1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "rsCpuCore.h"
18 #include "rsCpuScript.h"
19 #include "rsCpuScriptGroup.h"
20 #include "rsCpuScriptGroup2.h"
21 
22 #include <malloc.h>
23 #include "rsContext.h"
24 
25 #include <sys/types.h>
26 #include <sys/resource.h>
27 #include <sched.h>
28 #include <sys/syscall.h>
29 #include <stdio.h>
30 #include <string.h>
31 #include <unistd.h>
32 
33 #if !defined(RS_SERVER) && !defined(RS_COMPATIBILITY_LIB)
34 #include <cutils/properties.h>
35 #include "utils/StopWatch.h"
36 #endif
37 
38 #ifdef RS_SERVER
39 // Android exposes gettid(), standard Linux does not
gettid()40 static pid_t gettid() {
41     return syscall(SYS_gettid);
42 }
43 #endif
44 
45 using namespace android;
46 using namespace android::renderscript;
47 
48 #define REDUCE_ALOGV(mtls, level, ...) do { if ((mtls)->logReduce >= (level)) ALOGV(__VA_ARGS__); } while(0)
49 
50 static pthread_key_t gThreadTLSKey = 0;
51 static uint32_t gThreadTLSKeyCount = 0;
52 static pthread_mutex_t gInitMutex = PTHREAD_MUTEX_INITIALIZER;
53 
54 bool android::renderscript::gArchUseSIMD = false;
55 
~RsdCpuReference()56 RsdCpuReference::~RsdCpuReference() {
57 }
58 
create(Context * rsc,uint32_t version_major,uint32_t version_minor,sym_lookup_t lfn,script_lookup_t slfn,RSSelectRTCallback pSelectRTCallback,const char * pBccPluginName)59 RsdCpuReference * RsdCpuReference::create(Context *rsc, uint32_t version_major,
60         uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn
61         , RSSelectRTCallback pSelectRTCallback,
62         const char *pBccPluginName
63         ) {
64 
65     RsdCpuReferenceImpl *cpu = new RsdCpuReferenceImpl(rsc);
66     if (!cpu) {
67         return nullptr;
68     }
69     if (!cpu->init(version_major, version_minor, lfn, slfn)) {
70         delete cpu;
71         return nullptr;
72     }
73 
74     cpu->setSelectRTCallback(pSelectRTCallback);
75     if (pBccPluginName) {
76         cpu->setBccPluginName(pBccPluginName);
77     }
78 
79     return cpu;
80 }
81 
82 
getTlsContext()83 Context * RsdCpuReference::getTlsContext() {
84     ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
85     return tls->mContext;
86 }
87 
getTlsScript()88 const Script * RsdCpuReference::getTlsScript() {
89     ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
90     return tls->mScript;
91 }
92 
getThreadTLSKey()93 pthread_key_t RsdCpuReference::getThreadTLSKey(){ return gThreadTLSKey; }
94 
95 ////////////////////////////////////////////////////////////
96 ///
97 
RsdCpuReferenceImpl(Context * rsc)98 RsdCpuReferenceImpl::RsdCpuReferenceImpl(Context *rsc) {
99     mRSC = rsc;
100 
101     version_major = 0;
102     version_minor = 0;
103     mInKernel = false;
104     memset(&mWorkers, 0, sizeof(mWorkers));
105     memset(&mTlsStruct, 0, sizeof(mTlsStruct));
106     mExit = false;
107     mSelectRTCallback = nullptr;
108     mEmbedGlobalInfo = true;
109     mEmbedGlobalInfoSkipConstant = true;
110 }
111 
112 
helperThreadProc(void * vrsc)113 void * RsdCpuReferenceImpl::helperThreadProc(void *vrsc) {
114     RsdCpuReferenceImpl *dc = (RsdCpuReferenceImpl *)vrsc;
115 
116     uint32_t idx = __sync_fetch_and_add(&dc->mWorkers.mLaunchCount, 1);
117 
118     //ALOGV("RS helperThread starting %p idx=%i", dc, idx);
119 
120     dc->mWorkers.mLaunchSignals[idx].init();
121     dc->mWorkers.mNativeThreadId[idx] = gettid();
122 
123     memset(&dc->mTlsStruct, 0, sizeof(dc->mTlsStruct));
124     int status = pthread_setspecific(gThreadTLSKey, &dc->mTlsStruct);
125     if (status) {
126         ALOGE("pthread_setspecific %i", status);
127     }
128 
129 #if 0
130     typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t;
131     cpu_set_t cpuset;
132     memset(&cpuset, 0, sizeof(cpuset));
133     cpuset.bits[idx / 64] |= 1ULL << (idx % 64);
134     int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx],
135               sizeof(cpuset), &cpuset);
136     ALOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret));
137 #endif
138 
139     while (!dc->mExit) {
140         dc->mWorkers.mLaunchSignals[idx].wait();
141         if (dc->mWorkers.mLaunchCallback) {
142            // idx +1 is used because the calling thread is always worker 0.
143            dc->mWorkers.mLaunchCallback(dc->mWorkers.mLaunchData, idx+1);
144         }
145         __sync_fetch_and_sub(&dc->mWorkers.mRunningCount, 1);
146         dc->mWorkers.mCompleteSignal.set();
147     }
148 
149     //ALOGV("RS helperThread exited %p idx=%i", dc, idx);
150     return nullptr;
151 }
152 
153 // Launch a kernel.
