1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2 
3 // Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include <algorithm>
26 #include <utility>
27 #include <vector>
28 
29 #include "debug.h"
30 #include "elfcpp_swap.h"
31 #include "dwarf.h"
32 #include "object.h"
33 #include "reloc.h"
34 #include "dwarf_reader.h"
35 #include "int_encoding.h"
36 #include "compressed_output.h"
37 
38 namespace gold {
39 
40 // Class Sized_elf_reloc_mapper
41 
42 // Initialize the relocation tracker for section RELOC_SHNDX.
43 
44 template<int size, bool big_endian>
45 bool
do_initialize(unsigned int reloc_shndx,unsigned int reloc_type)46 Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
47     unsigned int reloc_shndx, unsigned int reloc_type)
48 {
49   this->reloc_type_ = reloc_type;
50   return this->track_relocs_.initialize(this->object_, reloc_shndx,
51 					reloc_type);
52 }
53 
54 // Looks in the symtab to see what section a symbol is in.
55 
56 template<int size, bool big_endian>
57 unsigned int
symbol_section(unsigned int symndx,Address * value,bool * is_ordinary)58 Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
59     unsigned int symndx, Address* value, bool* is_ordinary)
60 {
61   const int symsize = elfcpp::Elf_sizes<size>::sym_size;
62   gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
63   elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
64   *value = elfsym.get_st_value();
65   return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
66 					 is_ordinary);
67 }
68 
69 // Return the section index and offset within the section of
70 // the target of the relocation for RELOC_OFFSET.
71 
72 template<int size, bool big_endian>
73 unsigned int
do_get_reloc_target(off_t reloc_offset,off_t * target_offset)74 Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
75     off_t reloc_offset, off_t* target_offset)
76 {
77   this->track_relocs_.advance(reloc_offset);
78   if (reloc_offset != this->track_relocs_.next_offset())
79     return 0;
80   unsigned int symndx = this->track_relocs_.next_symndx();
81   typename elfcpp::Elf_types<size>::Elf_Addr value;
82   bool is_ordinary;
83   unsigned int target_shndx = this->symbol_section(symndx, &value,
84 						   &is_ordinary);
85   if (!is_ordinary)
86     return 0;
87   if (this->reloc_type_ == elfcpp::SHT_RELA)
88     value += this->track_relocs_.next_addend();
89   *target_offset = value;
90   return target_shndx;
91 }
92 
93 static inline Elf_reloc_mapper*
make_elf_reloc_mapper(Relobj * object,const unsigned char * symtab,off_t symtab_size)94 make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
95 		      off_t symtab_size)
96 {
97   if (object->elfsize() == 32)
98     {
99       if (object->is_big_endian())
100         {
101 #ifdef HAVE_TARGET_32_BIG
102 	  return new Sized_elf_reloc_mapper<32, true>(object, symtab,
103 						      symtab_size);
104 #else
105 	  gold_unreachable();
106 #endif
107         }
108       else
109         {
110 #ifdef HAVE_TARGET_32_LITTLE
111 	  return new Sized_elf_reloc_mapper<32, false>(object, symtab,
112 						       symtab_size);
113 #else
114 	  gold_unreachable();
115 #endif
116         }
117     }
118   else if (object->elfsize() == 64)
119     {
120       if (object->is_big_endian())
121         {
122 #ifdef HAVE_TARGET_64_BIG
123 	  return new Sized_elf_reloc_mapper<64, true>(object, symtab,
124 						      symtab_size);
125 #else
126 	  gold_unreachable();
127 #endif
128         }
129       else
130         {
131 #ifdef HAVE_TARGET_64_LITTLE
132 	  return new Sized_elf_reloc_mapper<64, false>(object, symtab,
133 						       symtab_size);
134 #else
135 	  gold_unreachable();
136 #endif
137         }
138     }
139   else
140     gold_unreachable();
141 }
142 
143 // class Dwarf_abbrev_table
144 
145 void
clear_abbrev_codes()146 Dwarf_abbrev_table::clear_abbrev_codes()
147 {
148   for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
149     {
150       if (this->low_abbrev_codes_[code] != NULL)
151 	{
152 	  delete this->low_abbrev_codes_[code];
153 	  this->low_abbrev_codes_[code] = NULL;
154 	}
155     }
156   for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
157        it != this->high_abbrev_codes_.end();
158        ++it)
159     {
160       if (it->second != NULL)
161 	delete it->second;
162     }
163   this->high_abbrev_codes_.clear();
164 }
165 
166 // Read the abbrev table from an object file.
167 
168 bool
do_read_abbrevs(Relobj * object,unsigned int abbrev_shndx,off_t abbrev_offset)169 Dwarf_abbrev_table::do_read_abbrevs(
170     Relobj* object,
171     unsigned int abbrev_shndx,
172     off_t abbrev_offset)
173 {
174   this->clear_abbrev_codes();
175 
176   // If we don't have relocations, abbrev_shndx will be 0, and
177   // we'll have to hunt for the .debug_abbrev section.
178   if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
179     abbrev_shndx = this->abbrev_shndx_;
180   else if (abbrev_shndx == 0)
181     {
182       for (unsigned int i = 1; i < object->shnum(); ++i)
183 	{
184 	  std::string name = object->section_name(i);
185 	  if (name == ".debug_abbrev" || name == ".zdebug_abbrev")
186 	    {
187 	      abbrev_shndx = i;
188 	      // Correct the offset.  For incremental update links, we have a
189 	      // relocated offset that is relative to the output section, but
190 	      // here we need an offset relative to the input section.
191 	      abbrev_offset -= object->output_section_offset(i);
192 	      break;
193 	    }
194 	}
195       if (abbrev_shndx == 0)
196 	return false;
197     }
198 
199   // Get the section contents and decompress if necessary.
200   if (abbrev_shndx != this->abbrev_shndx_)
201     {
202       if (this->owns_buffer_ && this->buffer_ != NULL)
203         {
204 	  delete[] this->buffer_;
205 	  this->owns_buffer_ = false;
206         }
207 
208       section_size_type buffer_size;
209       this->buffer_ =
210 	  object->decompressed_section_contents(abbrev_shndx,
211 						&buffer_size,
212 						&this->owns_buffer_);
213       this->buffer_end_ = this->buffer_ + buffer_size;
214       this->abbrev_shndx_ = abbrev_shndx;
215     }
216 
217   this->buffer_pos_ = this->buffer_ + abbrev_offset;
218   return true;
219 }
220 
221 // Lookup the abbrev code entry for CODE.  This function is called
222 // only when the abbrev code is not in the direct lookup table.
