1 //===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "HexagonMCInstrInfo.h"
15
16 #include "Hexagon.h"
17 #include "HexagonBaseInfo.h"
18 #include "HexagonMCChecker.h"
19
20 #include "llvm/MC/MCContext.h"
21 #include "llvm/MC/MCExpr.h"
22 #include "llvm/MC/MCInstrInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24
25 namespace llvm {
addConstant(MCInst & MI,uint64_t Value,MCContext & Context)26 void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
27 MCContext &Context) {
28 MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
29 }
30
addConstExtender(MCContext & Context,MCInstrInfo const & MCII,MCInst & MCB,MCInst const & MCI)31 void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
32 MCInstrInfo const &MCII, MCInst &MCB,
33 MCInst const &MCI) {
34 assert(HexagonMCInstrInfo::isBundle(MCB));
35 MCOperand const &exOp =
36 MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
37
38 // Create the extender.
39 MCInst *XMCI =
40 new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
41
42 MCB.addOperand(MCOperand::createInst(XMCI));
43 }
44
45 iterator_range<MCInst::const_iterator>
bundleInstructions(MCInst const & MCI)46 HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
47 assert(isBundle(MCI));
48 return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
49 }
50
bundleSize(MCInst const & MCI)51 size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
52 if (HexagonMCInstrInfo::isBundle(MCI))
53 return (MCI.size() - bundleInstructionsOffset);
54 else
55 return (1);
56 }
57
canonicalizePacket(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCContext & Context,MCInst & MCB,HexagonMCChecker * Check)58 bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
59 MCSubtargetInfo const &STI,
60 MCContext &Context, MCInst &MCB,
61 HexagonMCChecker *Check) {
62 // Examine the packet and convert pairs of instructions to compound
63 // instructions when possible.
64 if (!HexagonDisableCompound)
65 HexagonMCInstrInfo::tryCompound(MCII, Context, MCB);
66 // Check the bundle for errors.
67 bool CheckOk = Check ? Check->check() : true;
68 if (!CheckOk)
69 return false;
70 HexagonMCShuffle(MCII, STI, MCB);
71 // Examine the packet and convert pairs of instructions to duplex
72 // instructions when possible.
73 MCInst InstBundlePreDuplex = MCInst(MCB);
74 if (!HexagonDisableDuplex) {
75 SmallVector<DuplexCandidate, 8> possibleDuplexes;
76 possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB);
77 HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes);
78 }
79 // Examines packet and pad the packet, if needed, when an
80 // end-loop is in the bundle.
81 HexagonMCInstrInfo::padEndloop(Context, MCB);
82 // If compounding and duplexing didn't reduce the size below
83 // 4 or less we have a packet that is too big.
84 if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
85 return false;
86 HexagonMCShuffle(MCII, STI, MCB);
87 return true;
88 }
89
clampExtended(MCInstrInfo const & MCII,MCContext & Context,MCInst & MCI)90 void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII,
91 MCContext &Context, MCInst &MCI) {
92 assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
93 HexagonMCInstrInfo::isExtended(MCII, MCI));
94 MCOperand &exOp =
95 MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
96 // If the extended value is a constant, then use it for the extended and
97 // for the extender instructions, masking off the lower 6 bits and
98 // including the assumed bits.
