1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "lsan_common.h"
16
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_flag_parser.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_report_decorator.h"
26
27 #if CAN_SANITIZE_LEAKS
28 namespace __lsan {
29
30 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
31 // also to protect the global list of root regions.
32 BlockingMutex global_mutex(LINKER_INITIALIZED);
33
34 THREADLOCAL int disable_counter;
DisabledInThisThread()35 bool DisabledInThisThread() { return disable_counter > 0; }
36
37 Flags lsan_flags;
38
SetDefaults()39 void Flags::SetDefaults() {
40 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
41 #include "lsan_flags.inc"
42 #undef LSAN_FLAG
43 }
44
RegisterLsanFlags(FlagParser * parser,Flags * f)45 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
46 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
47 RegisterFlag(parser, #Name, Description, &f->Name);
48 #include "lsan_flags.inc"
49 #undef LSAN_FLAG
50 }
51
52 #define LOG_POINTERS(...) \
53 do { \
54 if (flags()->log_pointers) Report(__VA_ARGS__); \
55 } while (0);
56
57 #define LOG_THREADS(...) \
58 do { \
59 if (flags()->log_threads) Report(__VA_ARGS__); \
60 } while (0);
61
62 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
63 static SuppressionContext *suppression_ctx = nullptr;
64 static const char kSuppressionLeak[] = "leak";
65 static const char *kSuppressionTypes[] = { kSuppressionLeak };
66
InitializeSuppressions()67 void InitializeSuppressions() {
68 CHECK_EQ(nullptr, suppression_ctx);
69 suppression_ctx = new (suppression_placeholder) // NOLINT
70 SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
71 suppression_ctx->ParseFromFile(flags()->suppressions);
72 if (&__lsan_default_suppressions)
73 suppression_ctx->Parse(__lsan_default_suppressions());
74 }
75
GetSuppressionContext()76 static SuppressionContext *GetSuppressionContext() {
77 CHECK(suppression_ctx);
78 return suppression_ctx;
79 }
80
81 struct RootRegion {
82 const void *begin;
83 uptr size;
84 };
85
86 InternalMmapVector<RootRegion> *root_regions;
87
InitializeRootRegions()88 void InitializeRootRegions() {
89 CHECK(!root_regions);
90 ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
91 root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
92 }
93
InitCommonLsan()94 void InitCommonLsan() {
95 InitializeRootRegions();
96 if (common_flags()->detect_leaks) {
97 // Initialization which can fail or print warnings should only be done if
98 // LSan is actually enabled.
99 InitializeSuppressions();
100 InitializePlatformSpecificModules();
101 }
102 }
103
104 class Decorator: public __sanitizer::SanitizerCommonDecorator {
105 public:
Decorator()106 Decorator() : SanitizerCommonDecorator() { }
Error()107 const char *Error() { return Red(); }
Leak()108 const char *Leak() { return Blue(); }
End()109 const char *End() { return Default(); }
110 };
111
CanBeAHeapPointer(uptr p)112 static inline bool CanBeAHeapPointer(uptr p) {
113 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
114 // bound on heap addresses.
115 const uptr kMinAddress = 4 * 4096;
116 if (p < kMinAddress) return false;
117 #if defined(__x86_64__)
118 // Accept only canonical form user-space addresses.
119 return ((p >> 47) == 0);
120 #elif defined(__mips64)
121 return ((p >> 40) == 0);
122 #elif defined(__aarch64__)
123 unsigned runtimeVMA =
124 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
125 return ((p >> runtimeVMA) == 0);
126 #else
127 return true;
128 #endif
129 }
130
131 // Scans the memory range, looking for byte patterns that point into allocator
132 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
133 // There are two usage modes for this function: finding reachable chunks
134 // (|tag| = kReachable) and finding indirectly leaked chunks
135 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
136 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)137 void ScanRangeForPointers(uptr begin, uptr end,
138 Frontier *frontier,
139 const char *region_type, ChunkTag tag) {
140 CHECK(tag == kReachable || tag == kIndirectlyLeaked);
141 const uptr alignment = flags()->pointer_alignment();
142 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
143 uptr pp = begin;
144 if (pp % alignment)
145 pp = pp + alignment - pp % alignment;
146 for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT
147 void *p = *reinterpret_cast<void **>(pp);
148 if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
149 uptr chunk = PointsIntoChunk(p);
150 if (!chunk) continue;
151 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
152 if (chunk == begin) continue;
153 LsanMetadata m(chunk);
154 if (m.tag() == kReachable || m.tag() == kIgnored) continue;
155
156 // Do this check relatively late so we can log only the interesting cases.
