1 
2 /*---------------------------------------------------------------*/
3 /*--- begin                               host_generic_regs.h ---*/
4 /*---------------------------------------------------------------*/
5 
6 /*
7    This file is part of Valgrind, a dynamic binary instrumentation
8    framework.
9 
10    Copyright (C) 2004-2015 OpenWorks LLP
11       info@open-works.net
12 
13    This program is free software; you can redistribute it and/or
14    modify it under the terms of the GNU General Public License as
15    published by the Free Software Foundation; either version 2 of the
16    License, or (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful, but
19    WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21    General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
26    02110-1301, USA.
27 
28    The GNU General Public License is contained in the file COPYING.
29 
30    Neither the names of the U.S. Department of Energy nor the
31    University of California nor the names of its contributors may be
32    used to endorse or promote products derived from this software
33    without prior written permission.
34 */
35 
36 #ifndef __VEX_HOST_GENERIC_REGS_H
37 #define __VEX_HOST_GENERIC_REGS_H
38 
39 #include "libvex_basictypes.h"
40 
41 
42 /*---------------------------------------------------------*/
43 /*--- Representing HOST REGISTERS                       ---*/
44 /*---------------------------------------------------------*/
45 
46 /* Host registers.  Stuff to represent:
47 
48    - The register index.  This is a zero-based, sequential index that
49      facilitates indexing into arrays or virtual or real registers.
50      Virtual and real registers both have indices starting at zero.
51      Interpreting a real register index requires having the host's
52      RRegUniverse to hand.
53 
54    - The register's hardware encoding.  This applies only for real
55      registers and should be zero for virtual registers.  This is the
56      number as used in a target architecture encoding.
57 
58    - The register class
59 
60    - Whether or not the register is a virtual reg.
61 
62    Registers are sized so as to fit into 32 bits.
63 
64    Note that since the class field is never 1111b, no valid register
65    can have the value INVALID_HREG.
66 
67    There are currently 6 register classes:
68 
69      int32 int64 float32 float64 simd64 simd128
70 */
71 
72 /* Registers are represented as 32 bit integers, with the following layout:
73 
74    31     30..27  26..20  19..0
75    isV:1  rc:4    enc:7   ix:20
76 
77    where
78       UInt      ix:20;   // Zero based index
79       UInt      enc:7;   // Hardware encoding number
80       HRegClass rc:4;    // the register's HRegClass
81       Bool      isV:1;   // is it a virtual register?
82 
83    The obvious thing to do here would be to use bitfields.  But gcc
84    seems to have problems constant folding calls to mkHReg() with all
85    4 parameters constant to a 32 bit number, when using bitfields.
86    Hence the use of the traditional shift-and-mask by-hand bitfields
87    instead.
88 */
89 typedef  struct { UInt u32; }  HReg;
90 
91 /* HRegClass describes host register classes which the instruction
92    selectors can speak about.  We would not expect all of them to be
93    available on any specific host.  For example on x86, the available
94    classes are: Int32, Flt64, Vec128 only.
95 
96    IMPORTANT NOTE: host_generic_reg_alloc2.c needs how much space is
97    needed to spill each class of register.  It allocates the following
98    amount of space:
99 
100       HRcInt32     64 bits
101       HRcInt64     64 bits
102       HRcFlt32     64 bits
103       HRcFlt64     128 bits (on x86 these are spilled by fstpt/fldt and
104                              so won't fit in a 64-bit slot)
105       HRcVec64     64 bits
106       HRcVec128    128 bits
107 
108    If you add another regclass, you must remember to update
109    host_generic_reg_alloc2.c accordingly.
