1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_STUB_CACHE_H_
6 #define V8_STUB_CACHE_H_
7 
8 #include "src/macro-assembler.h"
9 
10 namespace v8 {
11 namespace internal {
12 
13 
14 // The stub cache is used for megamorphic property accesses.
15 // It maps (map, name, type) to property access handlers. The cache does not
16 // need explicit invalidation when a prototype chain is modified, since the
17 // handlers verify the chain.
18 
19 
20 class SCTableReference {
21  public:
address()22   Address address() const { return address_; }
23 
24  private:
SCTableReference(Address address)25   explicit SCTableReference(Address address) : address_(address) {}
26 
27   Address address_;
28 
29   friend class StubCache;
30 };
31 
32 
33 class StubCache {
34  public:
35   struct Entry {
36     Name* key;
37     Code* value;
38     Map* map;
39   };
40 
41   void Initialize();
42   // Access cache for entry hash(name, map).
43   Code* Set(Name* name, Map* map, Code* code);
44   Code* Get(Name* name, Map* map, Code::Flags flags);
45   // Clear the lookup table (@ mark compact collection).
46   void Clear();
47   // Collect all maps that match the name and flags.
48   void CollectMatchingMaps(SmallMapList* types, Handle<Name> name,
49                            Code::Flags flags, Handle<Context> native_context,
50                            Zone* zone);
51   // Generate code for probing the stub cache table.
52   // Arguments extra, extra2 and extra3 may be used to pass additional scratch
53   // registers. Set to no_reg if not needed.
54   // If leave_frame is true, then exit a frame before the tail call.
55   void GenerateProbe(MacroAssembler* masm, Code::Kind ic_kind,
56                      Code::Flags flags, Register receiver, Register name,
57                      Register scratch, Register extra, Register extra2 = no_reg,
58                      Register extra3 = no_reg);
59 
60   enum Table { kPrimary, kSecondary };
61 
key_reference(StubCache::Table table)62   SCTableReference key_reference(StubCache::Table table) {
63     return SCTableReference(
64         reinterpret_cast<Address>(&first_entry(table)->key));
65   }
66 
map_reference(StubCache::Table table)67   SCTableReference map_reference(StubCache::Table table) {
68     return SCTableReference(
69         reinterpret_cast<Address>(&first_entry(table)->map));
70   }
71 
value_reference(StubCache::Table table)72   SCTableReference value_reference(StubCache::Table table) {
73     return SCTableReference(
74         reinterpret_cast<Address>(&first_entry(table)->value));
75   }
76 
first_entry(StubCache::Table table)77   StubCache::Entry* first_entry(StubCache::Table table) {
78     switch (table) {
79       case StubCache::kPrimary:
80         return StubCache::primary_;
81       case StubCache::kSecondary:
82         return StubCache::secondary_;
83     }
84     UNREACHABLE();
85     return NULL;
86   }
87 
isolate()88   Isolate* isolate() { return isolate_; }
89 
90   // Setting the entry size such that the index is shifted by Name::kHashShift
91   // is convenient; shifting down the length field (to extract the hash code)
92   // automatically discards the hash bit field.
93   static const int kCacheIndexShift = Name::kHashShift;
94 
95  private:
96   explicit StubCache(Isolate* isolate);
97 
98   // The stub cache has a primary and secondary level.  The two levels have
99   // different hashing algorithms in order to avoid simultaneous collisions
100   // in both caches.  Unlike a probing strategy (quadratic or otherwise) the
101   // update strategy on updates is fairly clear and simple:  Any existing entry
102   // in the primary cache is moved to the secondary cache, and secondary cache
103   // entries are overwritten.
104 
105   // Hash algorithm for the primary table.  This algorithm is replicated in
106   // assembler for every architecture.  Returns an index into the table that
107   // is scaled by 1 << kCacheIndexShift.
PrimaryOffset(Name * name,Code::Flags flags,Map * map)108   static int PrimaryOffset(Name* name, Code::Flags flags, Map* map) {
109     STATIC_ASSERT(kCacheIndexShift == Name::kHashShift);
110     // Compute the hash of the name (use entire hash field).
111     DCHECK(name->HasHashCode());
112     uint32_t field = name->hash_field();
113     // Using only the low bits in 64-bit mode is unlikely to increase the
114     // risk of collision even if the heap is spread over an area larger than
115     // 4Gb (and not at all if it isn't).
116     uint32_t map_low32bits =
117         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map));
118     // We always set the in_loop bit to zero when generating the lookup code
119     // so do it here too so the hash codes match.
120     uint32_t iflags =
121         (static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
122     // Base the offset on a simple combination of name, flags, and map.
123     uint32_t key = (map_low32bits + field) ^ iflags;
124     return key & ((kPrimaryTableSize - 1) << kCacheIndexShift);
125   }
126 
127   // Hash algorithm for the secondary table.  This algorithm is replicated in
128   // assembler for every architecture.  Returns an index into the table that
129   // is scaled by 1 << kCacheIndexShift.
SecondaryOffset(Name * name,Code::Flags flags,int seed)130   static int SecondaryOffset(Name* name, Code::Flags flags, int seed) {
131     // Use the seed from the primary cache in the secondary cache.
132     uint32_t name_low32bits =
133         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name));
134     // We always set the in_loop bit to zero when generating the lookup code
135     // so do it here too so the hash codes match.
136     uint32_t iflags =
137         (static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup);
138     uint32_t key = (seed - name_low32bits) + iflags;
139     return key & ((kSecondaryTableSize - 1) << kCacheIndexShift);
140   }
141 
142   // Compute the entry for a given offset in exactly the same way as
143   // we do in generated code.  We generate an hash code that already
144   // ends in Name::kHashShift 0s.  Then we multiply it so it is a multiple
145   // of sizeof(Entry).  This makes it easier to avoid making mistakes
146   // in the hashed offset computations.
entry(Entry * table,int offset)147   static Entry* entry(Entry* table, int offset) {
148     const int multiplier = sizeof(*table) >> Name::kHashShift;
149     return reinterpret_cast<Entry*>(reinterpret_cast<Address>(table) +
150                                     offset * multiplier);
151   }
152 
153   static const int kPrimaryTableBits = 11;
154   static const int kPrimaryTableSize = (1 << kPrimaryTableBits);
155   static const int kSecondaryTableBits = 9;
156   static const int kSecondaryTableSize = (1 << kSecondaryTableBits);
157 
158  private:
159   Entry primary_[kPrimaryTableSize];
160   Entry secondary_[kSecondaryTableSize];
161   Isolate* isolate_;
162 
163   friend class Isolate;
164   friend class SCTableReference;
165 
166   DISALLOW_COPY_AND_ASSIGN(StubCache);
167 };
168 }  // namespace internal
169 }  // namespace v8
170 
171 #endif  // V8_STUB_CACHE_H_
172