3101 }
3102 
3103 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3104 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3105                                                 FunctionTemplateDecl *Template,
3106                                      const TemplateArgumentList *TemplateArgs,
3107                                                 void *InsertPos,
3108                                                 TemplateSpecializationKind TSK,
3109                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3110                                           SourceLocation PointOfInstantiation) {
3111   assert(TSK != TSK_Undeclared &&
3112          "Must specify the type of function template specialization");
3113   FunctionTemplateSpecializationInfo *Info
3114     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3115   if (!Info)
3116     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3117                                                       TemplateArgs,
3118                                                       TemplateArgsAsWritten,
3119                                                       PointOfInstantiation);
3120   TemplateOrSpecialization = Info;
3121   Template->addSpecialization(Info, InsertPos);
3122 }
3123 
3124 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3125 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3126                                     const UnresolvedSetImpl &Templates,
3127                              const TemplateArgumentListInfo &TemplateArgs) {
3128   assert(TemplateOrSpecialization.isNull());
3129   DependentFunctionTemplateSpecializationInfo *Info =
3130       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3131                                                           TemplateArgs);
3132   TemplateOrSpecialization = Info;
3133 }
3134 
3135 DependentFunctionTemplateSpecializationInfo *
Create(ASTContext & Context,const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3136 DependentFunctionTemplateSpecializationInfo::Create(
3137     ASTContext &Context, const UnresolvedSetImpl &Ts,
3138     const TemplateArgumentListInfo &TArgs) {
3139   void *Buffer = Context.Allocate(
3140       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3141           TArgs.size(), Ts.size()));
3142   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3143 }
3144 
3145 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3146 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3147                                       const TemplateArgumentListInfo &TArgs)
3148   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3149 
3150   NumTemplates = Ts.size();
3151   NumArgs = TArgs.size();
3152 
3153   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3154   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3155     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3156 
3157   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3158   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3159     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3160 }
3161 
getTemplateSpecializationKind() const3162 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3163   // For a function template specialization, query the specialization
3164   // information object.
3165   FunctionTemplateSpecializationInfo *FTSInfo
3166     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3167   if (FTSInfo)
3168     return FTSInfo->getTemplateSpecializationKind();
3169 
3170   MemberSpecializationInfo *MSInfo
3171     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3172   if (MSInfo)
3173     return MSInfo->getTemplateSpecializationKind();
3174 
3175   return TSK_Undeclared;
3176 }
3177 
3178 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3179 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3180                                           SourceLocation PointOfInstantiation) {
3181   if (FunctionTemplateSpecializationInfo *FTSInfo
3182         = TemplateOrSpecialization.dyn_cast<
3183                                     FunctionTemplateSpecializationInfo*>()) {
3184     FTSInfo->setTemplateSpecializationKind(TSK);
3185     if (TSK != TSK_ExplicitSpecialization &&
3186         PointOfInstantiation.isValid() &&
3187         FTSInfo->getPointOfInstantiation().isInvalid())
3188       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3189   } else if (MemberSpecializationInfo *MSInfo
3190              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3191     MSInfo->setTemplateSpecializationKind(TSK);
3192     if (TSK != TSK_ExplicitSpecialization &&
3193         PointOfInstantiation.isValid() &&
3194         MSInfo->getPointOfInstantiation().isInvalid())
3195       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3196   } else
3197     llvm_unreachable("Function cannot have a template specialization kind");
3198 }
3199 
getPointOfInstantiation() const3200 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3201   if (FunctionTemplateSpecializationInfo *FTSInfo
3202         = TemplateOrSpecialization.dyn_cast<
3203                                         FunctionTemplateSpecializationInfo*>())
3204     return FTSInfo->getPointOfInstantiation();
3205   else if (MemberSpecializationInfo *MSInfo
3206              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3207     return MSInfo->getPointOfInstantiation();
3208 
3209   return SourceLocation();
3210 }
3211 
isOutOfLine() const3212 bool FunctionDecl::isOutOfLine() const {
3213   if (Decl::isOutOfLine())
3214     return true;
3215 
3216   // If this function was instantiated from a member function of a
3217   // class template, check whether that member function was defined out-of-line.