110 
111    When adding entries to enum HRegClass, do not use any value > 14 or < 1.
112 */
113 typedef
114    enum {
115       HRcINVALID=1,   /* NOT A VALID REGISTER CLASS */
116       HRcInt32=3,     /* 32-bit int */
117       HRcInt64=4,     /* 64-bit int */
118       HRcFlt32=5,     /* 32-bit float */
119       HRcFlt64=6,     /* 64-bit float */
120       HRcVec64=7,     /* 64-bit SIMD */
121       HRcVec128=8     /* 128-bit SIMD */
122    }
123    HRegClass;
124 
125 extern void ppHRegClass ( HRegClass );
126 
127 
128 /* Print an HReg in a generic (non-target-specific) way. */
129 extern void ppHReg ( HReg );
130 
131 /* Construct.  The goal here is that compiler can fold this down to a
132    constant in the case where the four arguments are constants, which
133    is often the case. */
mkHReg(Bool virtual,HRegClass rc,UInt enc,UInt ix)134 static inline HReg mkHReg ( Bool virtual, HRegClass rc, UInt enc, UInt ix )
135 {
136    vassert(ix <= 0xFFFFF);
137    vassert(enc <= 0x7F);
138    vassert(((UInt)rc) <= 0xF);
139    vassert(((UInt)virtual) <= 1);
140    if (virtual) vassert(enc == 0);
141    HReg r;
142    r.u32 = ((((UInt)virtual) & 1)       << 31)  |
143            ((((UInt)rc)      & 0xF)     << 27)  |
144            ((((UInt)enc)     & 0x7F)    << 20)  |
145            ((((UInt)ix)      & 0xFFFFF) << 0);
146    return r;
147 }
148 
hregClass(HReg r)149 static inline HRegClass hregClass ( HReg r )
150 {
151    HRegClass rc = (HRegClass)((r.u32 >> 27) & 0xF);
152    vassert(rc >= HRcInt32 && rc <= HRcVec128);
153    return rc;
154 }
155 
hregIndex(HReg r)156 static inline UInt hregIndex ( HReg r )
157 {
158    return r.u32 & 0xFFFFF;
159 }
160 
hregEncoding(HReg r)161 static inline UInt hregEncoding ( HReg r )
162 {
163    return (r.u32 >> 20) & 0x7F;
164 }
165 
hregIsVirtual(HReg r)166 static inline Bool hregIsVirtual ( HReg r )
167 {
168    return toBool((r.u32 >> 31) & 1);
169 }
170 
sameHReg(HReg r1,HReg r2)171 static inline Bool sameHReg ( HReg r1, HReg r2 )
172 {
173    return toBool(r1.u32 == r2.u32);
174 }
175 
176 static const HReg INVALID_HREG = { .u32 = 0xFFFFFFFF };
177 
hregIsInvalid(HReg r)178 static inline Bool hregIsInvalid ( HReg r )
179 {
180    return sameHReg(r, INVALID_HREG);
181 }
182 
183 
184 /*---------------------------------------------------------*/
185 /*--- Real register Universes.                          ---*/
186 /*---------------------------------------------------------*/
187 
188 /* A "Real Register Universe" is a read-only structure that contains
189    all information about real registers on a given host.  It serves
190    several purposes:
191 
192    * defines the mapping from real register indices to the registers
193      themselves
194 
195    * defines the size of the initial section of that mapping that is
196      available to the register allocator for use, so that the register
197      allocator can treat the registers under its control as a zero
198      based, contiguous array.  This is important for its efficiency.
199 
200    * gives meaning to RRegSets, which otherwise would merely be a
201      bunch of bits.
202 
203    This is a big structure, but it's readonly, and we expect to
204    allocate only one instance for each run of Valgrind.  It is sized
205    so as to be able to deal with up to 64 real registers.  AFAICS none
206    of the back ends actually mention more than 64, despite the fact
207    that many of the host architectures have more than 64 registers
208    when all classes are taken into consideration.
209 */
210 
211 #define N_RREGUNIVERSE_REGS 64
212 
213 typedef
214    struct {
215       /* Total number of registers in this universe .. */
216       UInt size;
217       /* .. of which the first |allocable| are available to regalloc. */
218       UInt allocable;
219       /* The registers themselves.  All must be real registers, and
220          all must have their index number (.s.ix) equal to the array
221          index here, since this is the only place where we map index
222          numbers to actual registers. */
223       HReg regs[N_RREGUNIVERSE_REGS];
224    }
225    RRegUniverse;
226 
227 /* Nominally initialise (zero out) an RRegUniverse. */
228 void RRegUniverse__init ( /*OUT*/RRegUniverse* );
229 
230 /* Check an RRegUniverse is valid, and assert if not.*/
231 void RRegUniverse__check_is_sane ( const RRegUniverse* );
232 
233 /* Print an RRegUniverse, for debugging. */
234 void RRegUniverse__show ( const RRegUniverse* );
235 
236 
237 /*---------------------------------------------------------*/
238 /*--- Real register sets.                               ---*/
239 /*---------------------------------------------------------*/
240 
241 /* Represents sets of real registers.  |bitset| is interpreted in the
242    context of |univ|.  That is, each bit index |i| in |bitset|
243    corresponds to the register |univ->regs[i]|.  This relies
244    entirely on the fact that N_RREGUNIVERSE_REGS <= 64. */
245 typedef
246    struct {
247       ULong         bitset;
248       RRegUniverse* univ;
249    }
250    RRegSet;
251 
252 
253 /*---------------------------------------------------------*/
254 /*--- Recording register usage (for reg-alloc)          ---*/
255 /*---------------------------------------------------------*/
256 
257 typedef
258    enum { HRmRead, HRmWrite, HRmModify }
259    HRegMode;
260 
261 
262 /* This isn't entirely general, and is specialised towards being fast,
263    for the reg-alloc.  It represents real registers using a bitmask
264    and can also represent up to four virtual registers, in an
265    unordered array.  This is based on the observation that no
266    instruction that we generate can mention more than four registers
267    at once.
