1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #ifndef V8_ASSEMBLER_H_
36 #define V8_ASSEMBLER_H_
37
38 #include "src/allocation.h"
39 #include "src/builtins.h"
40 #include "src/isolate.h"
41 #include "src/parsing/token.h"
42 #include "src/runtime/runtime.h"
43
44 namespace v8 {
45
46 // Forward declarations.
47 class ApiFunction;
48
49 namespace internal {
50
51 // Forward declarations.
52 class SourcePosition;
53 class StatsCounter;
54
55 // -----------------------------------------------------------------------------
56 // Platform independent assembler base class.
57
58 enum class CodeObjectRequired { kNo, kYes };
59
60
61 class AssemblerBase: public Malloced {
62 public:
63 AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
64 virtual ~AssemblerBase();
65
isolate()66 Isolate* isolate() const { return isolate_; }
jit_cookie()67 int jit_cookie() const { return jit_cookie_; }
68
emit_debug_code()69 bool emit_debug_code() const { return emit_debug_code_; }
set_emit_debug_code(bool value)70 void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
71
serializer_enabled()72 bool serializer_enabled() const { return serializer_enabled_; }
enable_serializer()73 void enable_serializer() { serializer_enabled_ = true; }
74
predictable_code_size()75 bool predictable_code_size() const { return predictable_code_size_; }
set_predictable_code_size(bool value)76 void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
77
enabled_cpu_features()78 uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
set_enabled_cpu_features(uint64_t features)79 void set_enabled_cpu_features(uint64_t features) {
80 enabled_cpu_features_ = features;
81 }
IsEnabled(CpuFeature f)82 bool IsEnabled(CpuFeature f) {
83 return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
84 }
85
is_constant_pool_available()86 bool is_constant_pool_available() const {
87 if (FLAG_enable_embedded_constant_pool) {
88 return constant_pool_available_;
89 } else {
90 // Embedded constant pool not supported on this architecture.
91 UNREACHABLE();
92 return false;
93 }
94 }
95
96 // Overwrite a host NaN with a quiet target NaN. Used by mksnapshot for
97 // cross-snapshotting.
QuietNaN(HeapObject * nan)98 static void QuietNaN(HeapObject* nan) { }
99
pc_offset()100 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
101
102 // This function is called when code generation is aborted, so that
103 // the assembler could clean up internal data structures.
AbortedCodeGeneration()104 virtual void AbortedCodeGeneration() { }
105
106 // Debugging
107 void Print();
108
109 static const int kMinimalBufferSize = 4*KB;
110
111 static void FlushICache(Isolate* isolate, void* start, size_t size);
112
113 protected:
114 // The buffer into which code and relocation info are generated. It could
115 // either be owned by the assembler or be provided externally.
116 byte* buffer_;
117 int buffer_size_;
118 bool own_buffer_;
119
set_constant_pool_available(bool available)120 void set_constant_pool_available(bool available) {
121 if (FLAG_enable_embedded_constant_pool) {
122 constant_pool_available_ = available;
123 } else {
124 // Embedded constant pool not supported on this architecture.
125 UNREACHABLE();
126 }
127 }
128
129 // The program counter, which points into the buffer above and moves forward.
130 byte* pc_;
131
132 private:
133 Isolate* isolate_;
134 int jit_cookie_;
135 uint64_t enabled_cpu_features_;
136 bool emit_debug_code_;
137 bool predictable_code_size_;
138 bool serializer_enabled_;
139
140 // Indicates whether the constant pool can be accessed, which is only possible
141 // if the pp register points to the current code object's constant pool.
142 bool constant_pool_available_;
143
144 // Constant pool.
145 friend class FrameAndConstantPoolScope;
146 friend class ConstantPoolUnavailableScope;
147 };
148
149
150 // Avoids emitting debug code during the lifetime of this scope object.
151 class DontEmitDebugCodeScope BASE_EMBEDDED {
152 public:
DontEmitDebugCodeScope(AssemblerBase * assembler)153 explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
154 : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
155 assembler_->set_emit_debug_code(false);
156 }
~DontEmitDebugCodeScope()157 ~DontEmitDebugCodeScope() {
158 assembler_->set_emit_debug_code(old_value_);
159 }
160 private:
161 AssemblerBase* assembler_;
162 bool old_value_;
163 };
164
165
166 // Avoids using instructions that vary in size in unpredictable ways between the
167 // snapshot and the running VM.
168 class PredictableCodeSizeScope {
169 public:
170 explicit PredictableCodeSizeScope(AssemblerBase* assembler);
171 PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
172 ~PredictableCodeSizeScope();
ExpectSize(int expected_size)173 void ExpectSize(int expected_size) { expected_size_ = expected_size; }
174
175 private:
176 AssemblerBase* assembler_;
177 int expected_size_;
178 int start_offset_;
179 bool old_value_;
180 };
181
182
183 // Enable a specified feature within a scope.
184 class CpuFeatureScope BASE_EMBEDDED {
185 public:
186 #ifdef DEBUG
187 CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
188 ~CpuFeatureScope();
189
190 private:
191 AssemblerBase* assembler_;
192 uint64_t old_enabled_;
193 #else
194 CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
195 #endif
196 };
197
198
199 // CpuFeatures keeps track of which features are supported by the target CPU.
200 // Supported features must be enabled by a CpuFeatureScope before use.
201 // Example:
202 // if (assembler->IsSupported(SSE3)) {
203 // CpuFeatureScope fscope(assembler, SSE3);
204 // // Generate code containing SSE3 instructions.
205 // } else {
206 // // Generate alternative code.
