1 // target.h -- target support for gold -*- C++ -*- 2 3 // Copyright (C) 2006-2014 Free Software Foundation, Inc. 4 // Written by Ian Lance Taylor <iant@google.com>. 5 6 // This file is part of gold. 7 8 // This program is free software; you can redistribute it and/or modify 9 // it under the terms of the GNU General Public License as published by 10 // the Free Software Foundation; either version 3 of the License, or 11 // (at your option) any later version. 12 13 // This program is distributed in the hope that it will be useful, 14 // but WITHOUT ANY WARRANTY; without even the implied warranty of 15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 // GNU General Public License for more details. 17 18 // You should have received a copy of the GNU General Public License 19 // along with this program; if not, write to the Free Software 20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 // MA 02110-1301, USA. 22 23 // The abstract class Target is the interface for target specific 24 // support. It defines abstract methods which each target must 25 // implement. Typically there will be one target per processor, but 26 // in some cases it may be necessary to have subclasses. 27 28 // For speed and consistency we want to use inline functions to handle 29 // relocation processing. So besides implementations of the abstract 30 // methods, each target is expected to define a template 31 // specialization of the relocation functions. 32 33 #ifndef GOLD_TARGET_H 34 #define GOLD_TARGET_H 35 36 #include "elfcpp.h" 37 #include "options.h" 38 #include "parameters.h" 39 #include "stringpool.h" 40 #include "debug.h" 41 42 namespace gold 43 { 44 45 class Object; 46 class Relobj; 47 template<int size, bool big_endian> 48 class Sized_relobj; 49 template<int size, bool big_endian> 50 class Sized_relobj_file; 51 class Relocatable_relocs; 52 template<int size, bool big_endian> 53 struct Relocate_info; 54 class Reloc_symbol_changes; 55 class Symbol; 56 template<int size> 57 class Sized_symbol; 58 class Symbol_table; 59 class Output_data; 60 class Output_data_got_base; 61 class Output_section; 62 class Input_objects; 63 class Task; 64 struct Symbol_location; 65 class Versions; 66 67 // The abstract class for target specific handling. 68 69 class Target 70 { 71 public: ~Target()72 virtual ~Target() 73 { } 74 75 // Returns the safe value for data segment size for PIE links. Anything 76 // greater than this is prone to go/unsafe-pie. A value of 0 means 77 // that the size is unlimited. 78 virtual uint64_t max_pie_data_segment_size()79 max_pie_data_segment_size() const 80 { return 0; } 81 82 // Return the bit size that this target implements. This should 83 // return 32 or 64. 84 int get_size()85 get_size() const 86 { return this->pti_->size; } 87 88 // Return whether this target is big-endian. 89 bool is_big_endian()90 is_big_endian() const 91 { return this->pti_->is_big_endian; } 92 93 // Machine code to store in e_machine field of ELF header. 94 elfcpp::EM machine_code()95 machine_code() const 96 { return this->pti_->machine_code; } 97 98 // Processor specific flags to store in e_flags field of ELF header. 99 elfcpp::Elf_Word processor_specific_flags()100 processor_specific_flags() const 101 { return this->processor_specific_flags_; } 102 103 // Whether processor specific flags are set at least once. 104 bool are_processor_specific_flags_set()105 are_processor_specific_flags_set() const 106 { return this->are_processor_specific_flags_set_; } 107 108 // Whether this target has a specific make_symbol function. 109 bool has_make_symbol()110 has_make_symbol() const 111 { return this->pti_->has_make_symbol; } 112 113 // Whether this target has a specific resolve function. 114 bool has_resolve()115 has_resolve() const 116 { return this->pti_->has_resolve; } 117 118 // Whether this target has a specific code fill function. 119 bool has_code_fill()120 has_code_fill() const 121 { return this->pti_->has_code_fill; } 122 123 // Return the default name of the dynamic linker. 124 const char* dynamic_linker()125 dynamic_linker() const 126 { return this->pti_->dynamic_linker; } 127 128 // Return the default address to use for the text segment. 129 uint64_t default_text_segment_address()130 default_text_segment_address() const 131 { return this->pti_->default_text_segment_address; } 132 133 // Return the ABI specified page size. 134 uint64_t abi_pagesize()135 abi_pagesize() const 136 { 137 if (parameters->options().max_page_size() > 0) 138 return parameters->options().max_page_size(); 139 else 140 return this->pti_->abi_pagesize; 141 } 142 143 // Return the common page size used on actual systems. 144 uint64_t common_pagesize()145 common_pagesize() const 146 { 147 if (parameters->options().common_page_size() > 0) 148 return std::min(parameters->options().common_page_size(), 149 this->abi_pagesize()); 150 else 151 return std::min(this->pti_->common_pagesize, 152 this->abi_pagesize()); 153 } 154 155 // Return whether PF_X segments must contain nothing but the contents of 156 // SHF_EXECINSTR sections (no non-executable data, no headers). 157 bool isolate_execinstr()158 isolate_execinstr() const 159 { return this->pti_->isolate_execinstr; } 160 161 uint64_t rosegment_gap()162 rosegment_gap() const 163 { return this->pti_->rosegment_gap; } 164 165 // If we see some object files with .note.GNU-stack sections, and 166 // some objects files without them, this returns whether we should 167 // consider the object files without them to imply that the stack 168 // should be executable. 