157 if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
158 LOG_POINTERS(
159 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
160 "%zu.\n",
161 pp, p, chunk, chunk + m.requested_size(), m.requested_size());
162 continue;
163 }
164
165 m.set_tag(tag);
166 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
167 chunk, chunk + m.requested_size(), m.requested_size());
168 if (frontier)
169 frontier->push_back(chunk);
170 }
171 }
172
ForEachExtraStackRangeCb(uptr begin,uptr end,void * arg)173 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
174 Frontier *frontier = reinterpret_cast<Frontier *>(arg);
175 ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
176 }
177
178 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier)179 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
180 Frontier *frontier) {
181 InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
182 uptr registers_begin = reinterpret_cast<uptr>(registers.data());
183 uptr registers_end = registers_begin + registers.size();
184 for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
185 uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
186 LOG_THREADS("Processing thread %d.\n", os_id);
187 uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
188 bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
189 &tls_begin, &tls_end,
190 &cache_begin, &cache_end);
191 if (!thread_found) {
192 // If a thread can't be found in the thread registry, it's probably in the
193 // process of destruction. Log this event and move on.
194 LOG_THREADS("Thread %d not found in registry.\n", os_id);
195 continue;
196 }
197 uptr sp;
198 bool have_registers =
199 (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
200 if (!have_registers) {
201 Report("Unable to get registers from thread %d.\n");
202 // If unable to get SP, consider the entire stack to be reachable.
203 sp = stack_begin;
204 }
205
206 if (flags()->use_registers && have_registers)
207 ScanRangeForPointers(registers_begin, registers_end, frontier,
208 "REGISTERS", kReachable);
209
210 if (flags()->use_stacks) {
211 LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
212 if (sp < stack_begin || sp >= stack_end) {
213 // SP is outside the recorded stack range (e.g. the thread is running a
214 // signal handler on alternate stack). Again, consider the entire stack
215 // range to be reachable.
216 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
217 } else {
218 // Shrink the stack range to ignore out-of-scope values.
219 stack_begin = sp;
220 }
221 ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
222 kReachable);
223 ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
224 }
225
226 if (flags()->use_tls) {
227 LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
228 if (cache_begin == cache_end) {
229 ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
230 } else {
231 // Because LSan should not be loaded with dlopen(), we can assume
232 // that allocator cache will be part of static TLS image.