154 // The callback function is called to execute the kernel.
launchThreads(WorkerCallback_t cbk,void * data)155 void RsdCpuReferenceImpl::launchThreads(WorkerCallback_t cbk, void *data) {
156     mWorkers.mLaunchData = data;
157     mWorkers.mLaunchCallback = cbk;
158 
159     // fast path for very small launches
160     MTLaunchStructCommon *mtls = (MTLaunchStructCommon *)data;
161     if (mtls && mtls->dimPtr->y <= 1 && mtls->end.x <= mtls->start.x + mtls->mSliceSize) {
162         if (mWorkers.mLaunchCallback) {
163             mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
164         }
165         return;
166     }
167 
168     mWorkers.mRunningCount = mWorkers.mCount;
169     __sync_synchronize();
170 
171     for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
172         mWorkers.mLaunchSignals[ct].set();
173     }
174 
175     // We use the calling thread as one of the workers so we can start without
176     // the delay of the thread wakeup.
177     if (mWorkers.mLaunchCallback) {
178         mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
179     }
180 
181     while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
182         mWorkers.mCompleteSignal.wait();
183     }
184 }
185 
186 
lockMutex()187 void RsdCpuReferenceImpl::lockMutex() {
188     pthread_mutex_lock(&gInitMutex);
189 }
190 
unlockMutex()191 void RsdCpuReferenceImpl::unlockMutex() {
192     pthread_mutex_unlock(&gInitMutex);
193 }
194 
195 // Determine if the CPU we're running on supports SIMD instructions.
GetCpuInfo()196 static void GetCpuInfo() {
197     // Read the CPU flags from /proc/cpuinfo.
198     FILE *cpuinfo = fopen("/proc/cpuinfo", "r");
199 
200     if (!cpuinfo) {
201         return;
202     }
203 
204     char cpuinfostr[4096];
205     // fgets() ends with newline or EOF, need to check the whole
206     // "cpuinfo" file to make sure we can use SIMD or not.
207     while (fgets(cpuinfostr, sizeof(cpuinfostr), cpuinfo)) {
208 #if defined(ARCH_ARM_HAVE_VFP) || defined(ARCH_ARM_USE_INTRINSICS)
209         gArchUseSIMD = strstr(cpuinfostr, " neon") || strstr(cpuinfostr, " asimd");
210 #elif defined(ARCH_X86_HAVE_SSSE3)
211         gArchUseSIMD = strstr(cpuinfostr, " ssse3");
212 #endif
213         if (gArchUseSIMD) {
214             break;
215         }
216     }
217     fclose(cpuinfo);
218 }
219 
init(uint32_t version_major,uint32_t version_minor,sym_lookup_t lfn,script_lookup_t slfn)220 bool RsdCpuReferenceImpl::init(uint32_t version_major, uint32_t version_minor,
221                                sym_lookup_t lfn, script_lookup_t slfn) {
222     mSymLookupFn = lfn;
223     mScriptLookupFn = slfn;
224 
225     lockMutex();
226     if (!gThreadTLSKeyCount) {
227         int status = pthread_key_create(&gThreadTLSKey, nullptr);
228         if (status) {
229             ALOGE("Failed to init thread tls key.");
230             unlockMutex();
231             return false;
232         }
233     }
234     gThreadTLSKeyCount++;
235     unlockMutex();
236 
237     mTlsStruct.mContext = mRSC;
238     mTlsStruct.mScript = nullptr;
239     int status = pthread_setspecific(gThreadTLSKey, &mTlsStruct);
240     if (status) {
241         ALOGE("pthread_setspecific %i", status);
242     }
243 
244     mPageSize = sysconf(_SC_PAGE_SIZE);
245     // ALOGV("page size = %ld", mPageSize);
246 
247     GetCpuInfo();
248 
249     int cpu = sysconf(_SC_NPROCESSORS_CONF);
250     if(mRSC->props.mDebugMaxThreads) {
251         cpu = mRSC->props.mDebugMaxThreads;
252     }
253     if (cpu < 2) {
254         mWorkers.mCount = 0;
255         return true;
256     }
257 
258     // Subtract one from the cpu count because we also use the command thread as a worker.
259     mWorkers.mCount = (uint32_t)(cpu - 1);
260 
261     if (mRSC->props.mLogScripts) {
262       ALOGV("%p Launching thread(s), CPUs %i", mRSC, mWorkers.mCount + 1);
263     }
264 
265     mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t));
266     mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t));
267     mWorkers.mLaunchSignals = new Signal[mWorkers.mCount];
268     mWorkers.mLaunchCallback = nullptr;
269 
270     mWorkers.mCompleteSignal.init();
271 
272     mWorkers.mRunningCount = mWorkers.mCount;
273     mWorkers.mLaunchCount = 0;
274     __sync_synchronize();
275 
276     pthread_attr_t threadAttr;
277     status = pthread_attr_init(&threadAttr);
278     if (status) {
279         ALOGE("Failed to init thread attribute.");
280         return false;
281     }
282 
283     for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
284         status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this);
285         if (status) {
286             mWorkers.mCount = ct;
287             ALOGE("Created fewer than expected number of RS threads.");
288             break;
289         }
290     }
291     while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
292         usleep(100);
293     }
294 
295     pthread_attr_destroy(&threadAttr);
296     return true;
297 }
298 
299 
setPriority(int32_t priority)300 void RsdCpuReferenceImpl::setPriority(int32_t priority) {
301     for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
302         setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], priority);
303     }
304 }
305 
~RsdCpuReferenceImpl()306 RsdCpuReferenceImpl::~RsdCpuReferenceImpl() {
307     mExit = true;
308     mWorkers.mLaunchData = nullptr;
309     mWorkers.mLaunchCallback = nullptr;
310     mWorkers.mRunningCount = mWorkers.mCount;
311     __sync_synchronize();
312     for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
313         mWorkers.mLaunchSignals[ct].set();
314     }
315     void *res;
316     for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
317         pthread_join(mWorkers.mThreadId[ct], &res);
318     }
319     rsAssert(__sync_fetch_and_or(&mWorkers.mRunningCount, 0) == 0);
320     free(mWorkers.mThreadId);
321     free(mWorkers.mNativeThreadId);
322     delete[] mWorkers.mLaunchSignals;
323 
324     // Global structure cleanup.