3218   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3219     const FunctionDecl *Definition;
3220     if (FD->hasBody(Definition))
3221       return Definition->isOutOfLine();
3222   }
3223 
3224   // If this function was instantiated from a function template,
3225   // check whether that function template was defined out-of-line.
3226   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3227     const FunctionDecl *Definition;
3228     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3229       return Definition->isOutOfLine();
3230   }
3231 
3232   return false;
3233 }
3234 
getSourceRange() const3235 SourceRange FunctionDecl::getSourceRange() const {
3236   return SourceRange(getOuterLocStart(), EndRangeLoc);
3237 }
3238 
getMemoryFunctionKind() const3239 unsigned FunctionDecl::getMemoryFunctionKind() const {
3240   IdentifierInfo *FnInfo = getIdentifier();
3241 
3242   if (!FnInfo)
3243     return 0;
3244 
3245   // Builtin handling.
3246   switch (getBuiltinID()) {
3247   case Builtin::BI__builtin_memset:
3248   case Builtin::BI__builtin___memset_chk:
3249   case Builtin::BImemset:
3250     return Builtin::BImemset;
3251 
3252   case Builtin::BI__builtin_memcpy:
3253   case Builtin::BI__builtin___memcpy_chk:
3254   case Builtin::BImemcpy:
3255     return Builtin::BImemcpy;
3256 
3257   case Builtin::BI__builtin_memmove:
3258   case Builtin::BI__builtin___memmove_chk:
3259   case Builtin::BImemmove:
3260     return Builtin::BImemmove;
3261 
3262   case Builtin::BIstrlcpy:
3263   case Builtin::BI__builtin___strlcpy_chk:
3264     return Builtin::BIstrlcpy;
3265 
3266   case Builtin::BIstrlcat:
3267   case Builtin::BI__builtin___strlcat_chk:
3268     return Builtin::BIstrlcat;
3269 
3270   case Builtin::BI__builtin_memcmp:
3271   case Builtin::BImemcmp:
3272     return Builtin::BImemcmp;
3273 
3274   case Builtin::BI__builtin_strncpy:
3275   case Builtin::BI__builtin___strncpy_chk:
3276   case Builtin::BIstrncpy:
3277     return Builtin::BIstrncpy;
3278 
3279   case Builtin::BI__builtin_strncmp:
3280   case Builtin::BIstrncmp:
3281     return Builtin::BIstrncmp;
3282 
3283   case Builtin::BI__builtin_strncasecmp:
3284   case Builtin::BIstrncasecmp:
3285     return Builtin::BIstrncasecmp;
3286 
3287   case Builtin::BI__builtin_strncat:
3288   case Builtin::BI__builtin___strncat_chk:
3289   case Builtin::BIstrncat:
3290     return Builtin::BIstrncat;
3291 
3292   case Builtin::BI__builtin_strndup:
3293   case Builtin::BIstrndup:
3294     return Builtin::BIstrndup;
3295 
3296   case Builtin::BI__builtin_strlen:
3297   case Builtin::BIstrlen:
3298     return Builtin::BIstrlen;
3299 
3300   default:
3301     if (isExternC()) {
3302       if (FnInfo->isStr("memset"))
3303         return Builtin::BImemset;
3304       else if (FnInfo->isStr("memcpy"))
3305         return Builtin::BImemcpy;
3306       else if (FnInfo->isStr("memmove"))
3307         return Builtin::BImemmove;
3308       else if (FnInfo->isStr("memcmp"))
3309         return Builtin::BImemcmp;
3310       else if (FnInfo->isStr("strncpy"))
3311         return Builtin::BIstrncpy;
3312       else if (FnInfo->isStr("strncmp"))
3313         return Builtin::BIstrncmp;
3314       else if (FnInfo->isStr("strncasecmp"))
3315         return Builtin::BIstrncasecmp;
3316       else if (FnInfo->isStr("strncat"))
3317         return Builtin::BIstrncat;
3318       else if (FnInfo->isStr("strndup"))
3319         return Builtin::BIstrndup;
3320       else if (FnInfo->isStr("strlen"))
3321         return Builtin::BIstrlen;
3322     }
3323     break;
3324   }
3325   return 0;
3326 }
3327 
3328 //===----------------------------------------------------------------------===//
3329 // FieldDecl Implementation
3330 //===----------------------------------------------------------------------===//
3331 
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)3332 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3333                              SourceLocation StartLoc, SourceLocation IdLoc,
3334                              IdentifierInfo *Id, QualType T,
3335                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3336                              InClassInitStyle InitStyle) {
3337   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3338                                BW, Mutable, InitStyle);
3339 }
3340 
CreateDeserialized(ASTContext & C,unsigned ID)3341 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3342   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3343                                SourceLocation(), nullptr, QualType(), nullptr,
