1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/p2p/base/basicpacketsocketfactory.h"
12 #include "webrtc/p2p/base/relayport.h"
13 #include "webrtc/p2p/base/stunport.h"
14 #include "webrtc/p2p/base/tcpport.h"
15 #include "webrtc/p2p/base/testrelayserver.h"
16 #include "webrtc/p2p/base/teststunserver.h"
17 #include "webrtc/p2p/base/testturnserver.h"
18 #include "webrtc/p2p/base/transport.h"
19 #include "webrtc/p2p/base/turnport.h"
20 #include "webrtc/base/arraysize.h"
21 #include "webrtc/base/crc32.h"
22 #include "webrtc/base/gunit.h"
23 #include "webrtc/base/helpers.h"
24 #include "webrtc/base/logging.h"
25 #include "webrtc/base/natserver.h"
26 #include "webrtc/base/natsocketfactory.h"
27 #include "webrtc/base/physicalsocketserver.h"
28 #include "webrtc/base/scoped_ptr.h"
29 #include "webrtc/base/socketaddress.h"
30 #include "webrtc/base/ssladapter.h"
31 #include "webrtc/base/stringutils.h"
32 #include "webrtc/base/thread.h"
33 #include "webrtc/base/virtualsocketserver.h"
34 
35 using rtc::AsyncPacketSocket;
36 using rtc::ByteBuffer;
37 using rtc::NATType;
38 using rtc::NAT_OPEN_CONE;
39 using rtc::NAT_ADDR_RESTRICTED;
40 using rtc::NAT_PORT_RESTRICTED;
41 using rtc::NAT_SYMMETRIC;
42 using rtc::PacketSocketFactory;
43 using rtc::scoped_ptr;
44 using rtc::Socket;
45 using rtc::SocketAddress;
46 using namespace cricket;
47 
48 static const int kTimeout = 1000;
49 static const SocketAddress kLocalAddr1("192.168.1.2", 0);
50 static const SocketAddress kLocalAddr2("192.168.1.3", 0);
51 static const SocketAddress kNatAddr1("77.77.77.77", rtc::NAT_SERVER_UDP_PORT);
52 static const SocketAddress kNatAddr2("88.88.88.88", rtc::NAT_SERVER_UDP_PORT);
53 static const SocketAddress kStunAddr("99.99.99.1", STUN_SERVER_PORT);
54 static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
55 static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
56 static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
57 static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
58 static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
59 static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
60 static const SocketAddress kTurnUdpIntAddr("99.99.99.4", STUN_SERVER_PORT);
61 static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
62 static const RelayCredentials kRelayCredentials("test", "test");
63 
64 // TODO: Update these when RFC5245 is completely supported.
65 // Magic value of 30 is from RFC3484, for IPv4 addresses.
66 static const uint32_t kDefaultPrflxPriority =
67     ICE_TYPE_PREFERENCE_PRFLX << 24 | 30 << 8 |
68     (256 - ICE_CANDIDATE_COMPONENT_DEFAULT);
69 
70 static const int kTiebreaker1 = 11111;
71 static const int kTiebreaker2 = 22222;
72 
73 static const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
74 
GetCandidate(Port * port)75 static Candidate GetCandidate(Port* port) {
76   assert(port->Candidates().size() >= 1);
77   return port->Candidates()[0];
78 }
79 
GetAddress(Port * port)80 static SocketAddress GetAddress(Port* port) {
81   return GetCandidate(port).address();
82 }
83 
CopyStunMessage(const IceMessage * src)84 static IceMessage* CopyStunMessage(const IceMessage* src) {
85   IceMessage* dst = new IceMessage();
86   ByteBuffer buf;
87   src->Write(&buf);
88   dst->Read(&buf);
89   return dst;
90 }
91 
WriteStunMessage(const StunMessage * msg,ByteBuffer * buf)92 static bool WriteStunMessage(const StunMessage* msg, ByteBuffer* buf) {
93   buf->Resize(0);  // clear out any existing buffer contents
94   return msg->Write(buf);
95 }
96 
97 // Stub port class for testing STUN generation and processing.
98 class TestPort : public Port {
99  public:
TestPort(rtc::Thread * thread,const std::string & type,rtc::PacketSocketFactory * factory,rtc::Network * network,const rtc::IPAddress & ip,uint16_t min_port,uint16_t max_port,const std::string & username_fragment,const std::string & password)100   TestPort(rtc::Thread* thread,
101            const std::string& type,
102            rtc::PacketSocketFactory* factory,
103            rtc::Network* network,
104            const rtc::IPAddress& ip,
105            uint16_t min_port,
106            uint16_t max_port,
107            const std::string& username_fragment,
108            const std::string& password)
109       : Port(thread,
110              type,
111              factory,
112              network,
113              ip,
114              min_port,
115              max_port,
116              username_fragment,
117              password) {}
~TestPort()118   ~TestPort() {}
119 
120   // Expose GetStunMessage so that we can test it.
121   using cricket::Port::GetStunMessage;
122 
123   // The last StunMessage that was sent on this Port.
124   // TODO: Make these const; requires changes to SendXXXXResponse.
last_stun_buf()125   ByteBuffer* last_stun_buf() { return last_stun_buf_.get(); }
last_stun_msg()126   IceMessage* last_stun_msg() { return last_stun_msg_.get(); }
last_stun_error_code()127   int last_stun_error_code() {
128     int code = 0;
129     if (last_stun_msg_) {
130       const StunErrorCodeAttribute* error_attr = last_stun_msg_->GetErrorCode();
131       if (error_attr) {
132         code = error_attr->code();
133       }
134     }
135     return code;
136   }
137 
PrepareAddress()138   virtual void PrepareAddress() {
139     rtc::SocketAddress addr(ip(), min_port());
140     AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
141                ICE_TYPE_PREFERENCE_HOST, 0, true);
142   }
143 
SupportsProtocol(const std::string & protocol) const144   virtual bool SupportsProtocol(const std::string& protocol) const {
145     return true;
146   }
147 
148   // Exposed for testing candidate building.
AddCandidateAddress(const rtc::SocketAddress & addr)149   void AddCandidateAddress(const rtc::SocketAddress& addr) {
150     AddAddress(addr, addr, rtc::SocketAddress(), "udp", "", "", Type(),
151                type_preference_, 0, false);
152   }
AddCandidateAddress(const rtc::SocketAddress & addr,const rtc::SocketAddress & base_address,const std::string & type,int type_preference,bool final)153   void AddCandidateAddress(const rtc::SocketAddress& addr,
154                            const rtc::SocketAddress& base_address,
155                            const std::string& type,
156                            int type_preference,
157                            bool final) {
158     AddAddress(addr, base_address, rtc::SocketAddress(), "udp", "", "", type,
159                type_preference, 0, final);
160   }
161 
CreateConnection(const Candidate & remote_candidate,CandidateOrigin origin)162   virtual Connection* CreateConnection(const Candidate& remote_candidate,
163                                        CandidateOrigin origin) {
164     Connection* conn = new ProxyConnection(this, 0, remote_candidate);
165     AddConnection(conn);
166     // Set use-candidate attribute flag as this will add USE-CANDIDATE attribute
167     // in STUN binding requests.
168     conn->set_use_candidate_attr(true);
169     return conn;
170   }
SendTo(const void * data,size_t size,const rtc::SocketAddress & addr,const rtc::PacketOptions & options,bool payload)171   virtual int SendTo(
172       const void* data, size_t size, const rtc::SocketAddress& addr,
173       const rtc::PacketOptions& options, bool payload) {
174     if (!payload) {
175       IceMessage* msg = new IceMessage;
176       ByteBuffer* buf = new ByteBuffer(static_cast<const char*>(data), size);
177       ByteBuffer::ReadPosition pos(buf->GetReadPosition());
178       if (!msg->Read(buf)) {
179         delete msg;
180         delete buf;
181         return -1;
182       }
183       buf->SetReadPosition(pos);
184       last_stun_buf_.reset(buf);
185       last_stun_msg_.reset(msg);
186     }
187     return static_cast<int>(size);
188   }
SetOption(rtc::Socket::Option opt,int value)189   virtual int SetOption(rtc::Socket::Option opt, int value) {
190     return 0;
191   }
GetOption(rtc::Socket::Option opt,int * value)192   virtual int GetOption(rtc::Socket::Option opt, int* value) {
193     return -1;
194   }
GetError()195   virtual int GetError() {
196     return 0;
197   }
Reset()198   void Reset() {
199     last_stun_buf_.reset();
200     last_stun_msg_.reset();
201   }
set_type_preference(int type_preference)202   void set_type_preference(int type_preference) {
203     type_preference_ = type_preference;
204   }
205 
206  private:
OnSentPacket(rtc::AsyncPacketSocket * socket,const rtc::SentPacket & sent_packet)207   void OnSentPacket(rtc::AsyncPacketSocket* socket,
208                     const rtc::SentPacket& sent_packet) {
209     PortInterface::SignalSentPacket(sent_packet);
210   }
211   rtc::scoped_ptr<ByteBuffer> last_stun_buf_;
212   rtc::scoped_ptr<IceMessage> last_stun_msg_;
213   int type_preference_ = 0;
214 };
215 
216 class TestChannel : public sigslot::has_slots<> {
217  public:
218   // Takes ownership of |p1| (but not |p2|).
TestChannel(Port * p1)219   TestChannel(Port* p1)
220       : ice_mode_(ICEMODE_FULL),
221         port_(p1),
222         complete_count_(0),
223         conn_(NULL),
224         remote_request_(),
225         nominated_(false) {
226     port_->SignalPortComplete.connect(this, &TestChannel::OnPortComplete);
227     port_->SignalUnknownAddress.connect(this, &TestChannel::OnUnknownAddress);
228     port_->SignalDestroyed.connect(this, &TestChannel::OnSrcPortDestroyed);
229   }
230 
complete_count()231   int complete_count() { return complete_count_; }
conn()232   Connection* conn() { return conn_; }
remote_address()233   const SocketAddress& remote_address() { return remote_address_; }
remote_fragment()234   const std::string remote_fragment() { return remote_frag_; }
235 
Start()236   void Start() { port_->PrepareAddress(); }
CreateConnection(const Candidate & remote_candidate)237   void CreateConnection(const Candidate& remote_candidate) {
238     conn_ = port_->CreateConnection(remote_candidate, Port::ORIGIN_MESSAGE);
239     IceMode remote_ice_mode =
240         (ice_mode_ == ICEMODE_FULL) ? ICEMODE_LITE : ICEMODE_FULL;
241     conn_->set_remote_ice_mode(remote_ice_mode);
242     conn_->set_use_candidate_attr(remote_ice_mode == ICEMODE_FULL);
243     conn_->SignalStateChange.connect(
244         this, &TestChannel::OnConnectionStateChange);
245     conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
246     conn_->SignalReadyToSend.connect(this,
247                                      &TestChannel::OnConnectionReadyToSend);
248     connection_ready_to_send_ = false;
249   }
OnConnectionStateChange(Connection * conn)250   void OnConnectionStateChange(Connection* conn) {
251     if (conn->write_state() == Connection::STATE_WRITABLE) {
252       conn->set_use_candidate_attr(true);
253       nominated_ = true;
254     }
255   }
AcceptConnection(const Candidate & remote_candidate)256   void AcceptConnection(const Candidate& remote_candidate) {
257     ASSERT_TRUE(remote_request_.get() != NULL);
258     Candidate c = remote_candidate;
259     c.set_address(remote_address_);
260     conn_ = port_->CreateConnection(c, Port::ORIGIN_MESSAGE);
261     conn_->SignalDestroyed.connect(this, &TestChannel::OnDestroyed);
262     port_->SendBindingResponse(remote_request_.get(), remote_address_);
263     remote_request_.reset();
264   }
Ping()265   void Ping() {
266     Ping(0);
267   }
Ping(uint32_t now)268   void Ping(uint32_t now) { conn_->Ping(now); }
Stop()269   void Stop() {
270     if (conn_) {
271       conn_->Destroy();
272     }
273   }
274 
OnPortComplete(Port * port)275   void OnPortComplete(Port* port) {
276     complete_count_++;
277   }
SetIceMode(IceMode ice_mode)278   void SetIceMode(IceMode ice_mode) {
279     ice_mode_ = ice_mode;
280   }
281 
SendData(const char * data,size_t len)282   int SendData(const char* data, size_t len) {
283     rtc::PacketOptions options;
284     return conn_->Send(data, len, options);
285   }
286 
OnUnknownAddress(PortInterface * port,const SocketAddress & addr,ProtocolType proto,IceMessage * msg,const std::string & rf,bool)287   void OnUnknownAddress(PortInterface* port, const SocketAddress& addr,
288                         ProtocolType proto,
289                         IceMessage* msg, const std::string& rf,
290                         bool /*port_muxed*/) {
291     ASSERT_EQ(port_.get(), port);
292     if (!remote_address_.IsNil()) {
293       ASSERT_EQ(remote_address_, addr);
294     }
295     const cricket::StunUInt32Attribute* priority_attr =
296         msg->GetUInt32(STUN_ATTR_PRIORITY);
297     const cricket::StunByteStringAttribute* mi_attr =
298         msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
299     const cricket::StunUInt32Attribute* fingerprint_attr =
300         msg->GetUInt32(STUN_ATTR_FINGERPRINT);
301     EXPECT_TRUE(priority_attr != NULL);
302     EXPECT_TRUE(mi_attr != NULL);
303     EXPECT_TRUE(fingerprint_attr != NULL);
304     remote_address_ = addr;
305     remote_request_.reset(CopyStunMessage(msg));
306     remote_frag_ = rf;
307   }
308 
OnDestroyed(Connection * conn)309   void OnDestroyed(Connection* conn) {
310     ASSERT_EQ(conn_, conn);
311     LOG(INFO) << "OnDestroy connection " << conn << " deleted";
312     conn_ = NULL;
313     // When the connection is destroyed, also clear these fields so future
314     // connections are possible.
315     remote_request_.reset();
316     remote_address_.Clear();
317   }
318 
OnSrcPortDestroyed(PortInterface * port)319   void OnSrcPortDestroyed(PortInterface* port) {
320     Port* destroyed_src = port_.release();
321     ASSERT_EQ(destroyed_src, port);
322   }
323 
port()324   Port* port() { return port_.get(); }
325 
nominated() const326   bool nominated() const { return nominated_; }
327 
set_connection_ready_to_send(bool ready)328   void set_connection_ready_to_send(bool ready) {
329     connection_ready_to_send_ = ready;
330   }
connection_ready_to_send() const331   bool connection_ready_to_send() const {
332     return connection_ready_to_send_;
333   }
334 
335  private:
336   // ReadyToSend will only issue after a Connection recovers from EWOULDBLOCK.