233 CHECK_LE(tls_begin, cache_begin);
234 CHECK_GE(tls_end, cache_end);
235 if (tls_begin < cache_begin)
236 ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
237 kReachable);
238 if (tls_end > cache_end)
239 ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
240 }
241 }
242 }
243 }
244
ProcessRootRegion(Frontier * frontier,uptr root_begin,uptr root_end)245 static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
246 uptr root_end) {
247 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
248 uptr begin, end, prot;
249 while (proc_maps.Next(&begin, &end,
250 /*offset*/ nullptr, /*filename*/ nullptr,
251 /*filename_size*/ 0, &prot)) {
252 uptr intersection_begin = Max(root_begin, begin);
253 uptr intersection_end = Min(end, root_end);
254 if (intersection_begin >= intersection_end) continue;
255 bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
256 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
257 root_begin, root_end, begin, end,
258 is_readable ? "readable" : "unreadable");
259 if (is_readable)
260 ScanRangeForPointers(intersection_begin, intersection_end, frontier,
261 "ROOT", kReachable);
262 }
263 }
264
265 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)266 static void ProcessRootRegions(Frontier *frontier) {
267 if (!flags()->use_root_regions) return;
268 CHECK(root_regions);
269 for (uptr i = 0; i < root_regions->size(); i++) {
270 RootRegion region = (*root_regions)[i];
271 uptr begin_addr = reinterpret_cast<uptr>(region.begin);
272 ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
273 }
274 }
275
FloodFillTag(Frontier * frontier,ChunkTag tag)276 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
277 while (frontier->size()) {
278 uptr next_chunk = frontier->back();
279 frontier->pop_back();
280 LsanMetadata m(next_chunk);
281 ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
282 "HEAP", tag);
283 }
284 }
285
286 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
287 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)288 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
289 chunk = GetUserBegin(chunk);
290 LsanMetadata m(chunk);
291 if (m.allocated() && m.tag() != kReachable) {
292 ScanRangeForPointers(chunk, chunk + m.requested_size(),
293 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
294 }
295 }
296
297 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
298 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)299 static void CollectIgnoredCb(uptr chunk, void *arg) {
300 CHECK(arg);
301 chunk = GetUserBegin(chunk);
302 LsanMetadata m(chunk);
303 if (m.allocated() && m.tag() == kIgnored) {
304 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
305 chunk, chunk + m.requested_size(), m.requested_size());
306 reinterpret_cast<Frontier *>(arg)->push_back(chunk);
307 }
308 }
309
310 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads)311 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
312 // Holds the flood fill frontier.
313 Frontier frontier(1);
314
315 ForEachChunk(CollectIgnoredCb, &frontier);
316 ProcessGlobalRegions(&frontier);
317 ProcessThreads(suspended_threads, &frontier);
318 ProcessRootRegions(&frontier);
319 FloodFillTag(&frontier, kReachable);
320
321 // The check here is relatively expensive, so we do this in a separate flood
322 // fill. That way we can skip the check for chunks that are reachable
323 // otherwise.
324 LOG_POINTERS("Processing platform-specific allocations.\n");
325 CHECK_EQ(0, frontier.size());
326 ProcessPlatformSpecificAllocations(&frontier);
327 FloodFillTag(&frontier, kReachable);
328
329 // Iterate over leaked chunks and mark those that are reachable from other
330 // leaked chunks.
331 LOG_POINTERS("Scanning leaked chunks.\n");
332 ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
333 }
334
335 // ForEachChunk callback. Resets the tags to pre-leak-check state.
ResetTagsCb(uptr chunk,void * arg)336 static void ResetTagsCb(uptr chunk, void *arg) {
337 (void)arg;
338 chunk = GetUserBegin(chunk);
339 LsanMetadata m(chunk);
340 if (m.allocated() && m.tag() != kIgnored)
341 m.set_tag(kDirectlyLeaked);
342 }
343
PrintStackTraceById(u32 stack_trace_id)344 static void PrintStackTraceById(u32 stack_trace_id) {
345 CHECK(stack_trace_id);
346 StackDepotGet(stack_trace_id).Print();
347 }
348
349 // ForEachChunk callback. Aggregates information about unreachable chunks into
350 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)351 static void CollectLeaksCb(uptr chunk, void *arg) {
352 CHECK(arg);
353 LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
354 chunk = GetUserBegin(chunk);
355 LsanMetadata m(chunk);
356 if (!m.allocated()) return;
357 if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
358 u32 resolution = flags()->resolution;
359 u32 stack_trace_id = 0;
360 if (resolution > 0) {
361 StackTrace stack = StackDepotGet(m.stack_trace_id());
362 stack.size = Min(stack.size, resolution);
363 stack_trace_id = StackDepotPut(stack);
364 } else {
365 stack_trace_id = m.stack_trace_id();
366 }
367 leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
368 m.tag());
369 }
370 }
371
PrintMatchedSuppressions()372 static void PrintMatchedSuppressions() {
373 InternalMmapVector<Suppression *> matched(1);
374 GetSuppressionContext()->GetMatched(&matched);
375 if (!matched.size())
376 return;
377 const char *line = "-----------------------------------------------------";
378 Printf("%s\n", line);
379 Printf("Suppressions used:\n");
380 Printf(" count bytes template\n");
381 for (uptr i = 0; i < matched.size(); i++)
382 Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
383 &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
384 Printf("%s\n\n", line);
385 }
386
387 struct CheckForLeaksParam {
388 bool success;
389 LeakReport leak_report;
390 };
391
CheckForLeaksCallback(const SuspendedThreadsList & suspended_threads,void * arg)392 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
393 void *arg) {
394 CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
395 CHECK(param);
396 CHECK(!param->success);
397 ClassifyAllChunks(suspended_threads);
398 ForEachChunk(CollectLeaksCb, ¶m->leak_report);
399 // Clean up for subsequent leak checks. This assumes we did not overwrite any
400 // kIgnored tags.