3344                                nullptr, false, ICIS_NoInit);
3345 }
3346 
isAnonymousStructOrUnion() const3347 bool FieldDecl::isAnonymousStructOrUnion() const {
3348   if (!isImplicit() || getDeclName())
3349     return false;
3350 
3351   if (const auto *Record = getType()->getAs<RecordType>())
3352     return Record->getDecl()->isAnonymousStructOrUnion();
3353 
3354   return false;
3355 }
3356 
getBitWidthValue(const ASTContext & Ctx) const3357 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3358   assert(isBitField() && "not a bitfield");
3359   auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3360   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3361 }
3362 
getFieldIndex() const3363 unsigned FieldDecl::getFieldIndex() const {
3364   const FieldDecl *Canonical = getCanonicalDecl();
3365   if (Canonical != this)
3366     return Canonical->getFieldIndex();
3367 
3368   if (CachedFieldIndex) return CachedFieldIndex - 1;
3369 
3370   unsigned Index = 0;
3371   const RecordDecl *RD = getParent();
3372 
3373   for (auto *Field : RD->fields()) {
3374     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3375     ++Index;
3376   }
3377 
3378   assert(CachedFieldIndex && "failed to find field in parent");
3379   return CachedFieldIndex - 1;
3380 }
3381 
getSourceRange() const3382 SourceRange FieldDecl::getSourceRange() const {
3383   switch (InitStorage.getInt()) {
3384   // All three of these cases store an optional Expr*.
3385   case ISK_BitWidthOrNothing:
3386   case ISK_InClassCopyInit:
3387   case ISK_InClassListInit:
3388     if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer()))
3389       return SourceRange(getInnerLocStart(), E->getLocEnd());
3390     // FALLTHROUGH
3391 
3392   case ISK_CapturedVLAType:
3393     return DeclaratorDecl::getSourceRange();
3394   }
3395   llvm_unreachable("bad init storage kind");
3396 }
3397 
setCapturedVLAType(const VariableArrayType * VLAType)3398 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3399   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3400          "capturing type in non-lambda or captured record.");
3401   assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3402          InitStorage.getPointer() == nullptr &&
3403          "bit width, initializer or captured type already set");
3404   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3405                                ISK_CapturedVLAType);
3406 }
3407 
3408 //===----------------------------------------------------------------------===//
3409 // TagDecl Implementation
3410 //===----------------------------------------------------------------------===//
3411 
getOuterLocStart() const3412 SourceLocation TagDecl::getOuterLocStart() const {
3413   return getTemplateOrInnerLocStart(this);
3414 }
3415 
getSourceRange() const3416 SourceRange TagDecl::getSourceRange() const {
3417   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3418   return SourceRange(getOuterLocStart(), E);
3419 }
3420 
getCanonicalDecl()3421 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3422 
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3423 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3424   TypedefNameDeclOrQualifier = TDD;
3425   if (const Type *T = getTypeForDecl()) {
3426     (void)T;
3427     assert(T->isLinkageValid());
3428   }
3429   assert(isLinkageValid());
3430 }
3431 
startDefinition()3432 void TagDecl::startDefinition() {
3433   IsBeingDefined = true;
3434 
3435   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3436     struct CXXRecordDecl::DefinitionData *Data =
3437       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3438     for (auto I : redecls())
3439       cast<CXXRecordDecl>(I)->DefinitionData = Data;
3440   }
3441 }
3442 
completeDefinition()3443 void TagDecl::completeDefinition() {
3444   assert((!isa<CXXRecordDecl>(this) ||
3445           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3446          "definition completed but not started");
3447 
3448   IsCompleteDefinition = true;
3449   IsBeingDefined = false;
3450 
3451   if (ASTMutationListener *L = getASTMutationListener())
3452     L->CompletedTagDefinition(this);
3453 }
3454 
getDefinition() const3455 TagDecl *TagDecl::getDefinition() const {
3456   if (isCompleteDefinition())
3457     return const_cast<TagDecl *>(this);
3458 
3459   // If it's possible for us to have an out-of-date definition, check now.