325     lockMutex();
326     --gThreadTLSKeyCount;
327     if (!gThreadTLSKeyCount) {
328         pthread_key_delete(gThreadTLSKey);
329     }
330     unlockMutex();
331 
332 }
333 
334 // Set up the appropriate input and output pointers to the kernel driver info structure.
335 // Inputs:
336 //   mtls - The MTLaunchStruct holding information about the kernel launch
337 //   fep - The forEach parameters (driver info structure)
338 //   x, y, z, lod, face, a1, a2, a3, a4 - The start offsets into each dimension
FepPtrSetup(const MTLaunchStructForEach * mtls,RsExpandKernelDriverInfo * fep,uint32_t x,uint32_t y,uint32_t z=0,uint32_t lod=0,RsAllocationCubemapFace face=RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X,uint32_t a1=0,uint32_t a2=0,uint32_t a3=0,uint32_t a4=0)339 static inline void FepPtrSetup(const MTLaunchStructForEach *mtls, RsExpandKernelDriverInfo *fep,
340                                uint32_t x, uint32_t y,
341                                uint32_t z = 0, uint32_t lod = 0,
342                                RsAllocationCubemapFace face = RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X,
343                                uint32_t a1 = 0, uint32_t a2 = 0, uint32_t a3 = 0, uint32_t a4 = 0) {
344     for (uint32_t i = 0; i < fep->inLen; i++) {
345         fep->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4);
346     }
347     if (mtls->aout[0] != nullptr) {
348         fep->outPtr[0] = (uint8_t *)mtls->aout[0]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4);
349     }
350 }
351 
352 // Set up the appropriate input and output pointers to the kernel driver info structure.
353 // Inputs:
354 //   mtls - The MTLaunchStruct holding information about the kernel launch
355 //   redp - The reduce parameters (driver info structure)
356 //   x, y, z - The start offsets into each dimension
RedpPtrSetup(const MTLaunchStructReduce * mtls,RsExpandKernelDriverInfo * redp,uint32_t x,uint32_t y,uint32_t z)357 static inline void RedpPtrSetup(const MTLaunchStructReduce *mtls, RsExpandKernelDriverInfo *redp,
358                                 uint32_t x, uint32_t y, uint32_t z) {
359     for (uint32_t i = 0; i < redp->inLen; i++) {
360         redp->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z);
361     }
362 }
363 
sliceInt(uint32_t * p,uint32_t val,uint32_t start,uint32_t end)364 static uint32_t sliceInt(uint32_t *p, uint32_t val, uint32_t start, uint32_t end) {
365     if (start >= end) {
366         *p = start;
367         return val;
368     }
369 
370     uint32_t div = end - start;
371 
372     uint32_t n = val / div;
373     *p = (val - (n * div)) + start;
374     return n;
375 }
376 
SelectOuterSlice(const MTLaunchStructCommon * mtls,RsExpandKernelDriverInfo * info,uint32_t sliceNum)377 static bool SelectOuterSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) {
378     uint32_t r = sliceNum;
379     r = sliceInt(&info->current.z, r, mtls->start.z, mtls->end.z);
380     r = sliceInt(&info->current.lod, r, mtls->start.lod, mtls->end.lod);
381     r = sliceInt(&info->current.face, r, mtls->start.face, mtls->end.face);
382     r = sliceInt(&info->current.array[0], r, mtls->start.array[0], mtls->end.array[0]);
383     r = sliceInt(&info->current.array[1], r, mtls->start.array[1], mtls->end.array[1]);
384     r = sliceInt(&info->current.array[2], r, mtls->start.array[2], mtls->end.array[2]);
385     r = sliceInt(&info->current.array[3], r, mtls->start.array[3], mtls->end.array[3]);
386     return r == 0;
387 }
388 
SelectZSlice(const MTLaunchStructCommon * mtls,RsExpandKernelDriverInfo * info,uint32_t sliceNum)389 static bool SelectZSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) {
390     return sliceInt(&info->current.z, sliceNum, mtls->start.z, mtls->end.z) == 0;
391 }
392 
walk_general_foreach(void * usr,uint32_t idx)393 static void walk_general_foreach(void *usr, uint32_t idx) {
394     MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
395     RsExpandKernelDriverInfo fep = mtls->fep;
396     fep.lid = idx;
397     ForEachFunc_t fn = mtls->kernel;
398 
399     while(1) {
400         uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
401 
402         if (!SelectOuterSlice(mtls, &fep, slice)) {
403             return;
404         }
405 
406         for (fep.current.y = mtls->start.y; fep.current.y < mtls->end.y;
407              fep.current.y++) {
408 
409             FepPtrSetup(mtls, &fep, mtls->start.x,
410                         fep.current.y, fep.current.z, fep.current.lod,
411                         (RsAllocationCubemapFace)fep.current.face,
412                         fep.current.array[0], fep.current.array[1],
413                         fep.current.array[2], fep.current.array[3]);
414 
415             fn(&fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]);
416         }
417     }
418 }
419 
walk_2d_foreach(void * usr,uint32_t idx)420 static void walk_2d_foreach(void *usr, uint32_t idx) {
421     MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
422     RsExpandKernelDriverInfo fep = mtls->fep;
423     fep.lid = idx;
424     ForEachFunc_t fn = mtls->kernel;
425 
426     while (1) {
