1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRecord_DEFINED
9 #define SkRecord_DEFINED
10 
11 #include "SkRecords.h"
12 #include "SkTLogic.h"
13 #include "SkTemplates.h"
14 #include "SkVarAlloc.h"
15 
16 // SkRecord represents a sequence of SkCanvas calls, saved for future use.
17 // These future uses may include: replay, optimization, serialization, or combinations of those.
18 //
19 // Though an enterprising user may find calling alloc(), append(), visit(), and mutate() enough to
20 // work with SkRecord, you probably want to look at SkRecorder which presents an SkCanvas interface
21 // for creating an SkRecord, and SkRecordDraw which plays an SkRecord back into another SkCanvas.
22 //
23 // SkRecord often looks like it's compatible with any type T, but really it's compatible with any
24 // type T which has a static const SkRecords::Type kType.  That is to say, SkRecord is compatible
25 // only with SkRecords::* structs defined in SkRecords.h.  Your compiler will helpfully yell if you
26 // get this wrong.
27 
28 class SkRecord : public SkNVRefCnt<SkRecord> {
29     enum {
30         // TODO: tune these two constants.
31         kInlineRecords      = 4, // Ideally our lower limit on recorded ops per picture.
32         kInlineAllocLgBytes = 8, // 1<<8 == 256 bytes inline, then SkVarAlloc starting at 512 bytes.
33     };
34 public:
SkRecord()35     SkRecord()
36         : fCount(0)
37         , fReserved(kInlineRecords)
38         , fAlloc(kInlineAllocLgBytes+1,  // First malloc'd block is 2x as large as fInlineAlloc.
39                  fInlineAlloc, sizeof(fInlineAlloc)) {}
40     ~SkRecord();
41 
42     // Returns the number of canvas commands in this SkRecord.
count()43     int count() const { return fCount; }
44 
45     // Visit the i-th canvas command with a functor matching this interface:
46     //   template <typename T>
47     //   R operator()(const T& record) { ... }
48     // This operator() must be defined for at least all SkRecords::*.
49     template <typename R, typename F>
visit(int i,F & f)50     R visit(int i, F& f) const {
51         SkASSERT(i < this->count());
52         return fRecords[i].visit<R>(f);
53     }
54 
55     // Mutate the i-th canvas command with a functor matching this interface:
56     //   template <typename T>
57     //   R operator()(T* record) { ... }
58     // This operator() must be defined for at least all SkRecords::*.
59     template <typename R, typename F>
mutate(int i,F & f)60     R mutate(int i, F& f) {
61         SkASSERT(i < this->count());
62         return fRecords[i].mutate<R>(f);
63     }
64 
65     // TODO: It'd be nice to infer R from F for visit and mutate.
66 
67     // Allocate contiguous space for count Ts, to be freed when the SkRecord is destroyed.
68     // Here T can be any class, not just those from SkRecords.  Throws on failure.
69     template <typename T>
70     T* alloc(size_t count = 1) {
71         return (T*)fAlloc.alloc(sizeof(T) * count);
72     }
73 
74     // Add a new command of type T to the end of this SkRecord.
75     // You are expected to placement new an object of type T onto this pointer.
76     template <typename T>
append()77     T* append() {
78         if (fCount == fReserved) {
79             this->grow();
80         }
81         return fRecords[fCount++].set(this->allocCommand<T>());
82     }
83 
84     // Replace the i-th command with a new command of type T.
85     // You are expected to placement new an object of type T onto this pointer.
86     // References to the original command are invalidated.
87     template <typename T>
replace(int i)88     T* replace(int i) {
89         SkASSERT(i < this->count());
90 
91         Destroyer destroyer;
92         this->mutate<void>(i, destroyer);
93 
94         return fRecords[i].set(this->allocCommand<T>());
95     }
96 
97     // Replace the i-th command with a new command of type T.
98     // You are expected to placement new an object of type T onto this pointer.
99     // You must show proof that you've already adopted the existing command.
100     template <typename T, typename Existing>
replace(int i,const SkRecords::Adopted<Existing> & proofOfAdoption)101     T* replace(int i, const SkRecords::Adopted<Existing>& proofOfAdoption) {
102         SkASSERT(i < this->count());
103 
104         SkASSERT(Existing::kType == fRecords[i].type());
105         SkASSERT(proofOfAdoption == fRecords[i].ptr());
106 
107         return fRecords[i].set(this->allocCommand<T>());
108     }
109 
110     // Does not return the bytes in any pointers embedded in the Records; callers
111     // need to iterate with a visitor to measure those they care for.
