1 /******************************************************************************
2  *
3  *  Copyright (C) 2014 The Android Open Source Project
4  *  Copyright 2003 - 2004 Open Interface North America, Inc. All rights reserved.
5  *
6  *  Licensed under the Apache License, Version 2.0 (the "License");
7  *  you may not use this file except in compliance with the License.
8  *  You may obtain a copy of the License at:
9  *
10  *  http://www.apache.org/licenses/LICENSE-2.0
11  *
12  *  Unless required by applicable law or agreed to in writing, software
13  *  distributed under the License is distributed on an "AS IS" BASIS,
14  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  *  See the License for the specific language governing permissions and
16  *  limitations under the License.
17  *
18  ******************************************************************************/
19 
20 /**********************************************************************************
21   $Revision: #1 $
22  ***********************************************************************************/
23 
24 /**
25 @file
26 
27 The functions in this file relate to the allocation of available bits to
28 subbands within the SBC/eSBC frame, along with support functions for computing
29 frame length and bitrate.
30 
31 @ingroup codec_internal
32 */
33 
34 /**
35 @addtogroup codec_internal
36 @{
37 */
38 
39 #include "oi_utils.h"
40 #include <oi_codec_sbc_private.h>
41 
OI_SBC_MaxBitpool(OI_CODEC_SBC_FRAME_INFO * frame)42 OI_UINT32 OI_SBC_MaxBitpool(OI_CODEC_SBC_FRAME_INFO *frame)
43 {
44     switch (frame->mode) {
45         case SBC_MONO:
46         case SBC_DUAL_CHANNEL:
47             return 16 * frame->nrof_subbands;
48         case SBC_STEREO:
49         case SBC_JOINT_STEREO:
50             return 32 * frame->nrof_subbands;
51     }
52 
53     ERROR(("Invalid frame mode %d", frame->mode));
54     OI_ASSERT(FALSE);
55     return 0; /* Should never be reached */
56 }
57 
58 
internal_CalculateFramelen(OI_CODEC_SBC_FRAME_INFO * frame)59 PRIVATE OI_UINT16 internal_CalculateFramelen(OI_CODEC_SBC_FRAME_INFO *frame)
60 {
61     OI_UINT16 nbits = frame->nrof_blocks * frame->bitpool;
62     OI_UINT16 nrof_subbands = frame->nrof_subbands;
63     OI_UINT16 result = nbits;
64 
65     if (frame->mode == SBC_JOINT_STEREO) {
66         result += nrof_subbands + (8 * nrof_subbands);
67     } else {
68         if (frame->mode == SBC_DUAL_CHANNEL) { result += nbits; }
69         if (frame->mode == SBC_MONO) { result += 4*nrof_subbands; } else { result += 8*nrof_subbands; }
70     }
71     return SBC_HEADER_LEN + (result + 7) / 8;
72 }
73 
74 
internal_CalculateBitrate(OI_CODEC_SBC_FRAME_INFO * frame)75 PRIVATE OI_UINT32 internal_CalculateBitrate(OI_CODEC_SBC_FRAME_INFO *frame)
76 {
77     OI_UINT blocksbands;
78     blocksbands = frame->nrof_subbands * frame->nrof_blocks;
79 
80     return DIVIDE(8 * internal_CalculateFramelen(frame) * frame->frequency, blocksbands);
81 }
82 
83 
OI_SBC_CalculateFrameAndHeaderlen(OI_CODEC_SBC_FRAME_INFO * frame,OI_UINT * headerLen_)84 INLINE OI_UINT16 OI_SBC_CalculateFrameAndHeaderlen(OI_CODEC_SBC_FRAME_INFO *frame, OI_UINT *headerLen_)
85 {
86     OI_UINT headerLen = SBC_HEADER_LEN + frame->nrof_subbands * frame->nrof_channels/2;
87 
88     if (frame->mode == SBC_JOINT_STEREO) { headerLen++; }
89 
90     *headerLen_ = headerLen;
91     return internal_CalculateFramelen(frame);
92 }
93 
94 
95 #define MIN(x, y)  ((x) < (y) ? (x) : (y))
96 
97 
98 /*
99  * Computes the bit need for each sample and as also returns a counts of bit needs that are greater
100  * than one. This count is used in the first phase of bit allocation.