268 */
269 #define N_HREGUSAGE_VREGS 5
270 
271 typedef
272    struct {
273       /* The real registers.  The associated universe is not stored
274          here -- callers will have to pass it around separately, as
275          needed. */
276       ULong    rRead;     /* real regs that are read */
277       ULong    rWritten;  /* real regs that are written */
278       /* The virtual registers. */
279       HReg     vRegs[N_HREGUSAGE_VREGS];
280       HRegMode vMode[N_HREGUSAGE_VREGS];
281       UInt     n_vRegs;
282    }
283    HRegUsage;
284 
285 extern void ppHRegUsage ( const RRegUniverse*, HRegUsage* );
286 
initHRegUsage(HRegUsage * tab)287 static inline void initHRegUsage ( HRegUsage* tab )
288 {
289    tab->rRead    = 0;
290    tab->rWritten = 0;
291    tab->n_vRegs  = 0;
292 }
293 
294 /* Add a register to a usage table.  Combine incoming read uses with
295    existing write uses into a modify use, and vice versa.  Do not
296    create duplicate entries -- each reg should only be mentioned once.
297 */
298 extern void addHRegUse ( HRegUsage*, HRegMode, HReg );
299 
300 extern Bool HRegUsage__contains ( const HRegUsage*, HReg );
301 
302 
303 /*---------------------------------------------------------*/
304 /*--- Indicating register remappings (for reg-alloc)    ---*/
305 /*---------------------------------------------------------*/
306 
307 /* Note that such maps can only map virtual regs to real regs.
308    addToHRegRenap will barf if given a pair not of that form.  As a
309    result, no valid HRegRemap will bind a real reg to anything, and so
310    if lookupHRegMap is given a real reg, it returns it unchanged.
311    This is precisely the behaviour that the register allocator needs
312    to impose its decisions on the instructions it processes.  */
313 
314 #define N_HREG_REMAP 6
315 
316 typedef
317    struct {
318       HReg orig       [N_HREG_REMAP];
319       HReg replacement[N_HREG_REMAP];
320       Int  n_used;
321    }
322    HRegRemap;
323 
324 extern void ppHRegRemap     ( HRegRemap* );
325 extern void addToHRegRemap  ( HRegRemap*, HReg, HReg );
326 extern HReg lookupHRegRemap ( HRegRemap*, HReg );
327 
initHRegRemap(HRegRemap * map)328 static inline void initHRegRemap ( HRegRemap* map )
329 {
330    map->n_used = 0;
331 }
332 
333 
334 /*---------------------------------------------------------*/
335 /*--- Abstract instructions                             ---*/
336 /*---------------------------------------------------------*/
337 
338 /* A type is needed to refer to pointers to instructions of any
339    target.  Defining it like this means that HInstr* can stand in for
340    X86Instr*, ArmInstr*, etc. */
341 
342 typedef  void  HInstr;
343 
344 
345 /* An expandable array of HInstr*'s.  Handy for insn selection and
346    register allocation.  n_vregs indicates the number of virtual
347    registers mentioned in the code, something that reg-alloc needs to
348    know.  These are required to be numbered 0 .. n_vregs-1.
