1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * LLVM control flow build helpers.
30 *
31 * @author Jose Fonseca <jfonseca@vmware.com>
32 */
33
34 #include "util/u_debug.h"
35 #include "util/u_memory.h"
36
37 #include "lp_bld_init.h"
38 #include "lp_bld_type.h"
39 #include "lp_bld_flow.h"
40
41
42 /**
43 * Insert a new block, right where builder is pointing to.
44 *
45 * This is useful important not only for aesthetic reasons, but also for
46 * performance reasons, as frequently run blocks should be laid out next to
47 * each other and fall-throughs maximized.
48 *
49 * See also llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp.
50 *
51 * Note: this function has no dependencies on the flow code and could
52 * be used elsewhere.
53 */
54 LLVMBasicBlockRef
lp_build_insert_new_block(struct gallivm_state * gallivm,const char * name)55 lp_build_insert_new_block(struct gallivm_state *gallivm, const char *name)
56 {
57 LLVMBasicBlockRef current_block;
58 LLVMBasicBlockRef next_block;
59 LLVMBasicBlockRef new_block;
60
61 /* get current basic block */
62 current_block = LLVMGetInsertBlock(gallivm->builder);
63
64 /* check if there's another block after this one */
65 next_block = LLVMGetNextBasicBlock(current_block);
66 if (next_block) {
67 /* insert the new block before the next block */
68 new_block = LLVMInsertBasicBlockInContext(gallivm->context, next_block, name);
69 }
70 else {
71 /* append new block after current block */
72 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
73 new_block = LLVMAppendBasicBlockInContext(gallivm->context, function, name);
74 }
75
76 return new_block;
77 }
78
79
80 /**
81 * Begin a "skip" block. Inside this block we can test a condition and
82 * skip to the end of the block if the condition is false.
83 */
84 void
lp_build_flow_skip_begin(struct lp_build_skip_context * skip,struct gallivm_state * gallivm)85 lp_build_flow_skip_begin(struct lp_build_skip_context *skip,
86 struct gallivm_state *gallivm)
87 {
88 skip->gallivm = gallivm;
89 /* create new basic block */
90 skip->block = lp_build_insert_new_block(gallivm, "skip");
91 }
92
93
94 /**
95 * Insert code to test a condition and branch to the end of the current
96 * skip block if the condition is true.
97 */
98 void
lp_build_flow_skip_cond_break(struct lp_build_skip_context * skip,LLVMValueRef cond)99 lp_build_flow_skip_cond_break(struct lp_build_skip_context *skip,
100 LLVMValueRef cond)
101 {
102 LLVMBasicBlockRef new_block;
103
104 new_block = lp_build_insert_new_block(skip->gallivm, "");
105
106 /* if cond is true, goto skip->block, else goto new_block */
107 LLVMBuildCondBr(skip->gallivm->builder, cond, skip->block, new_block);
108
109 LLVMPositionBuilderAtEnd(skip->gallivm->builder, new_block);
110 }
111
112
113 void
lp_build_flow_skip_end(struct lp_build_skip_context * skip)114 lp_build_flow_skip_end(struct lp_build_skip_context *skip)
115 {
116 /* goto block */
117 LLVMBuildBr(skip->gallivm->builder, skip->block);
118 LLVMPositionBuilderAtEnd(skip->gallivm->builder, skip->block);
119 }
120
121
122 /**
123 * Check if the mask predicate is zero. If so, jump to the end of the block.
124 */
125 void
lp_build_mask_check(struct lp_build_mask_context * mask)126 lp_build_mask_check(struct lp_build_mask_context *mask)
127 {
128 LLVMBuilderRef builder = mask->skip.gallivm->builder;
129 LLVMValueRef value;
130 LLVMValueRef cond;
131
132 value = lp_build_mask_value(mask);
133
134 /*
135 * XXX this doesn't quite generate the most efficient code possible, if
136 * the masks are vectors which have all bits set to the same value
137 * in each element.
138 * movmskps/pmovmskb would be more efficient to get the required value
139 * into ordinary reg (certainly with 8 floats).
140 * Not sure if llvm could figure that out on its own.
141 */
142
143 /* cond = (mask == 0) */
144 cond = LLVMBuildICmp(builder,
145 LLVMIntEQ,
146 LLVMBuildBitCast(builder, value, mask->reg_type, ""),
147 LLVMConstNull(mask->reg_type),
148 "");
149
150 /* if cond, goto end of block */
151 lp_build_flow_skip_cond_break(&mask->skip, cond);
152 }
153
154
155 /**
156 * Begin a section of code which is predicated on a mask.