169 bool is_default_stack_executable()170 is_default_stack_executable() const 171 { return this->pti_->is_default_stack_executable; } 172 173 // Return a character which may appear as a prefix for a wrap 174 // symbol. If this character appears, we strip it when checking for 175 // wrapping and add it back when forming the final symbol name. 176 // This should be '\0' if not special prefix is required, which is 177 // the normal case. 178 char wrap_char()179 wrap_char() const 180 { return this->pti_->wrap_char; } 181 182 // Return the special section index which indicates a small common 183 // symbol. This will return SHN_UNDEF if there are no small common 184 // symbols. 185 elfcpp::Elf_Half small_common_shndx()186 small_common_shndx() const 187 { return this->pti_->small_common_shndx; } 188 189 // Return values to add to the section flags for the section holding 190 // small common symbols. 191 elfcpp::Elf_Xword small_common_section_flags()192 small_common_section_flags() const 193 { 194 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF); 195 return this->pti_->small_common_section_flags; 196 } 197 198 // Return the special section index which indicates a large common 199 // symbol. This will return SHN_UNDEF if there are no large common 200 // symbols. 201 elfcpp::Elf_Half large_common_shndx()202 large_common_shndx() const 203 { return this->pti_->large_common_shndx; } 204 205 // Return values to add to the section flags for the section holding 206 // large common symbols. 207 elfcpp::Elf_Xword large_common_section_flags()208 large_common_section_flags() const 209 { 210 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF); 211 return this->pti_->large_common_section_flags; 212 } 213 214 // This hook is called when an output section is created. 215 void new_output_section(Output_section * os)216 new_output_section(Output_section* os) const 217 { this->do_new_output_section(os); } 218 219 // This is called to tell the target to complete any sections it is 220 // handling. After this all sections must have their final size. 221 void finalize_sections(Layout * layout,const Input_objects * input_objects,Symbol_table * symtab)222 finalize_sections(Layout* layout, const Input_objects* input_objects, 223 Symbol_table* symtab) 224 { return this->do_finalize_sections(layout, input_objects, symtab); } 225 226 // Return the value to use for a global symbol which needs a special 227 // value in the dynamic symbol table. This will only be called if 228 // the backend first calls symbol->set_needs_dynsym_value(). 229 uint64_t dynsym_value(const Symbol * sym)230 dynsym_value(const Symbol* sym) const 231 { return this->do_dynsym_value(sym); } 232 233 // Return a string to use to fill out a code section. This is 234 // basically one or more NOPS which must fill out the specified 235 // length in bytes. 236 std::string code_fill(section_size_type length)237 code_fill(section_size_type length) const 238 { return this->do_code_fill(length); } 239 240 // Return whether SYM is known to be defined by the ABI. This is 241 // used to avoid inappropriate warnings about undefined symbols. 242 bool is_defined_by_abi(const Symbol * sym)243 is_defined_by_abi(const Symbol* sym) const 244 { return this->do_is_defined_by_abi(sym); } 245 246 // Adjust the output file header before it is written out. VIEW 247 // points to the header in external form. LEN is the length. 248 void adjust_elf_header(unsigned char * view,int len)249 adjust_elf_header(unsigned char* view, int len) 250 { return this->do_adjust_elf_header(view, len); } 251 252 // Return address and size to plug into eh_frame FDEs associated with a PLT. 253 void plt_fde_location(const Output_data * plt,unsigned char * oview,uint64_t * address,off_t * len)254 plt_fde_location(const Output_data* plt, unsigned char* oview, 255 uint64_t* address, off_t* len) const 256 { return this->do_plt_fde_location(plt, oview, address, len); } 257 258 // Return whether NAME is a local label name. This is used to implement the 259 // --discard-locals options. 260 bool is_local_label_name(const char * name)261 is_local_label_name(const char* name) const 262 { return this->do_is_local_label_name(name); } 263 264 // Get the symbol index to use for a target specific reloc. 265 unsigned int reloc_symbol_index(void * arg,unsigned int type)266 reloc_symbol_index(void* arg, unsigned int type) const 267 { return this->do_reloc_symbol_index(arg, type); } 268 269 // Get the addend to use for a target specific reloc. 270 uint64_t reloc_addend(void * arg,unsigned int type,uint64_t addend)271 reloc_addend(void* arg, unsigned int type, uint64_t addend) const 272 { return this->do_reloc_addend(arg, type, addend); } 273 274 // Return the PLT address to use for a global symbol. 275 uint64_t plt_address_for_global(const Symbol * sym)276 plt_address_for_global(const Symbol* sym) const 277 { return this->do_plt_address_for_global(sym); } 278 279 // Return the PLT address to use for a local symbol. 280 uint64_t plt_address_for_local(const Relobj * object,unsigned int symndx)281 plt_address_for_local(const Relobj* object, unsigned int symndx) const 282 { return this->do_plt_address_for_local(object, symndx); } 283 284 // Return the offset to use for the GOT_INDX'th got entry which is 285 // for a local tls symbol specified by OBJECT, SYMNDX. 286 int64_t tls_offset_for_local(const Relobj * object,unsigned int symndx,unsigned int got_indx)287 tls_offset_for_local(const Relobj* object, 288 unsigned int symndx, 289 unsigned int got_indx) const 290 { return do_tls_offset_for_local(object, symndx, got_indx); } 291 292 // Return the offset to use for the GOT_INDX'th got entry which is 293 // for global tls symbol GSYM. 294 int64_t tls_offset_for_global(Symbol * gsym,unsigned int got_indx)295 tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const 296 { return do_tls_offset_for_global(gsym, got_indx); } 297 298 // For targets that use function descriptors, if LOC is the location 299 // of a function, modify it to point at the function entry location. 