112     size_t bytesUsed() const;
113 
114     // Rearrange and resize this record to eliminate any NoOps.
115     // May change count() and the indices of ops, but preserves their order.
116     void defrag();
117 
118 private:
119     // An SkRecord is structured as an array of pointers into a big chunk of memory where
120     // records representing each canvas draw call are stored:
121     //
122     // fRecords:  [*][*][*]...
123     //             |  |  |
124     //             |  |  |
125     //             |  |  +---------------------------------------+
126     //             |  +-----------------+                        |
127     //             |                    |                        |
128     //             v                    v                        v
129     //   fAlloc:  [SkRecords::DrawRect][SkRecords::DrawPosTextH][SkRecords::DrawRect]...
130     //
131     // We store the types of each of the pointers alongside the pointer.
132     // The cost to append a T to this structure is 8 + sizeof(T) bytes.
133 
134     // A mutator that can be used with replace to destroy canvas commands.
135     struct Destroyer {
136         template <typename T>
operatorDestroyer137         void operator()(T* record) { record->~T(); }
138     };
139 
140     template <typename T>
SK_WHEN(std::is_empty<T>::value,T *)141     SK_WHEN(std::is_empty<T>::value, T*) allocCommand() {
142         static T singleton = {};
143         return &singleton;
144     }
145 
146     template <typename T>
allocCommand()147     SK_WHEN(!std::is_empty<T>::value, T*) allocCommand() { return this->alloc<T>(); }
148 
149     void grow();
150 
151     // A typed pointer to some bytes in fAlloc.  visit() and mutate() allow polymorphic dispatch.
152     struct Record {
153         // On 32-bit machines we store type in 4 bytes, followed by a pointer.  Simple.
154         // On 64-bit machines we store a pointer with the type slotted into two top (unused) bytes.
155         // FWIW, SkRecords::Type is tiny.  It can easily fit in one byte.
156         uint64_t fTypeAndPtr;
157         static const int kTypeShift = sizeof(void*) == 4 ? 32 : 48;
158 
159         // Point this record to its data in fAlloc.  Returns ptr for convenience.
160         template <typename T>
setRecord161         T* set(T* ptr) {
162             fTypeAndPtr = ((uint64_t)T::kType) << kTypeShift | (uintptr_t)ptr;
163             SkASSERT(this->ptr() == ptr && this->type() == T::kType);
164             return ptr;
165         }
166 
typeRecord167         SkRecords::Type type() const { return (SkRecords::Type)(fTypeAndPtr >> kTypeShift); }
ptrRecord168         void* ptr() const { return (void*)(fTypeAndPtr & ((1ull<<kTypeShift)-1)); }
169 
170         // Visit this record with functor F (see public API above).
171         template <typename R, typename F>
visitRecord172         R visit(F& f) const {
173         #define CASE(T) case SkRecords::T##_Type: return f(*(const SkRecords::T*)this->ptr());
174             switch(this->type()) { SK_RECORD_TYPES(CASE) }
175         #undef CASE
176             SkDEBUGFAIL("Unreachable");
177             return R();
178         }
179 
180         // Mutate this record with functor F (see public API above).
181         template <typename R, typename F>
mutateRecord182         R mutate(F& f) {
183         #define CASE(T) case SkRecords::T##_Type: return f((SkRecords::T*)this->ptr());
184             switch(this->type()) { SK_RECORD_TYPES(CASE) }
185         #undef CASE
186             SkDEBUGFAIL("Unreachable");
187             return R();
188         }
189     };
190 
191     // fRecords needs to be a data structure that can append fixed length data, and need to
192     // support efficient random access and forward iteration.  (It doesn't need to be contiguous.)
193     int fCount, fReserved;
194     SkAutoSTMalloc<kInlineRecords, Record> fRecords;
195 
196     // fAlloc needs to be a data structure which can append variable length data in contiguous
197     // chunks, returning a stable handle to that data for later retrieval.
198     SkVarAlloc fAlloc;
199     char fInlineAlloc[1 << kInlineAllocLgBytes];
200 };
201 
202 #endif//SkRecord_DEFINED
203