3460   if (MayHaveOutOfDateDef) {
3461     if (IdentifierInfo *II = getIdentifier()) {
3462       if (II->isOutOfDate()) {
3463         updateOutOfDate(*II);
3464       }
3465     }
3466   }
3467 
3468   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3469     return CXXRD->getDefinition();
3470 
3471   for (auto R : redecls())
3472     if (R->isCompleteDefinition())
3473       return R;
3474 
3475   return nullptr;
3476 }
3477 
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3478 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3479   if (QualifierLoc) {
3480     // Make sure the extended qualifier info is allocated.
3481     if (!hasExtInfo())
3482       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3483     // Set qualifier info.
3484     getExtInfo()->QualifierLoc = QualifierLoc;
3485   } else {
3486     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3487     if (hasExtInfo()) {
3488       if (getExtInfo()->NumTemplParamLists == 0) {
3489         getASTContext().Deallocate(getExtInfo());
3490         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3491       }
3492       else
3493         getExtInfo()->QualifierLoc = QualifierLoc;
3494     }
3495   }
3496 }
3497 
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)3498 void TagDecl::setTemplateParameterListsInfo(
3499     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3500   assert(!TPLists.empty());
3501   // Make sure the extended decl info is allocated.
3502   if (!hasExtInfo())
3503     // Allocate external info struct.
3504     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3505   // Set the template parameter lists info.
3506   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3507 }
3508 
3509 //===----------------------------------------------------------------------===//
3510 // EnumDecl Implementation
3511 //===----------------------------------------------------------------------===//
3512 
anchor()3513 void EnumDecl::anchor() { }
3514 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3515 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3516                            SourceLocation StartLoc, SourceLocation IdLoc,
3517                            IdentifierInfo *Id,
3518                            EnumDecl *PrevDecl, bool IsScoped,
3519                            bool IsScopedUsingClassTag, bool IsFixed) {
3520   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3521                                     IsScoped, IsScopedUsingClassTag, IsFixed);
3522   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3523   C.getTypeDeclType(Enum, PrevDecl);
3524   return Enum;
3525 }
3526 
CreateDeserialized(ASTContext & C,unsigned ID)3527 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3528   EnumDecl *Enum =
3529       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3530                            nullptr, nullptr, false, false, false);
3531   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3532   return Enum;
3533 }
3534 
getIntegerTypeRange() const3535 SourceRange EnumDecl::getIntegerTypeRange() const {
3536   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3537     return TI->getTypeLoc().getSourceRange();
3538   return SourceRange();
3539 }
3540 
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3541 void EnumDecl::completeDefinition(QualType NewType,
3542                                   QualType NewPromotionType,
3543                                   unsigned NumPositiveBits,
3544                                   unsigned NumNegativeBits) {
3545   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3546   if (!IntegerType)
3547     IntegerType = NewType.getTypePtr();
3548   PromotionType = NewPromotionType;
3549   setNumPositiveBits(NumPositiveBits);
3550   setNumNegativeBits(NumNegativeBits);
3551   TagDecl::completeDefinition();
3552 }
3553 
getTemplateSpecializationKind() const3554 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3555   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3556     return MSI->getTemplateSpecializationKind();
3557 
3558   return TSK_Undeclared;
3559 }
3560 
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3561 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3562                                          SourceLocation PointOfInstantiation) {
3563   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3564   assert(MSI && "Not an instantiated member enumeration?");
3565   MSI->setTemplateSpecializationKind(TSK);
3566   if (TSK != TSK_ExplicitSpecialization &&
3567       PointOfInstantiation.isValid() &&
3568       MSI->getPointOfInstantiation().isInvalid())
3569     MSI->setPointOfInstantiation(PointOfInstantiation);
3570 }
3571 
getInstantiatedFromMemberEnum() const3572 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3573   if (SpecializationInfo)
3574     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3575 
3576   return nullptr;
3577 }
3578 
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3579 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3580                                             TemplateSpecializationKind TSK) {