300 void function_location(Symbol_location * loc)301 function_location(Symbol_location* loc) const 302 { return do_function_location(loc); } 303 304 // Return whether this target can use relocation types to determine 305 // if a function's address is taken. 306 bool can_check_for_function_pointers()307 can_check_for_function_pointers() const 308 { return this->do_can_check_for_function_pointers(); } 309 310 // Return whether a relocation to a merged section can be processed 311 // to retrieve the contents. 312 bool can_icf_inline_merge_sections()313 can_icf_inline_merge_sections () const 314 { return this->pti_->can_icf_inline_merge_sections; } 315 316 // Whether a section called SECTION_NAME may have function pointers to 317 // sections not eligible for safe ICF folding. 318 virtual bool section_may_have_icf_unsafe_pointers(const char * section_name)319 section_may_have_icf_unsafe_pointers(const char* section_name) const 320 { return this->do_section_may_have_icf_unsafe_pointers(section_name); } 321 322 // Return the base to use for the PC value in an FDE when it is 323 // encoded using DW_EH_PE_datarel. This does not appear to be 324 // documented anywhere, but it is target specific. Any use of 325 // DW_EH_PE_datarel in gcc requires defining a special macro 326 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value. 327 uint64_t ehframe_datarel_base()328 ehframe_datarel_base() const 329 { return this->do_ehframe_datarel_base(); } 330 331 // Return true if a reference to SYM from a reloc of type R_TYPE 332 // means that the current function may call an object compiled 333 // without -fsplit-stack. SYM is known to be defined in an object 334 // compiled without -fsplit-stack. 335 bool is_call_to_non_split(const Symbol * sym,unsigned int r_type)336 is_call_to_non_split(const Symbol* sym, unsigned int r_type) const 337 { return this->do_is_call_to_non_split(sym, r_type); } 338 339 // A function starts at OFFSET in section SHNDX in OBJECT. That 340 // function was compiled with -fsplit-stack, but it refers to a 341 // function which was compiled without -fsplit-stack. VIEW is a 342 // modifiable view of the section; VIEW_SIZE is the size of the 343 // view. The target has to adjust the function so that it allocates 344 // enough stack. 345 void calls_non_split(Relobj * object,unsigned int shndx,section_offset_type fnoffset,section_size_type fnsize,unsigned char * view,section_size_type view_size,std::string * from,std::string * to)346 calls_non_split(Relobj* object, unsigned int shndx, 347 section_offset_type fnoffset, section_size_type fnsize, 348 unsigned char* view, section_size_type view_size, 349 std::string* from, std::string* to) const 350 { 351 this->do_calls_non_split(object, shndx, fnoffset, fnsize, view, view_size, 352 from, to); 353 } 354 355 // Make an ELF object. 356 template<int size, bool big_endian> 357 Object* make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)358 make_elf_object(const std::string& name, Input_file* input_file, 359 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr) 360 { return this->do_make_elf_object(name, input_file, offset, ehdr); } 361 362 // Make an output section. 363 Output_section* make_output_section(const char * name,elfcpp::Elf_Word type,elfcpp::Elf_Xword flags)364 make_output_section(const char* name, elfcpp::Elf_Word type, 365 elfcpp::Elf_Xword flags) 366 { return this->do_make_output_section(name, type, flags); } 367 368 // Return true if target wants to perform relaxation. 369 bool may_relax()370 may_relax() const 371 { 372 // Run the dummy relaxation pass twice if relaxation debugging is enabled. 373 if (is_debugging_enabled(DEBUG_RELAXATION)) 374 return true; 375 376 return this->do_may_relax(); 377 } 378 379 // Perform a relaxation pass. Return true if layout may be changed. 380 bool relax(int pass,const Input_objects * input_objects,Symbol_table * symtab,Layout * layout,const Task * task)381 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab, 382 Layout* layout, const Task* task) 383 { 384 // Run the dummy relaxation pass twice if relaxation debugging is enabled. 385 if (is_debugging_enabled(DEBUG_RELAXATION)) 386 return pass < 2; 387 388 return this->do_relax(pass, input_objects, symtab, layout, task); 389 } 390 391 // Return the target-specific name of attributes section. This is 392 // NULL if a target does not use attributes section or if it uses 393 // the default section name ".gnu.attributes". 394 const char* attributes_section()395 attributes_section() const 396 { return this->pti_->attributes_section; } 397 398 // Return the vendor name of vendor attributes. 399 const char* attributes_vendor()400 attributes_vendor() const 401 { return this->pti_->attributes_vendor; } 402 403 // Whether a section called NAME is an attribute section. 404 bool is_attributes_section(const char * name)405 is_attributes_section(const char* name) const 406 { 407 return ((this->pti_->attributes_section != NULL 408 && strcmp(name, this->pti_->attributes_section) == 0) 409 || strcmp(name, ".gnu.attributes") == 0); 410 } 411 412 // Return a bit mask of argument types for attribute with TAG. 413 int attribute_arg_type(int tag)414 attribute_arg_type(int tag) const 415 { return this->do_attribute_arg_type(tag); } 416 417 // Return the attribute tag of the position NUM in the list of fixed 418 // attributes. Normally there is no reordering and 419 // attributes_order(NUM) == NUM. 420 int attributes_order(int num)421 attributes_order(int num) const 422 { return this->do_attributes_order(num); } 423 424 // When a target is selected as the default target, we call this method, 425 // which may be used for expensive, target-specific initialization. 