207 // }
208 class CpuFeatures : public AllStatic {
209 public:
Probe(bool cross_compile)210 static void Probe(bool cross_compile) {
211 STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
212 if (initialized_) return;
213 initialized_ = true;
214 ProbeImpl(cross_compile);
215 }
216
SupportedFeatures()217 static unsigned SupportedFeatures() {
218 Probe(false);
219 return supported_;
220 }
221
IsSupported(CpuFeature f)222 static bool IsSupported(CpuFeature f) {
223 return (supported_ & (1u << f)) != 0;
224 }
225
226 static inline bool SupportsCrankshaft();
227
cache_line_size()228 static inline unsigned cache_line_size() {
229 DCHECK(cache_line_size_ != 0);
230 return cache_line_size_;
231 }
232
233 static void PrintTarget();
234 static void PrintFeatures();
235
236 private:
237 friend class ExternalReference;
238 friend class AssemblerBase;
239 // Flush instruction cache.
240 static void FlushICache(void* start, size_t size);
241
242 // Platform-dependent implementation.
243 static void ProbeImpl(bool cross_compile);
244
245 static unsigned supported_;
246 static unsigned cache_line_size_;
247 static bool initialized_;
248 DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
249 };
250
251
252 // -----------------------------------------------------------------------------
253 // Labels represent pc locations; they are typically jump or call targets.
254 // After declaration, a label can be freely used to denote known or (yet)
255 // unknown pc location. Assembler::bind() is used to bind a label to the
256 // current pc. A label can be bound only once.
257
258 class Label {
259 public:
260 enum Distance {
261 kNear, kFar
262 };
263
INLINE(Label ())264 INLINE(Label()) {
265 Unuse();
266 UnuseNear();
267 }
268
INLINE(~Label ())269 INLINE(~Label()) {
270 DCHECK(!is_linked());
271 DCHECK(!is_near_linked());
272 }
273
INLINE(void Unuse ())274 INLINE(void Unuse()) { pos_ = 0; }
INLINE(void UnuseNear ())275 INLINE(void UnuseNear()) { near_link_pos_ = 0; }
276
INLINE(bool is_bound ()const)277 INLINE(bool is_bound() const) { return pos_ < 0; }
INLINE(bool is_unused ()const)278 INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
INLINE(bool is_linked ()const)279 INLINE(bool is_linked() const) { return pos_ > 0; }
INLINE(bool is_near_linked ()const)280 INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
281
282 // Returns the position of bound or linked labels. Cannot be used
283 // for unused labels.
284 int pos() const;
near_link_pos()285 int near_link_pos() const { return near_link_pos_ - 1; }
286
287 private:
288 // pos_ encodes both the binding state (via its sign)
289 // and the binding position (via its value) of a label.
290 //
291 // pos_ < 0 bound label, pos() returns the jump target position
292 // pos_ == 0 unused label
293 // pos_ > 0 linked label, pos() returns the last reference position
294 int pos_;
295
296 // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
297 int near_link_pos_;
298
bind_to(int pos)299 void bind_to(int pos) {
300 pos_ = -pos - 1;
301 DCHECK(is_bound());
302 }
303 void link_to(int pos, Distance distance = kFar) {
304 if (distance == kNear) {
305 near_link_pos_ = pos + 1;
306 DCHECK(is_near_linked());
307 } else {
308 pos_ = pos + 1;
309 DCHECK(is_linked());
310 }
311 }
312
313 friend class Assembler;
314 friend class Displacement;
315 friend class RegExpMacroAssemblerIrregexp;
316
317 #if V8_TARGET_ARCH_ARM64
318 // On ARM64, the Assembler keeps track of pointers to Labels to resolve
319 // branches to distant targets. Copying labels would confuse the Assembler.
320 DISALLOW_COPY_AND_ASSIGN(Label); // NOLINT
321 #endif
322 };
323
324
325 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
326
327 enum ArgvMode { kArgvOnStack, kArgvInRegister };
328
329 // Specifies whether to perform icache flush operations on RelocInfo updates.
330 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
331 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
332 // skipped (only use this if you will flush the icache manually before it is
333 // executed).
334 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
335
336 // -----------------------------------------------------------------------------
337 // Relocation information
338
339
340 // Relocation information consists of the address (pc) of the datum
341 // to which the relocation information applies, the relocation mode
342 // (rmode), and an optional data field. The relocation mode may be
343 // "descriptive" and not indicate a need for relocation, but simply
344 // describe a property of the datum. Such rmodes are useful for GC
345 // and nice disassembly output.
346
347 class RelocInfo {
348 public:
349 // The constant kNoPosition is used with the collecting of source positions
350 // in the relocation information. Two types of source positions are collected
351 // "position" (RelocMode position) and "statement position" (RelocMode
352 // statement_position). The "position" is collected at places in the source
353 // code which are of interest when making stack traces to pin-point the source
354 // location of a stack frame as close as possible. The "statement position" is
355 // collected at the beginning at each statement, and is used to indicate
356 // possible break locations. kNoPosition is used to indicate an
357 // invalid/uninitialized position value.
358 static const int kNoPosition = -1;
359
360 // This string is used to add padding comments to the reloc info in cases
361 // where we are not sure to have enough space for patching in during
362 // lazy deoptimization. This is the case if we have indirect calls for which
363 // we do not normally record relocation info.
364 static const char* const kFillerCommentString;
365
366 // The minimum size of a comment is equal to two bytes for the extra tagged
367 // pc and kPointerSize for the actual pointer to the comment.
368 static const int kMinRelocCommentSize = 2 + kPointerSize;
369
370 // The maximum size for a call instruction including pc-jump.
371 static const int kMaxCallSize = 6;
372
373 // The maximum pc delta that will use the short encoding.
374 static const int kMaxSmallPCDelta;
375
376 enum Mode {
377 // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
378 CODE_TARGET, // Code target which is not any of the above.
379 CODE_TARGET_WITH_ID,
380 DEBUGGER_STATEMENT, // Code target for the debugger statement.
381 EMBEDDED_OBJECT,
382 CELL,
383
384 // Everything after runtime_entry (inclusive) is not GC'ed.
385 RUNTIME_ENTRY,
386 COMMENT,
387 POSITION, // See comment for kNoPosition above.
388 STATEMENT_POSITION, // See comment for kNoPosition above.
389
390 // Additional code inserted for debug break slot.
