1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/common_audio/vad/vad_core.h"
12 
13 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
14 #include "webrtc/common_audio/vad/vad_filterbank.h"
15 #include "webrtc/common_audio/vad/vad_gmm.h"
16 #include "webrtc/common_audio/vad/vad_sp.h"
17 #include "webrtc/typedefs.h"
18 
19 // Spectrum Weighting
20 static const int16_t kSpectrumWeight[kNumChannels] = { 6, 8, 10, 12, 14, 16 };
21 static const int16_t kNoiseUpdateConst = 655; // Q15
22 static const int16_t kSpeechUpdateConst = 6554; // Q15
23 static const int16_t kBackEta = 154; // Q8
24 // Minimum difference between the two models, Q5
25 static const int16_t kMinimumDifference[kNumChannels] = {
26     544, 544, 576, 576, 576, 576 };
27 // Upper limit of mean value for speech model, Q7
28 static const int16_t kMaximumSpeech[kNumChannels] = {
29     11392, 11392, 11520, 11520, 11520, 11520 };
30 // Minimum value for mean value
31 static const int16_t kMinimumMean[kNumGaussians] = { 640, 768 };
32 // Upper limit of mean value for noise model, Q7
33 static const int16_t kMaximumNoise[kNumChannels] = {
34     9216, 9088, 8960, 8832, 8704, 8576 };
35 // Start values for the Gaussian models, Q7
36 // Weights for the two Gaussians for the six channels (noise)
37 static const int16_t kNoiseDataWeights[kTableSize] = {
38     34, 62, 72, 66, 53, 25, 94, 66, 56, 62, 75, 103 };
39 // Weights for the two Gaussians for the six channels (speech)
40 static const int16_t kSpeechDataWeights[kTableSize] = {
41     48, 82, 45, 87, 50, 47, 80, 46, 83, 41, 78, 81 };
42 // Means for the two Gaussians for the six channels (noise)
43 static const int16_t kNoiseDataMeans[kTableSize] = {
44     6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362 };
45 // Means for the two Gaussians for the six channels (speech)
46 static const int16_t kSpeechDataMeans[kTableSize] = {
47     8306, 10085, 10078, 11823, 11843, 6309, 9473, 9571, 10879, 7581, 8180, 7483
48 };
49 // Stds for the two Gaussians for the six channels (noise)
50 static const int16_t kNoiseDataStds[kTableSize] = {
51     378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455 };
52 // Stds for the two Gaussians for the six channels (speech)
53 static const int16_t kSpeechDataStds[kTableSize] = {
54     555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850 };
55 
56 // Constants used in GmmProbability().
57 //
58 // Maximum number of counted speech (VAD = 1) frames in a row.
59 static const int16_t kMaxSpeechFrames = 6;
60 // Minimum standard deviation for both speech and noise.
61 static const int16_t kMinStd = 384;
62 
63 // Constants in WebRtcVad_InitCore().
64 // Default aggressiveness mode.
65 static const short kDefaultMode = 0;
66 static const int kInitCheck = 42;
67 
68 // Constants used in WebRtcVad_set_mode_core().
69 //
70 // Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
71 //
72 // Mode 0, Quality.
73 static const int16_t kOverHangMax1Q[3] = { 8, 4, 3 };
74 static const int16_t kOverHangMax2Q[3] = { 14, 7, 5 };
75 static const int16_t kLocalThresholdQ[3] = { 24, 21, 24 };
76 static const int16_t kGlobalThresholdQ[3] = { 57, 48, 57 };
77 // Mode 1, Low bitrate.
78 static const int16_t kOverHangMax1LBR[3] = { 8, 4, 3 };
79 static const int16_t kOverHangMax2LBR[3] = { 14, 7, 5 };
80 static const int16_t kLocalThresholdLBR[3] = { 37, 32, 37 };
81 static const int16_t kGlobalThresholdLBR[3] = { 100, 80, 100 };
82 // Mode 2, Aggressive.
83 static const int16_t kOverHangMax1AGG[3] = { 6, 3, 2 };
84 static const int16_t kOverHangMax2AGG[3] = { 9, 5, 3 };
85 static const int16_t kLocalThresholdAGG[3] = { 82, 78, 82 };
86 static const int16_t kGlobalThresholdAGG[3] = { 285, 260, 285 };
87 // Mode 3, Very aggressive.