OnConnectionReadyToSend(Connection * conn)337   void OnConnectionReadyToSend(Connection* conn) {
338     ASSERT_EQ(conn, conn_);
339     connection_ready_to_send_ = true;
340   }
341 
342   IceMode ice_mode_;
343   rtc::scoped_ptr<Port> port_;
344 
345   int complete_count_;
346   Connection* conn_;
347   SocketAddress remote_address_;
348   rtc::scoped_ptr<StunMessage> remote_request_;
349   std::string remote_frag_;
350   bool nominated_;
351   bool connection_ready_to_send_ = false;
352 };
353 
354 class PortTest : public testing::Test, public sigslot::has_slots<> {
355  public:
PortTest()356   PortTest()
357       : main_(rtc::Thread::Current()),
358         pss_(new rtc::PhysicalSocketServer),
359         ss_(new rtc::VirtualSocketServer(pss_.get())),
360         ss_scope_(ss_.get()),
361         network_("unittest", "unittest", rtc::IPAddress(INADDR_ANY), 32),
362         socket_factory_(rtc::Thread::Current()),
363         nat_factory1_(ss_.get(), kNatAddr1, SocketAddress()),
364         nat_factory2_(ss_.get(), kNatAddr2, SocketAddress()),
365         nat_socket_factory1_(&nat_factory1_),
366         nat_socket_factory2_(&nat_factory2_),
367         stun_server_(TestStunServer::Create(main_, kStunAddr)),
368         turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
369         relay_server_(main_,
370                       kRelayUdpIntAddr,
371                       kRelayUdpExtAddr,
372                       kRelayTcpIntAddr,
373                       kRelayTcpExtAddr,
374                       kRelaySslTcpIntAddr,
375                       kRelaySslTcpExtAddr),
376         username_(rtc::CreateRandomString(ICE_UFRAG_LENGTH)),
377         password_(rtc::CreateRandomString(ICE_PWD_LENGTH)),
378         role_conflict_(false),
379         destroyed_(false) {
380     network_.AddIP(rtc::IPAddress(INADDR_ANY));
381   }
382 
383  protected:
TestLocalToLocal()384   void TestLocalToLocal() {
385     Port* port1 = CreateUdpPort(kLocalAddr1);
386     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
387     Port* port2 = CreateUdpPort(kLocalAddr2);
388     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
389     TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
390   }
TestLocalToStun(NATType ntype)391   void TestLocalToStun(NATType ntype) {
392     Port* port1 = CreateUdpPort(kLocalAddr1);
393     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
394     nat_server2_.reset(CreateNatServer(kNatAddr2, ntype));
395     Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
396     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
397     TestConnectivity("udp", port1, StunName(ntype), port2,
398                      ntype == NAT_OPEN_CONE, true,
399                      ntype != NAT_SYMMETRIC, true);
400   }
TestLocalToRelay(RelayType rtype,ProtocolType proto)401   void TestLocalToRelay(RelayType rtype, ProtocolType proto) {
402     Port* port1 = CreateUdpPort(kLocalAddr1);
403     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
404     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
405     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
406     TestConnectivity("udp", port1, RelayName(rtype, proto), port2,
407                      rtype == RELAY_GTURN, true, true, true);
408   }
TestStunToLocal(NATType ntype)409   void TestStunToLocal(NATType ntype) {
410     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
411     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
412     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
413     Port* port2 = CreateUdpPort(kLocalAddr2);
414     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
415     TestConnectivity(StunName(ntype), port1, "udp", port2,
416                      true, ntype != NAT_SYMMETRIC, true, true);
417   }
TestStunToStun(NATType ntype1,NATType ntype2)418   void TestStunToStun(NATType ntype1, NATType ntype2) {
419     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype1));
420     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
421     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
422     nat_server2_.reset(CreateNatServer(kNatAddr2, ntype2));
423     Port* port2 = CreateStunPort(kLocalAddr2, &nat_socket_factory2_);
424     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
425     TestConnectivity(StunName(ntype1), port1, StunName(ntype2), port2,
426                      ntype2 == NAT_OPEN_CONE,
427                      ntype1 != NAT_SYMMETRIC, ntype2 != NAT_SYMMETRIC,
428                      ntype1 + ntype2 < (NAT_PORT_RESTRICTED + NAT_SYMMETRIC));
429   }
TestStunToRelay(NATType ntype,RelayType rtype,ProtocolType proto)430   void TestStunToRelay(NATType ntype, RelayType rtype, ProtocolType proto) {
431     nat_server1_.reset(CreateNatServer(kNatAddr1, ntype));
432     Port* port1 = CreateStunPort(kLocalAddr1, &nat_socket_factory1_);
433     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
434     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_UDP);
435     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
436     TestConnectivity(StunName(ntype), port1, RelayName(rtype, proto), port2,
437                      rtype == RELAY_GTURN, ntype != NAT_SYMMETRIC, true, true);
438   }
TestTcpToTcp()439   void TestTcpToTcp() {
440     Port* port1 = CreateTcpPort(kLocalAddr1);
441     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
442     Port* port2 = CreateTcpPort(kLocalAddr2);
443     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
444     TestConnectivity("tcp", port1, "tcp", port2, true, false, true, true);
445   }
TestTcpToRelay(RelayType rtype,ProtocolType proto)446   void TestTcpToRelay(RelayType rtype, ProtocolType proto) {
447     Port* port1 = CreateTcpPort(kLocalAddr1);
448     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
449     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_TCP);
450     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
451     TestConnectivity("tcp", port1, RelayName(rtype, proto), port2,
452                      rtype == RELAY_GTURN, false, true, true);
453   }
TestSslTcpToRelay(RelayType rtype,ProtocolType proto)454   void TestSslTcpToRelay(RelayType rtype, ProtocolType proto) {
455     Port* port1 = CreateTcpPort(kLocalAddr1);
456     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
457     Port* port2 = CreateRelayPort(kLocalAddr2, rtype, proto, PROTO_SSLTCP);
458     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
459     TestConnectivity("ssltcp", port1, RelayName(rtype, proto), port2,
460                      rtype == RELAY_GTURN, false, true, true);
461   }
462   // helpers for above functions
CreateUdpPort(const SocketAddress & addr)463   UDPPort* CreateUdpPort(const SocketAddress& addr) {
464     return CreateUdpPort(addr, &socket_factory_);
465   }
CreateUdpPort(const SocketAddress & addr,PacketSocketFactory * socket_factory)466   UDPPort* CreateUdpPort(const SocketAddress& addr,
467                          PacketSocketFactory* socket_factory) {
468     return UDPPort::Create(main_, socket_factory, &network_, addr.ipaddr(), 0,
469                            0, username_, password_, std::string(), true);
470   }
CreateTcpPort(const SocketAddress & addr)471   TCPPort* CreateTcpPort(const SocketAddress& addr) {
472     return CreateTcpPort(addr, &socket_factory_);
473   }
CreateTcpPort(const SocketAddress & addr,PacketSocketFactory * socket_factory)474   TCPPort* CreateTcpPort(const SocketAddress& addr,
475                         PacketSocketFactory* socket_factory) {
476     return TCPPort::Create(main_, socket_factory, &network_,
477                            addr.ipaddr(), 0, 0, username_, password_,
478                            true);
479   }
CreateStunPort(const SocketAddress & addr,rtc::PacketSocketFactory * factory)480   StunPort* CreateStunPort(const SocketAddress& addr,
481                            rtc::PacketSocketFactory* factory) {
482     ServerAddresses stun_servers;
483     stun_servers.insert(kStunAddr);
484     return StunPort::Create(main_, factory, &network_,
485                             addr.ipaddr(), 0, 0,
486                             username_, password_, stun_servers,
487                             std::string());
488   }
CreateRelayPort(const SocketAddress & addr,RelayType rtype,ProtocolType int_proto,ProtocolType ext_proto)489   Port* CreateRelayPort(const SocketAddress& addr, RelayType rtype,
490                         ProtocolType int_proto, ProtocolType ext_proto) {
491     if (rtype == RELAY_TURN) {
492       return CreateTurnPort(addr, &socket_factory_, int_proto, ext_proto);
493     } else {
494       return CreateGturnPort(addr, int_proto, ext_proto);
495     }
496   }
CreateTurnPort(const SocketAddress & addr,PacketSocketFactory * socket_factory,ProtocolType int_proto,ProtocolType ext_proto)497   TurnPort* CreateTurnPort(const SocketAddress& addr,
498                            PacketSocketFactory* socket_factory,
499                            ProtocolType int_proto, ProtocolType ext_proto) {
500     return CreateTurnPort(addr, socket_factory,
501                           int_proto, ext_proto, kTurnUdpIntAddr);
502   }
CreateTurnPort(const SocketAddress & addr,PacketSocketFactory * socket_factory,ProtocolType int_proto,ProtocolType ext_proto,const rtc::SocketAddress & server_addr)503   TurnPort* CreateTurnPort(const SocketAddress& addr,
504                            PacketSocketFactory* socket_factory,
505                            ProtocolType int_proto, ProtocolType ext_proto,
506                            const rtc::SocketAddress& server_addr) {
507     return TurnPort::Create(main_, socket_factory, &network_,
508                             addr.ipaddr(), 0, 0,
509                             username_, password_, ProtocolAddress(
510                                 server_addr, PROTO_UDP),
511                             kRelayCredentials, 0,
512                             std::string());
513   }
CreateGturnPort(const SocketAddress & addr,ProtocolType int_proto,ProtocolType ext_proto)514   RelayPort* CreateGturnPort(const SocketAddress& addr,
515                              ProtocolType int_proto, ProtocolType ext_proto) {
516     RelayPort* port = CreateGturnPort(addr);
517     SocketAddress addrs[] =
518         { kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr };
519     port->AddServerAddress(ProtocolAddress(addrs[int_proto], int_proto));
520     return port;
521   }
CreateGturnPort(const SocketAddress & addr)522   RelayPort* CreateGturnPort(const SocketAddress& addr) {
523     // TODO(pthatcher):  Remove GTURN.
524     return RelayPort::Create(main_, &socket_factory_, &network_,
525                              addr.ipaddr(), 0, 0,
526                              username_, password_);
527     // TODO: Add an external address for ext_proto, so that the
528     // other side can connect to this port using a non-UDP protocol.
529   }
CreateNatServer(const SocketAddress & addr,rtc::NATType type)530   rtc::NATServer* CreateNatServer(const SocketAddress& addr,
531                                         rtc::NATType type) {
532     return new rtc::NATServer(type, ss_.get(), addr, addr, ss_.get(), addr);
533   }
StunName(NATType type)534   static const char* StunName(NATType type) {
535     switch (type) {
536       case NAT_OPEN_CONE:       return "stun(open cone)";
537       case NAT_ADDR_RESTRICTED: return "stun(addr restricted)";
538       case NAT_PORT_RESTRICTED: return "stun(port restricted)";
539       case NAT_SYMMETRIC:       return "stun(symmetric)";
540       default:                  return "stun(?)";
541     }
542   }
RelayName(RelayType type,ProtocolType proto)543   static const char* RelayName(RelayType type, ProtocolType proto) {
544     if (type == RELAY_TURN) {
545       switch (proto) {
546         case PROTO_UDP:           return "turn(udp)";
547         case PROTO_TCP:           return "turn(tcp)";
548         case PROTO_SSLTCP:        return "turn(ssltcp)";
549         default:                  return "turn(?)";
550       }
551     } else {
552       switch (proto) {
553         case PROTO_UDP:           return "gturn(udp)";
554         case PROTO_TCP:           return "gturn(tcp)";
555         case PROTO_SSLTCP:        return "gturn(ssltcp)";
556         default:                  return "gturn(?)";
557       }
558     }
559   }
560 
561   void TestCrossFamilyPorts(int type);
562 
563   void ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2);
564 
565   // This does all the work and then deletes |port1| and |port2|.
566   void TestConnectivity(const char* name1, Port* port1,
567                         const char* name2, Port* port2,
568                         bool accept, bool same_addr1,
569                         bool same_addr2, bool possible);
570 
571   // This connects the provided channels which have already started.  |ch1|
572   // should have its Connection created (either through CreateConnection() or
573   // TCP reconnecting mechanism before entering this function.
ConnectStartedChannels(TestChannel * ch1,TestChannel * ch2)574   void ConnectStartedChannels(TestChannel* ch1, TestChannel* ch2) {
575     ASSERT_TRUE(ch1->conn());
576     EXPECT_TRUE_WAIT(ch1->conn()->connected(), kTimeout);  // for TCP connect
577     ch1->Ping();
578     WAIT(!ch2->remote_address().IsNil(), kTimeout);
579 
580     // Send a ping from dst to src.
581     ch2->AcceptConnection(GetCandidate(ch1->port()));
582     ch2->Ping();
583     EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2->conn()->write_state(),
584                    kTimeout);
585   }
586 
587   // This connects and disconnects the provided channels in the same sequence as
588   // TestConnectivity with all options set to |true|.  It does not delete either
589   // channel.
StartConnectAndStopChannels(TestChannel * ch1,TestChannel * ch2)590   void StartConnectAndStopChannels(TestChannel* ch1, TestChannel* ch2) {
591     // Acquire addresses.
592     ch1->Start();
593     ch2->Start();
594 
595     ch1->CreateConnection(GetCandidate(ch2->port()));
596     ConnectStartedChannels(ch1, ch2);
597 
598     // Destroy the connections.
599     ch1->Stop();
600     ch2->Stop();
601   }
602 
603   // This disconnects both end's Connection and make sure ch2 ready for new
604   // connection.
DisconnectTcpTestChannels(TestChannel * ch1,TestChannel * ch2)605   void DisconnectTcpTestChannels(TestChannel* ch1, TestChannel* ch2) {
606     TCPConnection* tcp_conn1 = static_cast<TCPConnection*>(ch1->conn());
607     TCPConnection* tcp_conn2 = static_cast<TCPConnection*>(ch2->conn());
608     ASSERT_TRUE(
609         ss_->CloseTcpConnections(tcp_conn1->socket()->GetLocalAddress(),
610                                  tcp_conn2->socket()->GetLocalAddress()));
611 
612     // Wait for both OnClose are delivered.
613     EXPECT_TRUE_WAIT(!ch1->conn()->connected(), kTimeout);
614     EXPECT_TRUE_WAIT(!ch2->conn()->connected(), kTimeout);
615 
616     // Ensure redundant SignalClose events on TcpConnection won't break tcp
617     // reconnection. Chromium will fire SignalClose for all outstanding IPC
618     // packets during reconnection.
619     tcp_conn1->socket()->SignalClose(tcp_conn1->socket(), 0);
620     tcp_conn2->socket()->SignalClose(tcp_conn2->socket(), 0);
621 
622     // Speed up destroying ch2's connection such that the test is ready to
623     // accept a new connection from ch1 before ch1's connection destroys itself.
624     ch2->conn()->Destroy();
625     EXPECT_TRUE_WAIT(ch2->conn() == NULL, kTimeout);
626   }
627 
TestTcpReconnect(bool ping_after_disconnected,bool send_after_disconnected)628   void TestTcpReconnect(bool ping_after_disconnected,
629                         bool send_after_disconnected) {
630     Port* port1 = CreateTcpPort(kLocalAddr1);
631     port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
632     Port* port2 = CreateTcpPort(kLocalAddr2);
633     port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
634 
635     port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
636     port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
637 
638     // Set up channels and ensure both ports will be deleted.
639     TestChannel ch1(port1);
640     TestChannel ch2(port2);
641     EXPECT_EQ(0, ch1.complete_count());
642     EXPECT_EQ(0, ch2.complete_count());
643 
644     ch1.Start();
645     ch2.Start();
646     ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
647     ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
648 
649     // Initial connecting the channel, create connection on channel1.
650     ch1.CreateConnection(GetCandidate(port2));
651     ConnectStartedChannels(&ch1, &ch2);
652 
653     // Shorten the timeout period.