426 void select_as_default_target()427 select_as_default_target() 428 { this->do_select_as_default_target(); } 429 430 // Return the value to store in the EI_OSABI field in the ELF 431 // header. 432 elfcpp::ELFOSABI osabi()433 osabi() const 434 { return this->osabi_; } 435 436 // Set the value to store in the EI_OSABI field in the ELF header. 437 void set_osabi(elfcpp::ELFOSABI osabi)438 set_osabi(elfcpp::ELFOSABI osabi) 439 { this->osabi_ = osabi; } 440 441 // Define target-specific standard symbols. 442 void define_standard_symbols(Symbol_table * symtab,Layout * layout)443 define_standard_symbols(Symbol_table* symtab, Layout* layout) 444 { this->do_define_standard_symbols(symtab, layout); } 445 446 // Return the output section name to use given an input section 447 // name, or NULL if no target specific name mapping is required. 448 // Set *PLEN to the length of the name if returning non-NULL. 449 const char* output_section_name(const Relobj * relobj,const char * name,size_t * plen)450 output_section_name(const Relobj* relobj, 451 const char* name, 452 size_t* plen) const 453 { return this->do_output_section_name(relobj, name, plen); } 454 455 // Add any special sections for this symbol to the gc work list. 456 void gc_mark_symbol(Symbol_table * symtab,Symbol * sym)457 gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const 458 { this->do_gc_mark_symbol(symtab, sym); } 459 460 // Return the name of the entry point symbol. 461 const char* entry_symbol_name()462 entry_symbol_name() const 463 { return this->pti_->entry_symbol_name; } 464 465 // Whether the target has a custom set_dynsym_indexes method. 466 bool has_custom_set_dynsym_indexes()467 has_custom_set_dynsym_indexes() const 468 { return this->do_has_custom_set_dynsym_indexes(); } 469 470 // Custom set_dynsym_indexes method for a target. 471 unsigned int set_dynsym_indexes(std::vector<Symbol * > * dyn_symbols,unsigned int index,std::vector<Symbol * > * syms,Stringpool * dynpool,Versions * versions,Symbol_table * symtab)472 set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index, 473 std::vector<Symbol*>* syms, Stringpool* dynpool, 474 Versions* versions, Symbol_table* symtab) const 475 { 476 return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool, 477 versions, symtab); 478 } 479 480 // Get the custom dynamic tag value. 481 unsigned int dynamic_tag_custom_value(elfcpp::DT tag)482 dynamic_tag_custom_value(elfcpp::DT tag) const 483 { return this->do_dynamic_tag_custom_value(tag); } 484 485 // Adjust the value written to the dynamic symbol table. 486 void adjust_dyn_symbol(const Symbol * sym,unsigned char * view)487 adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const 488 { this->do_adjust_dyn_symbol(sym, view); } 489 490 // Return whether to include the section in the link. 491 bool should_include_section(elfcpp::Elf_Word sh_type)492 should_include_section(elfcpp::Elf_Word sh_type) const 493 { return this->do_should_include_section(sh_type); } 494 495 protected: 496 // This struct holds the constant information for a child class. We 497 // use a struct to avoid the overhead of virtual function calls for 498 // simple information. 499 struct Target_info 500 { 501 // Address size (32 or 64). 502 int size; 503 // Whether the target is big endian. 504 bool is_big_endian; 505 // The code to store in the e_machine field of the ELF header. 506 elfcpp::EM machine_code; 507 // Whether this target has a specific make_symbol function. 508 bool has_make_symbol; 509 // Whether this target has a specific resolve function. 510 bool has_resolve; 511 // Whether this target has a specific code fill function. 512 bool has_code_fill; 513 // Whether an object file with no .note.GNU-stack sections implies 514 // that the stack should be executable. 515 bool is_default_stack_executable; 516 // Whether a relocation to a merged section can be processed to 517 // retrieve the contents. 518 bool can_icf_inline_merge_sections; 519 // Prefix character to strip when checking for wrapping. 520 char wrap_char; 521 // The default dynamic linker name. 522 const char* dynamic_linker; 523 // The default text segment address. 524 uint64_t default_text_segment_address; 525 // The ABI specified page size. 526 uint64_t abi_pagesize; 527 // The common page size used by actual implementations. 528 uint64_t common_pagesize; 529 // Whether PF_X segments must contain nothing but the contents of 530 // SHF_EXECINSTR sections (no non-executable data, no headers). 531 bool isolate_execinstr; 532 // If nonzero, distance from the text segment to the read-only segment. 533 uint64_t rosegment_gap; 534 // The special section index for small common symbols; SHN_UNDEF 535 // if none. 536 elfcpp::Elf_Half small_common_shndx; 537 // The special section index for large common symbols; SHN_UNDEF 538 // if none. 539 elfcpp::Elf_Half large_common_shndx; 540 // Section flags for small common section. 541 elfcpp::Elf_Xword small_common_section_flags; 542 // Section flags for large common section. 543 elfcpp::Elf_Xword large_common_section_flags; 544 // Name of attributes section if it is not ".gnu.attributes". 545 const char* attributes_section; 546 // Vendor name of vendor attributes. 547 const char* attributes_vendor; 548 // Name of the main entry point to the program. 