88 static const int16_t kOverHangMax1VAG[3] = { 6, 3, 2 };
89 static const int16_t kOverHangMax2VAG[3] = { 9, 5, 3 };
90 static const int16_t kLocalThresholdVAG[3] = { 94, 94, 94 };
91 static const int16_t kGlobalThresholdVAG[3] = { 1100, 1050, 1100 };
92 
93 // Calculates the weighted average w.r.t. number of Gaussians. The |data| are
94 // updated with an |offset| before averaging.
95 //
96 // - data     [i/o] : Data to average.
97 // - offset   [i]   : An offset added to |data|.
98 // - weights  [i]   : Weights used for averaging.
99 //
100 // returns          : The weighted average.
WeightedAverage(int16_t * data,int16_t offset,const int16_t * weights)101 static int32_t WeightedAverage(int16_t* data, int16_t offset,
102                                const int16_t* weights) {
103   int k;
104   int32_t weighted_average = 0;
105 
106   for (k = 0; k < kNumGaussians; k++) {
107     data[k * kNumChannels] += offset;
108     weighted_average += data[k * kNumChannels] * weights[k * kNumChannels];
109   }
110   return weighted_average;
111 }
112 
113 // Calculates the probabilities for both speech and background noise using
114 // Gaussian Mixture Models (GMM). A hypothesis-test is performed to decide which
115 // type of signal is most probable.
116 //
117 // - self           [i/o] : Pointer to VAD instance
118 // - features       [i]   : Feature vector of length |kNumChannels|
119 //                          = log10(energy in frequency band)
120 // - total_power    [i]   : Total power in audio frame.
121 // - frame_length   [i]   : Number of input samples
122 //
123 // - returns              : the VAD decision (0 - noise, 1 - speech).
GmmProbability(VadInstT * self,int16_t * features,int16_t total_power,size_t frame_length)124 static int16_t GmmProbability(VadInstT* self, int16_t* features,
125                               int16_t total_power, size_t frame_length) {
126   int channel, k;
127   int16_t feature_minimum;
128   int16_t h0, h1;
129   int16_t log_likelihood_ratio;
130   int16_t vadflag = 0;
131   int16_t shifts_h0, shifts_h1;
132   int16_t tmp_s16, tmp1_s16, tmp2_s16;
133   int16_t diff;
134   int gaussian;
135   int16_t nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
136   int16_t delt, ndelt;
137   int16_t maxspe, maxmu;
138   int16_t deltaN[kTableSize], deltaS[kTableSize];
139   int16_t ngprvec[kTableSize] = { 0 };  // Conditional probability = 0.
140   int16_t sgprvec[kTableSize] = { 0 };  // Conditional probability = 0.
141   int32_t h0_test, h1_test;
142   int32_t tmp1_s32, tmp2_s32;
143   int32_t sum_log_likelihood_ratios = 0;
144   int32_t noise_global_mean, speech_global_mean;
145   int32_t noise_probability[kNumGaussians], speech_probability[kNumGaussians];
146   int16_t overhead1, overhead2, individualTest, totalTest;
147 
148   // Set various thresholds based on frame lengths (80, 160 or 240 samples).
149   if (frame_length == 80) {
150     overhead1 = self->over_hang_max_1[0];
151     overhead2 = self->over_hang_max_2[0];
152     individualTest = self->individual[0];
153     totalTest = self->total[0];
154   } else if (frame_length == 160) {
155     overhead1 = self->over_hang_max_1[1];
156     overhead2 = self->over_hang_max_2[1];
157     individualTest = self->individual[1];
158     totalTest = self->total[1];
159   } else {
160     overhead1 = self->over_hang_max_1[2];
161     overhead2 = self->over_hang_max_2[2];
162     individualTest = self->individual[2];
163     totalTest = self->total[2];
164   }
165 
166   if (total_power > kMinEnergy) {
167     // The signal power of current frame is large enough for processing. The
168     // processing consists of two parts:
169     // 1) Calculating the likelihood of speech and thereby a VAD decision.