654     const int kTcpReconnectTimeout = kTimeout;
655     static_cast<TCPConnection*>(ch1.conn())
656         ->set_reconnection_timeout(kTcpReconnectTimeout);
657     static_cast<TCPConnection*>(ch2.conn())
658         ->set_reconnection_timeout(kTcpReconnectTimeout);
659 
660     EXPECT_FALSE(ch1.connection_ready_to_send());
661     EXPECT_FALSE(ch2.connection_ready_to_send());
662 
663     // Once connected, disconnect them.
664     DisconnectTcpTestChannels(&ch1, &ch2);
665 
666     if (send_after_disconnected || ping_after_disconnected) {
667       if (send_after_disconnected) {
668         // First SendData after disconnect should fail but will trigger
669         // reconnect.
670         EXPECT_EQ(-1, ch1.SendData(data, static_cast<int>(strlen(data))));
671       }
672 
673       if (ping_after_disconnected) {
674         // Ping should trigger reconnect.
675         ch1.Ping();
676       }
677 
678       // Wait for channel's outgoing TCPConnection connected.
679       EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);
680 
681       // Verify that we could still connect channels.
682       ConnectStartedChannels(&ch1, &ch2);
683       EXPECT_TRUE_WAIT(ch1.connection_ready_to_send(),
684                        kTcpReconnectTimeout);
685       // Channel2 is the passive one so a new connection is created during
686       // reconnect. This new connection should never have issued EWOULDBLOCK
687       // hence the connection_ready_to_send() should be false.
688       EXPECT_FALSE(ch2.connection_ready_to_send());
689     } else {
690       EXPECT_EQ(ch1.conn()->write_state(), Connection::STATE_WRITABLE);
691       // Since the reconnection never happens, the connections should have been
692       // destroyed after the timeout.
693       EXPECT_TRUE_WAIT(!ch1.conn(), kTcpReconnectTimeout + kTimeout);
694       EXPECT_TRUE(!ch2.conn());
695     }
696 
697     // Tear down and ensure that goes smoothly.
698     ch1.Stop();
699     ch2.Stop();
700     EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
701     EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
702   }
703 
CreateStunMessage(int type)704   IceMessage* CreateStunMessage(int type) {
705     IceMessage* msg = new IceMessage();
706     msg->SetType(type);
707     msg->SetTransactionID("TESTTESTTEST");
708     return msg;
709   }
CreateStunMessageWithUsername(int type,const std::string & username)710   IceMessage* CreateStunMessageWithUsername(int type,
711                                             const std::string& username) {
712     IceMessage* msg = CreateStunMessage(type);
713     msg->AddAttribute(
714         new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
715     return msg;
716   }
CreateTestPort(const rtc::SocketAddress & addr,const std::string & username,const std::string & password)717   TestPort* CreateTestPort(const rtc::SocketAddress& addr,
718                            const std::string& username,
719                            const std::string& password) {
720     TestPort* port =  new TestPort(main_, "test", &socket_factory_, &network_,
721                                    addr.ipaddr(), 0, 0, username, password);
722     port->SignalRoleConflict.connect(this, &PortTest::OnRoleConflict);
723     return port;
724   }
CreateTestPort(const rtc::SocketAddress & addr,const std::string & username,const std::string & password,cricket::IceRole role,int tiebreaker)725   TestPort* CreateTestPort(const rtc::SocketAddress& addr,
726                            const std::string& username,
727                            const std::string& password,
728                            cricket::IceRole role,
729                            int tiebreaker) {
730     TestPort* port = CreateTestPort(addr, username, password);
731     port->SetIceRole(role);
732     port->SetIceTiebreaker(tiebreaker);
733     return port;
734   }
735 
OnRoleConflict(PortInterface * port)736   void OnRoleConflict(PortInterface* port) {
737     role_conflict_ = true;
738   }
role_conflict() const739   bool role_conflict() const { return role_conflict_; }
740 
ConnectToSignalDestroyed(PortInterface * port)741   void ConnectToSignalDestroyed(PortInterface* port) {
742     port->SignalDestroyed.connect(this, &PortTest::OnDestroyed);
743   }
744 
OnDestroyed(PortInterface * port)745   void OnDestroyed(PortInterface* port) {
746     destroyed_ = true;
747   }
destroyed() const748   bool destroyed() const { return destroyed_; }
749 
nat_socket_factory1()750   rtc::BasicPacketSocketFactory* nat_socket_factory1() {
751     return &nat_socket_factory1_;
752   }
753 
754  protected:
vss()755   rtc::VirtualSocketServer* vss() { return ss_.get(); }
756 
757  private:
758   rtc::Thread* main_;
759   rtc::scoped_ptr<rtc::PhysicalSocketServer> pss_;
760   rtc::scoped_ptr<rtc::VirtualSocketServer> ss_;
761   rtc::SocketServerScope ss_scope_;
762   rtc::Network network_;
763   rtc::BasicPacketSocketFactory socket_factory_;
764   rtc::scoped_ptr<rtc::NATServer> nat_server1_;
765   rtc::scoped_ptr<rtc::NATServer> nat_server2_;
766   rtc::NATSocketFactory nat_factory1_;
767   rtc::NATSocketFactory nat_factory2_;
768   rtc::BasicPacketSocketFactory nat_socket_factory1_;
769   rtc::BasicPacketSocketFactory nat_socket_factory2_;
770   scoped_ptr<TestStunServer> stun_server_;
771   TestTurnServer turn_server_;
772   TestRelayServer relay_server_;
773   std::string username_;
774   std::string password_;
775   bool role_conflict_;
776   bool destroyed_;
777 };
778 
TestConnectivity(const char * name1,Port * port1,const char * name2,Port * port2,bool accept,bool same_addr1,bool same_addr2,bool possible)779 void PortTest::TestConnectivity(const char* name1, Port* port1,
780                                 const char* name2, Port* port2,
781                                 bool accept, bool same_addr1,
782                                 bool same_addr2, bool possible) {
783   LOG(LS_INFO) << "Test: " << name1 << " to " << name2 << ": ";
784   port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
785   port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
786 
787   // Set up channels and ensure both ports will be deleted.
788   TestChannel ch1(port1);
789   TestChannel ch2(port2);
790   EXPECT_EQ(0, ch1.complete_count());
791   EXPECT_EQ(0, ch2.complete_count());
792 
793   // Acquire addresses.
794   ch1.Start();
795   ch2.Start();
796   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
797   ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
798 
799   // Send a ping from src to dst. This may or may not make it.
800   ch1.CreateConnection(GetCandidate(port2));
801   ASSERT_TRUE(ch1.conn() != NULL);
802   EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect
803   ch1.Ping();
804   WAIT(!ch2.remote_address().IsNil(), kTimeout);
805 
806   if (accept) {
807     // We are able to send a ping from src to dst. This is the case when
808     // sending to UDP ports and cone NATs.
809     EXPECT_TRUE(ch1.remote_address().IsNil());
810     EXPECT_EQ(ch2.remote_fragment(), port1->username_fragment());
811 
812     // Ensure the ping came from the same address used for src.
813     // This is the case unless the source NAT was symmetric.
814     if (same_addr1) EXPECT_EQ(ch2.remote_address(), GetAddress(port1));
815     EXPECT_TRUE(same_addr2);
816 
817     // Send a ping from dst to src.
818     ch2.AcceptConnection(GetCandidate(port1));
819     ASSERT_TRUE(ch2.conn() != NULL);
820     ch2.Ping();
821     EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
822                    kTimeout);
823   } else {
824     // We can't send a ping from src to dst, so flip it around. This will happen
825     // when the destination NAT is addr/port restricted or symmetric.
826     EXPECT_TRUE(ch1.remote_address().IsNil());
827     EXPECT_TRUE(ch2.remote_address().IsNil());
828 
829     // Send a ping from dst to src. Again, this may or may not make it.
830     ch2.CreateConnection(GetCandidate(port1));
831     ASSERT_TRUE(ch2.conn() != NULL);
832     ch2.Ping();
833     WAIT(ch2.conn()->write_state() == Connection::STATE_WRITABLE, kTimeout);
834 
835     if (same_addr1 && same_addr2) {
836       // The new ping got back to the source.
837       EXPECT_TRUE(ch1.conn()->receiving());
838       EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
839 
840       // First connection may not be writable if the first ping did not get
841       // through.  So we will have to do another.
842       if (ch1.conn()->write_state() == Connection::STATE_WRITE_INIT) {
843         ch1.Ping();
844         EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
845                        kTimeout);
846       }
847     } else if (!same_addr1 && possible) {
848       // The new ping went to the candidate address, but that address was bad.
849       // This will happen when the source NAT is symmetric.
850       EXPECT_TRUE(ch1.remote_address().IsNil());
851       EXPECT_TRUE(ch2.remote_address().IsNil());
852 
853       // However, since we have now sent a ping to the source IP, we should be
854       // able to get a ping from it. This gives us the real source address.
855       ch1.Ping();
856       EXPECT_TRUE_WAIT(!ch2.remote_address().IsNil(), kTimeout);
857       EXPECT_FALSE(ch2.conn()->receiving());
858       EXPECT_TRUE(ch1.remote_address().IsNil());
859 
860       // Pick up the actual address and establish the connection.
861       ch2.AcceptConnection(GetCandidate(port1));
862       ASSERT_TRUE(ch2.conn() != NULL);
863       ch2.Ping();
864       EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch2.conn()->write_state(),
865                      kTimeout);
866     } else if (!same_addr2 && possible) {
867       // The new ping came in, but from an unexpected address. This will happen
868       // when the destination NAT is symmetric.
869       EXPECT_FALSE(ch1.remote_address().IsNil());
870       EXPECT_FALSE(ch1.conn()->receiving());
871 
872       // Update our address and complete the connection.
873       ch1.AcceptConnection(GetCandidate(port2));
874       ch1.Ping();
875       EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
876                      kTimeout);
877     } else {  // (!possible)
878       // There should be s no way for the pings to reach each other. Check it.
879       EXPECT_TRUE(ch1.remote_address().IsNil());
880       EXPECT_TRUE(ch2.remote_address().IsNil());
881       ch1.Ping();
882       WAIT(!ch2.remote_address().IsNil(), kTimeout);
883       EXPECT_TRUE(ch1.remote_address().IsNil());
884       EXPECT_TRUE(ch2.remote_address().IsNil());
885     }
886   }
887 
888   // Everything should be good, unless we know the situation is impossible.
889   ASSERT_TRUE(ch1.conn() != NULL);
890   ASSERT_TRUE(ch2.conn() != NULL);
891   if (possible) {
892     EXPECT_TRUE(ch1.conn()->receiving());
893     EXPECT_EQ(Connection::STATE_WRITABLE, ch1.conn()->write_state());
894     EXPECT_TRUE(ch2.conn()->receiving());
895     EXPECT_EQ(Connection::STATE_WRITABLE, ch2.conn()->write_state());
896   } else {
897     EXPECT_FALSE(ch1.conn()->receiving());
898     EXPECT_NE(Connection::STATE_WRITABLE, ch1.conn()->write_state());
899     EXPECT_FALSE(ch2.conn()->receiving());
900     EXPECT_NE(Connection::STATE_WRITABLE, ch2.conn()->write_state());
901   }
902 
903   // Tear down and ensure that goes smoothly.
904   ch1.Stop();
905   ch2.Stop();
906   EXPECT_TRUE_WAIT(ch1.conn() == NULL, kTimeout);
907   EXPECT_TRUE_WAIT(ch2.conn() == NULL, kTimeout);
908 }
909 
910 class FakePacketSocketFactory : public rtc::PacketSocketFactory {
911  public:
FakePacketSocketFactory()912   FakePacketSocketFactory()
913       : next_udp_socket_(NULL),
914         next_server_tcp_socket_(NULL),
915         next_client_tcp_socket_(NULL) {
916   }
~FakePacketSocketFactory()917   ~FakePacketSocketFactory() override { }
918 
CreateUdpSocket(const SocketAddress & address,uint16_t min_port,uint16_t max_port)919   AsyncPacketSocket* CreateUdpSocket(const SocketAddress& address,
920                                      uint16_t min_port,
921                                      uint16_t max_port) override {
922     EXPECT_TRUE(next_udp_socket_ != NULL);
923     AsyncPacketSocket* result = next_udp_socket_;
924     next_udp_socket_ = NULL;
925     return result;
926   }
927 
CreateServerTcpSocket(const SocketAddress & local_address,uint16_t min_port,uint16_t max_port,int opts)928   AsyncPacketSocket* CreateServerTcpSocket(const SocketAddress& local_address,
929                                            uint16_t min_port,
930                                            uint16_t max_port,
931                                            int opts) override {
932     EXPECT_TRUE(next_server_tcp_socket_ != NULL);
933     AsyncPacketSocket* result = next_server_tcp_socket_;
934     next_server_tcp_socket_ = NULL;
935     return result;
936   }
937 
938   // TODO: |proxy_info| and |user_agent| should be set
939   // per-factory and not when socket is created.
CreateClientTcpSocket(const SocketAddress & local_address,const SocketAddress & remote_address,const rtc::ProxyInfo & proxy_info,const std::string & user_agent,int opts)940   AsyncPacketSocket* CreateClientTcpSocket(const SocketAddress& local_address,
941                                            const SocketAddress& remote_address,
942                                            const rtc::ProxyInfo& proxy_info,
943                                            const std::string& user_agent,
944                                            int opts) override {
945     EXPECT_TRUE(next_client_tcp_socket_ != NULL);
946     AsyncPacketSocket* result = next_client_tcp_socket_;
947     next_client_tcp_socket_ = NULL;
948     return result;
949   }
950 
set_next_udp_socket(AsyncPacketSocket * next_udp_socket)951   void set_next_udp_socket(AsyncPacketSocket* next_udp_socket) {
952     next_udp_socket_ = next_udp_socket;
953   }
set_next_server_tcp_socket(AsyncPacketSocket * next_server_tcp_socket)954   void set_next_server_tcp_socket(AsyncPacketSocket* next_server_tcp_socket) {
955     next_server_tcp_socket_ = next_server_tcp_socket;
956   }
set_next_client_tcp_socket(AsyncPacketSocket * next_client_tcp_socket)957   void set_next_client_tcp_socket(AsyncPacketSocket* next_client_tcp_socket) {
958     next_client_tcp_socket_ = next_client_tcp_socket;
959   }
CreateAsyncResolver()960   rtc::AsyncResolverInterface* CreateAsyncResolver() {
961     return NULL;
962   }
963 
964  private:
965   AsyncPacketSocket* next_udp_socket_;
966   AsyncPacketSocket* next_server_tcp_socket_;
967   AsyncPacketSocket* next_client_tcp_socket_;
968 };
969 
970 class FakeAsyncPacketSocket : public AsyncPacketSocket {
971  public:
972   // Returns current local address. Address may be set to NULL if the
973   // socket is not bound yet (GetState() returns STATE_BINDING).
GetLocalAddress() const974   virtual SocketAddress GetLocalAddress() const {
975     return SocketAddress();
976   }
977 
978   // Returns remote address. Returns zeroes if this is not a client TCP socket.
GetRemoteAddress() const979   virtual SocketAddress GetRemoteAddress() const {
980     return SocketAddress();
981   }
982 
983   // Send a packet.