157 * \param mask the mask context, initialized here
158 * \param flow the flow context
159 * \param type the type of the mask
160 * \param value storage for the mask
161 */
162 void
lp_build_mask_begin(struct lp_build_mask_context * mask,struct gallivm_state * gallivm,struct lp_type type,LLVMValueRef value)163 lp_build_mask_begin(struct lp_build_mask_context *mask,
164 struct gallivm_state *gallivm,
165 struct lp_type type,
166 LLVMValueRef value)
167 {
168 memset(mask, 0, sizeof *mask);
169
170 mask->reg_type = LLVMIntTypeInContext(gallivm->context, type.width * type.length);
171 mask->var = lp_build_alloca(gallivm,
172 lp_build_int_vec_type(gallivm, type),
173 "execution_mask");
174
175 LLVMBuildStore(gallivm->builder, value, mask->var);
176
177 lp_build_flow_skip_begin(&mask->skip, gallivm);
178 }
179
180
181 LLVMValueRef
lp_build_mask_value(struct lp_build_mask_context * mask)182 lp_build_mask_value(struct lp_build_mask_context *mask)
183 {
184 return LLVMBuildLoad(mask->skip.gallivm->builder, mask->var, "");
185 }
186
187
188 /**
189 * Update boolean mask with given value (bitwise AND).
190 * Typically used to update the quad's pixel alive/killed mask
191 * after depth testing, alpha testing, TGSI_OPCODE_KIL, etc.
192 */
193 void
lp_build_mask_update(struct lp_build_mask_context * mask,LLVMValueRef value)194 lp_build_mask_update(struct lp_build_mask_context *mask,
195 LLVMValueRef value)
196 {
197 value = LLVMBuildAnd(mask->skip.gallivm->builder,
198 lp_build_mask_value(mask),
199 value, "");
200 LLVMBuildStore(mask->skip.gallivm->builder, value, mask->var);
201 }
202
203
204 /**
205 * End section of code which is predicated on a mask.
206 */
207 LLVMValueRef
lp_build_mask_end(struct lp_build_mask_context * mask)208 lp_build_mask_end(struct lp_build_mask_context *mask)
209 {
210 lp_build_flow_skip_end(&mask->skip);
211 return lp_build_mask_value(mask);
212 }
213
214
215
216 void
lp_build_loop_begin(struct lp_build_loop_state * state,struct gallivm_state * gallivm,LLVMValueRef start)217 lp_build_loop_begin(struct lp_build_loop_state *state,
218 struct gallivm_state *gallivm,
219 LLVMValueRef start)
220
221 {
222 LLVMBuilderRef builder = gallivm->builder;
223
224 state->block = lp_build_insert_new_block(gallivm, "loop_begin");
225
226 state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
227 state->gallivm = gallivm;
228
229 LLVMBuildStore(builder, start, state->counter_var);
230
231 LLVMBuildBr(builder, state->block);
232
233 LLVMPositionBuilderAtEnd(builder, state->block);
234
235 state->counter = LLVMBuildLoad(builder, state->counter_var, "");
236 }
237
238
239 void
lp_build_loop_end_cond(struct lp_build_loop_state * state,LLVMValueRef end,LLVMValueRef step,LLVMIntPredicate llvm_cond)240 lp_build_loop_end_cond(struct lp_build_loop_state *state,
241 LLVMValueRef end,
242 LLVMValueRef step,
243 LLVMIntPredicate llvm_cond)
244 {
245 LLVMBuilderRef builder = state->gallivm->builder;
246 LLVMValueRef next;
247 LLVMValueRef cond;
248 LLVMBasicBlockRef after_block;
249
250 if (!step)
251 step = LLVMConstInt(LLVMTypeOf(end), 1, 0);
252
253 next = LLVMBuildAdd(builder, state->counter, step, "");
254
255 LLVMBuildStore(builder, next, state->counter_var);
256
257 cond = LLVMBuildICmp(builder, llvm_cond, next, end, "");
258
259 after_block = lp_build_insert_new_block(state->gallivm, "loop_end");
260
261 LLVMBuildCondBr(builder, cond, after_block, state->block);
262
263 LLVMPositionBuilderAtEnd(builder, after_block);
264
265 state->counter = LLVMBuildLoad(builder, state->counter_var, "");
266 }
267
268
269 void
lp_build_loop_end(struct lp_build_loop_state * state,LLVMValueRef end,LLVMValueRef step)270 lp_build_loop_end(struct lp_build_loop_state *state,
271 LLVMValueRef end,
272 LLVMValueRef step)
273 {
274 lp_build_loop_end_cond(state, end, step, LLVMIntNE);
275 }
276
277 /**
278 * Creates a c-style for loop,
279 * contrasts lp_build_loop as this checks condition on entry
280 * e.g. for(i = start; i cmp_op end; i += step)
281 * \param state the for loop state, initialized here
282 * \param gallivm the gallivm state
283 * \param start starting value of iterator
284 * \param cmp_op comparison operator used for comparing current value with end value
285 * \param end value used to compare against iterator