170     // 2) Updating the underlying model, w.r.t., the decision made.
171 
172     // The detection scheme is an LRT with hypothesis
173     // H0: Noise
174     // H1: Speech
175     //
176     // We combine a global LRT with local tests, for each frequency sub-band,
177     // here defined as |channel|.
178     for (channel = 0; channel < kNumChannels; channel++) {
179       // For each channel we model the probability with a GMM consisting of
180       // |kNumGaussians|, with different means and standard deviations depending
181       // on H0 or H1.
182       h0_test = 0;
183       h1_test = 0;
184       for (k = 0; k < kNumGaussians; k++) {
185         gaussian = channel + k * kNumChannels;
186         // Probability under H0, that is, probability of frame being noise.
187         // Value given in Q27 = Q7 * Q20.
188         tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
189                                                  self->noise_means[gaussian],
190                                                  self->noise_stds[gaussian],
191                                                  &deltaN[gaussian]);
192         noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
193         h0_test += noise_probability[k];  // Q27
194 
195         // Probability under H1, that is, probability of frame being speech.
196         // Value given in Q27 = Q7 * Q20.
197         tmp1_s32 = WebRtcVad_GaussianProbability(features[channel],
198                                                  self->speech_means[gaussian],
199                                                  self->speech_stds[gaussian],
200                                                  &deltaS[gaussian]);
201         speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
202         h1_test += speech_probability[k];  // Q27
203       }
204 
205       // Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
206       // Approximation:
207       // log2(Pr{X|H1} / Pr{X|H1}) = log2(Pr{X|H1}*2^Q) - log2(Pr{X|H1}*2^Q)
208       //                           = log2(h1_test) - log2(h0_test)
209       //                           = log2(2^(31-shifts_h1)*(1+b1))
210       //                             - log2(2^(31-shifts_h0)*(1+b0))
211       //                           = shifts_h0 - shifts_h1
212       //                             + log2(1+b1) - log2(1+b0)
213       //                          ~= shifts_h0 - shifts_h1
214       //
215       // Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
216       // Further, b0 and b1 are independent and on the average the two terms
217       // cancel.
218       shifts_h0 = WebRtcSpl_NormW32(h0_test);
219       shifts_h1 = WebRtcSpl_NormW32(h1_test);
220       if (h0_test == 0) {
221         shifts_h0 = 31;
222       }
223       if (h1_test == 0) {
224         shifts_h1 = 31;
225       }
226       log_likelihood_ratio = shifts_h0 - shifts_h1;
227 
228       // Update |sum_log_likelihood_ratios| with spectrum weighting. This is
229       // used for the global VAD decision.
230       sum_log_likelihood_ratios +=
231           (int32_t) (log_likelihood_ratio * kSpectrumWeight[channel]);
232 
233       // Local VAD decision.
234       if ((log_likelihood_ratio << 2) > individualTest) {
235         vadflag = 1;
236       }
237 
238       // TODO(bjornv): The conditional probabilities below are applied on the
239       // hard coded number of Gaussians set to two. Find a way to generalize.
240       // Calculate local noise probabilities used later when updating the GMM.
241       h0 = (int16_t) (h0_test >> 12);  // Q15
242       if (h0 > 0) {
243         // High probability of noise. Assign conditional probabilities for each
244         // Gaussian in the GMM.
245         tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2;  // Q29
246         ngprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h0);  // Q14
247         ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
248       } else {
249         // Low noise probability. Assign conditional probability 1 to the first
250         // Gaussian and 0 to the rest (which is already set at initialization).
251         ngprvec[channel] = 16384;
252       }
253 
254       // Calculate local speech probabilities used later when updating the GMM.
255       h1 = (int16_t) (h1_test >> 12);  // Q15
256       if (h1 > 0) {
257         // High probability of speech. Assign conditional probabilities for each
258         // Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
259         tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2;  // Q29
260         sgprvec[channel] = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, h1);  // Q14
261         sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
262       }
263     }
264 
265     // Make a global VAD decision.
266     vadflag |= (sum_log_likelihood_ratios >= totalTest);
267 
268     // Update the model parameters.
269     maxspe = 12800;
270     for (channel = 0; channel < kNumChannels; channel++) {
271 
272       // Get minimum value in past which is used for long term correction in Q4.