549 const char* entry_symbol_name; 550 }; 551 Target(const Target_info * pti)552 Target(const Target_info* pti) 553 : pti_(pti), processor_specific_flags_(0), 554 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE) 555 { } 556 557 // Virtual function which may be implemented by the child class. 558 virtual void do_new_output_section(Output_section *)559 do_new_output_section(Output_section*) const 560 { } 561 562 // Virtual function which may be implemented by the child class. 563 virtual void do_finalize_sections(Layout *,const Input_objects *,Symbol_table *)564 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*) 565 { } 566 567 // Virtual function which may be implemented by the child class. 568 virtual uint64_t do_dynsym_value(const Symbol *)569 do_dynsym_value(const Symbol*) const 570 { gold_unreachable(); } 571 572 // Virtual function which must be implemented by the child class if 573 // needed. 574 virtual std::string do_code_fill(section_size_type)575 do_code_fill(section_size_type) const 576 { gold_unreachable(); } 577 578 // Virtual function which may be implemented by the child class. 579 virtual bool do_is_defined_by_abi(const Symbol *)580 do_is_defined_by_abi(const Symbol*) const 581 { return false; } 582 583 // Adjust the output file header before it is written out. VIEW 584 // points to the header in external form. LEN is the length, and 585 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size. 586 // By default, we set the EI_OSABI field if requested (in 587 // Sized_target). 588 virtual void 589 do_adjust_elf_header(unsigned char*, int) = 0; 590 591 // Return address and size to plug into eh_frame FDEs associated with a PLT. 592 virtual void 593 do_plt_fde_location(const Output_data* plt, unsigned char* oview, 594 uint64_t* address, off_t* len) const; 595 596 // Virtual function which may be overridden by the child class. 597 virtual bool 598 do_is_local_label_name(const char*) const; 599 600 // Virtual function that must be overridden by a target which uses 601 // target specific relocations. 602 virtual unsigned int do_reloc_symbol_index(void *,unsigned int)603 do_reloc_symbol_index(void*, unsigned int) const 604 { gold_unreachable(); } 605 606 // Virtual function that must be overridden by a target which uses 607 // target specific relocations. 608 virtual uint64_t do_reloc_addend(void *,unsigned int,uint64_t)609 do_reloc_addend(void*, unsigned int, uint64_t) const 610 { gold_unreachable(); } 611 612 // Virtual functions that must be overridden by a target that uses 613 // STT_GNU_IFUNC symbols. 614 virtual uint64_t do_plt_address_for_global(const Symbol *)615 do_plt_address_for_global(const Symbol*) const 616 { gold_unreachable(); } 617 618 virtual uint64_t do_plt_address_for_local(const Relobj *,unsigned int)619 do_plt_address_for_local(const Relobj*, unsigned int) const 620 { gold_unreachable(); } 621 622 virtual int64_t do_tls_offset_for_local(const Relobj *,unsigned int,unsigned int)623 do_tls_offset_for_local(const Relobj*, unsigned int, unsigned int) const 624 { gold_unreachable(); } 625 626 virtual int64_t do_tls_offset_for_global(Symbol *,unsigned int)627 do_tls_offset_for_global(Symbol*, unsigned int) const 628 { gold_unreachable(); } 629 630 virtual void 631 do_function_location(Symbol_location*) const = 0; 632 633 // Virtual function which may be overriden by the child class. 634 virtual bool do_can_check_for_function_pointers()635 do_can_check_for_function_pointers() const 636 { return false; } 637 638 // Virtual function which may be overridden by the child class. We 639 // recognize some default sections for which we don't care whether 640 // they have function pointers. 641 virtual bool do_section_may_have_icf_unsafe_pointers(const char * section_name)642 do_section_may_have_icf_unsafe_pointers(const char* section_name) const 643 { 644 // We recognize sections for normal vtables, construction vtables and 645 // EH frames. 646 return (!is_prefix_of(".rodata._ZTV", section_name) 647 && !is_prefix_of(".data.rel.ro._ZTV", section_name) 648 && !is_prefix_of(".rodata._ZTC", section_name) 649 && !is_prefix_of(".data.rel.ro._ZTC", section_name) 650 && !is_prefix_of(".eh_frame", section_name)); 651 } 652 653 virtual uint64_t do_ehframe_datarel_base()654 do_ehframe_datarel_base() const 655 { gold_unreachable(); } 656 657 // Virtual function which may be overridden by the child class. The 658 // default implementation is that any function not defined by the 659 // ABI is a call to a non-split function. 660 virtual bool 661 do_is_call_to_non_split(const Symbol* sym, unsigned int) const; 662 663 // Virtual function which may be overridden by the child class. 664 virtual void 665 do_calls_non_split(Relobj* object, unsigned int, section_offset_type, 666 section_size_type, unsigned char*, section_size_type, 667 std::string*, std::string*) const; 668 669 // make_elf_object hooks. There are four versions of these for 670 // different address sizes and endianness. 671 672 // Set processor specific flags. 673 void set_processor_specific_flags(elfcpp::Elf_Word flags)674 set_processor_specific_flags(elfcpp::Elf_Word flags) 675 { 676 this->processor_specific_flags_ = flags; 677 this->are_processor_specific_flags_set_ = true; 678 } 679 680 #ifdef HAVE_TARGET_32_LITTLE 681 // Virtual functions which may be overridden by the child class. 682 virtual Object* 683 do_make_elf_object(const std::string&, Input_file*, off_t, 684 const elfcpp::Ehdr<32, false>&); 685 #endif 686 687 #ifdef HAVE_TARGET_32_BIG 688 // Virtual functions which may be overridden by the child class. 689 virtual Object* 690 do_make_elf_object(const std::string&, Input_file*, off_t, 691 const elfcpp::Ehdr<32, true>&); 692 #endif 693 694 #ifdef HAVE_TARGET_64_LITTLE 695 // Virtual functions which may be overridden by the child class. 