427         uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
428         uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize;
429         uint32_t yEnd   = yStart + mtls->mSliceSize;
430 
431         yEnd = rsMin(yEnd, mtls->end.y);
432 
433         if (yEnd <= yStart) {
434             return;
435         }
436 
437         for (fep.current.y = yStart; fep.current.y < yEnd; fep.current.y++) {
438             FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y);
439 
440             fn(&fep, mtls->start.x, mtls->end.x, fep.outStride[0]);
441         }
442     }
443 }
444 
walk_1d_foreach(void * usr,uint32_t idx)445 static void walk_1d_foreach(void *usr, uint32_t idx) {
446     MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
447     RsExpandKernelDriverInfo fep = mtls->fep;
448     fep.lid = idx;
449     ForEachFunc_t fn = mtls->kernel;
450 
451     while (1) {
452         uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
453         uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize;
454         uint32_t xEnd   = xStart + mtls->mSliceSize;
455 
456         xEnd = rsMin(xEnd, mtls->end.x);
457 
458         if (xEnd <= xStart) {
459             return;
460         }
461 
462         FepPtrSetup(mtls, &fep, xStart, 0);
463 
464         fn(&fep, xStart, xEnd, fep.outStride[0]);
465     }
466 }
467 
468 // The function format_bytes() is an auxiliary function to assist in logging.
469 //
470 // Bytes are read from an input (inBuf) and written (as pairs of hex digits)
471 // to an output (outBuf).
472 //
473 // Output format:
474 // - starts with ": "
475 // - each input byte is translated to a pair of hex digits
476 // - bytes are separated by "." except that every fourth separator is "|"
477 // - if the input is sufficiently long, the output is truncated and terminated with "..."
478 //
479 // Arguments:
480 // - outBuf  -- Pointer to buffer of type "FormatBuf" into which output is written
481 // - inBuf   -- Pointer to bytes which are to be formatted into outBuf
482 // - inBytes -- Number of bytes in inBuf
483 //
484 // Constant:
485 // - kFormatInBytesMax -- Only min(kFormatInBytesMax, inBytes) bytes will be read
486 //                        from inBuf
487 //
488 // Return value:
489 // - pointer (const char *) to output (which is part of outBuf)
490 //
491 static const int kFormatInBytesMax = 16;
492 // ": " + 2 digits per byte + 1 separator between bytes + "..." + null
493 typedef char FormatBuf[2 + kFormatInBytesMax*2 + (kFormatInBytesMax - 1) + 3 + 1];
format_bytes(FormatBuf * outBuf,const uint8_t * inBuf,const int inBytes)494 static const char *format_bytes(FormatBuf *outBuf, const uint8_t *inBuf, const int inBytes) {
495   strcpy(*outBuf, ": ");
496   int pos = 2;
497   const int lim = std::min(kFormatInBytesMax, inBytes);
498   for (int i = 0; i < lim; ++i) {
499     if (i) {
500       sprintf(*outBuf + pos, (i % 4 ? "." : "|"));
501       ++pos;
502     }
503     sprintf(*outBuf + pos, "%02x", inBuf[i]);
504     pos += 2;
505   }
506   if (kFormatInBytesMax < inBytes)
507     strcpy(*outBuf + pos, "...");
508   return *outBuf;
509 }
510 
reduce_get_accumulator(uint8_t * & accumPtr,const MTLaunchStructReduce * mtls,const char * walkerName,uint32_t threadIdx)511 static void reduce_get_accumulator(uint8_t *&accumPtr, const MTLaunchStructReduce *mtls,
512                                    const char *walkerName, uint32_t threadIdx) {
513   rsAssert(!accumPtr);
514 
515   uint32_t accumIdx = (uint32_t)__sync_fetch_and_add(&mtls->accumCount, 1);
516   if (mtls->outFunc) {
517     accumPtr = mtls->accumAlloc + mtls->accumStride * accumIdx;
518   } else {
519     if (accumIdx == 0) {
520       accumPtr = mtls->redp.outPtr[0];
521     } else {
522       accumPtr = mtls->accumAlloc + mtls->accumStride * (accumIdx - 1);
523     }
524   }
525   REDUCE_ALOGV(mtls, 2, "%s(%p): idx = %u got accumCount %u and accumPtr %p",
526                walkerName, mtls->accumFunc, threadIdx, accumIdx, accumPtr);
527   // initialize accumulator
528   if (mtls->initFunc) {
529     mtls->initFunc(accumPtr);
530   } else {
531     memset(accumPtr, 0, mtls->accumSize);
532   }
533 }
534 
walk_1d_reduce(void * usr,uint32_t idx)535 static void walk_1d_reduce(void *usr, uint32_t idx) {
536   const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
537   RsExpandKernelDriverInfo redp = mtls->redp;
538 
539   // find accumulator
540   uint8_t *&accumPtr = mtls->accumPtr[idx];
541   if (!accumPtr) {
542     reduce_get_accumulator(accumPtr, mtls, __func__, idx);
543   }
544 
545   // accumulate
546   const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
547   while (1) {
548     uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
549     uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize;
550     uint32_t xEnd   = xStart + mtls->mSliceSize;
551 
552     xEnd = rsMin(xEnd, mtls->end.x);
553 
554     if (xEnd <= xStart) {
555       return;
556     }
557 
558     RedpPtrSetup(mtls, &redp, xStart, 0, 0);
559     fn(&redp, xStart, xEnd, accumPtr);
560 
561     // Emit log line after slice has been run, so that we can include
562     // the results of the run on that line.