3581   assert(!SpecializationInfo && "Member enum is already a specialization");
3582   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3583 }
3584 
3585 //===----------------------------------------------------------------------===//
3586 // RecordDecl Implementation
3587 //===----------------------------------------------------------------------===//
3588 
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3589 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3590                        DeclContext *DC, SourceLocation StartLoc,
3591                        SourceLocation IdLoc, IdentifierInfo *Id,
3592                        RecordDecl *PrevDecl)
3593     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3594   HasFlexibleArrayMember = false;
3595   AnonymousStructOrUnion = false;
3596   HasObjectMember = false;
3597   HasVolatileMember = false;
3598   LoadedFieldsFromExternalStorage = false;
3599   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3600 }
3601 
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3602 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3603                                SourceLocation StartLoc, SourceLocation IdLoc,
3604                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3605   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3606                                          StartLoc, IdLoc, Id, PrevDecl);
3607   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3608 
3609   C.getTypeDeclType(R, PrevDecl);
3610   return R;
3611 }
3612 
CreateDeserialized(const ASTContext & C,unsigned ID)3613 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3614   RecordDecl *R =
3615       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3616                              SourceLocation(), nullptr, nullptr);
3617   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3618   return R;
3619 }
3620 
isInjectedClassName() const3621 bool RecordDecl::isInjectedClassName() const {
3622   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3623     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3624 }
3625 
isLambda() const3626 bool RecordDecl::isLambda() const {
3627   if (auto RD = dyn_cast<CXXRecordDecl>(this))
3628     return RD->isLambda();
3629   return false;
3630 }
3631 
isCapturedRecord() const3632 bool RecordDecl::isCapturedRecord() const {
3633   return hasAttr<CapturedRecordAttr>();
3634 }
3635 
setCapturedRecord()3636 void RecordDecl::setCapturedRecord() {
3637   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3638 }
3639 
field_begin() const3640 RecordDecl::field_iterator RecordDecl::field_begin() const {
3641   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3642     LoadFieldsFromExternalStorage();
3643 
3644   return field_iterator(decl_iterator(FirstDecl));
3645 }
3646 
3647 /// completeDefinition - Notes that the definition of this type is now
3648 /// complete.
completeDefinition()3649 void RecordDecl::completeDefinition() {
3650   assert(!isCompleteDefinition() && "Cannot redefine record!");
3651   TagDecl::completeDefinition();
3652 }
3653 
3654 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3655 /// This which can be turned on with an attribute, pragma, or the
3656 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3657 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3658   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3659 }
3660 
LoadFieldsFromExternalStorage() const3661 void RecordDecl::LoadFieldsFromExternalStorage() const {
3662   ExternalASTSource *Source = getASTContext().getExternalSource();
3663   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3664 
3665   // Notify that we have a RecordDecl doing some initialization.
3666   ExternalASTSource::Deserializing TheFields(Source);
3667 
3668   SmallVector<Decl*, 64> Decls;
3669   LoadedFieldsFromExternalStorage = true;
3670   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
3671     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3672   }, Decls);
3673 
3674 #ifndef NDEBUG
3675   // Check that all decls we got were FieldDecls.
3676   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3677     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3678 #endif
3679 
3680   if (Decls.empty())
3681     return;
3682 
3683   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3684                                                  /*FieldsAlreadyLoaded=*/false);
3685 }
3686 
mayInsertExtraPadding(bool EmitRemark) const3687 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3688   ASTContext &Context = getASTContext();
3689   if (!Context.getLangOpts().Sanitize.hasOneOf(
3690           SanitizerKind::Address | SanitizerKind::KernelAddress) ||
3691       !Context.getLangOpts().SanitizeAddressFieldPadding)
3692     return false;
3693   const auto &Blacklist = Context.getSanitizerBlacklist();
3694   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
3695   // We may be able to relax some of these requirements.