696 virtual Object* 697 do_make_elf_object(const std::string&, Input_file*, off_t, 698 const elfcpp::Ehdr<64, false>& ehdr); 699 #endif 700 701 #ifdef HAVE_TARGET_64_BIG 702 // Virtual functions which may be overridden by the child class. 703 virtual Object* 704 do_make_elf_object(const std::string& name, Input_file* input_file, 705 off_t offset, const elfcpp::Ehdr<64, true>& ehdr); 706 #endif 707 708 // Virtual functions which may be overridden by the child class. 709 virtual Output_section* 710 do_make_output_section(const char* name, elfcpp::Elf_Word type, 711 elfcpp::Elf_Xword flags); 712 713 // Virtual function which may be overridden by the child class. 714 virtual bool do_may_relax()715 do_may_relax() const 716 { return parameters->options().relax(); } 717 718 // Virtual function which may be overridden by the child class. 719 virtual bool do_relax(int,const Input_objects *,Symbol_table *,Layout *,const Task *)720 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*) 721 { return false; } 722 723 // A function for targets to call. Return whether BYTES/LEN matches 724 // VIEW/VIEW_SIZE at OFFSET. 725 bool 726 match_view(const unsigned char* view, section_size_type view_size, 727 section_offset_type offset, const char* bytes, size_t len) const; 728 729 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET 730 // for LEN bytes. 731 void 732 set_view_to_nop(unsigned char* view, section_size_type view_size, 733 section_offset_type offset, size_t len) const; 734 735 // This must be overridden by the child class if it has target-specific 736 // attributes subsection in the attribute section. 737 virtual int do_attribute_arg_type(int)738 do_attribute_arg_type(int) const 739 { gold_unreachable(); } 740 741 // This may be overridden by the child class. 742 virtual int do_attributes_order(int num)743 do_attributes_order(int num) const 744 { return num; } 745 746 // This may be overridden by the child class. 747 virtual void do_select_as_default_target()748 do_select_as_default_target() 749 { } 750 751 // This may be overridden by the child class. 752 virtual void do_define_standard_symbols(Symbol_table *,Layout *)753 do_define_standard_symbols(Symbol_table*, Layout*) 754 { } 755 756 // This may be overridden by the child class. 757 virtual const char* do_output_section_name(const Relobj *,const char *,size_t *)758 do_output_section_name(const Relobj*, const char*, size_t*) const 759 { return NULL; } 760 761 // This may be overridden by the child class. 762 virtual void do_gc_mark_symbol(Symbol_table *,Symbol *)763 do_gc_mark_symbol(Symbol_table*, Symbol*) const 764 { } 765 766 // This may be overridden by the child class. 767 virtual bool do_has_custom_set_dynsym_indexes()768 do_has_custom_set_dynsym_indexes() const 769 { return false; } 770 771 // This may be overridden by the child class. 772 virtual unsigned int do_set_dynsym_indexes(std::vector<Symbol * > *,unsigned int,std::vector<Symbol * > *,Stringpool *,Versions *,Symbol_table *)773 do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int, 774 std::vector<Symbol*>*, Stringpool*, Versions*, 775 Symbol_table*) const 776 { gold_unreachable(); } 777 778 // This may be overridden by the child class. 779 virtual unsigned int do_dynamic_tag_custom_value(elfcpp::DT)780 do_dynamic_tag_custom_value(elfcpp::DT) const 781 { gold_unreachable(); } 782 783 // This may be overridden by the child class. 784 virtual void do_adjust_dyn_symbol(const Symbol *,unsigned char *)785 do_adjust_dyn_symbol(const Symbol*, unsigned char*) const 786 { } 787 788 // This may be overridden by the child class. 789 virtual bool do_should_include_section(elfcpp::Elf_Word)790 do_should_include_section(elfcpp::Elf_Word) const 791 { return true; } 792 793 private: 794 // The implementations of the four do_make_elf_object virtual functions are 795 // almost identical except for their sizes and endianness. We use a template. 796 // for their implementations. 797 template<int size, bool big_endian> 798 inline Object* 799 do_make_elf_object_implementation(const std::string&, Input_file*, off_t, 800 const elfcpp::Ehdr<size, big_endian>&); 801 802 Target(const Target&); 803 Target& operator=(const Target&); 804 805 // The target information. 806 const Target_info* pti_; 807 // Processor-specific flags. 808 elfcpp::Elf_Word processor_specific_flags_; 809 // Whether the processor-specific flags are set at least once. 810 bool are_processor_specific_flags_set_; 811 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of 812 // the ELF header. This is handled at this level because it is 813 // OS-specific rather than processor-specific. 814 elfcpp::ELFOSABI osabi_; 815 }; 816 817 // The abstract class for a specific size and endianness of target. 818 // Each actual target implementation class should derive from an 819 // instantiation of Sized_target. 820 821 template<int size, bool big_endian> 822 class Sized_target : public Target 823 { 824 public: 825 // Make a new symbol table entry for the target. This should be 826 // overridden by a target which needs additional information in the 827 // symbol table. This will only be called if has_make_symbol() 828 // returns true. 829 virtual Sized_symbol<size>* make_symbol()830 make_symbol() const 831 { gold_unreachable(); } 832 833 // Resolve a symbol for the target. This should be overridden by a 834 // target which needs to take special action. TO is the 835 // pre-existing symbol. SYM is the new symbol, seen in OBJECT. 