273       feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);
274 
275       // Compute the "global" mean, that is the sum of the two means weighted.
276       noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
277                                           &kNoiseDataWeights[channel]);
278       tmp1_s16 = (int16_t) (noise_global_mean >> 6);  // Q8
279 
280       for (k = 0; k < kNumGaussians; k++) {
281         gaussian = channel + k * kNumChannels;
282 
283         nmk = self->noise_means[gaussian];
284         smk = self->speech_means[gaussian];
285         nsk = self->noise_stds[gaussian];
286         ssk = self->speech_stds[gaussian];
287 
288         // Update noise mean vector if the frame consists of noise only.
289         nmk2 = nmk;
290         if (!vadflag) {
291           // deltaN = (x-mu)/sigma^2
292           // ngprvec[k] = |noise_probability[k]| /
293           //   (|noise_probability[0]| + |noise_probability[1]|)
294 
295           // (Q14 * Q11 >> 11) = Q14.
296           delt = (int16_t)((ngprvec[gaussian] * deltaN[gaussian]) >> 11);
297           // Q7 + (Q14 * Q15 >> 22) = Q7.
298           nmk2 = nmk + (int16_t)((delt * kNoiseUpdateConst) >> 22);
299         }
300 
301         // Long term correction of the noise mean.
302         // Q8 - Q8 = Q8.
303         ndelt = (feature_minimum << 4) - tmp1_s16;
304         // Q7 + (Q8 * Q8) >> 9 = Q7.
305         nmk3 = nmk2 + (int16_t)((ndelt * kBackEta) >> 9);
306 
307         // Control that the noise mean does not drift to much.
308         tmp_s16 = (int16_t) ((k + 5) << 7);
309         if (nmk3 < tmp_s16) {
310           nmk3 = tmp_s16;
311         }
312         tmp_s16 = (int16_t) ((72 + k - channel) << 7);
313         if (nmk3 > tmp_s16) {
314           nmk3 = tmp_s16;
315         }
316         self->noise_means[gaussian] = nmk3;
317 
318         if (vadflag) {
319           // Update speech mean vector:
320           // |deltaS| = (x-mu)/sigma^2
321           // sgprvec[k] = |speech_probability[k]| /
322           //   (|speech_probability[0]| + |speech_probability[1]|)
323 
324           // (Q14 * Q11) >> 11 = Q14.
325           delt = (int16_t)((sgprvec[gaussian] * deltaS[gaussian]) >> 11);
326           // Q14 * Q15 >> 21 = Q8.
327           tmp_s16 = (int16_t)((delt * kSpeechUpdateConst) >> 21);
328           // Q7 + (Q8 >> 1) = Q7. With rounding.
329           smk2 = smk + ((tmp_s16 + 1) >> 1);
330 
331           // Control that the speech mean does not drift to much.
332           maxmu = maxspe + 640;
333           if (smk2 < kMinimumMean[k]) {
334             smk2 = kMinimumMean[k];
335           }
336           if (smk2 > maxmu) {
337             smk2 = maxmu;
338           }
339           self->speech_means[gaussian] = smk2;  // Q7.
340 
341           // (Q7 >> 3) = Q4. With rounding.
342           tmp_s16 = ((smk + 4) >> 3);
343 
344           tmp_s16 = features[channel] - tmp_s16;  // Q4
345           // (Q11 * Q4 >> 3) = Q12.
346           tmp1_s32 = (deltaS[gaussian] * tmp_s16) >> 3;
347           tmp2_s32 = tmp1_s32 - 4096;
348           tmp_s16 = sgprvec[gaussian] >> 2;
349           // (Q14 >> 2) * Q12 = Q24.
350           tmp1_s32 = tmp_s16 * tmp2_s32;
351 
352           tmp2_s32 = tmp1_s32 >> 4;  // Q20
353 
354           // 0.1 * Q20 / Q7 = Q13.
355           if (tmp2_s32 > 0) {
356             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
357           } else {
358             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
359             tmp_s16 = -tmp_s16;
360           }
361           // Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
362           // Note that division by 4 equals shift by 2, hence,
363           // (Q13 >> 8) = (Q13 >> 6) / 4 = Q7.