99 int64_t Value;
100 if (exOp.getExpr()->evaluateAsAbsolute(Value)) {
101 unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
102 exOp.setExpr(MCConstantExpr::create((Value & 0x3f) << Shift, Context));
103 }
104 }
105
createBundle()106 MCInst HexagonMCInstrInfo::createBundle() {
107 MCInst Result;
108 Result.setOpcode(Hexagon::BUNDLE);
109 Result.addOperand(MCOperand::createImm(0));
110 return Result;
111 }
112
deriveDuplex(MCContext & Context,unsigned iClass,MCInst const & inst0,MCInst const & inst1)113 MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
114 MCInst const &inst0,
115 MCInst const &inst1) {
116 assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
117 MCInst *duplexInst = new (Context) MCInst;
118 duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
119
120 MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
121 MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
122 duplexInst->addOperand(MCOperand::createInst(SubInst0));
123 duplexInst->addOperand(MCOperand::createInst(SubInst1));
124 return duplexInst;
125 }
126
deriveExtender(MCInstrInfo const & MCII,MCInst const & Inst,MCOperand const & MO)127 MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
128 MCInst const &Inst,
129 MCOperand const &MO) {
130 assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
131 HexagonMCInstrInfo::isExtended(MCII, Inst));
132
133 MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
134 MCInst XMI;
135 XMI.setOpcode((Desc.isBranch() || Desc.isCall() ||
136 HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR)
137 ? Hexagon::A4_ext_b
138 : Hexagon::A4_ext);
139 if (MO.isImm())
140 XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
141 else if (MO.isExpr())
142 XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
143 else
144 llvm_unreachable("invalid extendable operand");
145 return XMI;
146 }
147
extenderForIndex(MCInst const & MCB,size_t Index)148 MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
149 size_t Index) {
150 assert(Index <= bundleSize(MCB));
151 if (Index == 0)
152 return nullptr;
153 MCInst const *Inst =
154 MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
155 if (isImmext(*Inst))
156 return Inst;
157 return nullptr;
158 }
159
extendIfNeeded(MCContext & Context,MCInstrInfo const & MCII,MCInst & MCB,MCInst const & MCI,bool MustExtend)160 void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
161 MCInstrInfo const &MCII, MCInst &MCB,
162 MCInst const &MCI, bool MustExtend) {
163 if (isConstExtended(MCII, MCI) || MustExtend)
164 addConstExtender(Context, MCII, MCB, MCI);
165 }
166
167 HexagonII::MemAccessSize
getAccessSize(MCInstrInfo const & MCII,MCInst const & MCI)168 HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
169 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
170
171 return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) &
172 HexagonII::MemAccesSizeMask));
173 }
174
getBitCount(MCInstrInfo const & MCII,MCInst const & MCI)175 unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
176 MCInst const &MCI) {
177 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
178 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
179 }
180
181 // Return constant extended operand number.
getCExtOpNum(MCInstrInfo const & MCII,MCInst const & MCI)182 unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
183 MCInst const &MCI) {
184 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
185 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
186 }
187
getDesc(MCInstrInfo const & MCII,MCInst const & MCI)188 MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
189 MCInst const &MCI) {
190 return (MCII.get(MCI.getOpcode()));
191 }
192
getExtendableOp(MCInstrInfo const & MCII,MCInst const & MCI)193 unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
194 MCInst const &MCI) {
195 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
196 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
197 }
198
199 MCOperand const &
getExtendableOperand(MCInstrInfo const & MCII,MCInst const & MCI)200 HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
201 MCInst const &MCI) {
202 unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
203 MCOperand const &MO = MCI.getOperand(O);
204
205 assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
206 HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
207 (MO.isImm() || MO.isExpr()));
208 return (MO);
209 }
210
getExtentAlignment(MCInstrInfo const & MCII,MCInst const & MCI)211 unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
212 MCInst const &MCI) {
213 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
214 return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
215 }
216
getExtentBits(MCInstrInfo const & MCII,MCInst const & MCI)217 unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
218 MCInst const &MCI) {
219 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
220 return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
221 }
222
223 // Return the max value that a constant extendable operand can have
224 // without being extended.
getMaxValue(MCInstrInfo const & MCII,MCInst const & MCI)225 int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
226 MCInst const &MCI) {
227 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
228 unsigned isSigned =
229 (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
230 unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
231
232 if (isSigned) // if value is signed
233 return ~(-1U << (bits - 1));
234 else
235 return ~(-1U << bits);
236 }
237
238 // Return the min value that a constant extendable operand can have
239 // without being extended.