Send(const void * pv,size_t cb,const rtc::PacketOptions & options)984   virtual int Send(const void *pv, size_t cb,
985                    const rtc::PacketOptions& options) {
986     return static_cast<int>(cb);
987   }
SendTo(const void * pv,size_t cb,const SocketAddress & addr,const rtc::PacketOptions & options)988   virtual int SendTo(const void *pv, size_t cb, const SocketAddress& addr,
989                      const rtc::PacketOptions& options) {
990     return static_cast<int>(cb);
991   }
Close()992   virtual int Close() {
993     return 0;
994   }
995 
GetState() const996   virtual State GetState() const { return state_; }
GetOption(Socket::Option opt,int * value)997   virtual int GetOption(Socket::Option opt, int* value) { return 0; }
SetOption(Socket::Option opt,int value)998   virtual int SetOption(Socket::Option opt, int value) { return 0; }
GetError() const999   virtual int GetError() const { return 0; }
SetError(int error)1000   virtual void SetError(int error) { }
1001 
set_state(State state)1002   void set_state(State state) { state_ = state; }
1003 
1004  private:
1005   State state_;
1006 };
1007 
1008 // Local -> XXXX
TEST_F(PortTest,TestLocalToLocal)1009 TEST_F(PortTest, TestLocalToLocal) {
1010   TestLocalToLocal();
1011 }
1012 
TEST_F(PortTest,TestLocalToConeNat)1013 TEST_F(PortTest, TestLocalToConeNat) {
1014   TestLocalToStun(NAT_OPEN_CONE);
1015 }
1016 
TEST_F(PortTest,TestLocalToARNat)1017 TEST_F(PortTest, TestLocalToARNat) {
1018   TestLocalToStun(NAT_ADDR_RESTRICTED);
1019 }
1020 
TEST_F(PortTest,TestLocalToPRNat)1021 TEST_F(PortTest, TestLocalToPRNat) {
1022   TestLocalToStun(NAT_PORT_RESTRICTED);
1023 }
1024 
TEST_F(PortTest,TestLocalToSymNat)1025 TEST_F(PortTest, TestLocalToSymNat) {
1026   TestLocalToStun(NAT_SYMMETRIC);
1027 }
1028 
1029 // Flaky: https://code.google.com/p/webrtc/issues/detail?id=3316.
TEST_F(PortTest,DISABLED_TestLocalToTurn)1030 TEST_F(PortTest, DISABLED_TestLocalToTurn) {
1031   TestLocalToRelay(RELAY_TURN, PROTO_UDP);
1032 }
1033 
TEST_F(PortTest,TestLocalToGturn)1034 TEST_F(PortTest, TestLocalToGturn) {
1035   TestLocalToRelay(RELAY_GTURN, PROTO_UDP);
1036 }
1037 
TEST_F(PortTest,TestLocalToTcpGturn)1038 TEST_F(PortTest, TestLocalToTcpGturn) {
1039   TestLocalToRelay(RELAY_GTURN, PROTO_TCP);
1040 }
1041 
TEST_F(PortTest,TestLocalToSslTcpGturn)1042 TEST_F(PortTest, TestLocalToSslTcpGturn) {
1043   TestLocalToRelay(RELAY_GTURN, PROTO_SSLTCP);
1044 }
1045 
1046 // Cone NAT -> XXXX
TEST_F(PortTest,TestConeNatToLocal)1047 TEST_F(PortTest, TestConeNatToLocal) {
1048   TestStunToLocal(NAT_OPEN_CONE);
1049 }
1050 
TEST_F(PortTest,TestConeNatToConeNat)1051 TEST_F(PortTest, TestConeNatToConeNat) {
1052   TestStunToStun(NAT_OPEN_CONE, NAT_OPEN_CONE);
1053 }
1054 
TEST_F(PortTest,TestConeNatToARNat)1055 TEST_F(PortTest, TestConeNatToARNat) {
1056   TestStunToStun(NAT_OPEN_CONE, NAT_ADDR_RESTRICTED);
1057 }
1058 
TEST_F(PortTest,TestConeNatToPRNat)1059 TEST_F(PortTest, TestConeNatToPRNat) {
1060   TestStunToStun(NAT_OPEN_CONE, NAT_PORT_RESTRICTED);
1061 }
1062 
TEST_F(PortTest,TestConeNatToSymNat)1063 TEST_F(PortTest, TestConeNatToSymNat) {
1064   TestStunToStun(NAT_OPEN_CONE, NAT_SYMMETRIC);
1065 }
1066 
TEST_F(PortTest,TestConeNatToTurn)1067 TEST_F(PortTest, TestConeNatToTurn) {
1068   TestStunToRelay(NAT_OPEN_CONE, RELAY_TURN, PROTO_UDP);
1069 }
1070 
TEST_F(PortTest,TestConeNatToGturn)1071 TEST_F(PortTest, TestConeNatToGturn) {
1072   TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_UDP);
1073 }
1074 
TEST_F(PortTest,TestConeNatToTcpGturn)1075 TEST_F(PortTest, TestConeNatToTcpGturn) {
1076   TestStunToRelay(NAT_OPEN_CONE, RELAY_GTURN, PROTO_TCP);
1077 }
1078 
1079 // Address-restricted NAT -> XXXX
TEST_F(PortTest,TestARNatToLocal)1080 TEST_F(PortTest, TestARNatToLocal) {
1081   TestStunToLocal(NAT_ADDR_RESTRICTED);
1082 }
1083 
TEST_F(PortTest,TestARNatToConeNat)1084 TEST_F(PortTest, TestARNatToConeNat) {
1085   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_OPEN_CONE);
1086 }
1087 
TEST_F(PortTest,TestARNatToARNat)1088 TEST_F(PortTest, TestARNatToARNat) {
1089   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_ADDR_RESTRICTED);
1090 }
1091 
TEST_F(PortTest,TestARNatToPRNat)1092 TEST_F(PortTest, TestARNatToPRNat) {
1093   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_PORT_RESTRICTED);
1094 }
1095 
TEST_F(PortTest,TestARNatToSymNat)1096 TEST_F(PortTest, TestARNatToSymNat) {
1097   TestStunToStun(NAT_ADDR_RESTRICTED, NAT_SYMMETRIC);
1098 }
1099 
TEST_F(PortTest,TestARNatToTurn)1100 TEST_F(PortTest, TestARNatToTurn) {
1101   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_TURN, PROTO_UDP);
1102 }
1103 
TEST_F(PortTest,TestARNatToGturn)1104 TEST_F(PortTest, TestARNatToGturn) {
1105   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_UDP);
1106 }
1107 
TEST_F(PortTest,TestARNATNatToTcpGturn)1108 TEST_F(PortTest, TestARNATNatToTcpGturn) {
1109   TestStunToRelay(NAT_ADDR_RESTRICTED, RELAY_GTURN, PROTO_TCP);
1110 }
1111 
1112 // Port-restricted NAT -> XXXX
TEST_F(PortTest,TestPRNatToLocal)1113 TEST_F(PortTest, TestPRNatToLocal) {
1114   TestStunToLocal(NAT_PORT_RESTRICTED);
1115 }
1116 
TEST_F(PortTest,TestPRNatToConeNat)1117 TEST_F(PortTest, TestPRNatToConeNat) {
1118   TestStunToStun(NAT_PORT_RESTRICTED, NAT_OPEN_CONE);
1119 }
1120 
TEST_F(PortTest,TestPRNatToARNat)1121 TEST_F(PortTest, TestPRNatToARNat) {
1122   TestStunToStun(NAT_PORT_RESTRICTED, NAT_ADDR_RESTRICTED);
1123 }
1124 
TEST_F(PortTest,TestPRNatToPRNat)1125 TEST_F(PortTest, TestPRNatToPRNat) {
1126   TestStunToStun(NAT_PORT_RESTRICTED, NAT_PORT_RESTRICTED);
1127 }
1128 
TEST_F(PortTest,TestPRNatToSymNat)1129 TEST_F(PortTest, TestPRNatToSymNat) {
1130   // Will "fail"
1131   TestStunToStun(NAT_PORT_RESTRICTED, NAT_SYMMETRIC);
1132 }
1133 
TEST_F(PortTest,TestPRNatToTurn)1134 TEST_F(PortTest, TestPRNatToTurn) {
1135   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_TURN, PROTO_UDP);
1136 }
1137 
TEST_F(PortTest,TestPRNatToGturn)1138 TEST_F(PortTest, TestPRNatToGturn) {
1139   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_UDP);
1140 }
1141 
TEST_F(PortTest,TestPRNatToTcpGturn)1142 TEST_F(PortTest, TestPRNatToTcpGturn) {
1143   TestStunToRelay(NAT_PORT_RESTRICTED, RELAY_GTURN, PROTO_TCP);
1144 }
1145 
1146 // Symmetric NAT -> XXXX
TEST_F(PortTest,TestSymNatToLocal)1147 TEST_F(PortTest, TestSymNatToLocal) {
1148   TestStunToLocal(NAT_SYMMETRIC);
1149 }
1150 
TEST_F(PortTest,TestSymNatToConeNat)1151 TEST_F(PortTest, TestSymNatToConeNat) {
1152   TestStunToStun(NAT_SYMMETRIC, NAT_OPEN_CONE);
1153 }
1154 
TEST_F(PortTest,TestSymNatToARNat)1155 TEST_F(PortTest, TestSymNatToARNat) {
1156   TestStunToStun(NAT_SYMMETRIC, NAT_ADDR_RESTRICTED);
1157 }
1158 
TEST_F(PortTest,TestSymNatToPRNat)1159 TEST_F(PortTest, TestSymNatToPRNat) {
1160   // Will "fail"
1161   TestStunToStun(NAT_SYMMETRIC, NAT_PORT_RESTRICTED);
1162 }
1163 
TEST_F(PortTest,TestSymNatToSymNat)1164 TEST_F(PortTest, TestSymNatToSymNat) {
1165   // Will "fail"
1166   TestStunToStun(NAT_SYMMETRIC, NAT_SYMMETRIC);
1167 }
1168 
TEST_F(PortTest,TestSymNatToTurn)1169 TEST_F(PortTest, TestSymNatToTurn) {
1170   TestStunToRelay(NAT_SYMMETRIC, RELAY_TURN, PROTO_UDP);
1171 }
1172 
TEST_F(PortTest,TestSymNatToGturn)1173 TEST_F(PortTest, TestSymNatToGturn) {
1174   TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_UDP);
1175 }
1176 
TEST_F(PortTest,TestSymNatToTcpGturn)1177 TEST_F(PortTest, TestSymNatToTcpGturn) {
1178   TestStunToRelay(NAT_SYMMETRIC, RELAY_GTURN, PROTO_TCP);
1179 }
1180 
1181 // Outbound TCP -> XXXX
TEST_F(PortTest,TestTcpToTcp)1182 TEST_F(PortTest, TestTcpToTcp) {
1183   TestTcpToTcp();
1184 }
1185 
TEST_F(PortTest,TestTcpReconnectOnSendPacket)1186 TEST_F(PortTest, TestTcpReconnectOnSendPacket) {
1187   TestTcpReconnect(false /* ping */, true /* send */);
1188 }
1189 
TEST_F(PortTest,TestTcpReconnectOnPing)1190 TEST_F(PortTest, TestTcpReconnectOnPing) {
1191   TestTcpReconnect(true /* ping */, false /* send */);
1192 }
1193 
TEST_F(PortTest,TestTcpReconnectTimeout)1194 TEST_F(PortTest, TestTcpReconnectTimeout) {
1195   TestTcpReconnect(false /* ping */, false /* send */);
1196 }
1197 
1198 // Test when TcpConnection never connects, the OnClose() will be called to
1199 // destroy the connection.
TEST_F(PortTest,TestTcpNeverConnect)1200 TEST_F(PortTest, TestTcpNeverConnect) {
1201   Port* port1 = CreateTcpPort(kLocalAddr1);
1202   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1203   port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
1204 
1205   // Set up a channel and ensure the port will be deleted.
1206   TestChannel ch1(port1);
1207   EXPECT_EQ(0, ch1.complete_count());
1208 
1209   ch1.Start();
1210   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
1211 
1212   rtc::scoped_ptr<rtc::AsyncSocket> server(
1213       vss()->CreateAsyncSocket(kLocalAddr2.family(), SOCK_STREAM));
1214   // Bind but not listen.
1215   EXPECT_EQ(0, server->Bind(kLocalAddr2));
1216 
1217   Candidate c = GetCandidate(port1);
1218   c.set_address(server->GetLocalAddress());
1219 
1220   ch1.CreateConnection(c);
1221   EXPECT_TRUE(ch1.conn());
1222   EXPECT_TRUE_WAIT(!ch1.conn(), kTimeout);  // for TCP connect
1223 }
1224 
1225 /* TODO: Enable these once testrelayserver can accept external TCP.
1226 TEST_F(PortTest, TestTcpToTcpRelay) {
1227   TestTcpToRelay(PROTO_TCP);
1228 }
1229 
1230 TEST_F(PortTest, TestTcpToSslTcpRelay) {
1231   TestTcpToRelay(PROTO_SSLTCP);
1232 }
1233 */
1234 
1235 // Outbound SSLTCP -> XXXX
1236 /* TODO: Enable these once testrelayserver can accept external SSL.
1237 TEST_F(PortTest, TestSslTcpToTcpRelay) {
1238   TestSslTcpToRelay(PROTO_TCP);
1239 }
1240 
1241 TEST_F(PortTest, TestSslTcpToSslTcpRelay) {
1242   TestSslTcpToRelay(PROTO_SSLTCP);
1243 }
1244 */
1245 
1246 // Test that a connection will be dead and deleted if
1247 // i) it has never received anything for MIN_CONNECTION_LIFETIME milliseconds
1248 //    since it was created, or
1249 // ii) it has not received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT
1250 //     milliseconds since last receiving.
TEST_F(PortTest,TestConnectionDead)1251 TEST_F(PortTest, TestConnectionDead) {
1252   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
1253   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
1254   TestChannel ch1(port1);
1255   TestChannel ch2(port2);
1256   // Acquire address.
1257   ch1.Start();
1258   ch2.Start();
1259   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
1260   ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
1261 
1262   // Test case that the connection has never received anything.
1263   uint32_t before_created = rtc::Time();
1264   ch1.CreateConnection(GetCandidate(port2));
1265   uint32_t after_created = rtc::Time();
1266   Connection* conn = ch1.conn();
1267   ASSERT(conn != nullptr);
1268   // It is not dead if it is after MIN_CONNECTION_LIFETIME but not pruned.
1269   conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
1270   rtc::Thread::Current()->ProcessMessages(0);
1271   EXPECT_TRUE(ch1.conn() != nullptr);
1272   // It is not dead if it is before MIN_CONNECTION_LIFETIME and pruned.
1273   conn->UpdateState(before_created + MIN_CONNECTION_LIFETIME - 1);
1274   conn->Prune();
1275   rtc::Thread::Current()->ProcessMessages(0);
1276   EXPECT_TRUE(ch1.conn() != nullptr);
1277   // It will be dead after MIN_CONNECTION_LIFETIME and pruned.
1278   conn->UpdateState(after_created + MIN_CONNECTION_LIFETIME + 1);
1279   EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kTimeout);
1280 
1281   // Test case that the connection has received something.
1282   // Create a connection again and receive a ping.