391 DEBUG_BREAK_SLOT_AT_POSITION,
392 DEBUG_BREAK_SLOT_AT_RETURN,
393 DEBUG_BREAK_SLOT_AT_CALL,
394
395 EXTERNAL_REFERENCE, // The address of an external C++ function.
396 INTERNAL_REFERENCE, // An address inside the same function.
397
398 // Encoded internal reference, used only on MIPS, MIPS64 and PPC.
399 INTERNAL_REFERENCE_ENCODED,
400
401 // Continuation points for a generator yield.
402 GENERATOR_CONTINUATION,
403
404 // Marks constant and veneer pools. Only used on ARM and ARM64.
405 // They use a custom noncompact encoding.
406 CONST_POOL,
407 VENEER_POOL,
408
409 DEOPT_REASON, // Deoptimization reason index.
410
411 // This is not an actual reloc mode, but used to encode a long pc jump that
412 // cannot be encoded as part of another record.
413 PC_JUMP,
414
415 // Pseudo-types
416 NUMBER_OF_MODES,
417 NONE32, // never recorded 32-bit value
418 NONE64, // never recorded 64-bit value
419 CODE_AGE_SEQUENCE, // Not stored in RelocInfo array, used explictly by
420 // code aging.
421
422 FIRST_REAL_RELOC_MODE = CODE_TARGET,
423 LAST_REAL_RELOC_MODE = VENEER_POOL,
424 LAST_CODE_ENUM = DEBUGGER_STATEMENT,
425 LAST_GCED_ENUM = CELL,
426 };
427
428 STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt);
429
RelocInfo(Isolate * isolate)430 explicit RelocInfo(Isolate* isolate) : isolate_(isolate) {
431 DCHECK_NOT_NULL(isolate);
432 }
433
RelocInfo(Isolate * isolate,byte * pc,Mode rmode,intptr_t data,Code * host)434 RelocInfo(Isolate* isolate, byte* pc, Mode rmode, intptr_t data, Code* host)
435 : isolate_(isolate), pc_(pc), rmode_(rmode), data_(data), host_(host) {
436 DCHECK_NOT_NULL(isolate);
437 }
438
IsRealRelocMode(Mode mode)439 static inline bool IsRealRelocMode(Mode mode) {
440 return mode >= FIRST_REAL_RELOC_MODE &&
441 mode <= LAST_REAL_RELOC_MODE;
442 }
IsCodeTarget(Mode mode)443 static inline bool IsCodeTarget(Mode mode) {
444 return mode <= LAST_CODE_ENUM;
445 }
IsEmbeddedObject(Mode mode)446 static inline bool IsEmbeddedObject(Mode mode) {
447 return mode == EMBEDDED_OBJECT;
448 }
IsCell(Mode mode)449 static inline bool IsCell(Mode mode) { return mode == CELL; }
IsRuntimeEntry(Mode mode)450 static inline bool IsRuntimeEntry(Mode mode) {
451 return mode == RUNTIME_ENTRY;
452 }
453 // Is the relocation mode affected by GC?
IsGCRelocMode(Mode mode)454 static inline bool IsGCRelocMode(Mode mode) {
455 return mode <= LAST_GCED_ENUM;
456 }
IsComment(Mode mode)457 static inline bool IsComment(Mode mode) {
458 return mode == COMMENT;
459 }
IsConstPool(Mode mode)460 static inline bool IsConstPool(Mode mode) {
461 return mode == CONST_POOL;
462 }
IsVeneerPool(Mode mode)463 static inline bool IsVeneerPool(Mode mode) {
464 return mode == VENEER_POOL;
465 }
IsDeoptReason(Mode mode)466 static inline bool IsDeoptReason(Mode mode) {
467 return mode == DEOPT_REASON;
468 }
IsPosition(Mode mode)469 static inline bool IsPosition(Mode mode) {
470 return mode == POSITION || mode == STATEMENT_POSITION;
471 }
IsStatementPosition(Mode mode)472 static inline bool IsStatementPosition(Mode mode) {
473 return mode == STATEMENT_POSITION;
474 }
IsExternalReference(Mode mode)475 static inline bool IsExternalReference(Mode mode) {
476 return mode == EXTERNAL_REFERENCE;
477 }
IsInternalReference(Mode mode)478 static inline bool IsInternalReference(Mode mode) {
479 return mode == INTERNAL_REFERENCE;
480 }
IsInternalReferenceEncoded(Mode mode)481 static inline bool IsInternalReferenceEncoded(Mode mode) {
482 return mode == INTERNAL_REFERENCE_ENCODED;
483 }
IsDebugBreakSlot(Mode mode)484 static inline bool IsDebugBreakSlot(Mode mode) {
485 return IsDebugBreakSlotAtPosition(mode) || IsDebugBreakSlotAtReturn(mode) ||
486 IsDebugBreakSlotAtCall(mode);
487 }
IsDebugBreakSlotAtPosition(Mode mode)488 static inline bool IsDebugBreakSlotAtPosition(Mode mode) {
489 return mode == DEBUG_BREAK_SLOT_AT_POSITION;
490 }
IsDebugBreakSlotAtReturn(Mode mode)491 static inline bool IsDebugBreakSlotAtReturn(Mode mode) {
492 return mode == DEBUG_BREAK_SLOT_AT_RETURN;
493 }
IsDebugBreakSlotAtCall(Mode mode)494 static inline bool IsDebugBreakSlotAtCall(Mode mode) {
495 return mode == DEBUG_BREAK_SLOT_AT_CALL;
496 }
IsDebuggerStatement(Mode mode)497 static inline bool IsDebuggerStatement(Mode mode) {
498 return mode == DEBUGGER_STATEMENT;
499 }
IsNone(Mode mode)500 static inline bool IsNone(Mode mode) {
501 return mode == NONE32 || mode == NONE64;
502 }
IsCodeAgeSequence(Mode mode)503 static inline bool IsCodeAgeSequence(Mode mode) {
504 return mode == CODE_AGE_SEQUENCE;
505 }
IsGeneratorContinuation(Mode mode)506 static inline bool IsGeneratorContinuation(Mode mode) {
507 return mode == GENERATOR_CONTINUATION;
508 }
ModeMask(Mode mode)509 static inline int ModeMask(Mode mode) { return 1 << mode; }
510
511 // Accessors
isolate()512 Isolate* isolate() const { return isolate_; }
pc()513 byte* pc() const { return pc_; }
set_pc(byte * pc)514 void set_pc(byte* pc) { pc_ = pc; }
rmode()515 Mode rmode() const { return rmode_; }
data()516 intptr_t data() const { return data_; }
host()517 Code* host() const { return host_; }
set_host(Code * host)518 void set_host(Code* host) { host_ = host; }
519
520 // Apply a relocation by delta bytes. When the code object is moved, PC
521 // relative addresses have to be updated as well as absolute addresses
522 // inside the code (internal references).