223 // It may be in the hash table, it may not have been read yet,
224 // or it may not exist in the abbrev table.
225 
226 const Dwarf_abbrev_table::Abbrev_code*
do_get_abbrev(unsigned int code)227 Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
228 {
229   // See if the abbrev code is already in the hash table.
230   Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
231   if (it != this->high_abbrev_codes_.end())
232     return it->second;
233 
234   // Read and store abbrev code definitions until we find the
235   // one we're looking for.
236   for (;;)
237     {
238       // Read the abbrev code.  A zero here indicates the end of the
239       // abbrev table.
240       size_t len;
241       if (this->buffer_pos_ >= this->buffer_end_)
242 	return NULL;
243       uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
244       if (nextcode == 0)
245 	{
246 	  this->buffer_pos_ = this->buffer_end_;
247 	  return NULL;
248 	}
249       this->buffer_pos_ += len;
250 
251       // Read the tag.
252       if (this->buffer_pos_ >= this->buffer_end_)
253 	return NULL;
254       uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
255       this->buffer_pos_ += len;
256 
257       // Read the has_children flag.
258       if (this->buffer_pos_ >= this->buffer_end_)
259 	return NULL;
260       bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
261       this->buffer_pos_ += 1;
262 
263       // Read the list of (attribute, form) pairs.
264       Abbrev_code* entry = new Abbrev_code(tag, has_children);
265       for (;;)
266 	{
267 	  // Read the attribute.
268 	  if (this->buffer_pos_ >= this->buffer_end_)
269 	    return NULL;
270 	  uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
271 	  this->buffer_pos_ += len;
272 
273 	  // Read the form.
274 	  if (this->buffer_pos_ >= this->buffer_end_)
275 	    return NULL;
276 	  uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
277 	  this->buffer_pos_ += len;
278 
279 	  // A (0,0) pair terminates the list.
280 	  if (attr == 0 && form == 0)
281 	    break;
282 
283 	  if (attr == elfcpp::DW_AT_sibling)
284 	    entry->has_sibling_attribute = true;
285 
286 	  entry->add_attribute(attr, form);
287 	}
288 
289       this->store_abbrev(nextcode, entry);
290       if (nextcode == code)
291 	return entry;
292     }
293 
294   return NULL;
295 }
296 
297 // class Dwarf_ranges_table
298 
299 // Read the ranges table from an object file.
300 
301 bool
read_ranges_table(Relobj * object,const unsigned char * symtab,off_t symtab_size,unsigned int ranges_shndx)302 Dwarf_ranges_table::read_ranges_table(
303     Relobj* object,
304     const unsigned char* symtab,
305     off_t symtab_size,
306     unsigned int ranges_shndx)
307 {
308   // If we've already read this abbrev table, return immediately.
309   if (this->ranges_shndx_ > 0
310       && this->ranges_shndx_ == ranges_shndx)
311     return true;
312 
313   // If we don't have relocations, ranges_shndx will be 0, and
314   // we'll have to hunt for the .debug_ranges section.
315   if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
316     ranges_shndx = this->ranges_shndx_;
317   else if (ranges_shndx == 0)
318     {
319       for (unsigned int i = 1; i < object->shnum(); ++i)
320 	{
321 	  std::string name = object->section_name(i);
322 	  if (name == ".debug_ranges" || name == ".zdebug_ranges")
323 	    {
324 	      ranges_shndx = i;
325 	      this->output_section_offset_ = object->output_section_offset(i);
326 	      break;
327 	    }
328 	}
329       if (ranges_shndx == 0)
330 	return false;
331     }
332 
333   // Get the section contents and decompress if necessary.
334   if (ranges_shndx != this->ranges_shndx_)
335     {
336       if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
337         {
338 	  delete[] this->ranges_buffer_;
339 	  this->owns_ranges_buffer_ = false;
340         }
341 
342       section_size_type buffer_size;
343       this->ranges_buffer_ =
344 	  object->decompressed_section_contents(ranges_shndx,
345 						&buffer_size,
346 						&this->owns_ranges_buffer_);
347       this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
348       this->ranges_shndx_ = ranges_shndx;
349     }
350 
351   if (this->ranges_reloc_mapper_ != NULL)
352     {
353       delete this->ranges_reloc_mapper_;
354       this->ranges_reloc_mapper_ = NULL;
355     }
356 
357   // For incremental objects, we have no relocations.
358   if (object->is_incremental())
359     return true;
360 
361   // Find the relocation section for ".debug_ranges".
362   unsigned int reloc_shndx = 0;
363   unsigned int reloc_type = 0;
364   for (unsigned int i = 0; i < object->shnum(); ++i)
365     {
366       reloc_type = object->section_type(i);
367       if ((reloc_type == elfcpp::SHT_REL
368 	   || reloc_type == elfcpp::SHT_RELA)
369 	  && object->section_info(i) == ranges_shndx)
370 	{
371 	  reloc_shndx = i;
372 	  break;
373 	}
374     }
375 
376   this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
377 						     symtab_size);
378   this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
379   this->reloc_type_ = reloc_type;
380 
381   return true;
382 }
383 
384 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
385 
386 Dwarf_range_list*
read_range_list(Relobj * object,const unsigned char * symtab,off_t symtab_size,unsigned int addr_size,unsigned int ranges_shndx,off_t offset)387 Dwarf_ranges_table::read_range_list(
388     Relobj* object,
389     const unsigned char* symtab,
390     off_t symtab_size,
391     unsigned int addr_size,
392     unsigned int ranges_shndx,
393     off_t offset)
394 {
395   Dwarf_range_list* ranges;
396 
397   if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
398     return NULL;
399 
400   // Correct the offset.  For incremental update links, we have a
401   // relocated offset that is relative to the output section, but
402   // here we need an offset relative to the input section.
403   offset -= this->output_section_offset_;
404 
405   // Read the range list at OFFSET.
406   ranges = new Dwarf_range_list();
407   off_t base = 0;
408   for (;
409        this->ranges_buffer_ + offset < this->ranges_buffer_end_;
410        offset += 2 * addr_size)
411     {
412       off_t start;
413       off_t end;
414 
415       // Read the raw contents of the section.
416       if (addr_size == 4)
417 	{
418 	  start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
419 						       + offset);
420 	  end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
421 						     + offset + 4);
422 	}
423       else
424 	{
425 	  start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
426 						       + offset);
427 	  end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
428 						     + offset + 8);
429 	}
430 
431       // Check for relocations and adjust the values.