getMinValue(MCInstrInfo const & MCII,MCInst const & MCI)240 int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
241 MCInst const &MCI) {
242 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
243 unsigned isSigned =
244 (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
245 unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
246
247 if (isSigned) // if value is signed
248 return -1U << (bits - 1);
249 else
250 return 0;
251 }
252
getName(MCInstrInfo const & MCII,MCInst const & MCI)253 char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
254 MCInst const &MCI) {
255 return MCII.getName(MCI.getOpcode());
256 }
257
getNewValueOp(MCInstrInfo const & MCII,MCInst const & MCI)258 unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
259 MCInst const &MCI) {
260 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
261 return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
262 }
263
getNewValueOperand(MCInstrInfo const & MCII,MCInst const & MCI)264 MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
265 MCInst const &MCI) {
266 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
267 unsigned const O =
268 (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
269 MCOperand const &MCO = MCI.getOperand(O);
270
271 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
272 HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
273 MCO.isReg());
274 return (MCO);
275 }
276
277 /// Return the new value or the newly produced value.
getNewValueOp2(MCInstrInfo const & MCII,MCInst const & MCI)278 unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
279 MCInst const &MCI) {
280 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
281 return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
282 }
283
284 MCOperand const &
getNewValueOperand2(MCInstrInfo const & MCII,MCInst const & MCI)285 HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
286 MCInst const &MCI) {
287 unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
288 MCOperand const &MCO = MCI.getOperand(O);
289
290 assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
291 HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
292 MCO.isReg());
293 return (MCO);
294 }
295
getSubTarget(MCInstrInfo const & MCII,MCInst const & MCI)296 int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
297 MCInst const &MCI) {
298 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
299
300 HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>(
301 (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask);
302
303 switch (Target) {
304 default:
305 return Hexagon::ArchV4;
306 case HexagonII::HasV5SubT:
307 return Hexagon::ArchV5;
308 }
309 }
310
311 // Return the Hexagon ISA class for the insn.
getType(MCInstrInfo const & MCII,MCInst const & MCI)312 unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
313 MCInst const &MCI) {
314 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
315
316 return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
317 }
318
getUnits(MCInstrInfo const & MCII,MCSubtargetInfo const & STI,MCInst const & MCI)319 unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
320 MCSubtargetInfo const &STI,
321 MCInst const &MCI) {
322
323 const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
324 int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
325 return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
326 }
327
hasImmExt(MCInst const & MCI)328 bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
329 if (!HexagonMCInstrInfo::isBundle(MCI))
330 return false;
331
332 for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
333 auto MI = I.getInst();
334 if (isImmext(*MI))
335 return true;
336 }
337
338 return false;
339 }
340
hasExtenderForIndex(MCInst const & MCB,size_t Index)341 bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
342 return extenderForIndex(MCB, Index) != nullptr;
343 }
344
345 // Return whether the instruction is a legal new-value producer.
hasNewValue(MCInstrInfo const & MCII,MCInst const & MCI)346 bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
347 MCInst const &MCI) {
348 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
349 return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
350 }
351
352 /// Return whether the insn produces a second value.
hasNewValue2(MCInstrInfo const & MCII,MCInst const & MCI)353 bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
354 MCInst const &MCI) {
355 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
356 return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
357 }
358
instruction(MCInst const & MCB,size_t Index)359 MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
360 assert(isBundle(MCB));
361 assert(Index < HEXAGON_PACKET_SIZE);
362 return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
363 }
364
isBundle(MCInst const & MCI)365 bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
366 auto Result = Hexagon::BUNDLE == MCI.getOpcode();
367 assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
368 return Result;
369 }
370
371 // Return whether the insn is an actual insn.
isCanon(MCInstrInfo const & MCII,MCInst const & MCI)372 bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
373 return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
374 !HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
375 HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
376 }
377
isCompound(MCInstrInfo const & MCII,MCInst const & MCI)378 bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
379 MCInst const &MCI) {
380 return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND);
381 }
382
isDblRegForSubInst(unsigned Reg)383 bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
384 return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
385 (Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
386 }
387
isDuplex(MCInstrInfo const & MCII,MCInst const & MCI)388 bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
389 return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
390 }
391
392 // Return whether the instruction needs to be constant extended.
393 // 1) Always return true if the instruction has 'isExtended' flag set.
394 //
395 // isExtendable:
396 // 2) For immediate extended operands, return true only if the value is
397 // out-of-range.
398 // 3) For global address, always return true.