523 // Do not forget to flush the icache afterwards!
524 INLINE(void apply(intptr_t delta));
525
526 // Is the pointer this relocation info refers to coded like a plain pointer
527 // or is it strange in some way (e.g. relative or patched into a series of
528 // instructions).
529 bool IsCodedSpecially();
530
531 // If true, the pointer this relocation info refers to is an entry in the
532 // constant pool, otherwise the pointer is embedded in the instruction stream.
533 bool IsInConstantPool();
534
535 // this relocation applies to;
536 // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
537 INLINE(Address target_address());
538 INLINE(void set_target_address(Address target,
539 WriteBarrierMode write_barrier_mode =
540 UPDATE_WRITE_BARRIER,
541 ICacheFlushMode icache_flush_mode =
542 FLUSH_ICACHE_IF_NEEDED));
543 INLINE(Object* target_object());
544 INLINE(Handle<Object> target_object_handle(Assembler* origin));
545 INLINE(void set_target_object(Object* target,
546 WriteBarrierMode write_barrier_mode =
547 UPDATE_WRITE_BARRIER,
548 ICacheFlushMode icache_flush_mode =
549 FLUSH_ICACHE_IF_NEEDED));
550 INLINE(Address target_runtime_entry(Assembler* origin));
551 INLINE(void set_target_runtime_entry(Address target,
552 WriteBarrierMode write_barrier_mode =
553 UPDATE_WRITE_BARRIER,
554 ICacheFlushMode icache_flush_mode =
555 FLUSH_ICACHE_IF_NEEDED));
556 INLINE(Cell* target_cell());
557 INLINE(Handle<Cell> target_cell_handle());
558 INLINE(void set_target_cell(Cell* cell,
559 WriteBarrierMode write_barrier_mode =
560 UPDATE_WRITE_BARRIER,
561 ICacheFlushMode icache_flush_mode =
562 FLUSH_ICACHE_IF_NEEDED));
563 INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
564 INLINE(Code* code_age_stub());
565 INLINE(void set_code_age_stub(Code* stub,
566 ICacheFlushMode icache_flush_mode =
567 FLUSH_ICACHE_IF_NEEDED));
568
569 // Returns the address of the constant pool entry where the target address
570 // is held. This should only be called if IsInConstantPool returns true.
571 INLINE(Address constant_pool_entry_address());
572
573 // Read the address of the word containing the target_address in an
574 // instruction stream. What this means exactly is architecture-independent.
575 // The only architecture-independent user of this function is the serializer.
576 // The serializer uses it to find out how many raw bytes of instruction to
577 // output before the next target. Architecture-independent code shouldn't
578 // dereference the pointer it gets back from this.
579 INLINE(Address target_address_address());
580
581 // This indicates how much space a target takes up when deserializing a code
582 // stream. For most architectures this is just the size of a pointer. For
583 // an instruction like movw/movt where the target bits are mixed into the
584 // instruction bits the size of the target will be zero, indicating that the
585 // serializer should not step forwards in memory after a target is resolved
586 // and written. In this case the target_address_address function above
587 // should return the end of the instructions to be patched, allowing the
588 // deserializer to deserialize the instructions as raw bytes and put them in
589 // place, ready to be patched with the target.
590 INLINE(int target_address_size());
591
592 // Read the reference in the instruction this relocation
593 // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE.
594 INLINE(Address target_external_reference());
595
596 // Read the reference in the instruction this relocation
597 // applies to; can only be called if rmode_ is INTERNAL_REFERENCE.
598 INLINE(Address target_internal_reference());
599
600 // Return the reference address this relocation applies to;
601 // can only be called if rmode_ is INTERNAL_REFERENCE.
602 INLINE(Address target_internal_reference_address());
603
604 // Read/modify the address of a call instruction. This is used to relocate
605 // the break points where straight-line code is patched with a call
606 // instruction.
607 INLINE(Address debug_call_address());
608 INLINE(void set_debug_call_address(Address target));
609
610 // Wipe out a relocation to a fixed value, used for making snapshots
611 // reproducible.
612 INLINE(void WipeOut());
613
614 template<typename StaticVisitor> inline void Visit(Heap* heap);
615 inline void Visit(Isolate* isolate, ObjectVisitor* v);
616
617 // Check whether this return sequence has been patched
618 // with a call to the debugger.
619 INLINE(bool IsPatchedReturnSequence());
620
621 // Check whether this debug break slot has been patched with a call to the
622 // debugger.
623 INLINE(bool IsPatchedDebugBreakSlotSequence());
624
625 #ifdef DEBUG
626 // Check whether the given code contains relocation information that
627 // either is position-relative or movable by the garbage collector.