1283   ch1.CreateConnection(GetCandidate(port2));
1284   conn = ch1.conn();
1285   ASSERT(conn != nullptr);
1286   uint32_t before_last_receiving = rtc::Time();
1287   conn->ReceivedPing();
1288   uint32_t after_last_receiving = rtc::Time();
1289   // The connection will be dead after DEAD_CONNECTION_RECEIVE_TIMEOUT
1290   conn->UpdateState(
1291       before_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT - 1);
1292   rtc::Thread::Current()->ProcessMessages(100);
1293   EXPECT_TRUE(ch1.conn() != nullptr);
1294   conn->UpdateState(after_last_receiving + DEAD_CONNECTION_RECEIVE_TIMEOUT + 1);
1295   EXPECT_TRUE_WAIT(ch1.conn() == nullptr, kTimeout);
1296 }
1297 
1298 // This test case verifies standard ICE features in STUN messages. Currently it
1299 // verifies Message Integrity attribute in STUN messages and username in STUN
1300 // binding request will have colon (":") between remote and local username.
TEST_F(PortTest,TestLocalToLocalStandard)1301 TEST_F(PortTest, TestLocalToLocalStandard) {
1302   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
1303   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1304   port1->SetIceTiebreaker(kTiebreaker1);
1305   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
1306   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
1307   port2->SetIceTiebreaker(kTiebreaker2);
1308   // Same parameters as TestLocalToLocal above.
1309   TestConnectivity("udp", port1, "udp", port2, true, true, true, true);
1310 }
1311 
1312 // This test is trying to validate a successful and failure scenario in a
1313 // loopback test when protocol is RFC5245. For success IceTiebreaker, username
1314 // should remain equal to the request generated by the port and role of port
1315 // must be in controlling.
TEST_F(PortTest,TestLoopbackCal)1316 TEST_F(PortTest, TestLoopbackCal) {
1317   rtc::scoped_ptr<TestPort> lport(
1318       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1319   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1320   lport->SetIceTiebreaker(kTiebreaker1);
1321   lport->PrepareAddress();
1322   ASSERT_FALSE(lport->Candidates().empty());
1323   Connection* conn = lport->CreateConnection(lport->Candidates()[0],
1324                                              Port::ORIGIN_MESSAGE);
1325   conn->Ping(0);
1326 
1327   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1328   IceMessage* msg = lport->last_stun_msg();
1329   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1330   conn->OnReadPacket(lport->last_stun_buf()->Data(),
1331                      lport->last_stun_buf()->Length(),
1332                      rtc::PacketTime());
1333   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1334   msg = lport->last_stun_msg();
1335   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1336 
1337   // If the tiebreaker value is different from port, we expect a error
1338   // response.
1339   lport->Reset();
1340   lport->AddCandidateAddress(kLocalAddr2);
1341   // Creating a different connection as |conn| is receiving.
1342   Connection* conn1 = lport->CreateConnection(lport->Candidates()[1],
1343                                               Port::ORIGIN_MESSAGE);
1344   conn1->Ping(0);
1345 
1346   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1347   msg = lport->last_stun_msg();
1348   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1349   rtc::scoped_ptr<IceMessage> modified_req(
1350       CreateStunMessage(STUN_BINDING_REQUEST));
1351   const StunByteStringAttribute* username_attr = msg->GetByteString(
1352       STUN_ATTR_USERNAME);
1353   modified_req->AddAttribute(new StunByteStringAttribute(
1354       STUN_ATTR_USERNAME, username_attr->GetString()));
1355   // To make sure we receive error response, adding tiebreaker less than
1356   // what's present in request.
1357   modified_req->AddAttribute(new StunUInt64Attribute(
1358       STUN_ATTR_ICE_CONTROLLING, kTiebreaker1 - 1));
1359   modified_req->AddMessageIntegrity("lpass");
1360   modified_req->AddFingerprint();
1361 
1362   lport->Reset();
1363   rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1364   WriteStunMessage(modified_req.get(), buf.get());
1365   conn1->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
1366   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1367   msg = lport->last_stun_msg();
1368   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1369 }
1370 
1371 // This test verifies role conflict signal is received when there is
1372 // conflict in the role. In this case both ports are in controlling and
1373 // |rport| has higher tiebreaker value than |lport|. Since |lport| has lower
1374 // value of tiebreaker, when it receives ping request from |rport| it will
1375 // send role conflict signal.
TEST_F(PortTest,TestIceRoleConflict)1376 TEST_F(PortTest, TestIceRoleConflict) {
1377   rtc::scoped_ptr<TestPort> lport(
1378       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1379   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1380   lport->SetIceTiebreaker(kTiebreaker1);
1381   rtc::scoped_ptr<TestPort> rport(
1382       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1383   rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1384   rport->SetIceTiebreaker(kTiebreaker2);
1385 
1386   lport->PrepareAddress();
1387   rport->PrepareAddress();
1388   ASSERT_FALSE(lport->Candidates().empty());
1389   ASSERT_FALSE(rport->Candidates().empty());
1390   Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
1391                                               Port::ORIGIN_MESSAGE);
1392   Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
1393                                               Port::ORIGIN_MESSAGE);
1394   rconn->Ping(0);
1395 
1396   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1397   IceMessage* msg = rport->last_stun_msg();
1398   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1399   // Send rport binding request to lport.
1400   lconn->OnReadPacket(rport->last_stun_buf()->Data(),
1401                       rport->last_stun_buf()->Length(),
1402                       rtc::PacketTime());
1403 
1404   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1405   EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
1406   EXPECT_TRUE(role_conflict());
1407 }
1408 
TEST_F(PortTest,TestTcpNoDelay)1409 TEST_F(PortTest, TestTcpNoDelay) {
1410   TCPPort* port1 = CreateTcpPort(kLocalAddr1);
1411   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
1412   int option_value = -1;
1413   int success = port1->GetOption(rtc::Socket::OPT_NODELAY,
1414                                  &option_value);
1415   ASSERT_EQ(0, success);  // GetOption() should complete successfully w/ 0
1416   ASSERT_EQ(1, option_value);
1417   delete port1;
1418 }
1419 
TEST_F(PortTest,TestDelayedBindingUdp)1420 TEST_F(PortTest, TestDelayedBindingUdp) {
1421   FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1422   FakePacketSocketFactory socket_factory;
1423 
1424   socket_factory.set_next_udp_socket(socket);
1425   scoped_ptr<UDPPort> port(
1426       CreateUdpPort(kLocalAddr1, &socket_factory));
1427 
1428   socket->set_state(AsyncPacketSocket::STATE_BINDING);
1429   port->PrepareAddress();
1430 
1431   EXPECT_EQ(0U, port->Candidates().size());
1432   socket->SignalAddressReady(socket, kLocalAddr2);
1433 
1434   EXPECT_EQ(1U, port->Candidates().size());
1435 }
1436 
TEST_F(PortTest,TestDelayedBindingTcp)1437 TEST_F(PortTest, TestDelayedBindingTcp) {
1438   FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1439   FakePacketSocketFactory socket_factory;
1440 
1441   socket_factory.set_next_server_tcp_socket(socket);
1442   scoped_ptr<TCPPort> port(
1443       CreateTcpPort(kLocalAddr1, &socket_factory));
1444 
1445   socket->set_state(AsyncPacketSocket::STATE_BINDING);
1446   port->PrepareAddress();
1447 
1448   EXPECT_EQ(0U, port->Candidates().size());
1449   socket->SignalAddressReady(socket, kLocalAddr2);
1450 
1451   EXPECT_EQ(1U, port->Candidates().size());
1452 }
1453 
TestCrossFamilyPorts(int type)1454 void PortTest::TestCrossFamilyPorts(int type) {
1455   FakePacketSocketFactory factory;
1456   scoped_ptr<Port> ports[4];
1457   SocketAddress addresses[4] = {SocketAddress("192.168.1.3", 0),
1458                                 SocketAddress("192.168.1.4", 0),
1459                                 SocketAddress("2001:db8::1", 0),
1460                                 SocketAddress("2001:db8::2", 0)};
1461   for (int i = 0; i < 4; i++) {
1462     FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1463     if (type == SOCK_DGRAM) {
1464       factory.set_next_udp_socket(socket);
1465       ports[i].reset(CreateUdpPort(addresses[i], &factory));
1466     } else if (type == SOCK_STREAM) {
1467       factory.set_next_server_tcp_socket(socket);
1468       ports[i].reset(CreateTcpPort(addresses[i], &factory));
1469     }
1470     socket->set_state(AsyncPacketSocket::STATE_BINDING);
1471     socket->SignalAddressReady(socket, addresses[i]);
1472     ports[i]->PrepareAddress();
1473   }
1474 
1475   // IPv4 Port, connects to IPv6 candidate and then to IPv4 candidate.
1476   if (type == SOCK_STREAM) {
1477     FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1478     factory.set_next_client_tcp_socket(clientsocket);
1479   }
1480   Connection* c = ports[0]->CreateConnection(GetCandidate(ports[2].get()),
1481                                              Port::ORIGIN_MESSAGE);
1482   EXPECT_TRUE(NULL == c);
1483   EXPECT_EQ(0U, ports[0]->connections().size());
1484   c = ports[0]->CreateConnection(GetCandidate(ports[1].get()),
1485                                  Port::ORIGIN_MESSAGE);
1486   EXPECT_FALSE(NULL == c);
1487   EXPECT_EQ(1U, ports[0]->connections().size());
1488 
1489   // IPv6 Port, connects to IPv4 candidate and to IPv6 candidate.
1490   if (type == SOCK_STREAM) {
1491     FakeAsyncPacketSocket* clientsocket = new FakeAsyncPacketSocket();
1492     factory.set_next_client_tcp_socket(clientsocket);
1493   }
1494   c = ports[2]->CreateConnection(GetCandidate(ports[0].get()),
1495                                  Port::ORIGIN_MESSAGE);
1496   EXPECT_TRUE(NULL == c);
1497   EXPECT_EQ(0U, ports[2]->connections().size());
1498   c = ports[2]->CreateConnection(GetCandidate(ports[3].get()),
1499                                  Port::ORIGIN_MESSAGE);
1500   EXPECT_FALSE(NULL == c);
1501   EXPECT_EQ(1U, ports[2]->connections().size());
1502 }
1503 
TEST_F(PortTest,TestSkipCrossFamilyTcp)1504 TEST_F(PortTest, TestSkipCrossFamilyTcp) {
1505   TestCrossFamilyPorts(SOCK_STREAM);
1506 }
1507 
TEST_F(PortTest,TestSkipCrossFamilyUdp)1508 TEST_F(PortTest, TestSkipCrossFamilyUdp) {
1509   TestCrossFamilyPorts(SOCK_DGRAM);
1510 }
1511 
ExpectPortsCanConnect(bool can_connect,Port * p1,Port * p2)1512 void PortTest::ExpectPortsCanConnect(bool can_connect, Port* p1, Port* p2) {
1513   Connection* c = p1->CreateConnection(GetCandidate(p2),
1514                                        Port::ORIGIN_MESSAGE);
1515   if (can_connect) {
1516     EXPECT_FALSE(NULL == c);
1517     EXPECT_EQ(1U, p1->connections().size());
1518   } else {
1519     EXPECT_TRUE(NULL == c);
1520     EXPECT_EQ(0U, p1->connections().size());
1521   }
1522 }
1523 
TEST_F(PortTest,TestUdpV6CrossTypePorts)1524 TEST_F(PortTest, TestUdpV6CrossTypePorts) {
1525   FakePacketSocketFactory factory;
1526   scoped_ptr<Port> ports[4];
1527   SocketAddress addresses[4] = {SocketAddress("2001:db8::1", 0),
1528                                 SocketAddress("fe80::1", 0),
1529                                 SocketAddress("fe80::2", 0),
1530                                 SocketAddress("::1", 0)};
1531   for (int i = 0; i < 4; i++) {
1532     FakeAsyncPacketSocket *socket = new FakeAsyncPacketSocket();
1533     factory.set_next_udp_socket(socket);
1534     ports[i].reset(CreateUdpPort(addresses[i], &factory));
1535     socket->set_state(AsyncPacketSocket::STATE_BINDING);
1536     socket->SignalAddressReady(socket, addresses[i]);
1537     ports[i]->PrepareAddress();
1538   }
1539 
1540   Port* standard = ports[0].get();
1541   Port* link_local1 = ports[1].get();
1542   Port* link_local2 = ports[2].get();
1543   Port* localhost = ports[3].get();
1544 
1545   ExpectPortsCanConnect(false, link_local1, standard);
1546   ExpectPortsCanConnect(false, standard, link_local1);
1547   ExpectPortsCanConnect(false, link_local1, localhost);
1548   ExpectPortsCanConnect(false, localhost, link_local1);
1549 
1550   ExpectPortsCanConnect(true, link_local1, link_local2);
1551   ExpectPortsCanConnect(true, localhost, standard);
1552   ExpectPortsCanConnect(true, standard, localhost);
1553 }
1554 
1555 // This test verifies DSCP value set through SetOption interface can be
1556 // get through DefaultDscpValue.
TEST_F(PortTest,TestDefaultDscpValue)1557 TEST_F(PortTest, TestDefaultDscpValue) {
1558   int dscp;
1559   rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
1560   EXPECT_EQ(0, udpport->SetOption(rtc::Socket::OPT_DSCP,
1561                                   rtc::DSCP_CS6));
1562   EXPECT_EQ(0, udpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1563   rtc::scoped_ptr<TCPPort> tcpport(CreateTcpPort(kLocalAddr1));
1564   EXPECT_EQ(0, tcpport->SetOption(rtc::Socket::OPT_DSCP,
1565                                  rtc::DSCP_AF31));
1566   EXPECT_EQ(0, tcpport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1567   EXPECT_EQ(rtc::DSCP_AF31, dscp);
1568   rtc::scoped_ptr<StunPort> stunport(
1569       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
1570   EXPECT_EQ(0, stunport->SetOption(rtc::Socket::OPT_DSCP,
1571                                   rtc::DSCP_AF41));
1572   EXPECT_EQ(0, stunport->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1573   EXPECT_EQ(rtc::DSCP_AF41, dscp);
1574   rtc::scoped_ptr<TurnPort> turnport1(CreateTurnPort(
1575       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1576   // Socket is created in PrepareAddress.
1577   turnport1->PrepareAddress();
1578   EXPECT_EQ(0, turnport1->SetOption(rtc::Socket::OPT_DSCP,
1579                                   rtc::DSCP_CS7));
1580   EXPECT_EQ(0, turnport1->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1581   EXPECT_EQ(rtc::DSCP_CS7, dscp);
1582   // This will verify correct value returned without the socket.
1583   rtc::scoped_ptr<TurnPort> turnport2(CreateTurnPort(
1584       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
1585   EXPECT_EQ(0, turnport2->SetOption(rtc::Socket::OPT_DSCP,
1586                                   rtc::DSCP_CS6));
1587   EXPECT_EQ(0, turnport2->GetOption(rtc::Socket::OPT_DSCP, &dscp));
1588   EXPECT_EQ(rtc::DSCP_CS6, dscp);
1589 }
1590 
1591 // Test sending STUN messages.
TEST_F(PortTest,TestSendStunMessage)1592 TEST_F(PortTest, TestSendStunMessage) {
1593   rtc::scoped_ptr<TestPort> lport(
1594       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1595   rtc::scoped_ptr<TestPort> rport(
1596       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1597   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1598   lport->SetIceTiebreaker(kTiebreaker1);
1599   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1600   rport->SetIceTiebreaker(kTiebreaker2);
1601 
1602   // Send a fake ping from lport to rport.