432       unsigned int shndx1 = 0;
433       unsigned int shndx2 = 0;
434       if (this->ranges_reloc_mapper_ != NULL)
435         {
436 	  shndx1 = this->lookup_reloc(offset, &start);
437 	  shndx2 = this->lookup_reloc(offset + addr_size, &end);
438         }
439 
440       // End of list is marked by a pair of zeroes.
441       if (shndx1 == 0 && start == 0 && end == 0)
442         break;
443 
444       // A "base address selection entry" is identified by
445       // 0xffffffff for the first value of the pair.  The second
446       // value is used as a base for subsequent range list entries.
447       if (shndx1 == 0 && start == -1)
448 	base = end;
449       else if (shndx1 == shndx2)
450 	{
451 	  if (shndx1 == 0 || object->is_section_included(shndx1))
452 	    ranges->add(shndx1, base + start, base + end);
453 	}
454       else
455 	gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
456 		       "range list entry are in different sections"),
457 		     object->name().c_str());
458     }
459 
460   return ranges;
461 }
462 
463 // Look for a relocation at offset OFF in the range table,
464 // and return the section index and offset of the target.
465 
466 unsigned int
lookup_reloc(off_t off,off_t * target_off)467 Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
468 {
469   off_t value;
470   unsigned int shndx =
471       this->ranges_reloc_mapper_->get_reloc_target(off, &value);
472   if (shndx == 0)
473     return 0;
474   if (this->reloc_type_ == elfcpp::SHT_REL)
475     *target_off += value;
476   else
477     *target_off = value;
478   return shndx;
479 }
480 
481 // class Dwarf_pubnames_table
482 
483 // Read the pubnames section from the object file.
484 
485 bool
read_section(Relobj * object,const unsigned char * symtab,off_t symtab_size)486 Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
487                                    off_t symtab_size)
488 {
489   section_size_type buffer_size;
490   unsigned int shndx = 0;
491   const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames";
492   const char* gnu_name = (this->is_pubtypes_
493 			  ? "gnu_pubtypes"
494 			  : "gnu_pubnames");
495 
496   for (unsigned int i = 1; i < object->shnum(); ++i)
497     {
498       std::string section_name = object->section_name(i);
499       const char* section_name_suffix = section_name.c_str();
500       if (is_prefix_of(".debug_", section_name_suffix))
501 	section_name_suffix += 7;
502       else if (is_prefix_of(".zdebug_", section_name_suffix))
503 	section_name_suffix += 8;
504       else
505 	continue;
506       if (strcmp(section_name_suffix, name) == 0)
507         {
508           shndx = i;
509           break;
510         }
511       else if (strcmp(section_name_suffix, gnu_name) == 0)
512         {
513           shndx = i;
514           this->is_gnu_style_ = true;
515           break;
516         }
517     }
518   if (shndx == 0)
519     return false;
520 
521   this->buffer_ = object->decompressed_section_contents(shndx,
522 							&buffer_size,
523 							&this->owns_buffer_);
524   if (this->buffer_ == NULL)
525     return false;
526   this->buffer_end_ = this->buffer_ + buffer_size;
527 
528   // For incremental objects, we have no relocations.
529   if (object->is_incremental())
530     return true;
531 
532   // Find the relocation section
533   unsigned int reloc_shndx = 0;
534   unsigned int reloc_type = 0;
535   for (unsigned int i = 0; i < object->shnum(); ++i)
536     {
537       reloc_type = object->section_type(i);
538       if ((reloc_type == elfcpp::SHT_REL
539 	   || reloc_type == elfcpp::SHT_RELA)
540 	  && object->section_info(i) == shndx)
541 	{
542 	  reloc_shndx = i;
543 	  break;
544 	}
545     }
546 
547   this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
548   this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
549   this->reloc_type_ = reloc_type;
550 
551   return true;
552 }
553 
554 // Read the header for the set at OFFSET.
555 
556 bool
read_header(off_t offset)557 Dwarf_pubnames_table::read_header(off_t offset)
558 {
559   // Make sure we have actually read the section.
560   gold_assert(this->buffer_ != NULL);
561 
562   if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
563     return false;
564 
565   const unsigned char* pinfo = this->buffer_ + offset;
566 
567   // Read the unit_length field.
568   uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
569   pinfo += 4;
570   if (unit_length == 0xffffffff)
571     {
572       unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
573       this->unit_length_ = unit_length + 12;
574       pinfo += 8;
575       this->offset_size_ = 8;
576     }
577   else
578     {
579       this->unit_length_ = unit_length + 4;
580       this->offset_size_ = 4;
581     }
582   this->end_of_table_ = pinfo + unit_length;
583 
584   // If unit_length is too big, maybe we should reject the whole table,
585   // but in cases we know about, it seems OK to assume that the table
586   // is valid through the actual end of the section.
587   if (this->end_of_table_ > this->buffer_end_)
588     this->end_of_table_ = this->buffer_end_;
589 
590   // Check the version.
591   unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
592   pinfo += 2;
593   if (version != 2)
594     return false;
595 
596   this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
597                                         &this->cu_offset_);
598 
599   // Skip the debug_info_offset and debug_info_size fields.
600   pinfo += 2 * this->offset_size_;
601 
602   if (pinfo >= this->buffer_end_)
603     return false;
604 
605   this->pinfo_ = pinfo;
606   return true;
607 }
608 
609 // Read the next name from the set.
610 
611 const char*
next_name(uint8_t * flag_byte)612 Dwarf_pubnames_table::next_name(uint8_t* flag_byte)
613 {
614   const unsigned char* pinfo = this->pinfo_;
615 
616   // Check for end of list.  The table should be terminated by an
617   // entry containing nothing but a DIE offset of 0.
618   if (pinfo + this->offset_size_ >= this->end_of_table_)
619     return NULL;
620 
621   // Skip the offset within the CU.  If this is zero, but we're not
622   // at the end of the table, then we have a real pubnames entry
623   // whose DIE offset is 0 (likely to be a GCC bug).  Since we
624   // don't actually use the DIE offset in building .gdb_index,
625   // it's harmless.
626   pinfo += this->offset_size_;
627 
628   if (this->is_gnu_style_)
629     *flag_byte = *pinfo++;
630   else
631     *flag_byte = 0;
632 
633   // Return a pointer to the string at the current location,
634   // and advance the pointer to the next entry.