628 static bool RequiresRelocation(const CodeDesc& desc);
629 #endif
630
631 #ifdef ENABLE_DISASSEMBLER
632 // Printing
633 static const char* RelocModeName(Mode rmode);
634 void Print(Isolate* isolate, std::ostream& os); // NOLINT
635 #endif // ENABLE_DISASSEMBLER
636 #ifdef VERIFY_HEAP
637 void Verify(Isolate* isolate);
638 #endif
639
640 static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
641 static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
642 static const int kDataMask =
643 (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
644 static const int kDebugBreakSlotMask = 1 << DEBUG_BREAK_SLOT_AT_POSITION |
645 1 << DEBUG_BREAK_SLOT_AT_RETURN |
646 1 << DEBUG_BREAK_SLOT_AT_CALL;
647 static const int kApplyMask; // Modes affected by apply. Depends on arch.
648
649 private:
650 Isolate* isolate_;
651 // On ARM, note that pc_ is the address of the constant pool entry
652 // to be relocated and not the address of the instruction
653 // referencing the constant pool entry (except when rmode_ ==
654 // comment).
655 byte* pc_;
656 Mode rmode_;
657 intptr_t data_;
658 Code* host_;
659 friend class RelocIterator;
660 };
661
662
663 // RelocInfoWriter serializes a stream of relocation info. It writes towards
664 // lower addresses.
665 class RelocInfoWriter BASE_EMBEDDED {
666 public:
RelocInfoWriter()667 RelocInfoWriter()
668 : pos_(NULL),
669 last_pc_(NULL),
670 last_id_(0),
671 last_position_(0),
672 last_mode_(RelocInfo::NUMBER_OF_MODES),
673 next_position_candidate_pos_delta_(0),
674 next_position_candidate_pc_delta_(0),
675 next_position_candidate_flushed_(true) {}
RelocInfoWriter(byte * pos,byte * pc)676 RelocInfoWriter(byte* pos, byte* pc)
677 : pos_(pos),
678 last_pc_(pc),
679 last_id_(0),
680 last_position_(0),
681 last_mode_(RelocInfo::NUMBER_OF_MODES),
682 next_position_candidate_pos_delta_(0),
683 next_position_candidate_pc_delta_(0),
684 next_position_candidate_flushed_(true) {}
685
pos()686 byte* pos() const { return pos_; }
last_pc()687 byte* last_pc() const { return last_pc_; }
688
689 void Write(const RelocInfo* rinfo);
690
691 // Update the state of the stream after reloc info buffer
692 // and/or code is moved while the stream is active.
Reposition(byte * pos,byte * pc)693 void Reposition(byte* pos, byte* pc) {
694 pos_ = pos;
695 last_pc_ = pc;
696 }
697
Finish()698 void Finish() { FlushPosition(); }
699
700 // Max size (bytes) of a written RelocInfo. Longest encoding is
701 // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta.
702 // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11.
703 // On x64 this is 1 + 4 + 1 + 1 + 8 == 15;
704 // Here we use the maximum of the two.
705 static const int kMaxSize = 15;
706
707 private:
708 inline uint32_t WriteLongPCJump(uint32_t pc_delta);
709
710 inline void WriteShortTaggedPC(uint32_t pc_delta, int tag);
711 inline void WriteShortTaggedData(intptr_t data_delta, int tag);
712
713 inline void WriteMode(RelocInfo::Mode rmode);
714 inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode);
715 inline void WriteIntData(int data_delta);
716 inline void WriteData(intptr_t data_delta);
717 inline void WritePosition(int pc_delta, int pos_delta, RelocInfo::Mode rmode);
718
719 void FlushPosition();
720
721 byte* pos_;
722 byte* last_pc_;
723 int last_id_;
724 int last_position_;
725 RelocInfo::Mode last_mode_;
726 int next_position_candidate_pos_delta_;
727 uint32_t next_position_candidate_pc_delta_;
728 bool next_position_candidate_flushed_;
729
730 DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
731 };
732
733
734 // A RelocIterator iterates over relocation information.
735 // Typical use:
736 //
737 // for (RelocIterator it(code); !it.done(); it.next()) {
738 // // do something with it.rinfo() here
739 // }
740 //
741 // A mask can be specified to skip unwanted modes.
742 class RelocIterator: public Malloced {
743 public:
744 // Create a new iterator positioned at
745 // the beginning of the reloc info.
746 // Relocation information with mode k is included in the
747 // iteration iff bit k of mode_mask is set.
748 explicit RelocIterator(Code* code, int mode_mask = -1);
749 explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
750
751 // Iteration
done()752 bool done() const { return done_; }
753 void next();
754
755 // Return pointer valid until next next().
rinfo()756 RelocInfo* rinfo() {
757 DCHECK(!done());
758 return &rinfo_;
759 }
760
761 private:
762 // Advance* moves the position before/after reading.
763 // *Read* reads from current byte(s) into rinfo_.
764 // *Get* just reads and returns info on current byte.
765 void Advance(int bytes = 1) { pos_ -= bytes; }
766 int AdvanceGetTag();
767 RelocInfo::Mode GetMode();
768
769 void AdvanceReadLongPCJump();
770
771 int GetShortDataTypeTag();
772 void ReadShortTaggedPC();
773 void ReadShortTaggedId();
774 void ReadShortTaggedPosition();
775 void ReadShortTaggedData();
776
777 void AdvanceReadPC();
778 void AdvanceReadId();
779 void AdvanceReadInt();
780 void AdvanceReadPosition();
781 void AdvanceReadData();
782
783 // If the given mode is wanted, set it in rinfo_ and return true.
784 // Else return false. Used for efficiently skipping unwanted modes.
SetMode(RelocInfo::Mode mode)785 bool SetMode(RelocInfo::Mode mode) {
786 return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
787 }
788
789 byte* pos_;
790 byte* end_;
791 byte* code_age_sequence_;
792 RelocInfo rinfo_;
793 bool done_;
794 int mode_mask_;
795 int last_id_;
796 int last_position_;
797 DISALLOW_COPY_AND_ASSIGN(RelocIterator);
798 };
799
800
801 //------------------------------------------------------------------------------
802 // External function
803
804 //----------------------------------------------------------------------------
805 class SCTableReference;
806 class Debug_Address;
807
808
809 // An ExternalReference represents a C++ address used in the generated
810 // code. All references to C++ functions and variables must be encapsulated in
811 // an ExternalReference instance. This is done in order to track the origin of
812 // all external references in the code so that they can be bound to the correct
813 // addresses when deserializing a heap.