286 * \param step value added to iterator at end of each loop
287 */
288 void
lp_build_for_loop_begin(struct lp_build_for_loop_state * state,struct gallivm_state * gallivm,LLVMValueRef start,LLVMIntPredicate cmp_op,LLVMValueRef end,LLVMValueRef step)289 lp_build_for_loop_begin(struct lp_build_for_loop_state *state,
290 struct gallivm_state *gallivm,
291 LLVMValueRef start,
292 LLVMIntPredicate cmp_op,
293 LLVMValueRef end,
294 LLVMValueRef step)
295 {
296 LLVMBuilderRef builder = gallivm->builder;
297
298 assert(LLVMTypeOf(start) == LLVMTypeOf(end));
299 assert(LLVMTypeOf(start) == LLVMTypeOf(step));
300
301 state->begin = lp_build_insert_new_block(gallivm, "loop_begin");
302 state->step = step;
303 state->counter_var = lp_build_alloca(gallivm, LLVMTypeOf(start), "loop_counter");
304 state->gallivm = gallivm;
305 state->cond = cmp_op;
306 state->end = end;
307
308 LLVMBuildStore(builder, start, state->counter_var);
309 LLVMBuildBr(builder, state->begin);
310
311 LLVMPositionBuilderAtEnd(builder, state->begin);
312 state->counter = LLVMBuildLoad(builder, state->counter_var, "");
313
314 state->body = lp_build_insert_new_block(gallivm, "loop_body");
315 LLVMPositionBuilderAtEnd(builder, state->body);
316 }
317
318 /**
319 * End the for loop.
320 */
321 void
lp_build_for_loop_end(struct lp_build_for_loop_state * state)322 lp_build_for_loop_end(struct lp_build_for_loop_state *state)
323 {
324 LLVMValueRef next, cond;
325 LLVMBuilderRef builder = state->gallivm->builder;
326
327 next = LLVMBuildAdd(builder, state->counter, state->step, "");
328 LLVMBuildStore(builder, next, state->counter_var);
329 LLVMBuildBr(builder, state->begin);
330
331 state->exit = lp_build_insert_new_block(state->gallivm, "loop_exit");
332
333 /*
334 * We build the comparison for the begin block here,
335 * if we build it earlier the output llvm ir is not human readable
336 * as the code produced is not in the standard begin -> body -> end order.
337 */
338 LLVMPositionBuilderAtEnd(builder, state->begin);
339 cond = LLVMBuildICmp(builder, state->cond, state->counter, state->end, "");
340 LLVMBuildCondBr(builder, cond, state->body, state->exit);
341
342 LLVMPositionBuilderAtEnd(builder, state->exit);
343 }
344
345
346 /*
347 Example of if/then/else building:
348
349 int x;
350 if (cond) {
351 x = 1 + 2;
352 }
353 else {
354 x = 2 + 3;
355 }
356
357 Is built with:
358
359 // x needs an alloca variable
360 x = lp_build_alloca(builder, type, "x");
361
362
363 lp_build_if(ctx, builder, cond);
364 LLVMBuildStore(LLVMBuildAdd(1, 2), x);
365 lp_build_else(ctx);
366 LLVMBuildStore(LLVMBuildAdd(2, 3). x);
367 lp_build_endif(ctx);
368
369 */
370
371
372
373 /**
374 * Begin an if/else/endif construct.
375 */
376 void
lp_build_if(struct lp_build_if_state * ifthen,struct gallivm_state * gallivm,LLVMValueRef condition)377 lp_build_if(struct lp_build_if_state *ifthen,
378 struct gallivm_state *gallivm,
379 LLVMValueRef condition)
380 {
381 LLVMBasicBlockRef block = LLVMGetInsertBlock(gallivm->builder);
382
383 memset(ifthen, 0, sizeof *ifthen);
384 ifthen->gallivm = gallivm;
385 ifthen->condition = condition;
386 ifthen->entry_block = block;
387
388 /* create endif/merge basic block for the phi functions */
389 ifthen->merge_block = lp_build_insert_new_block(gallivm, "endif-block");
390
391 /* create/insert true_block before merge_block */
392 ifthen->true_block =
393 LLVMInsertBasicBlockInContext(gallivm->context,
394 ifthen->merge_block,
395 "if-true-block");
396
397 /* successive code goes into the true block */
398 LLVMPositionBuilderAtEnd(gallivm->builder, ifthen->true_block);
399 }
400
401
402 /**
403 * Begin else-part of a conditional
404 */
405 void
lp_build_else(struct lp_build_if_state * ifthen)406 lp_build_else(struct lp_build_if_state *ifthen)
407 {
408 LLVMBuilderRef builder = ifthen->gallivm->builder;
409
410 /* Append an unconditional Br(anch) instruction on the true_block */
411 LLVMBuildBr(builder, ifthen->merge_block);
412
413 /* create/insert false_block before the merge block */
414 ifthen->false_block =
415 LLVMInsertBasicBlockInContext(ifthen->gallivm->context,
416 ifthen->merge_block,
417 "if-false-block");
418
419 /* successive code goes into the else block */
420 LLVMPositionBuilderAtEnd(builder, ifthen->false_block);
421 }
422
423
424 /**
425 * End a conditional.