563     FormatBuf fmt;
564     if (mtls->logReduce >= 3) {
565       format_bytes(&fmt, accumPtr, mtls->accumSize);
566     } else {
567       fmt[0] = 0;
568     }
569     REDUCE_ALOGV(mtls, 2, "walk_1d_reduce(%p): idx = %u, x in [%u, %u)%s",
570                  mtls->accumFunc, idx, xStart, xEnd, fmt);
571   }
572 }
573 
walk_2d_reduce(void * usr,uint32_t idx)574 static void walk_2d_reduce(void *usr, uint32_t idx) {
575   const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
576   RsExpandKernelDriverInfo redp = mtls->redp;
577 
578   // find accumulator
579   uint8_t *&accumPtr = mtls->accumPtr[idx];
580   if (!accumPtr) {
581     reduce_get_accumulator(accumPtr, mtls, __func__, idx);
582   }
583 
584   // accumulate
585   const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
586   while (1) {
587     uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
588     uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize;
589     uint32_t yEnd   = yStart + mtls->mSliceSize;
590 
591     yEnd = rsMin(yEnd, mtls->end.y);
592 
593     if (yEnd <= yStart) {
594       return;
595     }
596 
597     for (redp.current.y = yStart; redp.current.y < yEnd; redp.current.y++) {
598       RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, 0);
599       fn(&redp, mtls->start.x, mtls->end.x, accumPtr);
600     }
601 
602     FormatBuf fmt;
603     if (mtls->logReduce >= 3) {
604       format_bytes(&fmt, accumPtr, mtls->accumSize);
605     } else {
606       fmt[0] = 0;
607     }
608     REDUCE_ALOGV(mtls, 2, "walk_2d_reduce(%p): idx = %u, y in [%u, %u)%s",
609                  mtls->accumFunc, idx, yStart, yEnd, fmt);
610   }
611 }
612 
walk_3d_reduce(void * usr,uint32_t idx)613 static void walk_3d_reduce(void *usr, uint32_t idx) {
614   const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
615   RsExpandKernelDriverInfo redp = mtls->redp;
616 
617   // find accumulator
618   uint8_t *&accumPtr = mtls->accumPtr[idx];
619   if (!accumPtr) {
620     reduce_get_accumulator(accumPtr, mtls, __func__, idx);
621   }
622 
623   // accumulate
624   const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
625   while (1) {
626     uint32_t slice  = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
627 
628     if (!SelectZSlice(mtls, &redp, slice)) {
629       return;
630     }
631 
632     for (redp.current.y = mtls->start.y; redp.current.y < mtls->end.y; redp.current.y++) {
633       RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, redp.current.z);
634       fn(&redp, mtls->start.x, mtls->end.x, accumPtr);
635     }
636 
637     FormatBuf fmt;
638     if (mtls->logReduce >= 3) {
639       format_bytes(&fmt, accumPtr, mtls->accumSize);
640     } else {
641       fmt[0] = 0;
642     }
643     REDUCE_ALOGV(mtls, 2, "walk_3d_reduce(%p): idx = %u, z = %u%s",
644                  mtls->accumFunc, idx, redp.current.z, fmt);
645   }
646 }
647 
648 // Launch a general reduce-style kernel.
649 // Inputs:
650 //   ains[0..inLen-1]: Array of allocations that contain the inputs
651 //   aout:             The allocation that will hold the output
652 //   mtls:             Holds launch parameters
launchReduce(const Allocation ** ains,uint32_t inLen,Allocation * aout,MTLaunchStructReduce * mtls)653 void RsdCpuReferenceImpl::launchReduce(const Allocation ** ains,
654                                        uint32_t inLen,
655                                        Allocation * aout,
656                                        MTLaunchStructReduce *mtls) {
657   mtls->logReduce = mRSC->props.mLogReduce;
658   if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) {
659     launchReduceParallel(ains, inLen, aout, mtls);
660   } else {
661     launchReduceSerial(ains, inLen, aout, mtls);
662   }
663 }
664 
665 // Launch a general reduce-style kernel, single-threaded.
666 // Inputs:
667 //   ains[0..inLen-1]: Array of allocations that contain the inputs
668 //   aout:             The allocation that will hold the output
669 //   mtls:             Holds launch parameters
launchReduceSerial(const Allocation ** ains,uint32_t inLen,Allocation * aout,MTLaunchStructReduce * mtls)670 void RsdCpuReferenceImpl::launchReduceSerial(const Allocation ** ains,
671                                              uint32_t inLen,
672                                              Allocation * aout,
673                                              MTLaunchStructReduce *mtls) {
674   REDUCE_ALOGV(mtls, 1, "launchReduceSerial(%p): %u x %u x %u", mtls->accumFunc,
675                mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z);
676 
677   // In the presence of outconverter, we allocate temporary memory for
678   // the accumulator.
679   //
680   // In the absence of outconverter, we use the output allocation as the
681   // accumulator.