814 class ExternalReference BASE_EMBEDDED {
815 public:
816 // Used in the simulator to support different native api calls.
817 enum Type {
818 // Builtin call.
819 // Object* f(v8::internal::Arguments).
820 BUILTIN_CALL, // default
821
822 // Builtin that takes float arguments and returns an int.
823 // int f(double, double).
824 BUILTIN_COMPARE_CALL,
825
826 // Builtin call that returns floating point.
827 // double f(double, double).
828 BUILTIN_FP_FP_CALL,
829
830 // Builtin call that returns floating point.
831 // double f(double).
832 BUILTIN_FP_CALL,
833
834 // Builtin call that returns floating point.
835 // double f(double, int).
836 BUILTIN_FP_INT_CALL,
837
838 // Direct call to API function callback.
839 // void f(v8::FunctionCallbackInfo&)
840 DIRECT_API_CALL,
841
842 // Call to function callback via InvokeFunctionCallback.
843 // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
844 PROFILING_API_CALL,
845
846 // Direct call to accessor getter callback.
847 // void f(Local<Name> property, PropertyCallbackInfo& info)
848 DIRECT_GETTER_CALL,
849
850 // Call to accessor getter callback via InvokeAccessorGetterCallback.
851 // void f(Local<Name> property, PropertyCallbackInfo& info,
852 // AccessorNameGetterCallback callback)
853 PROFILING_GETTER_CALL
854 };
855
856 static void SetUp();
857 static void InitializeMathExpData();
858 static void TearDownMathExpData();
859
860 typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original,
861 Type type);
862
ExternalReference()863 ExternalReference() : address_(NULL) {}
864
865 ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
866
867 ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
868
869 ExternalReference(Builtins::Name name, Isolate* isolate);
870
871 ExternalReference(Runtime::FunctionId id, Isolate* isolate);
872
873 ExternalReference(const Runtime::Function* f, Isolate* isolate);
874
875 explicit ExternalReference(StatsCounter* counter);
876
877 ExternalReference(Isolate::AddressId id, Isolate* isolate);
878
879 explicit ExternalReference(const SCTableReference& table_ref);
880
881 // Isolate as an external reference.
882 static ExternalReference isolate_address(Isolate* isolate);
883
884 // One-of-a-kind references. These references are not part of a general
885 // pattern. This means that they have to be added to the
886 // ExternalReferenceTable in serialize.cc manually.
887
888 static ExternalReference incremental_marking_record_write_function(
889 Isolate* isolate);
890 static ExternalReference store_buffer_overflow_function(
891 Isolate* isolate);
892 static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
893
894 static ExternalReference get_date_field_function(Isolate* isolate);
895 static ExternalReference date_cache_stamp(Isolate* isolate);
896
897 static ExternalReference get_make_code_young_function(Isolate* isolate);
898 static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
899
900 // Deoptimization support.
901 static ExternalReference new_deoptimizer_function(Isolate* isolate);
902 static ExternalReference compute_output_frames_function(Isolate* isolate);
903
904 // Log support.
905 static ExternalReference log_enter_external_function(Isolate* isolate);
906 static ExternalReference log_leave_external_function(Isolate* isolate);
907
908 // Static data in the keyed lookup cache.
909 static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
910 static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
911
912 // Static variable Heap::roots_array_start()
913 static ExternalReference roots_array_start(Isolate* isolate);
914
915 // Static variable Heap::allocation_sites_list_address()
916 static ExternalReference allocation_sites_list_address(Isolate* isolate);
917
918 // Static variable StackGuard::address_of_jslimit()
919 static ExternalReference address_of_stack_limit(Isolate* isolate);
920
921 // Static variable StackGuard::address_of_real_jslimit()
922 static ExternalReference address_of_real_stack_limit(Isolate* isolate);
923
924 // Static variable RegExpStack::limit_address()
925 static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
926
927 // Static variables for RegExp.
928 static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
929 static ExternalReference address_of_regexp_stack_memory_address(
930 Isolate* isolate);
931 static ExternalReference address_of_regexp_stack_memory_size(
932 Isolate* isolate);
933
934 // Static variable Heap::NewSpaceStart()
935 static ExternalReference new_space_start(Isolate* isolate);
936 static ExternalReference new_space_mask(Isolate* isolate);
937
938 // Write barrier.
939 static ExternalReference store_buffer_top(Isolate* isolate);
940
941 // Used for fast allocation in generated code.
942 static ExternalReference new_space_allocation_top_address(Isolate* isolate);
943 static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
944 static ExternalReference old_space_allocation_top_address(Isolate* isolate);
945 static ExternalReference old_space_allocation_limit_address(Isolate* isolate);
946
947 static ExternalReference mod_two_doubles_operation(Isolate* isolate);
948 static ExternalReference power_double_double_function(Isolate* isolate);
949 static ExternalReference power_double_int_function(Isolate* isolate);
950
951 static ExternalReference handle_scope_next_address(Isolate* isolate);
952 static ExternalReference handle_scope_limit_address(Isolate* isolate);
953 static ExternalReference handle_scope_level_address(Isolate* isolate);
954
955 static ExternalReference scheduled_exception_address(Isolate* isolate);
956 static ExternalReference address_of_pending_message_obj(Isolate* isolate);
957
958 // Static variables containing common double constants.