1603   lport->PrepareAddress();
1604   rport->PrepareAddress();
1605   ASSERT_FALSE(rport->Candidates().empty());
1606   Connection* lconn = lport->CreateConnection(
1607       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1608   Connection* rconn = rport->CreateConnection(
1609       lport->Candidates()[0], Port::ORIGIN_MESSAGE);
1610   lconn->Ping(0);
1611 
1612   // Check that it's a proper BINDING-REQUEST.
1613   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1614   IceMessage* msg = lport->last_stun_msg();
1615   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1616   EXPECT_FALSE(msg->IsLegacy());
1617   const StunByteStringAttribute* username_attr =
1618       msg->GetByteString(STUN_ATTR_USERNAME);
1619   ASSERT_TRUE(username_attr != NULL);
1620   const StunUInt32Attribute* priority_attr = msg->GetUInt32(STUN_ATTR_PRIORITY);
1621   ASSERT_TRUE(priority_attr != NULL);
1622   EXPECT_EQ(kDefaultPrflxPriority, priority_attr->value());
1623   EXPECT_EQ("rfrag:lfrag", username_attr->GetString());
1624   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1625   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1626       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length(),
1627       "rpass"));
1628   const StunUInt64Attribute* ice_controlling_attr =
1629       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1630   ASSERT_TRUE(ice_controlling_attr != NULL);
1631   EXPECT_EQ(lport->IceTiebreaker(), ice_controlling_attr->value());
1632   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1633   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
1634   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1635   EXPECT_TRUE(StunMessage::ValidateFingerprint(
1636       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1637 
1638   // Request should not include ping count.
1639   ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1640 
1641   // Save a copy of the BINDING-REQUEST for use below.
1642   rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
1643 
1644   // Respond with a BINDING-RESPONSE.
1645   rport->SendBindingResponse(request.get(), lport->Candidates()[0].address());
1646   msg = rport->last_stun_msg();
1647   ASSERT_TRUE(msg != NULL);
1648   EXPECT_EQ(STUN_BINDING_RESPONSE, msg->type());
1649 
1650 
1651   EXPECT_FALSE(msg->IsLegacy());
1652   const StunAddressAttribute* addr_attr = msg->GetAddress(
1653       STUN_ATTR_XOR_MAPPED_ADDRESS);
1654   ASSERT_TRUE(addr_attr != NULL);
1655   EXPECT_EQ(lport->Candidates()[0].address(), addr_attr->GetAddress());
1656   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1657   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1658       rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1659       "rpass"));
1660   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1661   EXPECT_TRUE(StunMessage::ValidateFingerprint(
1662       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1663   // No USERNAME or PRIORITY in ICE responses.
1664   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1665   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1666   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MAPPED_ADDRESS) == NULL);
1667   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLING) == NULL);
1668   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_ICE_CONTROLLED) == NULL);
1669   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1670 
1671   // Response should not include ping count.
1672   ASSERT_TRUE(msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT) == NULL);
1673 
1674   // Respond with a BINDING-ERROR-RESPONSE. This wouldn't happen in real life,
1675   // but we can do it here.
1676   rport->SendBindingErrorResponse(request.get(),
1677                                   lport->Candidates()[0].address(),
1678                                   STUN_ERROR_SERVER_ERROR,
1679                                   STUN_ERROR_REASON_SERVER_ERROR);
1680   msg = rport->last_stun_msg();
1681   ASSERT_TRUE(msg != NULL);
1682   EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE, msg->type());
1683   EXPECT_FALSE(msg->IsLegacy());
1684   const StunErrorCodeAttribute* error_attr = msg->GetErrorCode();
1685   ASSERT_TRUE(error_attr != NULL);
1686   EXPECT_EQ(STUN_ERROR_SERVER_ERROR, error_attr->code());
1687   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR), error_attr->reason());
1688   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
1689   EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
1690       rport->last_stun_buf()->Data(), rport->last_stun_buf()->Length(),
1691       "rpass"));
1692   EXPECT_TRUE(msg->GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
1693   EXPECT_TRUE(StunMessage::ValidateFingerprint(
1694       lport->last_stun_buf()->Data(), lport->last_stun_buf()->Length()));
1695   // No USERNAME with ICE.
1696   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USERNAME) == NULL);
1697   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_PRIORITY) == NULL);
1698 
1699   // Testing STUN binding requests from rport --> lport, having ICE_CONTROLLED
1700   // and (incremented) RETRANSMIT_COUNT attributes.
1701   rport->Reset();
1702   rport->set_send_retransmit_count_attribute(true);
1703   rconn->Ping(0);
1704   rconn->Ping(0);
1705   rconn->Ping(0);
1706   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
1707   msg = rport->last_stun_msg();
1708   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
1709   const StunUInt64Attribute* ice_controlled_attr =
1710       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
1711   ASSERT_TRUE(ice_controlled_attr != NULL);
1712   EXPECT_EQ(rport->IceTiebreaker(), ice_controlled_attr->value());
1713   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
1714 
1715   // Request should include ping count.
1716   const StunUInt32Attribute* retransmit_attr =
1717       msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1718   ASSERT_TRUE(retransmit_attr != NULL);
1719   EXPECT_EQ(2U, retransmit_attr->value());
1720 
1721   // Respond with a BINDING-RESPONSE.
1722   request.reset(CopyStunMessage(msg));
1723   lport->SendBindingResponse(request.get(), rport->Candidates()[0].address());
1724   msg = lport->last_stun_msg();
1725 
1726   // Response should include same ping count.
1727   retransmit_attr = msg->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
1728   ASSERT_TRUE(retransmit_attr != NULL);
1729   EXPECT_EQ(2U, retransmit_attr->value());
1730 }
1731 
TEST_F(PortTest,TestUseCandidateAttribute)1732 TEST_F(PortTest, TestUseCandidateAttribute) {
1733   rtc::scoped_ptr<TestPort> lport(
1734       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
1735   rtc::scoped_ptr<TestPort> rport(
1736       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1737   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1738   lport->SetIceTiebreaker(kTiebreaker1);
1739   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
1740   rport->SetIceTiebreaker(kTiebreaker2);
1741 
1742   // Send a fake ping from lport to rport.
1743   lport->PrepareAddress();
1744   rport->PrepareAddress();
1745   ASSERT_FALSE(rport->Candidates().empty());
1746   Connection* lconn = lport->CreateConnection(
1747       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
1748   lconn->Ping(0);
1749   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
1750   IceMessage* msg = lport->last_stun_msg();
1751   const StunUInt64Attribute* ice_controlling_attr =
1752       msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
1753   ASSERT_TRUE(ice_controlling_attr != NULL);
1754   const StunByteStringAttribute* use_candidate_attr = msg->GetByteString(
1755       STUN_ATTR_USE_CANDIDATE);
1756   ASSERT_TRUE(use_candidate_attr != NULL);
1757 }
1758 
1759 // Test handling STUN messages.
TEST_F(PortTest,TestHandleStunMessage)1760 TEST_F(PortTest, TestHandleStunMessage) {
1761   // Our port will act as the "remote" port.
1762   rtc::scoped_ptr<TestPort> port(
1763       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1764 
1765   rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1766   rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1767   rtc::SocketAddress addr(kLocalAddr1);
1768   std::string username;
1769 
1770   // BINDING-REQUEST from local to remote with valid ICE username,
1771   // MESSAGE-INTEGRITY, and FINGERPRINT.
1772   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1773                                              "rfrag:lfrag"));
1774   in_msg->AddMessageIntegrity("rpass");
1775   in_msg->AddFingerprint();
1776   WriteStunMessage(in_msg.get(), buf.get());
1777   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1778                                    out_msg.accept(), &username));
1779   EXPECT_TRUE(out_msg.get() != NULL);
1780   EXPECT_EQ("lfrag", username);
1781 
1782   // BINDING-RESPONSE without username, with MESSAGE-INTEGRITY and FINGERPRINT.
1783   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1784   in_msg->AddAttribute(
1785       new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1786   in_msg->AddMessageIntegrity("rpass");
1787   in_msg->AddFingerprint();
1788   WriteStunMessage(in_msg.get(), buf.get());
1789   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1790                                    out_msg.accept(), &username));
1791   EXPECT_TRUE(out_msg.get() != NULL);
1792   EXPECT_EQ("", username);
1793 
1794   // BINDING-ERROR-RESPONSE without username, with error, M-I, and FINGERPRINT.
1795   in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1796   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1797       STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1798   in_msg->AddFingerprint();
1799   WriteStunMessage(in_msg.get(), buf.get());
1800   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1801                                    out_msg.accept(), &username));
1802   EXPECT_TRUE(out_msg.get() != NULL);
1803   EXPECT_EQ("", username);
1804   ASSERT_TRUE(out_msg->GetErrorCode() != NULL);
1805   EXPECT_EQ(STUN_ERROR_SERVER_ERROR, out_msg->GetErrorCode()->code());
1806   EXPECT_EQ(std::string(STUN_ERROR_REASON_SERVER_ERROR),
1807       out_msg->GetErrorCode()->reason());
1808 }
1809 
1810 // Tests handling of ICE binding requests with missing or incorrect usernames.
TEST_F(PortTest,TestHandleStunMessageBadUsername)1811 TEST_F(PortTest, TestHandleStunMessageBadUsername) {
1812   rtc::scoped_ptr<TestPort> port(
1813       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1814 
1815   rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1816   rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1817   rtc::SocketAddress addr(kLocalAddr1);
1818   std::string username;
1819 
1820   // BINDING-REQUEST with no username.
1821   in_msg.reset(CreateStunMessage(STUN_BINDING_REQUEST));
1822   in_msg->AddMessageIntegrity("rpass");
1823   in_msg->AddFingerprint();
1824   WriteStunMessage(in_msg.get(), buf.get());
1825   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1826                                    out_msg.accept(), &username));
1827   EXPECT_TRUE(out_msg.get() == NULL);
1828   EXPECT_EQ("", username);
1829   EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1830 
1831   // BINDING-REQUEST with empty username.
1832   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, ""));
1833   in_msg->AddMessageIntegrity("rpass");
1834   in_msg->AddFingerprint();
1835   WriteStunMessage(in_msg.get(), buf.get());
1836   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1837                                    out_msg.accept(), &username));
1838   EXPECT_TRUE(out_msg.get() == NULL);
1839   EXPECT_EQ("", username);
1840   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1841 
1842   // BINDING-REQUEST with too-short username.
1843   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST, "rfra"));
1844   in_msg->AddMessageIntegrity("rpass");
1845   in_msg->AddFingerprint();
1846   WriteStunMessage(in_msg.get(), buf.get());
1847   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1848                                    out_msg.accept(), &username));
1849   EXPECT_TRUE(out_msg.get() == NULL);
1850   EXPECT_EQ("", username);
1851   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1852 
1853   // BINDING-REQUEST with reversed username.
1854   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1855                                             "lfrag:rfrag"));
1856   in_msg->AddMessageIntegrity("rpass");
1857   in_msg->AddFingerprint();
1858   WriteStunMessage(in_msg.get(), buf.get());
1859   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1860                                    out_msg.accept(), &username));
1861   EXPECT_TRUE(out_msg.get() == NULL);
1862   EXPECT_EQ("", username);
1863   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1864 
1865   // BINDING-REQUEST with garbage username.
1866   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1867                                              "abcd:efgh"));
1868   in_msg->AddMessageIntegrity("rpass");
1869   in_msg->AddFingerprint();
1870   WriteStunMessage(in_msg.get(), buf.get());
1871   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1872                                    out_msg.accept(), &username));
1873   EXPECT_TRUE(out_msg.get() == NULL);
1874   EXPECT_EQ("", username);
1875   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1876 }
1877 
1878 // Test handling STUN messages with missing or malformed M-I.
TEST_F(PortTest,TestHandleStunMessageBadMessageIntegrity)1879 TEST_F(PortTest, TestHandleStunMessageBadMessageIntegrity) {
1880   // Our port will act as the "remote" port.
1881   rtc::scoped_ptr<TestPort> port(
1882       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1883 
1884   rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1885   rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1886   rtc::SocketAddress addr(kLocalAddr1);
1887   std::string username;
1888 
1889   // BINDING-REQUEST from local to remote with valid ICE username and
1890   // FINGERPRINT, but no MESSAGE-INTEGRITY.
1891   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1892                                              "rfrag:lfrag"));
1893   in_msg->AddFingerprint();
1894   WriteStunMessage(in_msg.get(), buf.get());
1895   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1896                                    out_msg.accept(), &username));
1897   EXPECT_TRUE(out_msg.get() == NULL);
1898   EXPECT_EQ("", username);
1899   EXPECT_EQ(STUN_ERROR_BAD_REQUEST, port->last_stun_error_code());
1900 
1901   // BINDING-REQUEST from local to remote with valid ICE username and
1902   // FINGERPRINT, but invalid MESSAGE-INTEGRITY.
1903   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1904                                              "rfrag:lfrag"));
1905   in_msg->AddMessageIntegrity("invalid");
1906   in_msg->AddFingerprint();
1907   WriteStunMessage(in_msg.get(), buf.get());
1908   EXPECT_TRUE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1909                                    out_msg.accept(), &username));
1910   EXPECT_TRUE(out_msg.get() == NULL);
1911   EXPECT_EQ("", username);
1912   EXPECT_EQ(STUN_ERROR_UNAUTHORIZED, port->last_stun_error_code());
1913 
1914   // TODO: BINDING-RESPONSES and BINDING-ERROR-RESPONSES are checked
1915   // by the Connection, not the Port, since they require the remote username.
1916   // Change this test to pass in data via Connection::OnReadPacket instead.
1917 }
1918 
1919 // Test handling STUN messages with missing or malformed FINGERPRINT.
TEST_F(PortTest,TestHandleStunMessageBadFingerprint)1920 TEST_F(PortTest, TestHandleStunMessageBadFingerprint) {
1921   // Our port will act as the "remote" port.
1922   rtc::scoped_ptr<TestPort> port(
1923       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
1924 
1925   rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1926   rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1927   rtc::SocketAddress addr(kLocalAddr1);
1928   std::string username;
1929 
1930   // BINDING-REQUEST from local to remote with valid ICE username and
1931   // MESSAGE-INTEGRITY, but no FINGERPRINT; GetStunMessage should fail.
1932   in_msg.reset(CreateStunMessageWithUsername(STUN_BINDING_REQUEST,
1933                                              "rfrag:lfrag"));
1934   in_msg->AddMessageIntegrity("rpass");
1935   WriteStunMessage(in_msg.get(), buf.get());
1936   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1937                                     out_msg.accept(), &username));
1938   EXPECT_EQ(0, port->last_stun_error_code());
1939 
1940   // Now, add a fingerprint, but munge the message so it's not valid.
1941   in_msg->AddFingerprint();
1942   in_msg->SetTransactionID("TESTTESTBADD");
1943   WriteStunMessage(in_msg.get(), buf.get());
1944   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1945                                     out_msg.accept(), &username));
1946   EXPECT_EQ(0, port->last_stun_error_code());
1947 
1948   // Valid BINDING-RESPONSE, except no FINGERPRINT.