101  *
102  * We also compute a preferred bitpool value that this is the minimum bitpool needed to guarantee
103  * lossless representation of the audio data. The preferred bitpool may be larger than the bits
104  * actually required but the only input we have are the scale factors. For example, it takes 2 bits
105  * to represent values in the range -1 .. +1 but the scale factor is 0. To guarantee lossless
106  * representation we add 2 to each scale factor and sum them to come up with the preferred bitpool.
107  * This is not ideal because 0 requires 0 bits but we currently have no way of knowing this.
108  *
109  * @param bitneed       Array to return bitneeds for each subband
110  *
111  * @param ch            Channel 0 or 1
112  *
113  * @param preferredBitpool  Returns the number of reserved bits
114  *
115  * @return              The SBC bit need
116  *
117  */
computeBitneed(OI_CODEC_SBC_COMMON_CONTEXT * common,OI_UINT8 * bitneeds,OI_UINT ch,OI_UINT * preferredBitpool)118 OI_UINT computeBitneed(OI_CODEC_SBC_COMMON_CONTEXT *common,
119                               OI_UINT8 *bitneeds,
120                               OI_UINT ch,
121                               OI_UINT *preferredBitpool)
122 {
123     static const OI_INT8 offset4[4][4] = {
124         { -1, 0, 0, 0 },
125         { -2, 0, 0, 1 },
126         { -2, 0, 0, 1 },
127         { -2, 0, 0, 1 }
128     };
129 
130     static const OI_INT8 offset8[4][8] = {
131         { -2, 0, 0, 0, 0, 0, 0, 1 },
132         { -3, 0, 0, 0, 0, 0, 1, 2 },
133         { -4, 0, 0, 0, 0, 0, 1, 2 },
134         { -4, 0, 0, 0, 0, 0, 1, 2 }
135     };
136 
137     const OI_UINT nrof_subbands = common->frameInfo.nrof_subbands;
138     OI_UINT sb;
139     OI_INT8 *scale_factor = &common->scale_factor[ch ? nrof_subbands : 0];
140     OI_UINT bitcount = 0;
141     OI_UINT8 maxBits = 0;
142     OI_UINT8 prefBits = 0;
143 
144     if (common->frameInfo.alloc == SBC_SNR) {
145         for (sb = 0; sb < nrof_subbands; sb++) {
146             OI_INT bits = scale_factor[sb];
147             if (bits > maxBits) {
148                 maxBits = bits;
149             }
150             if ((bitneeds[sb] = bits) > 1) {
151                 bitcount += bits;
152             }
153             prefBits += 2 + bits;
154         }
155     } else {
156         const OI_INT8 *offset;
157         if (nrof_subbands == 4) {
158             offset = offset4[common->frameInfo.freqIndex];
159         } else {
160             offset = offset8[common->frameInfo.freqIndex];
161         }
162         for (sb = 0; sb < nrof_subbands; sb++) {
163             OI_INT bits = scale_factor[sb];
164             if (bits > maxBits) {
165                 maxBits = bits;
166             }
167             prefBits += 2 + bits;
168             if (bits) {
169                 bits -= offset[sb];
170                 if (bits > 0) {
171                     bits /= 2;
172                 }
173                 bits += 5;
174             }
175             if ((bitneeds[sb] = bits) > 1) {
176                 bitcount += bits;
177             }
178         }
179     }
180     common->maxBitneed = OI_MAX(maxBits, common->maxBitneed);
181     *preferredBitpool += prefBits;
182     return bitcount;
183 }
184 
185 
186 /*
187  * Explanation of the adjustToFitBitpool inner loop.