3696   int ReasonToReject = -1;
3697   if (!CXXRD || CXXRD->isExternCContext())
3698     ReasonToReject = 0;  // is not C++.
3699   else if (CXXRD->hasAttr<PackedAttr>())
3700     ReasonToReject = 1;  // is packed.
3701   else if (CXXRD->isUnion())
3702     ReasonToReject = 2;  // is a union.
3703   else if (CXXRD->isTriviallyCopyable())
3704     ReasonToReject = 3;  // is trivially copyable.
3705   else if (CXXRD->hasTrivialDestructor())
3706     ReasonToReject = 4;  // has trivial destructor.
3707   else if (CXXRD->isStandardLayout())
3708     ReasonToReject = 5;  // is standard layout.
3709   else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3710     ReasonToReject = 6;  // is in a blacklisted file.
3711   else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3712                                        "field-padding"))
3713     ReasonToReject = 7;  // is blacklisted.
3714 
3715   if (EmitRemark) {
3716     if (ReasonToReject >= 0)
3717       Context.getDiagnostics().Report(
3718           getLocation(),
3719           diag::remark_sanitize_address_insert_extra_padding_rejected)
3720           << getQualifiedNameAsString() << ReasonToReject;
3721     else
3722       Context.getDiagnostics().Report(
3723           getLocation(),
3724           diag::remark_sanitize_address_insert_extra_padding_accepted)
3725           << getQualifiedNameAsString();
3726   }
3727   return ReasonToReject < 0;
3728 }
3729 
findFirstNamedDataMember() const3730 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3731   for (const auto *I : fields()) {
3732     if (I->getIdentifier())
3733       return I;
3734 
3735     if (const auto *RT = I->getType()->getAs<RecordType>())
3736       if (const FieldDecl *NamedDataMember =
3737               RT->getDecl()->findFirstNamedDataMember())
3738         return NamedDataMember;
3739   }
3740 
3741   // We didn't find a named data member.
3742   return nullptr;
3743 }
3744 
3745 
3746 //===----------------------------------------------------------------------===//
3747 // BlockDecl Implementation
3748 //===----------------------------------------------------------------------===//
3749 
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3750 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3751   assert(!ParamInfo && "Already has param info!");
3752 
3753   // Zero params -> null pointer.
3754   if (!NewParamInfo.empty()) {
3755     NumParams = NewParamInfo.size();
3756     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3757     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3758   }
3759 }
3760 
setCaptures(ASTContext & Context,ArrayRef<Capture> Captures,bool CapturesCXXThis)3761 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
3762                             bool CapturesCXXThis) {
3763   this->CapturesCXXThis = CapturesCXXThis;
3764   this->NumCaptures = Captures.size();
3765 
3766   if (Captures.empty()) {
3767     this->Captures = nullptr;
3768     return;
3769   }
3770 
3771   this->Captures = Captures.copy(Context).data();
3772 }
3773 
capturesVariable(const VarDecl * variable) const3774 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3775   for (const auto &I : captures())
3776     // Only auto vars can be captured, so no redeclaration worries.