682   uint8_t *const accumPtr = (mtls->outFunc
683                              ? static_cast<uint8_t *>(malloc(mtls->accumSize))
684                              : mtls->redp.outPtr[0]);
685 
686   // initialize
687   if (mtls->initFunc) {
688     mtls->initFunc(accumPtr);
689   } else {
690     memset(accumPtr, 0, mtls->accumSize);
691   }
692 
693   // accumulate
694   const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
695   uint32_t slice = 0;
696   while (SelectOuterSlice(mtls, &mtls->redp, slice++)) {
697     for (mtls->redp.current.y = mtls->start.y;
698          mtls->redp.current.y < mtls->end.y;
699          mtls->redp.current.y++) {
700       RedpPtrSetup(mtls, &mtls->redp, mtls->start.x, mtls->redp.current.y, mtls->redp.current.z);
701       fn(&mtls->redp, mtls->start.x, mtls->end.x, accumPtr);
702     }
703   }
704 
705   // outconvert
706   if (mtls->outFunc) {
707     mtls->outFunc(mtls->redp.outPtr[0], accumPtr);
708     free(accumPtr);
709   }
710 }
711 
712 // Launch a general reduce-style kernel, multi-threaded.
713 // Inputs:
714 //   ains[0..inLen-1]: Array of allocations that contain the inputs
715 //   aout:             The allocation that will hold the output
716 //   mtls:             Holds launch parameters
launchReduceParallel(const Allocation ** ains,uint32_t inLen,Allocation * aout,MTLaunchStructReduce * mtls)717 void RsdCpuReferenceImpl::launchReduceParallel(const Allocation ** ains,
718                                                uint32_t inLen,
719                                                Allocation * aout,
720                                                MTLaunchStructReduce *mtls) {
721   // For now, we don't know how to go parallel in the absence of a combiner.
722   if (!mtls->combFunc) {
723     launchReduceSerial(ains, inLen, aout, mtls);
724     return;
725   }
726 
727   // Number of threads = "main thread" + number of other (worker) threads
728   const uint32_t numThreads = mWorkers.mCount + 1;
729 
730   // In the absence of outconverter, we use the output allocation as
731   // an accumulator, and therefore need to allocate one fewer accumulator.
732   const uint32_t numAllocAccum = numThreads - (mtls->outFunc == nullptr);
733 
734   // If mDebugReduceSplitAccum, then we want each accumulator to start
735   // on a page boundary.  (TODO: Would some unit smaller than a page
736   // be sufficient to avoid false sharing?)
737   if (mRSC->props.mDebugReduceSplitAccum) {
738     // Round up accumulator size to an integral number of pages
739     mtls->accumStride =
740         (unsigned(mtls->accumSize) + unsigned(mPageSize)-1) &
741         ~(unsigned(mPageSize)-1);
742     // Each accumulator gets its own page.  Alternatively, if we just
743     // wanted to make sure no two accumulators are on the same page,
744     // we could instead do
745     //   allocSize = mtls->accumStride * (numAllocation - 1) + mtls->accumSize
746     const size_t allocSize = mtls->accumStride * numAllocAccum;
747     mtls->accumAlloc = static_cast<uint8_t *>(memalign(mPageSize, allocSize));
748   } else {
749     mtls->accumStride = mtls->accumSize;
750     mtls->accumAlloc = static_cast<uint8_t *>(malloc(mtls->accumStride * numAllocAccum));
751   }
752 
753   const size_t accumPtrArrayBytes = sizeof(uint8_t *) * numThreads;
754   mtls->accumPtr = static_cast<uint8_t **>(malloc(accumPtrArrayBytes));
755   memset(mtls->accumPtr, 0, accumPtrArrayBytes);
756 
757   mtls->accumCount = 0;
758 
759   rsAssert(!mInKernel);
760   mInKernel = true;
761   REDUCE_ALOGV(mtls, 1, "launchReduceParallel(%p): %u x %u x %u, %u threads, accumAlloc = %p",
762                mtls->accumFunc,
763                mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z,
764                numThreads, mtls->accumAlloc);
765   if (mtls->redp.dim.z > 1) {
766     mtls->mSliceSize = 1;
767     launchThreads(walk_3d_reduce, mtls);
768   } else if (mtls->redp.dim.y > 1) {
769     mtls->mSliceSize = rsMax(1U, mtls->redp.dim.y / (numThreads * 4));
770     launchThreads(walk_2d_reduce, mtls);
771   } else {
772     mtls->mSliceSize = rsMax(1U, mtls->redp.dim.x / (numThreads * 4));
773     launchThreads(walk_1d_reduce, mtls);
774   }
775   mInKernel = false;
776 
777   // Combine accumulators and identify final accumulator
778   uint8_t *finalAccumPtr = (mtls->outFunc ? nullptr : mtls->redp.outPtr[0]);
779   //   Loop over accumulators, combining into finalAccumPtr.  If finalAccumPtr
780   //   is null, then the first accumulator I find becomes finalAccumPtr.