635   const char* ret = reinterpret_cast<const char*>(pinfo);
636   while (pinfo < this->buffer_end_ && *pinfo != '\0')
637     ++pinfo;
638   if (pinfo < this->buffer_end_)
639     ++pinfo;
640 
641   this->pinfo_ = pinfo;
642   return ret;
643 }
644 
645 // class Dwarf_die
646 
Dwarf_die(Dwarf_info_reader * dwinfo,off_t die_offset,Dwarf_die * parent)647 Dwarf_die::Dwarf_die(
648     Dwarf_info_reader* dwinfo,
649     off_t die_offset,
650     Dwarf_die* parent)
651   : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
652     child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
653     attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
654     linkage_name_off_(-1), string_shndx_(0), specification_(0),
655     abstract_origin_(0)
656 {
657   size_t len;
658   const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
659   if (pdie == NULL)
660     return;
661   unsigned int code = read_unsigned_LEB_128(pdie, &len);
662   if (code == 0)
663     {
664       if (parent != NULL)
665 	parent->set_sibling_offset(die_offset + len);
666       return;
667     }
668   this->attr_offset_ = len;
669 
670   // Lookup the abbrev code in the abbrev table.
671   this->abbrev_code_ = dwinfo->get_abbrev(code);
672 }
673 
674 // Read all the attributes of the DIE.
675 
676 bool
read_attributes()677 Dwarf_die::read_attributes()
678 {
679   if (this->attributes_read_)
680     return true;
681 
682   gold_assert(this->abbrev_code_ != NULL);
683 
684   const unsigned char* pdie =
685       this->dwinfo_->buffer_at_offset(this->die_offset_);
686   if (pdie == NULL)
687     return false;
688   const unsigned char* pattr = pdie + this->attr_offset_;
689 
690   unsigned int nattr = this->abbrev_code_->attributes.size();
691   this->attributes_.reserve(nattr);
692   for (unsigned int i = 0; i < nattr; ++i)
693     {
694       size_t len;
695       unsigned int attr = this->abbrev_code_->attributes[i].attr;
696       unsigned int form = this->abbrev_code_->attributes[i].form;
697       if (form == elfcpp::DW_FORM_indirect)
698         {
699           form = read_unsigned_LEB_128(pattr, &len);
700           pattr += len;
701         }
702       off_t attr_off = this->die_offset_ + (pattr - pdie);
703       bool ref_form = false;
704       Attribute_value attr_value;
705       attr_value.attr = attr;
706       attr_value.form = form;
707       attr_value.aux.shndx = 0;
708       switch(form)
709 	{
710 	  case elfcpp::DW_FORM_flag_present:
711 	    attr_value.val.intval = 1;
712 	    break;
713 	  case elfcpp::DW_FORM_strp:
714 	    {
715 	      off_t str_off;
716 	      if (this->dwinfo_->offset_size() == 4)
717 		str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
718 	      else
719 		str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
720 	      unsigned int shndx =
721 		  this->dwinfo_->lookup_reloc(attr_off, &str_off);
722 	      attr_value.aux.shndx = shndx;
723 	      attr_value.val.refval = str_off;
724 	      break;
725 	    }
726 	  case elfcpp::DW_FORM_sec_offset:
727 	    {
728 	      off_t sec_off;
729 	      if (this->dwinfo_->offset_size() == 4)
730 		sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
731 	      else
732 		sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
733 	      unsigned int shndx =
734 		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
735 	      attr_value.aux.shndx = shndx;
736 	      attr_value.val.refval = sec_off;
737 	      ref_form = true;
738 	      break;
739 	    }
740 	  case elfcpp::DW_FORM_addr:
741 	  case elfcpp::DW_FORM_ref_addr:
742 	    {
743 	      off_t sec_off;
744 	      if (this->dwinfo_->address_size() == 4)
745 		sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
746 	      else
747 		sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
748 	      unsigned int shndx =
749 		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
750 	      attr_value.aux.shndx = shndx;
751 	      attr_value.val.refval = sec_off;
752 	      ref_form = true;
753 	      break;
754 	    }
755 	  case elfcpp::DW_FORM_block1:
756 	    attr_value.aux.blocklen = *pattr++;
757 	    attr_value.val.blockval = pattr;
758 	    pattr += attr_value.aux.blocklen;
759 	    break;
760 	  case elfcpp::DW_FORM_block2:
761 	    attr_value.aux.blocklen =
762 		this->dwinfo_->read_from_pointer<16>(&pattr);
763 	    attr_value.val.blockval = pattr;
764 	    pattr += attr_value.aux.blocklen;
765 	    break;
766 	  case elfcpp::DW_FORM_block4:
767 	    attr_value.aux.blocklen =
768 		this->dwinfo_->read_from_pointer<32>(&pattr);
769 	    attr_value.val.blockval = pattr;
770 	    pattr += attr_value.aux.blocklen;
771 	    break;
772 	  case elfcpp::DW_FORM_block:
773 	  case elfcpp::DW_FORM_exprloc:
774 	    attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
775 	    attr_value.val.blockval = pattr + len;
776 	    pattr += len + attr_value.aux.blocklen;
777 	    break;
778 	  case elfcpp::DW_FORM_data1:
779 	  case elfcpp::DW_FORM_flag:
780 	    attr_value.val.intval = *pattr++;
781 	    break;
782 	  case elfcpp::DW_FORM_ref1:
783 	    attr_value.val.refval = *pattr++;
784 	    ref_form = true;
785 	    break;
786 	  case elfcpp::DW_FORM_data2:
787 	    attr_value.val.intval =
788 		this->dwinfo_->read_from_pointer<16>(&pattr);
789 	    break;
790 	  case elfcpp::DW_FORM_ref2:
791 	    attr_value.val.refval =
792 		this->dwinfo_->read_from_pointer<16>(&pattr);
793 	    ref_form = true;
794 	    break;
795 	  case elfcpp::DW_FORM_data4:
796 	    {
797 	      off_t sec_off;
798 	      sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
799 	      unsigned int shndx =
800 		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
801 	      attr_value.aux.shndx = shndx;
802 	      attr_value.val.intval = sec_off;
803 	      break;
804 	    }
805 	  case elfcpp::DW_FORM_ref4:
806 	    {
807 	      off_t sec_off;
808 	      sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
809 	      unsigned int shndx =
810 		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
811 	      attr_value.aux.shndx = shndx;
812 	      attr_value.val.refval = sec_off;
813 	      ref_form = true;
814 	      break;
815 	    }
816 	  case elfcpp::DW_FORM_data8:
817 	    {
818 	      off_t sec_off;
819 	      sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
820 	      unsigned int shndx =
821 		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
822 	      attr_value.aux.shndx = shndx;
823 	      attr_value.val.intval = sec_off;
824 	      break;
825 	    }
826 	  case elfcpp::DW_FORM_ref_sig8:
827 	    attr_value.val.uintval =
828 		this->dwinfo_->read_from_pointer<64>(&pattr);
829 	    break;
830 	  case elfcpp::DW_FORM_ref8:
831 	    {
832 	      off_t sec_off;
833 	      sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
834 	      unsigned int shndx =
835 		  this->dwinfo_->lookup_reloc(attr_off, &sec_off);
836 	      attr_value.aux.shndx = shndx;
837 	      attr_value.val.refval = sec_off;
838 	      ref_form = true;
839 	      break;
840 	    }
841 	  case elfcpp::DW_FORM_ref_udata:
842 	    attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
843 	    ref_form = true;
844 	    pattr += len;
845 	    break;
846 	  case elfcpp::DW_FORM_udata:
847 	  case elfcpp::DW_FORM_GNU_addr_index:
848 	  case elfcpp::DW_FORM_GNU_str_index:
849 	    attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
850 	    pattr += len;
851 	    break;
852 	  case elfcpp::DW_FORM_sdata:
853 	    attr_value.val.intval = read_signed_LEB_128(pattr, &len);
854 	    pattr += len;
855 	    break;
856 	  case elfcpp::DW_FORM_string:
857 	    attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
858 	    len = strlen(attr_value.val.stringval);
859 	    pattr += len + 1;
860 	    break;
861 	  default:
862 	    return false;
863 	}
864 
865       // Cache the most frequently-requested attributes.