364           tmp_s16 += 128;  // Rounding.
365           ssk += (tmp_s16 >> 8);
366           if (ssk < kMinStd) {
367             ssk = kMinStd;
368           }
369           self->speech_stds[gaussian] = ssk;
370         } else {
371           // Update GMM variance vectors.
372           // deltaN * (features[channel] - nmk) - 1
373           // Q4 - (Q7 >> 3) = Q4.
374           tmp_s16 = features[channel] - (nmk >> 3);
375           // (Q11 * Q4 >> 3) = Q12.
376           tmp1_s32 = (deltaN[gaussian] * tmp_s16) >> 3;
377           tmp1_s32 -= 4096;
378 
379           // (Q14 >> 2) * Q12 = Q24.
380           tmp_s16 = (ngprvec[gaussian] + 2) >> 2;
381           tmp2_s32 = tmp_s16 * tmp1_s32;
382           // Q20  * approx 0.001 (2^-10=0.0009766), hence,
383           // (Q24 >> 14) = (Q24 >> 4) / 2^10 = Q20.
384           tmp1_s32 = tmp2_s32 >> 14;
385 
386           // Q20 / Q7 = Q13.
387           if (tmp1_s32 > 0) {
388             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(tmp1_s32, nsk);
389           } else {
390             tmp_s16 = (int16_t) WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
391             tmp_s16 = -tmp_s16;
392           }
393           tmp_s16 += 32;  // Rounding
394           nsk += tmp_s16 >> 6;  // Q13 >> 6 = Q7.
395           if (nsk < kMinStd) {
396             nsk = kMinStd;
397           }
398           self->noise_stds[gaussian] = nsk;
399         }
400       }
401 
402       // Separate models if they are too close.
403       // |noise_global_mean| in Q14 (= Q7 * Q7).
404       noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
405                                           &kNoiseDataWeights[channel]);
406 
407       // |speech_global_mean| in Q14 (= Q7 * Q7).
408       speech_global_mean = WeightedAverage(&self->speech_means[channel], 0,
409                                            &kSpeechDataWeights[channel]);
410 
411       // |diff| = "global" speech mean - "global" noise mean.
412       // (Q14 >> 9) - (Q14 >> 9) = Q5.
413       diff = (int16_t) (speech_global_mean >> 9) -
414           (int16_t) (noise_global_mean >> 9);
415       if (diff < kMinimumDifference[channel]) {
416         tmp_s16 = kMinimumDifference[channel] - diff;
417 
418         // |tmp1_s16| = ~0.8 * (kMinimumDifference - diff) in Q7.
419         // |tmp2_s16| = ~0.2 * (kMinimumDifference - diff) in Q7.
420         tmp1_s16 = (int16_t)((13 * tmp_s16) >> 2);
421         tmp2_s16 = (int16_t)((3 * tmp_s16) >> 2);
422 
423         // Move Gaussian means for speech model by |tmp1_s16| and update
424         // |speech_global_mean|. Note that |self->speech_means[channel]| is
425         // changed after the call.
426         speech_global_mean = WeightedAverage(&self->speech_means[channel],
427                                              tmp1_s16,
428                                              &kSpeechDataWeights[channel]);
429 
430         // Move Gaussian means for noise model by -|tmp2_s16| and update
431         // |noise_global_mean|. Note that |self->noise_means[channel]| is
432         // changed after the call.
433         noise_global_mean = WeightedAverage(&self->noise_means[channel],
434                                             -tmp2_s16,
435                                             &kNoiseDataWeights[channel]);
436       }
437 
438       // Control that the speech & noise means do not drift to much.
439       maxspe = kMaximumSpeech[channel];
440       tmp2_s16 = (int16_t) (speech_global_mean >> 7);
441       if (tmp2_s16 > maxspe) {
442         // Upper limit of speech model.