836 // VERSION is the version of SYM. This will only be called if 837 // has_resolve() returns true. 838 virtual void resolve(Symbol *,const elfcpp::Sym<size,big_endian> &,Object *,const char *)839 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*, 840 const char*) 841 { gold_unreachable(); } 842 843 // Process the relocs for a section, and record information of the 844 // mapping from source to destination sections. This mapping is later 845 // used to determine unreferenced garbage sections. This procedure is 846 // only called during garbage collection. 847 virtual void 848 gc_process_relocs(Symbol_table* symtab, 849 Layout* layout, 850 Sized_relobj_file<size, big_endian>* object, 851 unsigned int data_shndx, 852 unsigned int sh_type, 853 const unsigned char* prelocs, 854 size_t reloc_count, 855 Output_section* output_section, 856 bool needs_special_offset_handling, 857 size_t local_symbol_count, 858 const unsigned char* plocal_symbols) = 0; 859 860 // Scan the relocs for a section, and record any information 861 // required for the symbol. SYMTAB is the symbol table. OBJECT is 862 // the object in which the section appears. DATA_SHNDX is the 863 // section index that these relocs apply to. SH_TYPE is the type of 864 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to 865 // the relocation data. RELOC_COUNT is the number of relocs. 866 // LOCAL_SYMBOL_COUNT is the number of local symbols. 867 // OUTPUT_SECTION is the output section. 868 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output 869 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the 870 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of 871 // pointers to the global symbol table from OBJECT. 872 virtual void 873 scan_relocs(Symbol_table* symtab, 874 Layout* layout, 875 Sized_relobj_file<size, big_endian>* object, 876 unsigned int data_shndx, 877 unsigned int sh_type, 878 const unsigned char* prelocs, 879 size_t reloc_count, 880 Output_section* output_section, 881 bool needs_special_offset_handling, 882 size_t local_symbol_count, 883 const unsigned char* plocal_symbols) = 0; 884 885 // Relocate section data. SH_TYPE is the type of the relocation 886 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation 887 // information. RELOC_COUNT is the number of relocs. 888 // OUTPUT_SECTION is the output section. 889 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped 890 // to correspond to the output section. VIEW is a view into the 891 // output file holding the section contents, VIEW_ADDRESS is the 892 // virtual address of the view, and VIEW_SIZE is the size of the 893 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx 894 // parameters refer to the complete output section data, not just 895 // the input section data. 896 virtual void 897 relocate_section(const Relocate_info<size, big_endian>*, 898 unsigned int sh_type, 899 const unsigned char* prelocs, 900 size_t reloc_count, 901 Output_section* output_section, 902 bool needs_special_offset_handling, 903 unsigned char* view, 904 typename elfcpp::Elf_types<size>::Elf_Addr view_address, 905 section_size_type view_size, 906 const Reloc_symbol_changes*) = 0; 907 908 // Scan the relocs during a relocatable link. The parameters are 909 // like scan_relocs, with an additional Relocatable_relocs 910 // parameter, used to record the disposition of the relocs. 911 virtual void 912 scan_relocatable_relocs(Symbol_table* symtab, 913 Layout* layout, 914 Sized_relobj_file<size, big_endian>* object, 915 unsigned int data_shndx, 916 unsigned int sh_type, 917 const unsigned char* prelocs, 918 size_t reloc_count, 919 Output_section* output_section, 920 bool needs_special_offset_handling, 921 size_t local_symbol_count, 922 const unsigned char* plocal_symbols, 923 Relocatable_relocs*) = 0; 924 925 // Emit relocations for a section during a relocatable link, and for 926 // --emit-relocs. The parameters are like relocate_section, with 927 // additional parameters for the view of the output reloc section. 928 virtual void 929 relocate_relocs(const Relocate_info<size, big_endian>*, 930 unsigned int sh_type, 931 const unsigned char* prelocs, 932 size_t reloc_count, 933 Output_section* output_section, 934 typename elfcpp::Elf_types<size>::Elf_Off 935 offset_in_output_section, 936 const Relocatable_relocs*, 937 unsigned char* view, 938 typename elfcpp::Elf_types<size>::Elf_Addr view_address, 939 section_size_type view_size, 940 unsigned char* reloc_view, 941 section_size_type reloc_view_size) = 0; 942 943 // Perform target-specific processing in a relocatable link. This is 944 // only used if we use the relocation strategy RELOC_SPECIAL. 945 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation 946 // section type. PRELOC_IN points to the original relocation. RELNUM is 947 // the index number of the relocation in the relocation section. 948 // OUTPUT_SECTION is the output section to which the relocation is applied. 949 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section 950 // within the output section. VIEW points to the output view of the 951 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE 952 // is the size of the output view and PRELOC_OUT points to the new 953 // relocation in the output object. 954 // 955 // A target only needs to override this if the generic code in 956 // target-reloc.h cannot handle some relocation types. 957 958 virtual void relocate_special_relocatable(const Relocate_info<size,big_endian> *,unsigned int,const unsigned char *,size_t,Output_section *,typename elfcpp::Elf_types<size>::Elf_Off,unsigned char *,typename elfcpp::Elf_types<size>::Elf_Addr,section_size_type,unsigned char *)959 relocate_special_relocatable(const Relocate_info<size, big_endian>* 960 /*relinfo */, 961 unsigned int /* sh_type */, 962 const unsigned char* /* preloc_in */, 963 size_t /* relnum */, 964 Output_section* /* output_section */, 965 typename elfcpp::Elf_types<size>::Elf_Off 966 /* offset_in_output_section */, 967 unsigned char* /* view */, 968 typename elfcpp::Elf_types<size>::Elf_Addr 969 /* view_address */, 970 section_size_type /* view_size */, 971 unsigned char* /* preloc_out*/) 972 { gold_unreachable(); } 973 974 // Return the number of entries in the GOT. This is only used for 975 // laying out the incremental link info sections. A target needs 976 // to implement this to support incremental linking. 