959 static ExternalReference address_of_min_int();
960 static ExternalReference address_of_one_half();
961 static ExternalReference address_of_minus_one_half();
962 static ExternalReference address_of_negative_infinity();
963 static ExternalReference address_of_the_hole_nan();
964 static ExternalReference address_of_uint32_bias();
965
966 static ExternalReference math_log_double_function(Isolate* isolate);
967
968 static ExternalReference math_exp_constants(int constant_index);
969 static ExternalReference math_exp_log_table();
970
971 static ExternalReference page_flags(Page* page);
972
973 static ExternalReference ForDeoptEntry(Address entry);
974
975 static ExternalReference cpu_features();
976
977 static ExternalReference debug_is_active_address(Isolate* isolate);
978 static ExternalReference debug_after_break_target_address(Isolate* isolate);
979
980 static ExternalReference is_profiling_address(Isolate* isolate);
981 static ExternalReference invoke_function_callback(Isolate* isolate);
982 static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
983
984 static ExternalReference virtual_handler_register(Isolate* isolate);
985 static ExternalReference virtual_slot_register(Isolate* isolate);
986
987 static ExternalReference runtime_function_table_address(Isolate* isolate);
988
address()989 Address address() const { return reinterpret_cast<Address>(address_); }
990
991 // Used to check if single stepping is enabled in generated code.
992 static ExternalReference debug_step_in_enabled_address(Isolate* isolate);
993
994 #ifndef V8_INTERPRETED_REGEXP
995 // C functions called from RegExp generated code.
996
997 // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
998 static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
999
1000 // Function RegExpMacroAssembler*::CheckStackGuardState()
1001 static ExternalReference re_check_stack_guard_state(Isolate* isolate);
1002
1003 // Function NativeRegExpMacroAssembler::GrowStack()
1004 static ExternalReference re_grow_stack(Isolate* isolate);
1005
1006 // byte NativeRegExpMacroAssembler::word_character_bitmap
1007 static ExternalReference re_word_character_map();
1008
1009 #endif
1010
1011 // This lets you register a function that rewrites all external references.
1012 // Used by the ARM simulator to catch calls to external references.
set_redirector(Isolate * isolate,ExternalReferenceRedirector * redirector)1013 static void set_redirector(Isolate* isolate,
1014 ExternalReferenceRedirector* redirector) {
1015 // We can't stack them.
1016 DCHECK(isolate->external_reference_redirector() == NULL);
1017 isolate->set_external_reference_redirector(
1018 reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
1019 }
1020
1021 static ExternalReference stress_deopt_count(Isolate* isolate);
1022
1023 static ExternalReference fixed_typed_array_base_data_offset();
1024
1025 private:
ExternalReference(void * address)1026 explicit ExternalReference(void* address)
1027 : address_(address) {}
1028
1029 static void* Redirect(Isolate* isolate,
1030 Address address_arg,
1031 Type type = ExternalReference::BUILTIN_CALL) {
1032 ExternalReferenceRedirector* redirector =
1033 reinterpret_cast<ExternalReferenceRedirector*>(
1034 isolate->external_reference_redirector());
1035 void* address = reinterpret_cast<void*>(address_arg);
1036 void* answer =
1037 (redirector == NULL) ? address : (*redirector)(isolate, address, type);
1038 return answer;
1039 }
1040
1041 void* address_;
1042 };
1043
1044 bool operator==(ExternalReference, ExternalReference);
1045 bool operator!=(ExternalReference, ExternalReference);
1046
1047 size_t hash_value(ExternalReference);
1048
1049 std::ostream& operator<<(std::ostream&, ExternalReference);
1050
1051
1052 // -----------------------------------------------------------------------------
1053 // Position recording support
1054
1055 struct PositionState {
PositionStatePositionState1056 PositionState() : current_position(RelocInfo::kNoPosition),
1057 written_position(RelocInfo::kNoPosition),
1058 current_statement_position(RelocInfo::kNoPosition),
1059 written_statement_position(RelocInfo::kNoPosition) {}
1060
1061 int current_position;
1062 int written_position;
1063
1064 int current_statement_position;
1065 int written_statement_position;
1066 };
1067
1068
1069 class PositionsRecorder BASE_EMBEDDED {
1070 public:
PositionsRecorder(Assembler * assembler)1071 explicit PositionsRecorder(Assembler* assembler)
1072 : assembler_(assembler) {
1073 jit_handler_data_ = NULL;
1074 }
1075
AttachJITHandlerData(void * user_data)1076 void AttachJITHandlerData(void* user_data) {
1077 jit_handler_data_ = user_data;
1078 }
1079
DetachJITHandlerData()1080 void* DetachJITHandlerData() {
1081 void* old_data = jit_handler_data_;
1082 jit_handler_data_ = NULL;
1083 return old_data;
1084 }
1085 // Set current position to pos.
1086 void RecordPosition(int pos);
1087
1088 // Set current statement position to pos.
1089 void RecordStatementPosition(int pos);
1090
1091 // Write recorded positions to relocation information.
1092 bool WriteRecordedPositions();
1093
current_position()1094 int current_position() const { return state_.current_position; }
1095
current_statement_position()1096 int current_statement_position() const {
1097 return state_.current_statement_position;
1098 }
1099
1100 private:
1101 Assembler* assembler_;
1102 PositionState state_;
1103
1104 // Currently jit_handler_data_ is used to store JITHandler-specific data
1105 // over the lifetime of a PositionsRecorder
1106 void* jit_handler_data_;
1107
1108 DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
1109 };
1110
1111
1112 // -----------------------------------------------------------------------------
1113 // Utility functions
1114
NumberOfBitsSet(uint32_t x)1115 inline int NumberOfBitsSet(uint32_t x) {
1116 unsigned int num_bits_set;
1117 for (num_bits_set = 0; x; x >>= 1) {
1118 num_bits_set += x & 1;
1119 }
1120 return num_bits_set;
1121 }
1122
1123 bool EvalComparison(Token::Value op, double op1, double op2);
1124
1125 // Computes pow(x, y) with the special cases in the spec for Math.pow.
1126 double power_helper(Isolate* isolate, double x, double y);
1127 double power_double_int(double x, int y);
1128 double power_double_double(double x, double y);
1129
1130 // Helper class for generating code or data associated with the code
1131 // right after a call instruction. As an example this can be used to
1132 // generate safepoint data after calls for crankshaft.