399
isConstExtended(MCInstrInfo const & MCII,MCInst const & MCI)400 bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
401 MCInst const &MCI) {
402 if (HexagonMCInstrInfo::isExtended(MCII, MCI))
403 return true;
404 // Branch insns are handled as necessary by relaxation.
405 if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
406 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND &&
407 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
408 (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV &&
409 HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
410 return false;
411 // Otherwise loop instructions and other CR insts are handled by relaxation
412 else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
413 (MCI.getOpcode() != Hexagon::C4_addipc))
414 return false;
415 else if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
416 return false;
417
418 MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
419
420 // We could be using an instruction with an extendable immediate and shoehorn
421 // a global address into it. If it is a global address it will be constant
422 // extended. We do this for COMBINE.
423 // We currently only handle isGlobal() because it is the only kind of
424 // object we are going to end up with here for now.
425 // In the future we probably should add isSymbol(), etc.
426 assert(!MO.isImm());
427 int64_t Value;
428 if (!MO.getExpr()->evaluateAsAbsolute(Value))
429 return true;
430 int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
431 int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
432 return (MinValue > Value || Value > MaxValue);
433 }
434
isExtendable(MCInstrInfo const & MCII,MCInst const & MCI)435 bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
436 MCInst const &MCI) {
437 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
438 return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
439 }
440
isExtended(MCInstrInfo const & MCII,MCInst const & MCI)441 bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
442 MCInst const &MCI) {
443 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
444 return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
445 }
446
isFloat(MCInstrInfo const & MCII,MCInst const & MCI)447 bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
448 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
449 return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
450 }
451
isImmext(MCInst const & MCI)452 bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
453 auto Op = MCI.getOpcode();
454 return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c ||
455 Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext);
456 }
457
isInnerLoop(MCInst const & MCI)458 bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
459 assert(isBundle(MCI));
460 int64_t Flags = MCI.getOperand(0).getImm();
461 return (Flags & innerLoopMask) != 0;
462 }
463
isIntReg(unsigned Reg)464 bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
465 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
466 }
467
isIntRegForSubInst(unsigned Reg)468 bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
469 return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
470 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
471 }
472
473 // Return whether the insn is a new-value consumer.
isNewValue(MCInstrInfo const & MCII,MCInst const & MCI)474 bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
475 MCInst const &MCI) {
476 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
477 return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
478 }
479
480 // Return whether the operand can be constant extended.
isOperandExtended(MCInstrInfo const & MCII,MCInst const & MCI,unsigned short OperandNum)481 bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
482 MCInst const &MCI,
483 unsigned short OperandNum) {
484 uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
485 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
486 OperandNum;
487 }
488
isOuterLoop(MCInst const & MCI)489 bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
490 assert(isBundle(MCI));
491 int64_t Flags = MCI.getOperand(0).getImm();
492 return (Flags & outerLoopMask) != 0;
493 }
494
isPredicated(MCInstrInfo const & MCII,MCInst const & MCI)495 bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
496 MCInst const &MCI) {
497 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
498 return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
499 }
500
isPredicateLate(MCInstrInfo const & MCII,MCInst const & MCI)501 bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
502 MCInst const &MCI) {
503 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
504 return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
505 }
506
507 /// Return whether the insn is newly predicated.