188  *
189  * The inner loop computes the effect of adjusting the bit allocation up or
190  * down. Allocations must be 0 or in the range 2..16. This is accomplished by
191  * the following code:
192  *
193  *           for (s = bands - 1; s >= 0; --s) {
194  *              OI_INT bits = bitadjust + bitneeds[s];
195  *              bits = bits < 2 ? 0 : bits;
196  *              bits = bits > 16 ? 16 : bits;
197  *              count += bits;
198  *          }
199  *
200  * This loop can be optimized to perform 4 operations at a time as follows:
201  *
202  * Adjustment is computed as a 7 bit signed value and added to the bitneed.
203  *
204  * Negative allocations are zeroed by masking. (n & 0x40) >> 6 puts the
205  * sign bit into bit 0, adding this to 0x7F give us a mask of 0x80
206  * for -ve values and 0x7F for +ve values.
207  *
208  * n &= 0x7F + (n & 0x40) >> 6)
209  *
210  * Allocations greater than 16 are truncated to 16. Adjusted allocations are in
211  * the range 0..31 so we know that bit 4 indicates values >= 16. We use this bit
212  * to create a mask that zeroes bits 0 .. 3 if bit 4 is set.
213  *
214  * n &= (15 + (n >> 4))
215  *
216  * Allocations of 1 are disallowed. Add and shift creates a mask that
217  * eliminates the illegal value
218  *
219  * n &= ((n + 14) >> 4) | 0x1E
220  *
221  * These operations can be performed in 8 bits without overflowing so we can
222  * operate on 4 values at once.
223  */
224 
225 
226 /*
227  * Encoder/Decoder
228  *
229  * Computes adjustment +/- of bitneeds to fill bitpool and returns overall
230  * adjustment and excess bits.
231  *
232  * @param bitpool   The bitpool we have to work within
233  *
234  * @param bitneeds  An array of bit needs (more acturately allocation prioritities) for each
235  *                  subband across all blocks in the SBC frame
236  *
237  * @param subbands  The number of subbands over which the adkustment is calculated. For mono and
238  *                  dual mode this is 4 or 8, for stereo or joint stereo this is 8 or 16.
239  *
240  * @param bitcount  A starting point for the adjustment
241  *
242  * @param excess    Returns the excess bits after the adjustment
243  *
244  * @return   The adjustment.
245  */
adjustToFitBitpool(const OI_UINT bitpool,OI_UINT32 * bitneeds,const OI_UINT subbands,OI_UINT bitcount,OI_UINT * excess)246 OI_INT adjustToFitBitpool(const OI_UINT bitpool,
247                                  OI_UINT32 *bitneeds,
248                                  const OI_UINT subbands,
249                                  OI_UINT bitcount,
250                                  OI_UINT *excess)
251 {
252     OI_INT maxBitadjust = 0;
253     OI_INT bitadjust = (bitcount > bitpool) ? -8 : 8;
254     OI_INT chop = 8;
255 
256     /*
257      * This is essentially a binary search for the optimal adjustment value.