1133 class CallWrapper {
1134 public:
CallWrapper()1135 CallWrapper() { }
~CallWrapper()1136 virtual ~CallWrapper() { }
1137 // Called just before emitting a call. Argument is the size of the generated
1138 // call code.
1139 virtual void BeforeCall(int call_size) const = 0;
1140 // Called just after emitting a call, i.e., at the return site for the call.
1141 virtual void AfterCall() const = 0;
1142 // Return whether call needs to check for debug stepping.
NeedsDebugStepCheck()1143 virtual bool NeedsDebugStepCheck() const { return false; }
1144 };
1145
1146
1147 class NullCallWrapper : public CallWrapper {
1148 public:
NullCallWrapper()1149 NullCallWrapper() { }
~NullCallWrapper()1150 virtual ~NullCallWrapper() { }
BeforeCall(int call_size)1151 virtual void BeforeCall(int call_size) const { }
AfterCall()1152 virtual void AfterCall() const { }
1153 };
1154
1155
1156 class CheckDebugStepCallWrapper : public CallWrapper {
1157 public:
CheckDebugStepCallWrapper()1158 CheckDebugStepCallWrapper() {}
~CheckDebugStepCallWrapper()1159 virtual ~CheckDebugStepCallWrapper() {}
BeforeCall(int call_size)1160 virtual void BeforeCall(int call_size) const {}
AfterCall()1161 virtual void AfterCall() const {}
NeedsDebugStepCheck()1162 virtual bool NeedsDebugStepCheck() const { return true; }
1163 };
1164
1165
1166 // -----------------------------------------------------------------------------
1167 // Constant pool support
1168
1169 class ConstantPoolEntry {
1170 public:
ConstantPoolEntry()1171 ConstantPoolEntry() {}
ConstantPoolEntry(int position,intptr_t value,bool sharing_ok)1172 ConstantPoolEntry(int position, intptr_t value, bool sharing_ok)
1173 : position_(position),
1174 merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
1175 value_(value) {}
ConstantPoolEntry(int position,double value)1176 ConstantPoolEntry(int position, double value)
1177 : position_(position), merged_index_(SHARING_ALLOWED), value64_(value) {}
1178
position()1179 int position() const { return position_; }
sharing_ok()1180 bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
is_merged()1181 bool is_merged() const { return merged_index_ >= 0; }
merged_index(void)1182 int merged_index(void) const {
1183 DCHECK(is_merged());
1184 return merged_index_;
1185 }
set_merged_index(int index)1186 void set_merged_index(int index) {
1187 merged_index_ = index;
1188 DCHECK(is_merged());
1189 }
offset(void)1190 int offset(void) const {
1191 DCHECK(merged_index_ >= 0);
1192 return merged_index_;
1193 }
set_offset(int offset)1194 void set_offset(int offset) {
1195 DCHECK(offset >= 0);
1196 merged_index_ = offset;
1197 }
value()1198 intptr_t value() const { return value_; }
value64()1199 uint64_t value64() const { return bit_cast<uint64_t>(value64_); }
1200
1201 enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };
1202
size(Type type)1203 static int size(Type type) {
1204 return (type == INTPTR) ? kPointerSize : kDoubleSize;
1205 }
1206
1207 enum Access { REGULAR, OVERFLOWED };
1208
1209 private:
1210 int position_;
1211 int merged_index_;
1212 union {
1213 intptr_t value_;
1214 double value64_;
1215 };
1216 enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
1217 };
1218
1219
1220 // -----------------------------------------------------------------------------
1221 // Embedded constant pool support
1222
1223 class ConstantPoolBuilder BASE_EMBEDDED {
1224 public:
1225 ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);
1226
1227 // Add pointer-sized constant to the embedded constant pool
AddEntry(int position,intptr_t value,bool sharing_ok)1228 ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
1229 bool sharing_ok) {
1230 ConstantPoolEntry entry(position, value, sharing_ok);
1231 return AddEntry(entry, ConstantPoolEntry::INTPTR);
1232 }
1233
1234 // Add double constant to the embedded constant pool
AddEntry(int position,double value)1235 ConstantPoolEntry::Access AddEntry(int position, double value) {
1236 ConstantPoolEntry entry(position, value);
1237 return AddEntry(entry, ConstantPoolEntry::DOUBLE);
1238 }
1239
1240 // Previews the access type required for the next new entry to be added.
1241 ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;
1242
IsEmpty()1243 bool IsEmpty() {
1244 return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
1245 info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
1246 info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
1247 info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
1248 }
1249
1250 // Emit the constant pool. Invoke only after all entries have been
1251 // added and all instructions have been emitted.
1252 // Returns position of the emitted pool (zero implies no constant pool).
1253 int Emit(Assembler* assm);
1254
1255 // Returns the label associated with the start of the constant pool.
1256 // Linking to this label in the function prologue may provide an
1257 // efficient means of constant pool pointer register initialization
1258 // on some architectures.
EmittedPosition()1259 inline Label* EmittedPosition() { return &emitted_label_; }
1260
1261 private:
1262 ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
1263 ConstantPoolEntry::Type type);
1264 void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
1265 void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
1266 ConstantPoolEntry::Type type);
1267
1268 struct PerTypeEntryInfo {
PerTypeEntryInfoPerTypeEntryInfo1269 PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
overflowPerTypeEntryInfo1270 bool overflow() const {
1271 return (overflow_start >= 0 &&
1272 overflow_start < static_cast<int>(entries.size()));
1273 }
1274 int regular_reach_bits;
1275 int regular_count;
1276 int overflow_start;
1277 std::vector<ConstantPoolEntry> entries;
1278 std::vector<ConstantPoolEntry> shared_entries;
1279 };
1280
1281 Label emitted_label_; // Records pc_offset of emitted pool
1282 PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
1283 };
1284
1285 } // namespace internal
1286 } // namespace v8
1287 #endif // V8_ASSEMBLER_H_
1288