443         tmp2_s16 -= maxspe;
444 
445         for (k = 0; k < kNumGaussians; k++) {
446           self->speech_means[channel + k * kNumChannels] -= tmp2_s16;
447         }
448       }
449 
450       tmp2_s16 = (int16_t) (noise_global_mean >> 7);
451       if (tmp2_s16 > kMaximumNoise[channel]) {
452         tmp2_s16 -= kMaximumNoise[channel];
453 
454         for (k = 0; k < kNumGaussians; k++) {
455           self->noise_means[channel + k * kNumChannels] -= tmp2_s16;
456         }
457       }
458     }
459     self->frame_counter++;
460   }
461 
462   // Smooth with respect to transition hysteresis.
463   if (!vadflag) {
464     if (self->over_hang > 0) {
465       vadflag = 2 + self->over_hang;
466       self->over_hang--;
467     }
468     self->num_of_speech = 0;
469   } else {
470     self->num_of_speech++;
471     if (self->num_of_speech > kMaxSpeechFrames) {
472       self->num_of_speech = kMaxSpeechFrames;
473       self->over_hang = overhead2;
474     } else {
475       self->over_hang = overhead1;
476     }
477   }
478   return vadflag;
479 }
480 
481 // Initialize the VAD. Set aggressiveness mode to default value.
WebRtcVad_InitCore(VadInstT * self)482 int WebRtcVad_InitCore(VadInstT* self) {
483   int i;
484 
485   if (self == NULL) {
486     return -1;
487   }
488 
489   // Initialization of general struct variables.
490   self->vad = 1;  // Speech active (=1).
491   self->frame_counter = 0;
492   self->over_hang = 0;
493   self->num_of_speech = 0;
494 
495   // Initialization of downsampling filter state.
496   memset(self->downsampling_filter_states, 0,
497          sizeof(self->downsampling_filter_states));
498 
499   // Initialization of 48 to 8 kHz downsampling.
500   WebRtcSpl_ResetResample48khzTo8khz(&self->state_48_to_8);
501 
502   // Read initial PDF parameters.
503   for (i = 0; i < kTableSize; i++) {
504     self->noise_means[i] = kNoiseDataMeans[i];
505     self->speech_means[i] = kSpeechDataMeans[i];
506     self->noise_stds[i] = kNoiseDataStds[i];
507     self->speech_stds[i] = kSpeechDataStds[i];
508   }
509 
510   // Initialize Index and Minimum value vectors.
511   for (i = 0; i < 16 * kNumChannels; i++) {
512     self->low_value_vector[i] = 10000;
513     self->index_vector[i] = 0;
514   }
515 
516   // Initialize splitting filter states.
517   memset(self->upper_state, 0, sizeof(self->upper_state));
518   memset(self->lower_state, 0, sizeof(self->lower_state));
519 
520   // Initialize high pass filter states.
521   memset(self->hp_filter_state, 0, sizeof(self->hp_filter_state));
522 
523   // Initialize mean value memory, for WebRtcVad_FindMinimum().
524   for (i = 0; i < kNumChannels; i++) {
525     self->mean_value[i] = 1600;
526   }
527 
528   // Set aggressiveness mode to default (=|kDefaultMode|).
529   if (WebRtcVad_set_mode_core(self, kDefaultMode) != 0) {
530     return -1;
531   }
532 
533   self->init_flag = kInitCheck;
534 
535   return 0;
536 }
537 
538 // Set aggressiveness mode
WebRtcVad_set_mode_core(VadInstT * self,int mode)539 int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
540   int return_value = 0;
541 
542   switch (mode) {
543     case 0:
544       // Quality mode.
545       memcpy(self->over_hang_max_1, kOverHangMax1Q,
546              sizeof(self->over_hang_max_1));
547       memcpy(self->over_hang_max_2, kOverHangMax2Q,
548              sizeof(self->over_hang_max_2));
549       memcpy(self->individual, kLocalThresholdQ,
550              sizeof(self->individual));
551       memcpy(self->total, kGlobalThresholdQ,
552              sizeof(self->total));
553       break;
554     case 1:
555       // Low bitrate mode.
556       memcpy(self->over_hang_max_1, kOverHangMax1LBR,
557              sizeof(self->over_hang_max_1));
558       memcpy(self->over_hang_max_2, kOverHangMax2LBR,
559              sizeof(self->over_hang_max_2));
560       memcpy(self->individual, kLocalThresholdLBR,
561              sizeof(self->individual));
562       memcpy(self->total, kGlobalThresholdLBR,
563              sizeof(self->total));
564       break;
565     case 2:
566       // Aggressive mode.