258      */
259     while ((bitcount != bitpool) && chop) {
260         OI_UINT32 total = 0;
261         OI_UINT count;
262         OI_UINT32 adjust4;
263         OI_INT i;
264 
265         adjust4 = bitadjust & 0x7F;
266         adjust4 |= (adjust4 << 8);
267         adjust4 |= (adjust4 << 16);
268 
269         for (i = (subbands / 4 - 1); i >= 0; --i) {
270             OI_UINT32 mask;
271             OI_UINT32 n = bitneeds[i] + adjust4;
272             mask = 0x7F7F7F7F + ((n & 0x40404040) >> 6);
273             n &= mask;
274             mask = 0x0F0F0F0F + ((n & 0x10101010) >> 4);
275             n &= mask;
276             mask = (((n + 0x0E0E0E0E) >> 4) | 0x1E1E1E1E);
277             n &= mask;
278             total += n;
279         }
280 
281         count = (total & 0xFFFF) + (total >> 16);
282         count = (count & 0xFF) + (count >> 8);
283 
284         chop >>= 1;
285         if (count > bitpool) {
286             bitadjust -= chop;
287         } else {
288             maxBitadjust = bitadjust;
289             bitcount = count;
290             bitadjust += chop;
291         }
292     }
293 
294     *excess = bitpool - bitcount;
295 
296     return maxBitadjust;
297 }
298 
299 
300 /*
301  * The bit allocator trys to avoid single bit allocations except as a last resort. So in the case
302  * where a bitneed of 1 was passed over during the adsjustment phase 2 bits are now allocated.
303  */
allocAdjustedBits(OI_UINT8 * dest,OI_INT bits,OI_INT excess)304 INLINE OI_INT allocAdjustedBits(OI_UINT8 *dest,
305                                 OI_INT bits,
306                                 OI_INT excess)
307 {
308     if (bits < 16) {
309         if (bits > 1) {
310             if (excess) {
311                 ++bits;
312                 --excess;
313             }
314         } else if ((bits == 1) && (excess > 1)) {
315             bits = 2;
316             excess -= 2;
317         } else {
318             bits  = 0;
319         }
320     } else {
321         bits = 16;
322     }
323     *dest = (OI_UINT8)bits;
324     return excess;
325 }
326 
327 
328 /*
329  * Excess bits not allocated by allocaAdjustedBits are allocated round-robin.
330  */
allocExcessBits(OI_UINT8 * dest,OI_INT excess)331 INLINE OI_INT allocExcessBits(OI_UINT8 *dest,
332                               OI_INT excess)
333 {
334     if (*dest < 16) {
335         *dest += 1;
336         return excess - 1;
337     } else {
338         return excess;
339     }
340 }
341 
oneChannelBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT * common,BITNEED_UNION1 * bitneeds,OI_UINT ch,OI_UINT bitcount)342 void oneChannelBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT *common,
343                                     BITNEED_UNION1 *bitneeds,
344                                     OI_UINT ch,
345                                     OI_UINT bitcount)
346 {
347     const OI_UINT8 nrof_subbands = common->frameInfo.nrof_subbands;
348     OI_UINT excess;
349     OI_UINT sb;
350     OI_INT bitadjust;
351     OI_UINT8 RESTRICT *allocBits;
352 
353 
354     {
355         OI_UINT ex;
356         bitadjust = adjustToFitBitpool(common->frameInfo.bitpool, bitneeds->uint32, nrof_subbands, bitcount, &ex);
357         /* We want the compiler to put excess into a register */
358         excess = ex;
359     }
360 
361     /*
362      * Allocate adjusted bits
363      */
364     allocBits = &common->bits.uint8[ch ? nrof_subbands : 0];
365 
366     sb = 0;
367     while (sb < nrof_subbands) {
368         excess = allocAdjustedBits(&allocBits[sb], bitneeds->uint8[sb] + bitadjust, excess);
369         ++sb;
370     }
371     sb = 0;
372     while (excess) {
373         excess = allocExcessBits(&allocBits[sb], excess);
374         ++sb;
375     }
376 }
377 
378 
monoBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT * common)379 void monoBitAllocation(OI_CODEC_SBC_COMMON_CONTEXT *common)
380 {
381     BITNEED_UNION1 bitneeds;
382     OI_UINT bitcount;
383     OI_UINT bitpoolPreference = 0;
384 
385     bitcount = computeBitneed(common, bitneeds.uint8, 0, &bitpoolPreference);
386 
387     oneChannelBitAllocation(common, &bitneeds, 0, bitcount);
388 }
389 
390 /**
391 @}
392 */
393