866       switch (attr)
867 	{
868 	  case elfcpp::DW_AT_name:
869 	    if (form == elfcpp::DW_FORM_string)
870 	      this->name_ = attr_value.val.stringval;
871 	    else if (form == elfcpp::DW_FORM_strp)
872 	      {
873 		// All indirect strings should refer to the same
874 		// string section, so we just save the last one seen.
875 		this->string_shndx_ = attr_value.aux.shndx;
876 		this->name_off_ = attr_value.val.refval;
877 	      }
878 	    break;
879 	  case elfcpp::DW_AT_linkage_name:
880 	  case elfcpp::DW_AT_MIPS_linkage_name:
881 	    if (form == elfcpp::DW_FORM_string)
882 	      this->linkage_name_ = attr_value.val.stringval;
883 	    else if (form == elfcpp::DW_FORM_strp)
884 	      {
885 		// All indirect strings should refer to the same
886 		// string section, so we just save the last one seen.
887 		this->string_shndx_ = attr_value.aux.shndx;
888 		this->linkage_name_off_ = attr_value.val.refval;
889 	      }
890 	    break;
891 	  case elfcpp::DW_AT_specification:
892 	    if (ref_form)
893 	      this->specification_ = attr_value.val.refval;
894 	    break;
895 	  case elfcpp::DW_AT_abstract_origin:
896 	    if (ref_form)
897 	      this->abstract_origin_ = attr_value.val.refval;
898 	    break;
899 	  case elfcpp::DW_AT_sibling:
900 	    if (ref_form && attr_value.aux.shndx == 0)
901 	      this->sibling_offset_ = attr_value.val.refval;
902 	  default:
903 	    break;
904 	}
905 
906       this->attributes_.push_back(attr_value);
907     }
908 
909   // Now that we know where the next DIE begins, record the offset
910   // to avoid later recalculation.
911   if (this->has_children())
912     this->child_offset_ = this->die_offset_ + (pattr - pdie);
913   else
914     this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
915 
916   this->attributes_read_ = true;
917   return true;
918 }
919 
920 // Skip all the attributes of the DIE and return the offset of the next DIE.
921 
922 off_t
skip_attributes()923 Dwarf_die::skip_attributes()
924 {
925   gold_assert(this->abbrev_code_ != NULL);
926 
927   const unsigned char* pdie =
928       this->dwinfo_->buffer_at_offset(this->die_offset_);
929   if (pdie == NULL)
930     return 0;
931   const unsigned char* pattr = pdie + this->attr_offset_;
932 
933   for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
934     {
935       size_t len;
936       unsigned int form = this->abbrev_code_->attributes[i].form;
937       if (form == elfcpp::DW_FORM_indirect)
938         {
939           form = read_unsigned_LEB_128(pattr, &len);
940           pattr += len;
941         }
942       switch(form)
943 	{
944 	  case elfcpp::DW_FORM_flag_present:
945 	    break;
946 	  case elfcpp::DW_FORM_strp:
947 	  case elfcpp::DW_FORM_sec_offset:
948 	    pattr += this->dwinfo_->offset_size();
949 	    break;
950 	  case elfcpp::DW_FORM_addr:
951 	  case elfcpp::DW_FORM_ref_addr:
952 	    pattr += this->dwinfo_->address_size();
953 	    break;
954 	  case elfcpp::DW_FORM_block1:
955 	    pattr += 1 + *pattr;
956 	    break;
957 	  case elfcpp::DW_FORM_block2:
958 	    {
959 	      uint16_t block_size;
960 	      block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
961 	      pattr += block_size;
962 	      break;
963 	    }
964 	  case elfcpp::DW_FORM_block4:
965 	    {
966 	      uint32_t block_size;
967 	      block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
968 	      pattr += block_size;
969 	      break;
970 	    }
971 	  case elfcpp::DW_FORM_block:
972 	  case elfcpp::DW_FORM_exprloc:
973 	    {
974 	      uint64_t block_size;
975 	      block_size = read_unsigned_LEB_128(pattr, &len);
976 	      pattr += len + block_size;
977 	      break;
978 	    }
979 	  case elfcpp::DW_FORM_data1:
980 	  case elfcpp::DW_FORM_ref1:
981 	  case elfcpp::DW_FORM_flag:
982 	    pattr += 1;
983 	    break;
984 	  case elfcpp::DW_FORM_data2:
985 	  case elfcpp::DW_FORM_ref2:
986 	    pattr += 2;
987 	    break;
988 	  case elfcpp::DW_FORM_data4:
989 	  case elfcpp::DW_FORM_ref4:
990 	    pattr += 4;
991 	    break;
992 	  case elfcpp::DW_FORM_data8:
993 	  case elfcpp::DW_FORM_ref8:
994 	  case elfcpp::DW_FORM_ref_sig8:
995 	    pattr += 8;
996 	    break;
997 	  case elfcpp::DW_FORM_ref_udata:
998 	  case elfcpp::DW_FORM_udata:
999 	  case elfcpp::DW_FORM_GNU_addr_index:
1000 	  case elfcpp::DW_FORM_GNU_str_index:
1001 	    read_unsigned_LEB_128(pattr, &len);
1002 	    pattr += len;
1003 	    break;
1004 	  case elfcpp::DW_FORM_sdata:
1005 	    read_signed_LEB_128(pattr, &len);
1006 	    pattr += len;
1007 	    break;
1008 	  case elfcpp::DW_FORM_string:
1009 	    len = strlen(reinterpret_cast<const char*>(pattr));
1010 	    pattr += len + 1;
1011 	    break;
1012 	  default:
1013 	    return 0;
1014 	}
1015     }
1016 
1017   return this->die_offset_ + (pattr - pdie);
1018 }
1019 
1020 // Get the name of the DIE and cache it.