3777     if (I.getVariable() == variable)
3778       return true;
3779 
3780   return false;
3781 }
3782 
getSourceRange() const3783 SourceRange BlockDecl::getSourceRange() const {
3784   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3785 }
3786 
3787 //===----------------------------------------------------------------------===//
3788 // Other Decl Allocation/Deallocation Method Implementations
3789 //===----------------------------------------------------------------------===//
3790 
anchor()3791 void TranslationUnitDecl::anchor() { }
3792 
Create(ASTContext & C)3793 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3794   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3795 }
3796 
anchor()3797 void ExternCContextDecl::anchor() { }
3798 
Create(const ASTContext & C,TranslationUnitDecl * DC)3799 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3800                                                TranslationUnitDecl *DC) {
3801   return new (C, DC) ExternCContextDecl(DC);
3802 }
3803 
anchor()3804 void LabelDecl::anchor() { }
3805 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3806 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3807                              SourceLocation IdentL, IdentifierInfo *II) {
3808   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3809 }
3810 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3811 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3812                              SourceLocation IdentL, IdentifierInfo *II,
3813                              SourceLocation GnuLabelL) {
3814   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3815   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3816 }
3817 
CreateDeserialized(ASTContext & C,unsigned ID)3818 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3819   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3820                                SourceLocation());
3821 }
3822 
setMSAsmLabel(StringRef Name)3823 void LabelDecl::setMSAsmLabel(StringRef Name) {
3824   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3825   memcpy(Buffer, Name.data(), Name.size());
3826   Buffer[Name.size()] = '\0';
3827   MSAsmName = Buffer;
3828 }
3829 
anchor()3830 void ValueDecl::anchor() { }
3831 
isWeak() const3832 bool ValueDecl::isWeak() const {
3833   for (const auto *I : attrs())
3834     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3835       return true;
3836 
3837   return isWeakImported();
3838 }
3839 
anchor()3840 void ImplicitParamDecl::anchor() { }
3841 
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)3842 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3843                                              SourceLocation IdLoc,
3844                                              IdentifierInfo *Id,
3845                                              QualType Type) {
3846   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3847 }
3848 
CreateDeserialized(ASTContext & C,unsigned ID)3849 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3850                                                          unsigned ID) {
3851   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3852                                        QualType());
3853 }
3854 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)3855 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3856                                    SourceLocation StartLoc,
3857                                    const DeclarationNameInfo &NameInfo,
3858                                    QualType T, TypeSourceInfo *TInfo,
3859                                    StorageClass SC,
3860                                    bool isInlineSpecified,
3861                                    bool hasWrittenPrototype,
3862                                    bool isConstexprSpecified) {
3863   FunctionDecl *New =
3864       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3865                                SC, isInlineSpecified, isConstexprSpecified);
3866   New->HasWrittenPrototype = hasWrittenPrototype;
3867   return New;
3868 }
3869 
CreateDeserialized(ASTContext & C,unsigned ID)3870 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3871   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3872                                   DeclarationNameInfo(), QualType(), nullptr,
3873                                   SC_None, false, false);
3874 }
3875 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)3876 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3877   return new (C, DC) BlockDecl(DC, L);
3878 }
3879 
CreateDeserialized(ASTContext & C,unsigned ID)3880 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3881   return new (C, ID) BlockDecl(nullptr, SourceLocation());
3882 }
3883 
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)3884 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3885                                    unsigned NumParams) {
3886   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
3887       CapturedDecl(DC, NumParams);
3888 }
3889 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)3890 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3891                                                unsigned NumParams) {
3892   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
3893       CapturedDecl(nullptr, NumParams);
3894 }
3895 
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)3896 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3897                                            SourceLocation L,
3898                                            IdentifierInfo *Id, QualType T,
3899                                            Expr *E, const llvm::APSInt &V) {
3900   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3901 }
3902 
3903 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)3904 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3905   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3906                                       QualType(), nullptr, llvm::APSInt());
3907 }
3908 
anchor()3909 void IndirectFieldDecl::anchor() { }
3910 
3911 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,NamedDecl ** CH,unsigned CHS)3912 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3913                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
3914                           unsigned CHS) {
3915   return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3916 }
3917 
CreateDeserialized(ASTContext & C,unsigned ID)3918 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3919                                                          unsigned ID) {
3920   return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3921                                        DeclarationName(), QualType(), nullptr,
3922                                        0);
3923 }
3924 
getSourceRange() const3925 SourceRange EnumConstantDecl::getSourceRange() const {
3926   SourceLocation End = getLocation();
3927   if (Init)
3928     End = Init->getLocEnd();
3929   return SourceRange(getLocation(), End);
3930 }