401 ForEachChunk(ResetTagsCb, nullptr);
402 param->success = true;
403 }
404
CheckForLeaks()405 static bool CheckForLeaks() {
406 if (&__lsan_is_turned_off && __lsan_is_turned_off())
407 return false;
408 EnsureMainThreadIDIsCorrect();
409 CheckForLeaksParam param;
410 param.success = false;
411 LockThreadRegistry();
412 LockAllocator();
413 DoStopTheWorld(CheckForLeaksCallback, ¶m);
414 UnlockAllocator();
415 UnlockThreadRegistry();
416
417 if (!param.success) {
418 Report("LeakSanitizer has encountered a fatal error.\n");
419 Die();
420 }
421 param.leak_report.ApplySuppressions();
422 uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
423 if (unsuppressed_count > 0) {
424 Decorator d;
425 Printf("\n"
426 "================================================================="
427 "\n");
428 Printf("%s", d.Error());
429 Report("ERROR: LeakSanitizer: detected memory leaks\n");
430 Printf("%s", d.End());
431 param.leak_report.ReportTopLeaks(flags()->max_leaks);
432 }
433 if (common_flags()->print_suppressions)
434 PrintMatchedSuppressions();
435 if (unsuppressed_count > 0) {
436 param.leak_report.PrintSummary();
437 return true;
438 }
439 return false;
440 }
441
DoLeakCheck()442 void DoLeakCheck() {
443 BlockingMutexLock l(&global_mutex);
444 static bool already_done;
445 if (already_done) return;
446 already_done = true;
447 bool have_leaks = CheckForLeaks();
448 if (!have_leaks) {
449 return;
450 }
451 if (common_flags()->exitcode) {
452 Die();
453 }
454 }
455
DoRecoverableLeakCheck()456 static int DoRecoverableLeakCheck() {
457 BlockingMutexLock l(&global_mutex);
458 bool have_leaks = CheckForLeaks();
459 return have_leaks ? 1 : 0;
460 }
461
GetSuppressionForAddr(uptr addr)462 static Suppression *GetSuppressionForAddr(uptr addr) {
463 Suppression *s = nullptr;
464
465 // Suppress by module name.
466 SuppressionContext *suppressions = GetSuppressionContext();
467 if (const char *module_name =
468 Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
469 if (suppressions->Match(module_name, kSuppressionLeak, &s))
470 return s;
471
472 // Suppress by file or function name.
473 SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
474 for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
475 if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
476 suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
477 break;
478 }
479 }
480 frames->ClearAll();
481 return s;
482 }
483
GetSuppressionForStack(u32 stack_trace_id)484 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
485 StackTrace stack = StackDepotGet(stack_trace_id);
486 for (uptr i = 0; i < stack.size; i++) {
487 Suppression *s = GetSuppressionForAddr(
488 StackTrace::GetPreviousInstructionPc(stack.trace[i]));
489 if (s) return s;
490 }
491 return nullptr;
492 }
493
494 ///// LeakReport implementation. /////
495
496 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
497 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
498 // in real-world applications.
499 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
500 // use a hash table.