isPredicatedNew(MCInstrInfo const & MCII,MCInst const & MCI)508 bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
509 MCInst const &MCI) {
510 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
511 return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
512 }
513
isPredicatedTrue(MCInstrInfo const & MCII,MCInst const & MCI)514 bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
515 MCInst const &MCI) {
516 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
517 return (
518 !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
519 }
520
isPredReg(unsigned Reg)521 bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
522 return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
523 }
524
isPrefix(MCInstrInfo const & MCII,MCInst const & MCI)525 bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
526 return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
527 }
528
isSolo(MCInstrInfo const & MCII,MCInst const & MCI)529 bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
530 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
531 return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
532 }
533
isMemReorderDisabled(MCInst const & MCI)534 bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
535 assert(isBundle(MCI));
536 auto Flags = MCI.getOperand(0).getImm();
537 return (Flags & memReorderDisabledMask) != 0;
538 }
539
isMemStoreReorderEnabled(MCInst const & MCI)540 bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) {
541 assert(isBundle(MCI));
542 auto Flags = MCI.getOperand(0).getImm();
543 return (Flags & memStoreReorderEnabledMask) != 0;
544 }
545
isSoloAX(MCInstrInfo const & MCII,MCInst const & MCI)546 bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
547 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
548 return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
549 }
550
isSoloAin1(MCInstrInfo const & MCII,MCInst const & MCI)551 bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
552 MCInst const &MCI) {
553 const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
554 return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
555 }
556
isVector(MCInstrInfo const & MCII,MCInst const & MCI)557 bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
558 if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
559 (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
560 return true;
561 return false;
562 }
563
minConstant(MCInst const & MCI,size_t Index)564 int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
565 auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
566 << 8;
567 if (MCI.size() <= Index)
568 return Sentinal;
569 MCOperand const &MCO = MCI.getOperand(Index);
570 if (!MCO.isExpr())
571 return Sentinal;
572 int64_t Value;
573 if (!MCO.getExpr()->evaluateAsAbsolute(Value))
574 return Sentinal;
575 return Value;
576 }
577
padEndloop(MCContext & Context,MCInst & MCB)578 void HexagonMCInstrInfo::padEndloop(MCContext &Context, MCInst &MCB) {
579 MCInst Nop;
580 Nop.setOpcode(Hexagon::A2_nop);
581 assert(isBundle(MCB));
582 while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
583 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
584 ((HexagonMCInstrInfo::isOuterLoop(MCB) &&
585 (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
586 MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
587 }
588
prefersSlot3(MCInstrInfo const & MCII,MCInst const & MCI)589 bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
590 MCInst const &MCI) {
591 if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR)
592 return false;
593
594 unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
595 switch (SchedClass) {
596 case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
597 case Hexagon::Sched::ALU64_tc_2_SLOT23:
598 case Hexagon::Sched::ALU64_tc_3x_SLOT23:
599 case Hexagon::Sched::M_tc_2_SLOT23:
600 case Hexagon::Sched::M_tc_3x_SLOT23:
601 case Hexagon::Sched::S_2op_tc_2_SLOT23:
602 case Hexagon::Sched::S_3op_tc_2_SLOT23:
603 case Hexagon::Sched::S_3op_tc_3x_SLOT23:
604 return true;
605 }
606 return false;
607 }
608
replaceDuplex(MCContext & Context,MCInst & MCB,DuplexCandidate Candidate)609 void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
610 DuplexCandidate Candidate) {
611 assert(Candidate.packetIndexI < MCB.size());
612 assert(Candidate.packetIndexJ < MCB.size());
613 assert(isBundle(MCB));
614 MCInst *Duplex =
615 deriveDuplex(Context, Candidate.iClass,
616 *MCB.getOperand(Candidate.packetIndexJ).getInst(),
617 *MCB.getOperand(Candidate.packetIndexI).getInst());
618 assert(Duplex != nullptr);
619 MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
620 MCB.erase(MCB.begin() + Candidate.packetIndexJ);
621 }
622
setInnerLoop(MCInst & MCI)623 void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
624 assert(isBundle(MCI));
625 MCOperand &Operand = MCI.getOperand(0);
626 Operand.setImm(Operand.getImm() | innerLoopMask);
627 }
628
setMemReorderDisabled(MCInst & MCI)629 void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
630 assert(isBundle(MCI));
631 MCOperand &Operand = MCI.getOperand(0);
632 Operand.setImm(Operand.getImm() | memReorderDisabledMask);
633 assert(isMemReorderDisabled(MCI));
634 }
635
setMemStoreReorderEnabled(MCInst & MCI)636 void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) {
637 assert(isBundle(MCI));
638 MCOperand &Operand = MCI.getOperand(0);
639 Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask);
640 assert(isMemStoreReorderEnabled(MCI));
641 }
642
setOuterLoop(MCInst & MCI)643 void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
644 assert(isBundle(MCI));
645 MCOperand &Operand = MCI.getOperand(0);
646 Operand.setImm(Operand.getImm() | outerLoopMask);
647 }
648 }
649