1021 
1022 void
set_name()1023 Dwarf_die::set_name()
1024 {
1025   if (this->name_ != NULL || !this->read_attributes())
1026     return;
1027   if (this->name_off_ != -1)
1028     this->name_ = this->dwinfo_->get_string(this->name_off_,
1029 					    this->string_shndx_);
1030 }
1031 
1032 // Get the linkage name of the DIE and cache it.
1033 
1034 void
set_linkage_name()1035 Dwarf_die::set_linkage_name()
1036 {
1037   if (this->linkage_name_ != NULL || !this->read_attributes())
1038     return;
1039   if (this->linkage_name_off_ != -1)
1040     this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
1041 						    this->string_shndx_);
1042 }
1043 
1044 // Return the value of attribute ATTR.
1045 
1046 const Dwarf_die::Attribute_value*
attribute(unsigned int attr)1047 Dwarf_die::attribute(unsigned int attr)
1048 {
1049   if (!this->read_attributes())
1050     return NULL;
1051   for (unsigned int i = 0; i < this->attributes_.size(); ++i)
1052     {
1053       if (this->attributes_[i].attr == attr)
1054         return &this->attributes_[i];
1055     }
1056   return NULL;
1057 }
1058 
1059 const char*
string_attribute(unsigned int attr)1060 Dwarf_die::string_attribute(unsigned int attr)
1061 {
1062   const Attribute_value* attr_val = this->attribute(attr);
1063   if (attr_val == NULL)
1064     return NULL;
1065   switch (attr_val->form)
1066     {
1067       case elfcpp::DW_FORM_string:
1068         return attr_val->val.stringval;
1069       case elfcpp::DW_FORM_strp:
1070 	return this->dwinfo_->get_string(attr_val->val.refval,
1071 					 attr_val->aux.shndx);
1072       default:
1073         return NULL;
1074     }
1075 }
1076 
1077 int64_t
int_attribute(unsigned int attr)1078 Dwarf_die::int_attribute(unsigned int attr)
1079 {
1080   const Attribute_value* attr_val = this->attribute(attr);
1081   if (attr_val == NULL)
1082     return 0;
1083   switch (attr_val->form)
1084     {
1085       case elfcpp::DW_FORM_flag_present:
1086       case elfcpp::DW_FORM_data1:
1087       case elfcpp::DW_FORM_flag:
1088       case elfcpp::DW_FORM_data2:
1089       case elfcpp::DW_FORM_data4:
1090       case elfcpp::DW_FORM_data8:
1091       case elfcpp::DW_FORM_sdata:
1092         return attr_val->val.intval;
1093       default:
1094         return 0;
1095     }
1096 }
1097 
1098 uint64_t
uint_attribute(unsigned int attr)1099 Dwarf_die::uint_attribute(unsigned int attr)
1100 {
1101   const Attribute_value* attr_val = this->attribute(attr);
1102   if (attr_val == NULL)
1103     return 0;
1104   switch (attr_val->form)
1105     {
1106       case elfcpp::DW_FORM_flag_present:
1107       case elfcpp::DW_FORM_data1:
1108       case elfcpp::DW_FORM_flag:
1109       case elfcpp::DW_FORM_data4:
1110       case elfcpp::DW_FORM_data8:
1111       case elfcpp::DW_FORM_ref_sig8:
1112       case elfcpp::DW_FORM_udata:
1113         return attr_val->val.uintval;
1114       default:
1115         return 0;
1116     }
1117 }
1118 
1119 off_t
ref_attribute(unsigned int attr,unsigned int * shndx)1120 Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1121 {
1122   const Attribute_value* attr_val = this->attribute(attr);
1123   if (attr_val == NULL)
1124     return -1;
1125   switch (attr_val->form)
1126     {
1127       case elfcpp::DW_FORM_sec_offset:
1128       case elfcpp::DW_FORM_addr:
1129       case elfcpp::DW_FORM_ref_addr:
1130       case elfcpp::DW_FORM_ref1:
1131       case elfcpp::DW_FORM_ref2:
1132       case elfcpp::DW_FORM_ref4:
1133       case elfcpp::DW_FORM_ref8:
1134       case elfcpp::DW_FORM_ref_udata:
1135         *shndx = attr_val->aux.shndx;
1136         return attr_val->val.refval;
1137       case elfcpp::DW_FORM_ref_sig8:
1138         *shndx = attr_val->aux.shndx;
1139         return attr_val->val.uintval;
1140       case elfcpp::DW_FORM_data4:
1141       case elfcpp::DW_FORM_data8:
1142         *shndx = attr_val->aux.shndx;
1143         return attr_val->val.intval;
1144       default:
1145         return -1;
1146     }
1147 }
1148 
1149 off_t
address_attribute(unsigned int attr,unsigned int * shndx)1150 Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1151 {
1152   const Attribute_value* attr_val = this->attribute(attr);
1153   if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1154     return -1;
1155 
1156   *shndx = attr_val->aux.shndx;
1157   return attr_val->val.refval;
1158 }
1159 
1160 // Return the offset of this DIE's first child.
1161 
1162 off_t
child_offset()1163 Dwarf_die::child_offset()
1164 {
1165   gold_assert(this->abbrev_code_ != NULL);
1166   if (!this->has_children())
1167     return 0;
1168   if (this->child_offset_ == 0)
1169     this->child_offset_ = this->skip_attributes();
1170   return this->child_offset_;
1171 }
1172 
1173 // Return the offset of this DIE's next sibling.
1174 
1175 off_t
sibling_offset()1176 Dwarf_die::sibling_offset()
1177 {
1178   gold_assert(this->abbrev_code_ != NULL);
1179 
1180   if (this->sibling_offset_ != 0)
1181     return this->sibling_offset_;
1182 
1183   if (!this->has_children())
1184     {
1185       this->sibling_offset_ = this->skip_attributes();
1186       return this->sibling_offset_;
1187     }
1188 
1189   if (this->has_sibling_attribute())
1190     {
1191       if (!this->read_attributes())
1192 	return 0;
1193       if (this->sibling_offset_ != 0)
1194 	return this->sibling_offset_;
1195     }
1196 
1197   // Skip over the children.