977 978 virtual unsigned int got_entry_count()979 got_entry_count() const 980 { gold_unreachable(); } 981 982 // Return the number of entries in the PLT. This is only used for 983 // laying out the incremental link info sections. A target needs 984 // to implement this to support incremental linking. 985 986 virtual unsigned int plt_entry_count()987 plt_entry_count() const 988 { gold_unreachable(); } 989 990 // Return the offset of the first non-reserved PLT entry. This is 991 // only used for laying out the incremental link info sections. 992 // A target needs to implement this to support incremental linking. 993 994 virtual unsigned int first_plt_entry_offset()995 first_plt_entry_offset() const 996 { gold_unreachable(); } 997 998 // Return the size of each PLT entry. This is only used for 999 // laying out the incremental link info sections. A target needs 1000 // to implement this to support incremental linking. 1001 1002 virtual unsigned int plt_entry_size()1003 plt_entry_size() const 1004 { gold_unreachable(); } 1005 1006 // Create the GOT and PLT sections for an incremental update. 1007 // A target needs to implement this to support incremental linking. 1008 1009 virtual Output_data_got_base* init_got_plt_for_update(Symbol_table *,Layout *,unsigned int,unsigned int)1010 init_got_plt_for_update(Symbol_table*, 1011 Layout*, 1012 unsigned int /* got_count */, 1013 unsigned int /* plt_count */) 1014 { gold_unreachable(); } 1015 1016 // Reserve a GOT entry for a local symbol, and regenerate any 1017 // necessary dynamic relocations. 1018 virtual void reserve_local_got_entry(unsigned int,Sized_relobj<size,big_endian> *,unsigned int,unsigned int)1019 reserve_local_got_entry(unsigned int /* got_index */, 1020 Sized_relobj<size, big_endian>* /* obj */, 1021 unsigned int /* r_sym */, 1022 unsigned int /* got_type */) 1023 { gold_unreachable(); } 1024 1025 // Reserve a GOT entry for a global symbol, and regenerate any 1026 // necessary dynamic relocations. 1027 virtual void reserve_global_got_entry(unsigned int,Symbol *,unsigned int)1028 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */, 1029 unsigned int /* got_type */) 1030 { gold_unreachable(); } 1031 1032 // Register an existing PLT entry for a global symbol. 1033 // A target needs to implement this to support incremental linking. 1034 1035 virtual void register_global_plt_entry(Symbol_table *,Layout *,unsigned int,Symbol *)1036 register_global_plt_entry(Symbol_table*, Layout*, 1037 unsigned int /* plt_index */, 1038 Symbol*) 1039 { gold_unreachable(); } 1040 1041 // Force a COPY relocation for a given symbol. 1042 // A target needs to implement this to support incremental linking. 1043 1044 virtual void emit_copy_reloc(Symbol_table *,Symbol *,Output_section *,off_t)1045 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t) 1046 { gold_unreachable(); } 1047 1048 // Apply an incremental relocation. 1049 1050 virtual void apply_relocation(const Relocate_info<size,big_endian> *,typename elfcpp::Elf_types<size>::Elf_Addr,unsigned int,typename elfcpp::Elf_types<size>::Elf_Swxword,const Symbol *,unsigned char *,typename elfcpp::Elf_types<size>::Elf_Addr,section_size_type)1051 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */, 1052 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */, 1053 unsigned int /* r_type */, 1054 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */, 1055 const Symbol* /* gsym */, 1056 unsigned char* /* view */, 1057 typename elfcpp::Elf_types<size>::Elf_Addr /* address */, 1058 section_size_type /* view_size */) 1059 { gold_unreachable(); } 1060 1061 // Handle target specific gc actions when adding a gc reference from 1062 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX 1063 // and DST_OFF. 1064 void gc_add_reference(Symbol_table * symtab,Object * src_obj,unsigned int src_shndx,Object * dst_obj,unsigned int dst_shndx,typename elfcpp::Elf_types<size>::Elf_Addr dst_off)1065 gc_add_reference(Symbol_table* symtab, 1066 Object* src_obj, 1067 unsigned int src_shndx, 1068 Object* dst_obj, 1069 unsigned int dst_shndx, 1070 typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const 1071 { 1072 this->do_gc_add_reference(symtab, src_obj, src_shndx, 1073 dst_obj, dst_shndx, dst_off); 1074 } 1075 1076 protected: Sized_target(const Target::Target_info * pti)1077 Sized_target(const Target::Target_info* pti) 1078 : Target(pti) 1079 { 1080 gold_assert(pti->size == size); 1081 gold_assert(pti->is_big_endian ? big_endian : !big_endian); 1082 } 1083 1084 // Set the EI_OSABI field if requested. 1085 virtual void 1086 do_adjust_elf_header(unsigned char*, int); 1087 1088 // Handle target specific gc actions when adding a gc reference. 1089 virtual void do_gc_add_reference(Symbol_table *,Object *,unsigned int,Object *,unsigned int,typename elfcpp::Elf_types<size>::Elf_Addr)1090 do_gc_add_reference(Symbol_table*, Object*, unsigned int, 1091 Object*, unsigned int, 1092 typename elfcpp::Elf_types<size>::Elf_Addr) const 1093 { } 1094 1095 virtual void do_function_location(Symbol_location *)1096 do_function_location(Symbol_location*) const 1097 { } 1098 }; 1099 1100 } // End namespace gold. 1101 1102 #endif // !defined(GOLD_TARGET_H) 1103