567       memcpy(self->over_hang_max_1, kOverHangMax1AGG,
568              sizeof(self->over_hang_max_1));
569       memcpy(self->over_hang_max_2, kOverHangMax2AGG,
570              sizeof(self->over_hang_max_2));
571       memcpy(self->individual, kLocalThresholdAGG,
572              sizeof(self->individual));
573       memcpy(self->total, kGlobalThresholdAGG,
574              sizeof(self->total));
575       break;
576     case 3:
577       // Very aggressive mode.
578       memcpy(self->over_hang_max_1, kOverHangMax1VAG,
579              sizeof(self->over_hang_max_1));
580       memcpy(self->over_hang_max_2, kOverHangMax2VAG,
581              sizeof(self->over_hang_max_2));
582       memcpy(self->individual, kLocalThresholdVAG,
583              sizeof(self->individual));
584       memcpy(self->total, kGlobalThresholdVAG,
585              sizeof(self->total));
586       break;
587     default:
588       return_value = -1;
589       break;
590   }
591 
592   return return_value;
593 }
594 
595 // Calculate VAD decision by first extracting feature values and then calculate
596 // probability for both speech and background noise.
597 
WebRtcVad_CalcVad48khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)598 int WebRtcVad_CalcVad48khz(VadInstT* inst, const int16_t* speech_frame,
599                            size_t frame_length) {
600   int vad;
601   size_t i;
602   int16_t speech_nb[240];  // 30 ms in 8 kHz.
603   // |tmp_mem| is a temporary memory used by resample function, length is
604   // frame length in 10 ms (480 samples) + 256 extra.
605   int32_t tmp_mem[480 + 256] = { 0 };
606   const size_t kFrameLen10ms48khz = 480;
607   const size_t kFrameLen10ms8khz = 80;
608   size_t num_10ms_frames = frame_length / kFrameLen10ms48khz;
609 
610   for (i = 0; i < num_10ms_frames; i++) {
611     WebRtcSpl_Resample48khzTo8khz(speech_frame,
612                                   &speech_nb[i * kFrameLen10ms8khz],
613                                   &inst->state_48_to_8,
614                                   tmp_mem);
615   }
616 
617   // Do VAD on an 8 kHz signal
618   vad = WebRtcVad_CalcVad8khz(inst, speech_nb, frame_length / 6);
619 
620   return vad;
621 }
622 
WebRtcVad_CalcVad32khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)623 int WebRtcVad_CalcVad32khz(VadInstT* inst, const int16_t* speech_frame,
624                            size_t frame_length)
625 {
626     size_t len;
627     int vad;
628     int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
629     int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
630 
631 
632     // Downsample signal 32->16->8 before doing VAD
633     WebRtcVad_Downsampling(speech_frame, speechWB, &(inst->downsampling_filter_states[2]),
634                            frame_length);
635     len = frame_length / 2;
636 
637     WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states, len);
638     len /= 2;
639 
640     // Do VAD on an 8 kHz signal
641     vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
642 
643     return vad;
644 }
645 
WebRtcVad_CalcVad16khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)646 int WebRtcVad_CalcVad16khz(VadInstT* inst, const int16_t* speech_frame,
647                            size_t frame_length)
648 {
649     size_t len;
650     int vad;
651     int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
652 
653     // Wideband: Downsample signal before doing VAD
654     WebRtcVad_Downsampling(speech_frame, speechNB, inst->downsampling_filter_states,
655                            frame_length);
656 
657     len = frame_length / 2;
658     vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
659 
660     return vad;
661 }
662 
WebRtcVad_CalcVad8khz(VadInstT * inst,const int16_t * speech_frame,size_t frame_length)663 int WebRtcVad_CalcVad8khz(VadInstT* inst, const int16_t* speech_frame,
664                           size_t frame_length)
665 {
666     int16_t feature_vector[kNumChannels], total_power;
667 
668     // Get power in the bands
669     total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
670                                               feature_vector);
671 
672     // Make a VAD
673     inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
674 
675     return inst->vad;
676 }
677