1198   off_t child_offset = this->child_offset();
1199   while (child_offset > 0)
1200     {
1201       Dwarf_die die(this->dwinfo_, child_offset, this);
1202       // The Dwarf_die ctor will set this DIE's sibling offset
1203       // when it reads a zero abbrev code.
1204       if (die.tag() == 0)
1205 	break;
1206       child_offset = die.sibling_offset();
1207     }
1208 
1209   // This should be set by now.  If not, there was a problem reading
1210   // the DWARF info, and we return 0.
1211   return this->sibling_offset_;
1212 }
1213 
1214 // class Dwarf_info_reader
1215 
1216 // Begin parsing the debug info.  This calls visit_compilation_unit()
1217 // or visit_type_unit() for each compilation or type unit found in the
1218 // section, and visit_die() for each top-level DIE.
1219 
1220 void
parse()1221 Dwarf_info_reader::parse()
1222 {
1223   if (this->object_->is_big_endian())
1224     {
1225 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1226       this->do_parse<true>();
1227 #else
1228       gold_unreachable();
1229 #endif
1230     }
1231   else
1232     {
1233 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1234       this->do_parse<false>();
1235 #else
1236       gold_unreachable();
1237 #endif
1238     }
1239 }
1240 
1241 template<bool big_endian>
1242 void
do_parse()1243 Dwarf_info_reader::do_parse()
1244 {
1245   // Get the section contents and decompress if necessary.
1246   section_size_type buffer_size;
1247   bool buffer_is_new;
1248   this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1249 							       &buffer_size,
1250 							       &buffer_is_new);
1251   if (this->buffer_ == NULL || buffer_size == 0)
1252     return;
1253   this->buffer_end_ = this->buffer_ + buffer_size;
1254 
1255   // The offset of this input section in the output section.
1256   off_t section_offset = this->object_->output_section_offset(this->shndx_);
1257 
1258   // Start tracking relocations for this section.
1259   this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1260 					      this->symtab_size_);
1261   this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1262 
1263   // Loop over compilation units (or type units).
1264   unsigned int abbrev_shndx = this->abbrev_shndx_;
1265   off_t abbrev_offset = 0;
1266   const unsigned char* pinfo = this->buffer_;
1267   while (pinfo < this->buffer_end_)
1268     {
1269       // Read the compilation (or type) unit header.
1270       const unsigned char* cu_start = pinfo;
1271       this->cu_offset_ = cu_start - this->buffer_;
1272       this->cu_length_ = this->buffer_end_ - cu_start;
1273 
1274       // Read unit_length (4 or 12 bytes).
1275       if (!this->check_buffer(pinfo + 4))
1276 	break;
1277       uint32_t unit_length =
1278           elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1279       pinfo += 4;
1280       if (unit_length == 0xffffffff)
1281 	{
1282 	  if (!this->check_buffer(pinfo + 8))
1283 	    break;
1284 	  unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1285 	  pinfo += 8;
1286 	  this->offset_size_ = 8;
1287 	}
1288       else
1289 	this->offset_size_ = 4;
1290       if (!this->check_buffer(pinfo + unit_length))
1291 	break;
1292       const unsigned char* cu_end = pinfo + unit_length;
1293       this->cu_length_ = cu_end - cu_start;
1294       if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1295 	break;
1296 
1297       // Read version (2 bytes).
1298       this->cu_version_ =
1299 	  elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1300       pinfo += 2;
1301 
1302       // Read debug_abbrev_offset (4 or 8 bytes).
1303       if (this->offset_size_ == 4)
1304 	abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1305       else
1306 	abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1307       if (this->reloc_shndx_ > 0)
1308 	{
1309 	  off_t reloc_offset = pinfo - this->buffer_;
1310 	  off_t value;
1311 	  abbrev_shndx =
1312 	      this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1313 	  if (abbrev_shndx == 0)
1314 	    return;
1315 	  if (this->reloc_type_ == elfcpp::SHT_REL)
1316 	    abbrev_offset += value;
1317 	  else
1318 	    abbrev_offset = value;
1319 	}
1320       pinfo += this->offset_size_;
1321 
1322       // Read address_size (1 byte).
1323       this->address_size_ = *pinfo++;
1324 
1325       // For type units, read the two extra fields.
1326       uint64_t signature = 0;
1327       off_t type_offset = 0;
1328       if (this->is_type_unit_)
1329         {
1330 	  if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1331 	    break;
1332 
1333 	  // Read type_signature (8 bytes).
1334 	  signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1335 	  pinfo += 8;
1336 
1337 	  // Read type_offset (4 or 8 bytes).
1338 	  if (this->offset_size_ == 4)
1339 	    type_offset =
1340 		elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1341 	  else
1342 	    type_offset =
1343 		elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1344 	  pinfo += this->offset_size_;
1345 	}
1346 
1347       // Read the .debug_abbrev table.
1348       this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1349 				       abbrev_offset);
1350 
1351       // Visit the root DIE.
1352       Dwarf_die root_die(this,
1353 			 pinfo - (this->buffer_ + this->cu_offset_),
1354 			 NULL);
1355       if (root_die.tag() != 0)
1356 	{
1357 	  // Visit the CU or TU.
1358 	  if (this->is_type_unit_)
1359 	    this->visit_type_unit(section_offset + this->cu_offset_,
1360 				  cu_end - cu_start, type_offset, signature,
1361 				  &root_die);
1362 	  else
1363 	    this->visit_compilation_unit(section_offset + this->cu_offset_,
1364 					 cu_end - cu_start, &root_die);
1365 	}
1366 
1367       // Advance to the next CU.
1368       pinfo = cu_end;
1369     }
1370 
1371   if (buffer_is_new)
1372     {
1373       delete[] this->buffer_;
1374       this->buffer_ = NULL;
1375     }
1376 }
1377 
1378 // Read the DWARF string table.
1379 
1380 bool
do_read_string_table(unsigned int string_shndx)1381 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1382 {
1383   Relobj* object = this->object_;
1384 
1385   // If we don't have relocations, string_shndx will be 0, and
1386   // we'll have to hunt for the .debug_str section.
1387   if (string_shndx == 0)
1388     {
1389       for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1390 	{
1391 	  std::string name = object->section_name(i);
1392 	  if (name == ".debug_str" || name == ".zdebug_str")
1393 	    {
1394 	      string_shndx = i;
1395 	      this->string_output_section_offset_ =
1396 		  object->output_section_offset(i);
1397 	      break;
1398 	    }
1399 	}
1400       if (string_shndx == 0)
1401 	return false;
1402     }
1403 
1404   if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1405     {
1406       delete[] this->string_buffer_;
1407       this->owns_string_buffer_ = false;
1408     }
1409 
1410   // Get the secton contents and decompress if necessary.