349 */
350 typedef
351    struct {
352       HInstr** arr;
353       Int      arr_size;
354       Int      arr_used;
355       Int      n_vregs;
356    }
357    HInstrArray;
358 
359 extern HInstrArray* newHInstrArray ( void );
360 
361 /* Never call this directly.  It's the slow and incomplete path for
362    addHInstr. */
363 __attribute__((noinline))
364 extern void addHInstr_SLOW ( HInstrArray*, HInstr* );
365 
addHInstr(HInstrArray * ha,HInstr * instr)366 static inline void addHInstr ( HInstrArray* ha, HInstr* instr )
367 {
368    if (LIKELY(ha->arr_used < ha->arr_size)) {
369       ha->arr[ha->arr_used] = instr;
370       ha->arr_used++;
371    } else {
372       addHInstr_SLOW(ha, instr);
373    }
374 }
375 
376 
377 /*---------------------------------------------------------*/
378 /*--- C-Call return-location descriptions               ---*/
379 /*---------------------------------------------------------*/
380 
381 /* This is common to all back ends.  It describes where the return
382    value from a C call is located.  This is important in the case that
383    the call is conditional, since the return locations will need to be
384    set to 0x555..555 in the case that the call does not happen. */
385 
386 typedef
387    enum {
388       RLPri_INVALID,   /* INVALID */
389       RLPri_None,      /* no return value (a.k.a C "void") */
390       RLPri_Int,       /* in the primary int return reg */
391       RLPri_2Int,      /* in both primary and secondary int ret regs */
392       RLPri_V128SpRel, /* 128-bit value, on the stack */
393       RLPri_V256SpRel  /* 256-bit value, on the stack */
394    }
395    RetLocPrimary;
396 
397 typedef
398    struct {
399       /* Primary description */
400       RetLocPrimary pri;
401       /* For .pri == RLPri_V128SpRel or RLPri_V256SpRel only, gives
402          the offset of the lowest addressed byte of the value,
403          relative to the stack pointer.  For all other .how values,
404          has no meaning and should be zero. */
405       Int spOff;
406    }
407    RetLoc;
408 
409 extern void ppRetLoc ( RetLoc rloc );
410 
mk_RetLoc_simple(RetLocPrimary pri)411 static inline RetLoc mk_RetLoc_simple ( RetLocPrimary pri ) {
412    vassert(pri >= RLPri_INVALID && pri <= RLPri_2Int);
413    return (RetLoc){pri, 0};
414 }
415 
mk_RetLoc_spRel(RetLocPrimary pri,Int off)416 static inline RetLoc mk_RetLoc_spRel ( RetLocPrimary pri, Int off ) {
417    vassert(pri >= RLPri_V128SpRel && pri <= RLPri_V256SpRel);
418    return (RetLoc){pri, off};
419 }
420 
is_sane_RetLoc(RetLoc rloc)421 static inline Bool is_sane_RetLoc ( RetLoc rloc ) {
422    switch (rloc.pri) {
423       case RLPri_None: case RLPri_Int: case RLPri_2Int:
424          return rloc.spOff == 0;
425       case RLPri_V128SpRel: case RLPri_V256SpRel:
426          return True;
427       default:
428          return False;
429    }
430 }
431 
mk_RetLoc_INVALID(void)432 static inline RetLoc mk_RetLoc_INVALID ( void ) {
433    return (RetLoc){RLPri_INVALID, 0};
434 }
435 
is_RetLoc_INVALID(RetLoc rl)436 static inline Bool is_RetLoc_INVALID ( RetLoc rl ) {
437    return rl.pri == RLPri_INVALID && rl.spOff == 0;
438 }
439 
440 
441 /*---------------------------------------------------------*/
442 /*--- Reg alloc: TODO: move somewhere else              ---*/
443 /*---------------------------------------------------------*/
444 
445 extern
446 HInstrArray* doRegisterAllocation (
447 
448    /* Incoming virtual-registerised code. */
449    HInstrArray* instrs_in,
450 
451    /* The real-register universe to use.  This contains facts about
452       real registers, one of which is the set of registers available
453       for allocation. */
454    const RRegUniverse* univ,
455 
456    /* Return True iff the given insn is a reg-reg move, in which
457       case also return the src and dst regs. */
458    Bool (*isMove) (const HInstr*, HReg*, HReg*),
459 
460    /* Get info about register usage in this insn. */
461    void (*getRegUsage) (HRegUsage*, const HInstr*, Bool),
462 
463    /* Apply a reg-reg mapping to an insn. */
464    void (*mapRegs) (HRegRemap*, HInstr*, Bool),
465 
466    /* Return insn(s) to spill/restore a real reg to a spill slot
467       offset.  And optionally a function to do direct reloads. */
468    void    (*genSpill) (  HInstr**, HInstr**, HReg, Int, Bool ),
469    void    (*genReload) ( HInstr**, HInstr**, HReg, Int, Bool ),
470    HInstr* (*directReload) ( HInstr*, HReg, Short ),
471    Int     guest_sizeB,
472 
473    /* For debug printing only. */
474    void (*ppInstr) ( const HInstr*, Bool ),
475    void (*ppReg) ( HReg ),
476 
477    /* 32/64bit mode */
478    Bool mode64
479 );
480 
481 
482 #endif /* ndef __VEX_HOST_GENERIC_REGS_H */
483 
484 /*---------------------------------------------------------------*/
485 /*---                                     host_generic_regs.h ---*/
486 /*---------------------------------------------------------------*/
487