1949   in_msg.reset(CreateStunMessage(STUN_BINDING_RESPONSE));
1950   in_msg->AddAttribute(
1951       new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, kLocalAddr2));
1952   in_msg->AddMessageIntegrity("rpass");
1953   WriteStunMessage(in_msg.get(), buf.get());
1954   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1955                                     out_msg.accept(), &username));
1956   EXPECT_EQ(0, port->last_stun_error_code());
1957 
1958   // Now, add a fingerprint, but munge the message so it's not valid.
1959   in_msg->AddFingerprint();
1960   in_msg->SetTransactionID("TESTTESTBADD");
1961   WriteStunMessage(in_msg.get(), buf.get());
1962   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1963                                     out_msg.accept(), &username));
1964   EXPECT_EQ(0, port->last_stun_error_code());
1965 
1966   // Valid BINDING-ERROR-RESPONSE, except no FINGERPRINT.
1967   in_msg.reset(CreateStunMessage(STUN_BINDING_ERROR_RESPONSE));
1968   in_msg->AddAttribute(new StunErrorCodeAttribute(STUN_ATTR_ERROR_CODE,
1969       STUN_ERROR_SERVER_ERROR, STUN_ERROR_REASON_SERVER_ERROR));
1970   in_msg->AddMessageIntegrity("rpass");
1971   WriteStunMessage(in_msg.get(), buf.get());
1972   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1973                                     out_msg.accept(), &username));
1974   EXPECT_EQ(0, port->last_stun_error_code());
1975 
1976   // Now, add a fingerprint, but munge the message so it's not valid.
1977   in_msg->AddFingerprint();
1978   in_msg->SetTransactionID("TESTTESTBADD");
1979   WriteStunMessage(in_msg.get(), buf.get());
1980   EXPECT_FALSE(port->GetStunMessage(buf->Data(), buf->Length(), addr,
1981                                     out_msg.accept(), &username));
1982   EXPECT_EQ(0, port->last_stun_error_code());
1983 }
1984 
1985 // Test handling of STUN binding indication messages . STUN binding
1986 // indications are allowed only to the connection which is in read mode.
TEST_F(PortTest,TestHandleStunBindingIndication)1987 TEST_F(PortTest, TestHandleStunBindingIndication) {
1988   rtc::scoped_ptr<TestPort> lport(
1989       CreateTestPort(kLocalAddr2, "lfrag", "lpass"));
1990   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
1991   lport->SetIceTiebreaker(kTiebreaker1);
1992 
1993   // Verifying encoding and decoding STUN indication message.
1994   rtc::scoped_ptr<IceMessage> in_msg, out_msg;
1995   rtc::scoped_ptr<ByteBuffer> buf(new ByteBuffer());
1996   rtc::SocketAddress addr(kLocalAddr1);
1997   std::string username;
1998 
1999   in_msg.reset(CreateStunMessage(STUN_BINDING_INDICATION));
2000   in_msg->AddFingerprint();
2001   WriteStunMessage(in_msg.get(), buf.get());
2002   EXPECT_TRUE(lport->GetStunMessage(buf->Data(), buf->Length(), addr,
2003                                     out_msg.accept(), &username));
2004   EXPECT_TRUE(out_msg.get() != NULL);
2005   EXPECT_EQ(out_msg->type(), STUN_BINDING_INDICATION);
2006   EXPECT_EQ("", username);
2007 
2008   // Verify connection can handle STUN indication and updates
2009   // last_ping_received.
2010   rtc::scoped_ptr<TestPort> rport(
2011       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2012   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2013   rport->SetIceTiebreaker(kTiebreaker2);
2014 
2015   lport->PrepareAddress();
2016   rport->PrepareAddress();
2017   ASSERT_FALSE(lport->Candidates().empty());
2018   ASSERT_FALSE(rport->Candidates().empty());
2019 
2020   Connection* lconn = lport->CreateConnection(rport->Candidates()[0],
2021                                               Port::ORIGIN_MESSAGE);
2022   Connection* rconn = rport->CreateConnection(lport->Candidates()[0],
2023                                               Port::ORIGIN_MESSAGE);
2024   rconn->Ping(0);
2025 
2026   ASSERT_TRUE_WAIT(rport->last_stun_msg() != NULL, 1000);
2027   IceMessage* msg = rport->last_stun_msg();
2028   EXPECT_EQ(STUN_BINDING_REQUEST, msg->type());
2029   // Send rport binding request to lport.
2030   lconn->OnReadPacket(rport->last_stun_buf()->Data(),
2031                       rport->last_stun_buf()->Length(),
2032                       rtc::PacketTime());
2033   ASSERT_TRUE_WAIT(lport->last_stun_msg() != NULL, 1000);
2034   EXPECT_EQ(STUN_BINDING_RESPONSE, lport->last_stun_msg()->type());
2035   uint32_t last_ping_received1 = lconn->last_ping_received();
2036 
2037   // Adding a delay of 100ms.
2038   rtc::Thread::Current()->ProcessMessages(100);
2039   // Pinging lconn using stun indication message.
2040   lconn->OnReadPacket(buf->Data(), buf->Length(), rtc::PacketTime());
2041   uint32_t last_ping_received2 = lconn->last_ping_received();
2042   EXPECT_GT(last_ping_received2, last_ping_received1);
2043 }
2044 
TEST_F(PortTest,TestComputeCandidatePriority)2045 TEST_F(PortTest, TestComputeCandidatePriority) {
2046   rtc::scoped_ptr<TestPort> port(
2047       CreateTestPort(kLocalAddr1, "name", "pass"));
2048   port->set_type_preference(90);
2049   port->set_component(177);
2050   port->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2051   port->AddCandidateAddress(SocketAddress("2001:db8::1234", 1234));
2052   port->AddCandidateAddress(SocketAddress("fc12:3456::1234", 1234));
2053   port->AddCandidateAddress(SocketAddress("::ffff:192.168.1.4", 1234));
2054   port->AddCandidateAddress(SocketAddress("::192.168.1.4", 1234));
2055   port->AddCandidateAddress(SocketAddress("2002::1234:5678", 1234));
2056   port->AddCandidateAddress(SocketAddress("2001::1234:5678", 1234));
2057   port->AddCandidateAddress(SocketAddress("fecf::1234:5678", 1234));
2058   port->AddCandidateAddress(SocketAddress("3ffe::1234:5678", 1234));
2059   // These should all be:
2060   // (90 << 24) | ([rfc3484 pref value] << 8) | (256 - 177)
2061   uint32_t expected_priority_v4 = 1509957199U;
2062   uint32_t expected_priority_v6 = 1509959759U;
2063   uint32_t expected_priority_ula = 1509962319U;
2064   uint32_t expected_priority_v4mapped = expected_priority_v4;
2065   uint32_t expected_priority_v4compat = 1509949775U;
2066   uint32_t expected_priority_6to4 = 1509954639U;
2067   uint32_t expected_priority_teredo = 1509952079U;
2068   uint32_t expected_priority_sitelocal = 1509949775U;
2069   uint32_t expected_priority_6bone = 1509949775U;
2070   ASSERT_EQ(expected_priority_v4, port->Candidates()[0].priority());
2071   ASSERT_EQ(expected_priority_v6, port->Candidates()[1].priority());
2072   ASSERT_EQ(expected_priority_ula, port->Candidates()[2].priority());
2073   ASSERT_EQ(expected_priority_v4mapped, port->Candidates()[3].priority());
2074   ASSERT_EQ(expected_priority_v4compat, port->Candidates()[4].priority());
2075   ASSERT_EQ(expected_priority_6to4, port->Candidates()[5].priority());
2076   ASSERT_EQ(expected_priority_teredo, port->Candidates()[6].priority());
2077   ASSERT_EQ(expected_priority_sitelocal, port->Candidates()[7].priority());
2078   ASSERT_EQ(expected_priority_6bone, port->Candidates()[8].priority());
2079 }
2080 
2081 // In the case of shared socket, one port may be shared by local and stun.
2082 // Test that candidates with different types will have different foundation.
TEST_F(PortTest,TestFoundation)2083 TEST_F(PortTest, TestFoundation) {
2084   rtc::scoped_ptr<TestPort> testport(
2085       CreateTestPort(kLocalAddr1, "name", "pass"));
2086   testport->AddCandidateAddress(kLocalAddr1, kLocalAddr1,
2087                                 LOCAL_PORT_TYPE,
2088                                 cricket::ICE_TYPE_PREFERENCE_HOST, false);
2089   testport->AddCandidateAddress(kLocalAddr2, kLocalAddr1,
2090                                 STUN_PORT_TYPE,
2091                                 cricket::ICE_TYPE_PREFERENCE_SRFLX, true);
2092   EXPECT_NE(testport->Candidates()[0].foundation(),
2093             testport->Candidates()[1].foundation());
2094 }
2095 
2096 // This test verifies the foundation of different types of ICE candidates.
TEST_F(PortTest,TestCandidateFoundation)2097 TEST_F(PortTest, TestCandidateFoundation) {
2098   rtc::scoped_ptr<rtc::NATServer> nat_server(
2099       CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2100   rtc::scoped_ptr<UDPPort> udpport1(CreateUdpPort(kLocalAddr1));
2101   udpport1->PrepareAddress();
2102   rtc::scoped_ptr<UDPPort> udpport2(CreateUdpPort(kLocalAddr1));
2103   udpport2->PrepareAddress();
2104   EXPECT_EQ(udpport1->Candidates()[0].foundation(),
2105             udpport2->Candidates()[0].foundation());
2106   rtc::scoped_ptr<TCPPort> tcpport1(CreateTcpPort(kLocalAddr1));
2107   tcpport1->PrepareAddress();
2108   rtc::scoped_ptr<TCPPort> tcpport2(CreateTcpPort(kLocalAddr1));
2109   tcpport2->PrepareAddress();
2110   EXPECT_EQ(tcpport1->Candidates()[0].foundation(),
2111             tcpport2->Candidates()[0].foundation());
2112   rtc::scoped_ptr<Port> stunport(
2113       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2114   stunport->PrepareAddress();
2115   ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2116   EXPECT_NE(tcpport1->Candidates()[0].foundation(),
2117             stunport->Candidates()[0].foundation());
2118   EXPECT_NE(tcpport2->Candidates()[0].foundation(),
2119             stunport->Candidates()[0].foundation());
2120   EXPECT_NE(udpport1->Candidates()[0].foundation(),
2121             stunport->Candidates()[0].foundation());
2122   EXPECT_NE(udpport2->Candidates()[0].foundation(),
2123             stunport->Candidates()[0].foundation());
2124   // Verify GTURN candidate foundation.
2125   rtc::scoped_ptr<RelayPort> relayport(
2126       CreateGturnPort(kLocalAddr1));
2127   relayport->AddServerAddress(
2128       cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2129   relayport->PrepareAddress();
2130   ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2131   EXPECT_NE(udpport1->Candidates()[0].foundation(),
2132             relayport->Candidates()[0].foundation());
2133   EXPECT_NE(udpport2->Candidates()[0].foundation(),
2134             relayport->Candidates()[0].foundation());
2135   // Verifying TURN candidate foundation.
2136   rtc::scoped_ptr<Port> turnport1(CreateTurnPort(
2137       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2138   turnport1->PrepareAddress();
2139   ASSERT_EQ_WAIT(1U, turnport1->Candidates().size(), kTimeout);
2140   EXPECT_NE(udpport1->Candidates()[0].foundation(),
2141             turnport1->Candidates()[0].foundation());
2142   EXPECT_NE(udpport2->Candidates()[0].foundation(),
2143             turnport1->Candidates()[0].foundation());
2144   EXPECT_NE(stunport->Candidates()[0].foundation(),
2145             turnport1->Candidates()[0].foundation());
2146   rtc::scoped_ptr<Port> turnport2(CreateTurnPort(
2147       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2148   turnport2->PrepareAddress();
2149   ASSERT_EQ_WAIT(1U, turnport2->Candidates().size(), kTimeout);
2150   EXPECT_EQ(turnport1->Candidates()[0].foundation(),
2151             turnport2->Candidates()[0].foundation());
2152 
2153   // Running a second turn server, to get different base IP address.
2154   SocketAddress kTurnUdpIntAddr2("99.99.98.4", STUN_SERVER_PORT);
2155   SocketAddress kTurnUdpExtAddr2("99.99.98.5", 0);
2156   TestTurnServer turn_server2(
2157       rtc::Thread::Current(), kTurnUdpIntAddr2, kTurnUdpExtAddr2);
2158   rtc::scoped_ptr<Port> turnport3(CreateTurnPort(
2159       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP,
2160       kTurnUdpIntAddr2));
2161   turnport3->PrepareAddress();
2162   ASSERT_EQ_WAIT(1U, turnport3->Candidates().size(), kTimeout);
2163   EXPECT_NE(turnport3->Candidates()[0].foundation(),
2164             turnport2->Candidates()[0].foundation());
2165 }
2166 
2167 // This test verifies the related addresses of different types of
2168 // ICE candiates.
TEST_F(PortTest,TestCandidateRelatedAddress)2169 TEST_F(PortTest, TestCandidateRelatedAddress) {
2170   rtc::scoped_ptr<rtc::NATServer> nat_server(
2171       CreateNatServer(kNatAddr1, NAT_OPEN_CONE));
2172   rtc::scoped_ptr<UDPPort> udpport(CreateUdpPort(kLocalAddr1));
2173   udpport->PrepareAddress();
2174   // For UDPPort, related address will be empty.
2175   EXPECT_TRUE(udpport->Candidates()[0].related_address().IsNil());
2176   // Testing related address for stun candidates.
2177   // For stun candidate related address must be equal to the base
2178   // socket address.
2179   rtc::scoped_ptr<StunPort> stunport(
2180       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2181   stunport->PrepareAddress();
2182   ASSERT_EQ_WAIT(1U, stunport->Candidates().size(), kTimeout);
2183   // Check STUN candidate address.
2184   EXPECT_EQ(stunport->Candidates()[0].address().ipaddr(),
2185             kNatAddr1.ipaddr());
2186   // Check STUN candidate related address.
2187   EXPECT_EQ(stunport->Candidates()[0].related_address(),
2188             stunport->GetLocalAddress());
2189   // Verifying the related address for the GTURN candidates.
2190   // NOTE: In case of GTURN related address will be equal to the mapped
2191   // address, but address(mapped) will not be XOR.
2192   rtc::scoped_ptr<RelayPort> relayport(
2193       CreateGturnPort(kLocalAddr1));
2194   relayport->AddServerAddress(
2195       cricket::ProtocolAddress(kRelayUdpIntAddr, cricket::PROTO_UDP));
2196   relayport->PrepareAddress();
2197   ASSERT_EQ_WAIT(1U, relayport->Candidates().size(), kTimeout);
2198   // For Gturn related address is set to "0.0.0.0:0"
2199   EXPECT_EQ(rtc::SocketAddress(),
2200             relayport->Candidates()[0].related_address());
2201   // Verifying the related address for TURN candidate.
2202   // For TURN related address must be equal to the mapped address.
2203   rtc::scoped_ptr<Port> turnport(CreateTurnPort(
2204       kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2205   turnport->PrepareAddress();
2206   ASSERT_EQ_WAIT(1U, turnport->Candidates().size(), kTimeout);
2207   EXPECT_EQ(kTurnUdpExtAddr.ipaddr(),
2208             turnport->Candidates()[0].address().ipaddr());
2209   EXPECT_EQ(kNatAddr1.ipaddr(),
2210             turnport->Candidates()[0].related_address().ipaddr());
2211 }
2212 
2213 // Test priority value overflow handling when preference is set to 3.