501 const uptr kMaxLeaksConsidered = 5000;
502
AddLeakedChunk(uptr chunk,u32 stack_trace_id,uptr leaked_size,ChunkTag tag)503 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
504 uptr leaked_size, ChunkTag tag) {
505 CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
506 bool is_directly_leaked = (tag == kDirectlyLeaked);
507 uptr i;
508 for (i = 0; i < leaks_.size(); i++) {
509 if (leaks_[i].stack_trace_id == stack_trace_id &&
510 leaks_[i].is_directly_leaked == is_directly_leaked) {
511 leaks_[i].hit_count++;
512 leaks_[i].total_size += leaked_size;
513 break;
514 }
515 }
516 if (i == leaks_.size()) {
517 if (leaks_.size() == kMaxLeaksConsidered) return;
518 Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
519 is_directly_leaked, /* is_suppressed */ false };
520 leaks_.push_back(leak);
521 }
522 if (flags()->report_objects) {
523 LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
524 leaked_objects_.push_back(obj);
525 }
526 }
527
LeakComparator(const Leak & leak1,const Leak & leak2)528 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
529 if (leak1.is_directly_leaked == leak2.is_directly_leaked)
530 return leak1.total_size > leak2.total_size;
531 else
532 return leak1.is_directly_leaked;
533 }
534
ReportTopLeaks(uptr num_leaks_to_report)535 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
536 CHECK(leaks_.size() <= kMaxLeaksConsidered);
537 Printf("\n");
538 if (leaks_.size() == kMaxLeaksConsidered)
539 Printf("Too many leaks! Only the first %zu leaks encountered will be "
540 "reported.\n",
541 kMaxLeaksConsidered);
542
543 uptr unsuppressed_count = UnsuppressedLeakCount();
544 if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
545 Printf("The %zu top leak(s):\n", num_leaks_to_report);
546 InternalSort(&leaks_, leaks_.size(), LeakComparator);
547 uptr leaks_reported = 0;
548 for (uptr i = 0; i < leaks_.size(); i++) {
549 if (leaks_[i].is_suppressed) continue;
550 PrintReportForLeak(i);
551 leaks_reported++;
552 if (leaks_reported == num_leaks_to_report) break;
553 }
554 if (leaks_reported < unsuppressed_count) {
555 uptr remaining = unsuppressed_count - leaks_reported;
556 Printf("Omitting %zu more leak(s).\n", remaining);
557 }
558 }
559
PrintReportForLeak(uptr index)560 void LeakReport::PrintReportForLeak(uptr index) {
561 Decorator d;
562 Printf("%s", d.Leak());
563 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
564 leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
565 leaks_[index].total_size, leaks_[index].hit_count);
566 Printf("%s", d.End());
567
568 PrintStackTraceById(leaks_[index].stack_trace_id);
569
570 if (flags()->report_objects) {
571 Printf("Objects leaked above:\n");
572 PrintLeakedObjectsForLeak(index);
573 Printf("\n");
574 }
575 }
576
PrintLeakedObjectsForLeak(uptr index)577 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
578 u32 leak_id = leaks_[index].id;
579 for (uptr j = 0; j < leaked_objects_.size(); j++) {
580 if (leaked_objects_[j].leak_id == leak_id)
581 Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
582 leaked_objects_[j].size);
583 }
584 }
585
PrintSummary()586 void LeakReport::PrintSummary() {
587 CHECK(leaks_.size() <= kMaxLeaksConsidered);
588 uptr bytes = 0, allocations = 0;
589 for (uptr i = 0; i < leaks_.size(); i++) {
590 if (leaks_[i].is_suppressed) continue;
591 bytes += leaks_[i].total_size;
592 allocations += leaks_[i].hit_count;
593 }
594 InternalScopedString summary(kMaxSummaryLength);
595 summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
596 allocations);
597 ReportErrorSummary(summary.data());
598 }
599
ApplySuppressions()600 void LeakReport::ApplySuppressions() {
601 for (uptr i = 0; i < leaks_.size(); i++) {
602 Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
603 if (s) {
604 s->weight += leaks_[i].total_size;
605 atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
606 leaks_[i].hit_count);
607 leaks_[i].is_suppressed = true;
608 }
609 }
610 }
611
UnsuppressedLeakCount()612 uptr LeakReport::UnsuppressedLeakCount() {
613 uptr result = 0;
614 for (uptr i = 0; i < leaks_.size(); i++)
615 if (!leaks_[i].is_suppressed) result++;
616 return result;
617 }
618
619 } // namespace __lsan
620 #endif // CAN_SANITIZE_LEAKS
621
622 using namespace __lsan; // NOLINT
623
624 extern "C" {
625 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)626 void __lsan_ignore_object(const void *p) {
627 #if CAN_SANITIZE_LEAKS
628 if (!common_flags()->detect_leaks)
629 return;
630 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
631 // locked.