426 */
427 void
lp_build_endif(struct lp_build_if_state * ifthen)428 lp_build_endif(struct lp_build_if_state *ifthen)
429 {
430 LLVMBuilderRef builder = ifthen->gallivm->builder;
431
432 /* Insert branch to the merge block from current block */
433 LLVMBuildBr(builder, ifthen->merge_block);
434
435 /*
436 * Now patch in the various branch instructions.
437 */
438
439 /* Insert the conditional branch instruction at the end of entry_block */
440 LLVMPositionBuilderAtEnd(builder, ifthen->entry_block);
441 if (ifthen->false_block) {
442 /* we have an else clause */
443 LLVMBuildCondBr(builder, ifthen->condition,
444 ifthen->true_block, ifthen->false_block);
445 }
446 else {
447 /* no else clause */
448 LLVMBuildCondBr(builder, ifthen->condition,
449 ifthen->true_block, ifthen->merge_block);
450 }
451
452 /* Resume building code at end of the ifthen->merge_block */
453 LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);
454 }
455
456
457 /**
458 * Allocate a scalar (or vector) variable.
459 *
460 * Although not strictly part of control flow, control flow has deep impact in
461 * how variables should be allocated.
462 *
463 * The mem2reg optimization pass is the recommended way to dealing with mutable
464 * variables, and SSA. It looks for allocas and if it can handle them, it
465 * promotes them, but only looks for alloca instructions in the entry block of
466 * the function. Being in the entry block guarantees that the alloca is only
467 * executed once, which makes analysis simpler.
468 *
469 * See also:
470 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
471 */
472 LLVMValueRef
lp_build_alloca(struct gallivm_state * gallivm,LLVMTypeRef type,const char * name)473 lp_build_alloca(struct gallivm_state *gallivm,
474 LLVMTypeRef type,
475 const char *name)
476 {
477 LLVMBuilderRef builder = gallivm->builder;
478 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
479 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
480 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
481 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
482 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(gallivm->context);
483 LLVMValueRef res;
484
485 if (first_instr) {
486 LLVMPositionBuilderBefore(first_builder, first_instr);
487 } else {
488 LLVMPositionBuilderAtEnd(first_builder, first_block);
489 }
490
491 res = LLVMBuildAlloca(first_builder, type, name);
492 LLVMBuildStore(builder, LLVMConstNull(type), res);
493
494 LLVMDisposeBuilder(first_builder);
495
496 return res;
497 }
498
499
500 /**
501 * Allocate an array of scalars/vectors.
502 *
503 * mem2reg pass is not capable of promoting structs or arrays to registers, but
504 * we still put it in the first block anyway as failure to put allocas in the
505 * first block may prevent the X86 backend from successfully align the stack as
506 * required.
507 *
508 * Also the scalarrepl pass is supposedly more powerful and can promote
509 * arrays in many cases.
510 *
511 * See also:
512 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
513 */
514 LLVMValueRef
lp_build_array_alloca(struct gallivm_state * gallivm,LLVMTypeRef type,LLVMValueRef count,const char * name)515 lp_build_array_alloca(struct gallivm_state *gallivm,
516 LLVMTypeRef type,
517 LLVMValueRef count,
518 const char *name)
519 {
520 LLVMBuilderRef builder = gallivm->builder;
521 LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
522 LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
523 LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
524 LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
525 LLVMBuilderRef first_builder = LLVMCreateBuilderInContext(gallivm->context);
526 LLVMValueRef res;
527
528 if (first_instr) {
529 LLVMPositionBuilderBefore(first_builder, first_instr);
530 } else {
531 LLVMPositionBuilderAtEnd(first_builder, first_block);
532 }
533
534 res = LLVMBuildArrayAlloca(first_builder, type, count, name);
535
536 LLVMDisposeBuilder(first_builder);
537
538 return res;
539 }
540