781   for (unsigned idx = 0; idx < mtls->accumCount; ++idx) {
782     uint8_t *const thisAccumPtr = mtls->accumPtr[idx];
783     if (finalAccumPtr) {
784       if (finalAccumPtr != thisAccumPtr) {
785         if (mtls->combFunc) {
786           if (mtls->logReduce >= 3) {
787             FormatBuf fmt;
788             REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulating into%s",
789                          mtls->accumFunc,
790                          format_bytes(&fmt, finalAccumPtr, mtls->accumSize));
791             REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p):    accumulator[%d]%s",
792                          mtls->accumFunc, idx,
793                          format_bytes(&fmt, thisAccumPtr, mtls->accumSize));
794           }
795           mtls->combFunc(finalAccumPtr, thisAccumPtr);
796         } else {
797           rsAssert(!"expected combiner");
798         }
799       }
800     } else {
801       finalAccumPtr = thisAccumPtr;
802     }
803   }
804   rsAssert(finalAccumPtr != nullptr);
805   if (mtls->logReduce >= 3) {
806     FormatBuf fmt;
807     REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final accumulator%s",
808                  mtls->accumFunc, format_bytes(&fmt, finalAccumPtr, mtls->accumSize));
809   }
810 
811   // Outconvert
812   if (mtls->outFunc) {
813     mtls->outFunc(mtls->redp.outPtr[0], finalAccumPtr);
814     if (mtls->logReduce >= 3) {
815       FormatBuf fmt;
816       REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final outconverted result%s",
817                    mtls->accumFunc,
818                    format_bytes(&fmt, mtls->redp.outPtr[0], mtls->redp.outStride[0]));
819     }
820   }
821 
822   // Clean up
823   free(mtls->accumPtr);
824   free(mtls->accumAlloc);
825 }
826 
827 
launchForEach(const Allocation ** ains,uint32_t inLen,Allocation * aout,const RsScriptCall * sc,MTLaunchStructForEach * mtls)828 void RsdCpuReferenceImpl::launchForEach(const Allocation ** ains,
829                                         uint32_t inLen,
830                                         Allocation* aout,
831                                         const RsScriptCall* sc,
832                                         MTLaunchStructForEach* mtls) {
833 
834     //android::StopWatch kernel_time("kernel time");
835 
836     bool outerDims = (mtls->start.z != mtls->end.z) ||
837                      (mtls->start.face != mtls->end.face) ||
838                      (mtls->start.lod != mtls->end.lod) ||
839                      (mtls->start.array[0] != mtls->end.array[0]) ||
840                      (mtls->start.array[1] != mtls->end.array[1]) ||
841                      (mtls->start.array[2] != mtls->end.array[2]) ||
842                      (mtls->start.array[3] != mtls->end.array[3]);
843 
844     if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) {
845         const size_t targetByteChunk = 16 * 1024;
846         mInKernel = true;  // NOTE: The guard immediately above ensures this was !mInKernel
847 
848         if (outerDims) {
849             // No fancy logic for chunk size
850             mtls->mSliceSize = 1;
851             launchThreads(walk_general_foreach, mtls);
852         } else if (mtls->fep.dim.y > 1) {
853             uint32_t s1 = mtls->fep.dim.y / ((mWorkers.mCount + 1) * 4);
854             uint32_t s2 = 0;
855 
856             // This chooses our slice size to rate limit atomic ops to
857             // one per 16k bytes of reads/writes.
858             if ((mtls->aout[0] != nullptr) && mtls->aout[0]->mHal.drvState.lod[0].stride) {
859                 s2 = targetByteChunk / mtls->aout[0]->mHal.drvState.lod[0].stride;
860             } else if (mtls->ains[0]) {
861                 s2 = targetByteChunk / mtls->ains[0]->mHal.drvState.lod[0].stride;
862             } else {
863                 // Launch option only case
864                 // Use s1 based only on the dimensions
865                 s2 = s1;
866             }
867             mtls->mSliceSize = rsMin(s1, s2);
868 
869             if(mtls->mSliceSize < 1) {
870                 mtls->mSliceSize = 1;
871             }
872 
873             launchThreads(walk_2d_foreach, mtls);
874         } else {
875             uint32_t s1 = mtls->fep.dim.x / ((mWorkers.mCount + 1) * 4);
876             uint32_t s2 = 0;
877 
878             // This chooses our slice size to rate limit atomic ops to
879             // one per 16k bytes of reads/writes.
880             if ((mtls->aout[0] != nullptr) && mtls->aout[0]->getType()->getElementSizeBytes()) {
881                 s2 = targetByteChunk / mtls->aout[0]->getType()->getElementSizeBytes();
882             } else if (mtls->ains[0]) {
883                 s2 = targetByteChunk / mtls->ains[0]->getType()->getElementSizeBytes();
884             } else {
885                 // Launch option only case
886                 // Use s1 based only on the dimensions
887                 s2 = s1;
888             }
889             mtls->mSliceSize = rsMin(s1, s2);
890 
891             if (mtls->mSliceSize < 1) {
892                 mtls->mSliceSize = 1;
893             }
894 
895             launchThreads(walk_1d_foreach, mtls);
896         }
897         mInKernel = false;
898 
899     } else {
900         ForEachFunc_t fn = mtls->kernel;
901         uint32_t slice = 0;
902 
903 
904         while(SelectOuterSlice(mtls, &mtls->fep, slice++)) {
905             for (mtls->fep.current.y = mtls->start.y;
906                  mtls->fep.current.y < mtls->end.y;
907                  mtls->fep.current.y++) {
908 
909                 FepPtrSetup(mtls, &mtls->fep, mtls->start.x,
910                             mtls->fep.current.y, mtls->fep.current.z, mtls->fep.current.lod,
911                             (RsAllocationCubemapFace) mtls->fep.current.face,