3931 
anchor()3932 void TypeDecl::anchor() { }
3933 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3934 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3935                                  SourceLocation StartLoc, SourceLocation IdLoc,
3936                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3937   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3938 }
3939 
anchor()3940 void TypedefNameDecl::anchor() { }
3941 
getAnonDeclWithTypedefName(bool AnyRedecl) const3942 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
3943   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
3944     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
3945     auto *ThisTypedef = this;
3946     if (AnyRedecl && OwningTypedef) {
3947       OwningTypedef = OwningTypedef->getCanonicalDecl();
3948       ThisTypedef = ThisTypedef->getCanonicalDecl();
3949     }
3950     if (OwningTypedef == ThisTypedef)
3951       return TT->getDecl();
3952   }
3953 
3954   return nullptr;
3955 }
3956 
CreateDeserialized(ASTContext & C,unsigned ID)3957 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3958   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3959                                  nullptr, nullptr);
3960 }
3961 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)3962 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3963                                      SourceLocation StartLoc,
3964                                      SourceLocation IdLoc, IdentifierInfo *Id,
3965                                      TypeSourceInfo *TInfo) {
3966   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3967 }
3968 
CreateDeserialized(ASTContext & C,unsigned ID)3969 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3970   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3971                                    SourceLocation(), nullptr, nullptr);
3972 }
3973 
getSourceRange() const3974 SourceRange TypedefDecl::getSourceRange() const {
3975   SourceLocation RangeEnd = getLocation();
3976   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3977     if (typeIsPostfix(TInfo->getType()))
3978       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3979   }
3980   return SourceRange(getLocStart(), RangeEnd);
3981 }
3982 
getSourceRange() const3983 SourceRange TypeAliasDecl::getSourceRange() const {
3984   SourceLocation RangeEnd = getLocStart();
3985   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3986     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3987   return SourceRange(getLocStart(), RangeEnd);
3988 }
3989 
anchor()3990 void FileScopeAsmDecl::anchor() { }
3991 
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)3992 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3993                                            StringLiteral *Str,
3994                                            SourceLocation AsmLoc,
3995                                            SourceLocation RParenLoc) {
3996   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3997 }
3998 
CreateDeserialized(ASTContext & C,unsigned ID)3999 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4000                                                        unsigned ID) {
4001   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4002                                       SourceLocation());
4003 }
4004 
anchor()4005 void EmptyDecl::anchor() {}
4006 
Create(ASTContext & C,DeclContext * DC,SourceLocation L)4007 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4008   return new (C, DC) EmptyDecl(DC, L);
4009 }
4010 
CreateDeserialized(ASTContext & C,unsigned ID)4011 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4012   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4013 }
4014 
4015 //===----------------------------------------------------------------------===//
4016 // ImportDecl Implementation
4017 //===----------------------------------------------------------------------===//
4018 
4019 /// \brief Retrieve the number of module identifiers needed to name the given
4020 /// module.
getNumModuleIdentifiers(Module * Mod)4021 static unsigned getNumModuleIdentifiers(Module *Mod) {
4022   unsigned Result = 1;
4023   while (Mod->Parent) {
4024     Mod = Mod->Parent;
4025     ++Result;
4026   }
4027   return Result;
4028 }
4029 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4030 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4031                        Module *Imported,
4032                        ArrayRef<SourceLocation> IdentifierLocs)
4033   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4034     NextLocalImport()
4035 {
4036   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4037   auto *StoredLocs = getTrailingObjects<SourceLocation>();
4038   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4039                           StoredLocs);
4040 }
4041 
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4042 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4043                        Module *Imported, SourceLocation EndLoc)
4044   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4045     NextLocalImport()
4046 {
4047   *getTrailingObjects<SourceLocation>() = EndLoc;
4048 }
4049 
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4050 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4051                                SourceLocation StartLoc, Module *Imported,
4052                                ArrayRef<SourceLocation> IdentifierLocs) {
4053   return new (C, DC,
4054               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4055       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4056 }
4057 
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4058 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4059                                        SourceLocation StartLoc,
4060                                        Module *Imported,
4061                                        SourceLocation EndLoc) {
4062   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4063       ImportDecl(DC, StartLoc, Imported, EndLoc);
4064   Import->setImplicit();
4065   return Import;
4066 }
4067 
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)4068 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4069                                            unsigned NumLocations) {
4070   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4071       ImportDecl(EmptyShell());
4072 }
4073 
getIdentifierLocs() const4074 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4075   if (!ImportedAndComplete.getInt())
4076     return None;
4077 
4078   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4079   return llvm::makeArrayRef(StoredLocs,
4080                             getNumModuleIdentifiers(getImportedModule()));
4081 }
4082 
getSourceRange() const4083 SourceRange ImportDecl::getSourceRange() const {
4084   if (!ImportedAndComplete.getInt())
4085     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4086 
4087   return SourceRange(getLocation(), getIdentifierLocs().back());
4088 }
4089