TEST_F(PortTest,TestCandidatePriority)2214 TEST_F(PortTest, TestCandidatePriority) {
2215   cricket::Candidate cand1;
2216   cand1.set_priority(3);
2217   cricket::Candidate cand2;
2218   cand2.set_priority(1);
2219   EXPECT_TRUE(cand1.priority() > cand2.priority());
2220 }
2221 
2222 // Test the Connection priority is calculated correctly.
TEST_F(PortTest,TestConnectionPriority)2223 TEST_F(PortTest, TestConnectionPriority) {
2224   rtc::scoped_ptr<TestPort> lport(
2225       CreateTestPort(kLocalAddr1, "lfrag", "lpass"));
2226   lport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_HOST);
2227   rtc::scoped_ptr<TestPort> rport(
2228       CreateTestPort(kLocalAddr2, "rfrag", "rpass"));
2229   rport->set_type_preference(cricket::ICE_TYPE_PREFERENCE_RELAY);
2230   lport->set_component(123);
2231   lport->AddCandidateAddress(SocketAddress("192.168.1.4", 1234));
2232   rport->set_component(23);
2233   rport->AddCandidateAddress(SocketAddress("10.1.1.100", 1234));
2234 
2235   EXPECT_EQ(0x7E001E85U, lport->Candidates()[0].priority());
2236   EXPECT_EQ(0x2001EE9U, rport->Candidates()[0].priority());
2237 
2238   // RFC 5245
2239   // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
2240   lport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2241   rport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2242   Connection* lconn = lport->CreateConnection(
2243       rport->Candidates()[0], Port::ORIGIN_MESSAGE);
2244 #if defined(WEBRTC_WIN)
2245   EXPECT_EQ(0x2001EE9FC003D0BU, lconn->priority());
2246 #else
2247   EXPECT_EQ(0x2001EE9FC003D0BLLU, lconn->priority());
2248 #endif
2249 
2250   lport->SetIceRole(cricket::ICEROLE_CONTROLLED);
2251   rport->SetIceRole(cricket::ICEROLE_CONTROLLING);
2252   Connection* rconn = rport->CreateConnection(
2253       lport->Candidates()[0], Port::ORIGIN_MESSAGE);
2254 #if defined(WEBRTC_WIN)
2255   EXPECT_EQ(0x2001EE9FC003D0AU, rconn->priority());
2256 #else
2257   EXPECT_EQ(0x2001EE9FC003D0ALLU, rconn->priority());
2258 #endif
2259 }
2260 
TEST_F(PortTest,TestWritableState)2261 TEST_F(PortTest, TestWritableState) {
2262   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2263   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2264   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2265   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2266 
2267   // Set up channels.
2268   TestChannel ch1(port1);
2269   TestChannel ch2(port2);
2270 
2271   // Acquire addresses.
2272   ch1.Start();
2273   ch2.Start();
2274   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2275   ASSERT_EQ_WAIT(1, ch2.complete_count(), kTimeout);
2276 
2277   // Send a ping from src to dst.
2278   ch1.CreateConnection(GetCandidate(port2));
2279   ASSERT_TRUE(ch1.conn() != NULL);
2280   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2281   EXPECT_TRUE_WAIT(ch1.conn()->connected(), kTimeout);  // for TCP connect
2282   ch1.Ping();
2283   WAIT(!ch2.remote_address().IsNil(), kTimeout);
2284 
2285   // Data should be unsendable until the connection is accepted.
2286   char data[] = "abcd";
2287   int data_size = arraysize(data);
2288   rtc::PacketOptions options;
2289   EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2290 
2291   // Accept the connection to return the binding response, transition to
2292   // writable, and allow data to be sent.
2293   ch2.AcceptConnection(GetCandidate(port1));
2294   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2295                  kTimeout);
2296   EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2297 
2298   // Ask the connection to update state as if enough time has passed to lose
2299   // full writability and 5 pings went unresponded to. We'll accomplish the
2300   // latter by sending pings but not pumping messages.
2301   for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2302     ch1.Ping(i);
2303   }
2304   uint32_t unreliable_timeout_delay = CONNECTION_WRITE_CONNECT_TIMEOUT + 500u;
2305   ch1.conn()->UpdateState(unreliable_timeout_delay);
2306   EXPECT_EQ(Connection::STATE_WRITE_UNRELIABLE, ch1.conn()->write_state());
2307 
2308   // Data should be able to be sent in this state.
2309   EXPECT_EQ(data_size, ch1.conn()->Send(data, data_size, options));
2310 
2311   // And now allow the other side to process the pings and send binding
2312   // responses.
2313   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2314                  kTimeout);
2315 
2316   // Wait long enough for a full timeout (past however long we've already
2317   // waited).
2318   for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2319     ch1.Ping(unreliable_timeout_delay + i);
2320   }
2321   ch1.conn()->UpdateState(unreliable_timeout_delay + CONNECTION_WRITE_TIMEOUT +
2322                           500u);
2323   EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2324 
2325   // Now that the connection has completely timed out, data send should fail.
2326   EXPECT_EQ(SOCKET_ERROR, ch1.conn()->Send(data, data_size, options));
2327 
2328   ch1.Stop();
2329   ch2.Stop();
2330 }
2331 
TEST_F(PortTest,TestTimeoutForNeverWritable)2332 TEST_F(PortTest, TestTimeoutForNeverWritable) {
2333   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2334   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2335   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2336   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2337 
2338   // Set up channels.
2339   TestChannel ch1(port1);
2340   TestChannel ch2(port2);
2341 
2342   // Acquire addresses.
2343   ch1.Start();
2344   ch2.Start();
2345 
2346   ch1.CreateConnection(GetCandidate(port2));
2347   ASSERT_TRUE(ch1.conn() != NULL);
2348   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2349 
2350   // Attempt to go directly to write timeout.
2351   for (uint32_t i = 1; i <= CONNECTION_WRITE_CONNECT_FAILURES; ++i) {
2352     ch1.Ping(i);
2353   }
2354   ch1.conn()->UpdateState(CONNECTION_WRITE_TIMEOUT + 500u);
2355   EXPECT_EQ(Connection::STATE_WRITE_TIMEOUT, ch1.conn()->write_state());
2356 }
2357 
2358 // This test verifies the connection setup between ICEMODE_FULL
2359 // and ICEMODE_LITE.
2360 // In this test |ch1| behaves like FULL mode client and we have created
2361 // port which responds to the ping message just like LITE client.
TEST_F(PortTest,TestIceLiteConnectivity)2362 TEST_F(PortTest, TestIceLiteConnectivity) {
2363   TestPort* ice_full_port = CreateTestPort(
2364       kLocalAddr1, "lfrag", "lpass",
2365       cricket::ICEROLE_CONTROLLING, kTiebreaker1);
2366 
2367   rtc::scoped_ptr<TestPort> ice_lite_port(CreateTestPort(
2368       kLocalAddr2, "rfrag", "rpass",
2369       cricket::ICEROLE_CONTROLLED, kTiebreaker2));
2370   // Setup TestChannel. This behaves like FULL mode client.
2371   TestChannel ch1(ice_full_port);
2372   ch1.SetIceMode(ICEMODE_FULL);
2373 
2374   // Start gathering candidates.
2375   ch1.Start();
2376   ice_lite_port->PrepareAddress();
2377 
2378   ASSERT_EQ_WAIT(1, ch1.complete_count(), kTimeout);
2379   ASSERT_FALSE(ice_lite_port->Candidates().empty());
2380 
2381   ch1.CreateConnection(GetCandidate(ice_lite_port.get()));
2382   ASSERT_TRUE(ch1.conn() != NULL);
2383   EXPECT_EQ(Connection::STATE_WRITE_INIT, ch1.conn()->write_state());
2384 
2385   // Send ping from full mode client.
2386   // This ping must not have USE_CANDIDATE_ATTR.
2387   ch1.Ping();
2388 
2389   // Verify stun ping is without USE_CANDIDATE_ATTR. Getting message directly
2390   // from port.
2391   ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2392   IceMessage* msg = ice_full_port->last_stun_msg();
2393   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) == NULL);
2394 
2395   // Respond with a BINDING-RESPONSE from litemode client.
2396   // NOTE: Ideally we should't create connection at this stage from lite
2397   // port, as it should be done only after receiving ping with USE_CANDIDATE.
2398   // But we need a connection to send a response message.
2399   ice_lite_port->CreateConnection(
2400       ice_full_port->Candidates()[0], cricket::Port::ORIGIN_MESSAGE);
2401   rtc::scoped_ptr<IceMessage> request(CopyStunMessage(msg));
2402   ice_lite_port->SendBindingResponse(
2403       request.get(), ice_full_port->Candidates()[0].address());
2404 
2405   // Feeding the respone message from litemode to the full mode connection.
2406   ch1.conn()->OnReadPacket(ice_lite_port->last_stun_buf()->Data(),
2407                            ice_lite_port->last_stun_buf()->Length(),
2408                            rtc::PacketTime());
2409   // Verifying full mode connection becomes writable from the response.
2410   EXPECT_EQ_WAIT(Connection::STATE_WRITABLE, ch1.conn()->write_state(),
2411                  kTimeout);
2412   EXPECT_TRUE_WAIT(ch1.nominated(), kTimeout);
2413 
2414   // Clear existing stun messsages. Otherwise we will process old stun
2415   // message right after we send ping.
2416   ice_full_port->Reset();
2417   // Send ping. This must have USE_CANDIDATE_ATTR.
2418   ch1.Ping();
2419   ASSERT_TRUE_WAIT(ice_full_port->last_stun_msg() != NULL, 1000);
2420   msg = ice_full_port->last_stun_msg();
2421   EXPECT_TRUE(msg->GetByteString(STUN_ATTR_USE_CANDIDATE) != NULL);
2422   ch1.Stop();
2423 }
2424 
2425 // This test case verifies that the CONTROLLING port does not time out.
TEST_F(PortTest,TestControllingNoTimeout)2426 TEST_F(PortTest, TestControllingNoTimeout) {
2427   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2428   ConnectToSignalDestroyed(port1);
2429   port1->set_timeout_delay(10);  // milliseconds
2430   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2431   port1->SetIceTiebreaker(kTiebreaker1);
2432 
2433   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2434   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2435   port2->SetIceTiebreaker(kTiebreaker2);
2436 
2437   // Set up channels and ensure both ports will be deleted.
2438   TestChannel ch1(port1);
2439   TestChannel ch2(port2);
2440 
2441   // Simulate a connection that succeeds, and then is destroyed.
2442   StartConnectAndStopChannels(&ch1, &ch2);
2443 
2444   // After the connection is destroyed, the port should not be destroyed.
2445   rtc::Thread::Current()->ProcessMessages(kTimeout);
2446   EXPECT_FALSE(destroyed());
2447 }
2448 
2449 // This test case verifies that the CONTROLLED port does time out, but only
2450 // after connectivity is lost.
TEST_F(PortTest,TestControlledTimeout)2451 TEST_F(PortTest, TestControlledTimeout) {
2452   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2453   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2454   port1->SetIceTiebreaker(kTiebreaker1);
2455 
2456   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2457   ConnectToSignalDestroyed(port2);
2458   port2->set_timeout_delay(10);  // milliseconds
2459   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2460   port2->SetIceTiebreaker(kTiebreaker2);
2461 
2462   // The connection must not be destroyed before a connection is attempted.
2463   EXPECT_FALSE(destroyed());
2464 
2465   port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2466   port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2467 
2468   // Set up channels and ensure both ports will be deleted.
2469   TestChannel ch1(port1);
2470   TestChannel ch2(port2);
2471 
2472   // Simulate a connection that succeeds, and then is destroyed.
2473   StartConnectAndStopChannels(&ch1, &ch2);
2474 
2475   // The controlled port should be destroyed after 10 milliseconds.
2476   EXPECT_TRUE_WAIT(destroyed(), kTimeout);
2477 }
2478 
2479 // This test case verifies that if the role of a port changes from controlled
2480 // to controlling after all connections fail, the port will not be destroyed.
TEST_F(PortTest,TestControlledToControllingNotDestroyed)2481 TEST_F(PortTest, TestControlledToControllingNotDestroyed) {
2482   UDPPort* port1 = CreateUdpPort(kLocalAddr1);
2483   port1->SetIceRole(cricket::ICEROLE_CONTROLLING);
2484   port1->SetIceTiebreaker(kTiebreaker1);
2485 
2486   UDPPort* port2 = CreateUdpPort(kLocalAddr2);
2487   ConnectToSignalDestroyed(port2);
2488   port2->set_timeout_delay(10);  // milliseconds
2489   port2->SetIceRole(cricket::ICEROLE_CONTROLLED);
2490   port2->SetIceTiebreaker(kTiebreaker2);
2491 
2492   // The connection must not be destroyed before a connection is attempted.
2493   EXPECT_FALSE(destroyed());
2494 
2495   port1->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2496   port2->set_component(cricket::ICE_CANDIDATE_COMPONENT_DEFAULT);
2497 
2498   // Set up channels and ensure both ports will be deleted.
2499   TestChannel ch1(port1);
2500   TestChannel ch2(port2);
2501 
2502   // Simulate a connection that succeeds, and then is destroyed.
2503   StartConnectAndStopChannels(&ch1, &ch2);
2504   // Switch the role after all connections are destroyed.
2505   EXPECT_TRUE_WAIT(ch2.conn() == nullptr, kTimeout);
2506   port1->SetIceRole(cricket::ICEROLE_CONTROLLED);
2507   port2->SetIceRole(cricket::ICEROLE_CONTROLLING);
2508 
2509   // After the connection is destroyed, the port should not be destroyed.
2510   rtc::Thread::Current()->ProcessMessages(kTimeout);
2511   EXPECT_FALSE(destroyed());
2512 }
2513 
TEST_F(PortTest,TestSupportsProtocol)2514 TEST_F(PortTest, TestSupportsProtocol) {
2515   rtc::scoped_ptr<Port> udp_port(CreateUdpPort(kLocalAddr1));
2516   EXPECT_TRUE(udp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
2517   EXPECT_FALSE(udp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
2518 
2519   rtc::scoped_ptr<Port> stun_port(
2520       CreateStunPort(kLocalAddr1, nat_socket_factory1()));
2521   EXPECT_TRUE(stun_port->SupportsProtocol(UDP_PROTOCOL_NAME));
2522   EXPECT_FALSE(stun_port->SupportsProtocol(TCP_PROTOCOL_NAME));
2523 
2524   rtc::scoped_ptr<Port> tcp_port(CreateTcpPort(kLocalAddr1));
2525   EXPECT_TRUE(tcp_port->SupportsProtocol(TCP_PROTOCOL_NAME));
2526   EXPECT_TRUE(tcp_port->SupportsProtocol(SSLTCP_PROTOCOL_NAME));
2527   EXPECT_FALSE(tcp_port->SupportsProtocol(UDP_PROTOCOL_NAME));
2528 
2529   rtc::scoped_ptr<Port> turn_port(
2530       CreateTurnPort(kLocalAddr1, nat_socket_factory1(), PROTO_UDP, PROTO_UDP));
2531   EXPECT_TRUE(turn_port->SupportsProtocol(UDP_PROTOCOL_NAME));
2532   EXPECT_FALSE(turn_port->SupportsProtocol(TCP_PROTOCOL_NAME));
2533 }
2534