912                             mtls->fep.current.array[0], mtls->fep.current.array[1],
913                             mtls->fep.current.array[2], mtls->fep.current.array[3]);
914 
915                 fn(&mtls->fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]);
916             }
917         }
918     }
919 }
920 
setTLS(RsdCpuScriptImpl * sc)921 RsdCpuScriptImpl * RsdCpuReferenceImpl::setTLS(RsdCpuScriptImpl *sc) {
922     //ALOGE("setTls %p", sc);
923     ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
924     rsAssert(tls);
925     RsdCpuScriptImpl *old = tls->mImpl;
926     tls->mImpl = sc;
927     tls->mContext = mRSC;
928     if (sc) {
929         tls->mScript = sc->getScript();
930     } else {
931         tls->mScript = nullptr;
932     }
933     return old;
934 }
935 
symLookup(const char * name)936 const RsdCpuReference::CpuSymbol * RsdCpuReferenceImpl::symLookup(const char *name) {
937     return mSymLookupFn(mRSC, name);
938 }
939 
940 
createScript(const ScriptC * s,char const * resName,char const * cacheDir,uint8_t const * bitcode,size_t bitcodeSize,uint32_t flags)941 RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createScript(const ScriptC *s,
942                                     char const *resName, char const *cacheDir,
943                                     uint8_t const *bitcode, size_t bitcodeSize,
944                                     uint32_t flags) {
945 
946     RsdCpuScriptImpl *i = new RsdCpuScriptImpl(this, s);
947     if (!i->init(resName, cacheDir, bitcode, bitcodeSize, flags
948         , getBccPluginName()
949         )) {
950         delete i;
951         return nullptr;
952     }
953     return i;
954 }
955 
956 extern RsdCpuScriptImpl * rsdIntrinsic_3DLUT(RsdCpuReferenceImpl *ctx,
957                                              const Script *s, const Element *e);
958 extern RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx,
959                                                    const Script *s, const Element *e);
960 extern RsdCpuScriptImpl * rsdIntrinsic_ColorMatrix(RsdCpuReferenceImpl *ctx,
961                                                    const Script *s, const Element *e);
962 extern RsdCpuScriptImpl * rsdIntrinsic_LUT(RsdCpuReferenceImpl *ctx,
963                                            const Script *s, const Element *e);
964 extern RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx,
965                                                    const Script *s, const Element *e);
966 extern RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx,
967                                             const Script *s, const Element *e);
968 extern RsdCpuScriptImpl * rsdIntrinsic_YuvToRGB(RsdCpuReferenceImpl *ctx,
969                                                 const Script *s, const Element *e);
970 extern RsdCpuScriptImpl * rsdIntrinsic_Blend(RsdCpuReferenceImpl *ctx,
971                                              const Script *s, const Element *e);
972 extern RsdCpuScriptImpl * rsdIntrinsic_Histogram(RsdCpuReferenceImpl *ctx,
973                                                  const Script *s, const Element *e);
974 extern RsdCpuScriptImpl * rsdIntrinsic_Resize(RsdCpuReferenceImpl *ctx,
975                                               const Script *s, const Element *e);
976 extern RsdCpuScriptImpl * rsdIntrinsic_BLAS(RsdCpuReferenceImpl *ctx,
977                                               const Script *s, const Element *e);
978 
createIntrinsic(const Script * s,RsScriptIntrinsicID iid,Element * e)979 RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createIntrinsic(const Script *s,
980                                     RsScriptIntrinsicID iid, Element *e) {
981 
982     RsdCpuScriptImpl *i = nullptr;
983     switch (iid) {
984     case RS_SCRIPT_INTRINSIC_ID_3DLUT:
985         i = rsdIntrinsic_3DLUT(this, s, e);
986         break;
987     case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3:
988         i = rsdIntrinsic_Convolve3x3(this, s, e);
989         break;
990     case RS_SCRIPT_INTRINSIC_ID_COLOR_MATRIX:
991         i = rsdIntrinsic_ColorMatrix(this, s, e);
992         break;
993     case RS_SCRIPT_INTRINSIC_ID_LUT:
994         i = rsdIntrinsic_LUT(this, s, e);
995         break;
996     case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5:
997         i = rsdIntrinsic_Convolve5x5(this, s, e);
998         break;
999     case RS_SCRIPT_INTRINSIC_ID_BLUR:
1000         i = rsdIntrinsic_Blur(this, s, e);
1001         break;
1002     case RS_SCRIPT_INTRINSIC_ID_YUV_TO_RGB:
1003         i = rsdIntrinsic_YuvToRGB(this, s, e);
1004         break;
1005     case RS_SCRIPT_INTRINSIC_ID_BLEND:
1006         i = rsdIntrinsic_Blend(this, s, e);
1007         break;
1008     case RS_SCRIPT_INTRINSIC_ID_HISTOGRAM:
1009         i = rsdIntrinsic_Histogram(this, s, e);
1010         break;
1011     case RS_SCRIPT_INTRINSIC_ID_RESIZE:
1012         i = rsdIntrinsic_Resize(this, s, e);
1013         break;
1014     case RS_SCRIPT_INTRINSIC_ID_BLAS:
1015         i = rsdIntrinsic_BLAS(this, s, e);
1016         break;
1017 
1018     default:
1019         rsAssert(0);
1020     }
1021 
1022     return i;
1023 }
1024 
createScriptGroup(const ScriptGroupBase * sg)1025 void* RsdCpuReferenceImpl::createScriptGroup(const ScriptGroupBase *sg) {
1026   switch (sg->getApiVersion()) {
1027     case ScriptGroupBase::SG_V1: {
1028       CpuScriptGroupImpl *sgi = new CpuScriptGroupImpl(this, sg);
1029       if (!sgi->init()) {
1030         delete sgi;
1031         return nullptr;
1032       }
1033       return sgi;
1034     }
1035     case ScriptGroupBase::SG_V2: {
1036       return new CpuScriptGroup2Impl(this, sg);
1037     }
1038   }
1039   return nullptr;
1040 }
1041