632 BlockingMutexLock l(&global_mutex);
633 IgnoreObjectResult res = IgnoreObjectLocked(p);
634 if (res == kIgnoreObjectInvalid)
635 VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
636 if (res == kIgnoreObjectAlreadyIgnored)
637 VReport(1, "__lsan_ignore_object(): "
638 "heap object at %p is already being ignored\n", p);
639 if (res == kIgnoreObjectSuccess)
640 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
641 #endif // CAN_SANITIZE_LEAKS
642 }
643
644 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)645 void __lsan_register_root_region(const void *begin, uptr size) {
646 #if CAN_SANITIZE_LEAKS
647 BlockingMutexLock l(&global_mutex);
648 CHECK(root_regions);
649 RootRegion region = {begin, size};
650 root_regions->push_back(region);
651 VReport(1, "Registered root region at %p of size %llu\n", begin, size);
652 #endif // CAN_SANITIZE_LEAKS
653 }
654
655 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)656 void __lsan_unregister_root_region(const void *begin, uptr size) {
657 #if CAN_SANITIZE_LEAKS
658 BlockingMutexLock l(&global_mutex);
659 CHECK(root_regions);
660 bool removed = false;
661 for (uptr i = 0; i < root_regions->size(); i++) {
662 RootRegion region = (*root_regions)[i];
663 if (region.begin == begin && region.size == size) {
664 removed = true;
665 uptr last_index = root_regions->size() - 1;
666 (*root_regions)[i] = (*root_regions)[last_index];
667 root_regions->pop_back();
668 VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
669 break;
670 }
671 }
672 if (!removed) {
673 Report(
674 "__lsan_unregister_root_region(): region at %p of size %llu has not "
675 "been registered.\n",
676 begin, size);
677 Die();
678 }
679 #endif // CAN_SANITIZE_LEAKS
680 }
681
682 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()683 void __lsan_disable() {
684 #if CAN_SANITIZE_LEAKS
685 __lsan::disable_counter++;
686 #endif
687 }
688
689 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()690 void __lsan_enable() {
691 #if CAN_SANITIZE_LEAKS
692 if (!__lsan::disable_counter && common_flags()->detect_leaks) {
693 Report("Unmatched call to __lsan_enable().\n");
694 Die();
695 }
696 __lsan::disable_counter--;
697 #endif
698 }
699
700 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()701 void __lsan_do_leak_check() {
702 #if CAN_SANITIZE_LEAKS
703 if (common_flags()->detect_leaks)
704 __lsan::DoLeakCheck();
705 #endif // CAN_SANITIZE_LEAKS
706 }
707
708 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_recoverable_leak_check()709 int __lsan_do_recoverable_leak_check() {
710 #if CAN_SANITIZE_LEAKS
711 if (common_flags()->detect_leaks)
712 return __lsan::DoRecoverableLeakCheck();
713 #endif // CAN_SANITIZE_LEAKS
714 return 0;
715 }
716
717 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
718 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_is_turned_off()719 int __lsan_is_turned_off() {
720 return 0;
721 }
722 #endif
723 } // extern "C"
724