1411   section_size_type buffer_size;
1412   const unsigned char* buffer =
1413       object->decompressed_section_contents(string_shndx,
1414 					    &buffer_size,
1415 					    &this->owns_string_buffer_);
1416   this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1417   this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1418   this->string_shndx_ = string_shndx;
1419   return true;
1420 }
1421 
1422 // Read a possibly unaligned integer of SIZE.
1423 template <int valsize>
1424 inline typename elfcpp::Valtype_base<valsize>::Valtype
read_from_pointer(const unsigned char * source)1425 Dwarf_info_reader::read_from_pointer(const unsigned char* source)
1426 {
1427   typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1428   if (this->object_->is_big_endian())
1429     return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
1430   else
1431     return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
1432   return return_value;
1433 }
1434 
1435 // Read a possibly unaligned integer of SIZE.  Update SOURCE after read.
1436 template <int valsize>
1437 inline typename elfcpp::Valtype_base<valsize>::Valtype
read_from_pointer(const unsigned char ** source)1438 Dwarf_info_reader::read_from_pointer(const unsigned char** source)
1439 {
1440   typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1441   if (this->object_->is_big_endian())
1442     return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
1443   else
1444     return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
1445   *source += valsize / 8;
1446   return return_value;
1447 }
1448 
1449 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1450 // and return the section index and offset of the target.
1451 
1452 unsigned int
lookup_reloc(off_t attr_off,off_t * target_off)1453 Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1454 {
1455   off_t value;
1456   attr_off += this->cu_offset_;
1457   unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1458   if (shndx == 0)
1459     return 0;
1460   if (this->reloc_type_ == elfcpp::SHT_REL)
1461     *target_off += value;
1462   else
1463     *target_off = value;
1464   return shndx;
1465 }
1466 
1467 // Return a string from the DWARF string table.
1468 
1469 const char*
get_string(off_t str_off,unsigned int string_shndx)1470 Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1471 {
1472   if (!this->read_string_table(string_shndx))
1473     return NULL;
1474 
1475   // Correct the offset.  For incremental update links, we have a
1476   // relocated offset that is relative to the output section, but
1477   // here we need an offset relative to the input section.
1478   str_off -= this->string_output_section_offset_;
1479 
1480   const char* p = this->string_buffer_ + str_off;
1481 
1482   if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1483     return NULL;
1484 
1485   return p;
1486 }
1487 
1488 // The following are default, do-nothing, implementations of the
1489 // hook methods normally provided by a derived class.  We provide
1490 // default implementations rather than no implementation so that
1491 // a derived class needs to implement only the hooks that it needs
1492 // to use.
1493 
1494 // Process a compilation unit and parse its child DIE.
1495 
1496 void
visit_compilation_unit(off_t,off_t,Dwarf_die *)1497 Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1498 {
1499 }
1500 
1501 // Process a type unit and parse its child DIE.
1502 
1503 void
visit_type_unit(off_t,off_t,off_t,uint64_t,Dwarf_die *)1504 Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
1505 {
1506 }
1507 
1508 // Print a warning about a corrupt debug section.
1509 
1510 void
warn_corrupt_debug_section() const1511 Dwarf_info_reader::warn_corrupt_debug_section() const
1512 {
1513   gold_warning(_("%s: corrupt debug info in %s"),
1514 	       this->object_->name().c_str(),
1515 	       this->object_->section_name(this->shndx_).c_str());
1516 }
1517 
1518 // class Sized_dwarf_line_info
1519 
1520 struct LineStateMachine
1521 {
1522   int file_num;
1523   uint64_t address;
1524   int line_num;
1525   int column_num;
1526   unsigned int shndx;    // the section address refers to
1527   bool is_stmt;          // stmt means statement.
1528   bool basic_block;
1529   bool end_sequence;
1530   unsigned int context;
1531 };
1532 
1533 static void
ResetLineStateMachine(struct LineStateMachine * lsm,bool default_is_stmt)1534 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1535 {
1536   lsm->file_num = 1;
1537   lsm->address = 0;
1538   lsm->line_num = 1;
1539   lsm->column_num = 0;
1540   lsm->shndx = -1U;
1541   lsm->is_stmt = default_is_stmt;
1542   lsm->basic_block = false;
1543   lsm->end_sequence = false;
1544   lsm->context = 0;
1545 }
1546 
1547 template<int size, bool big_endian>
Sized_dwarf_line_info(Object * object,unsigned int read_shndx)1548 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1549     Object* object,
1550     unsigned int read_shndx)
1551   : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1552     str_buffer_(NULL), str_buffer_start_(NULL),
1553     reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1554     current_header_index_(-1), reloc_map_(), line_number_map_()
1555 {
1556   unsigned int debug_line_shndx = 0;
1557   unsigned int debug_line_str_shndx = 0;
1558 
1559   for (unsigned int i = 1; i < object->shnum(); ++i)
1560     {
1561       section_size_type buffer_size;
1562       bool is_new = false;
1563 
1564       // FIXME: do this more efficiently: section_name() isn't super-fast
1565       std::string name = object->section_name(i);
1566       if (name == ".debug_line" || name == ".zdebug_line")
1567 	{
1568 	  this->buffer_ =
1569 	      object->decompressed_section_contents(i, &buffer_size, &is_new);
1570 	  if (is_new)
1571 	    this->buffer_start_ = this->buffer_;
1572 	  this->buffer_end_ = this->buffer_ + buffer_size;
1573 	  debug_line_shndx = i;
1574 	}
1575       else if (name == ".debug_line_str" || name == ".zdebug_line_str")
1576 	{
1577 	  this->str_buffer_ =
1578 	      object->decompressed_section_contents(i, &buffer_size, &is_new);
1579 	  if (is_new)
1580 	    this->str_buffer_start_ = this->str_buffer_;
1581 	  this->str_buffer_end_ = this->str_buffer_ + buffer_size;
1582 	  debug_line_str_shndx = i;
1583 	}
1584       if (debug_line_shndx > 0 && debug_line_str_shndx > 0)
1585         break;
1586     }
1587   if (this->buffer_ == NULL)
1588     return;
1589 
1590   // Find the relocation section for ".debug_line".
1591   // We expect these for relobjs (.o's) but not dynobjs (.so's).
1592   unsigned int reloc_shndx = 0;
1593   for (unsigned int i = 0; i < object->shnum(); ++i)
1594     {
1595       unsigned int reloc_sh_type = object->section_type(i);
1596       if ((reloc_sh_type == elfcpp::SHT_REL
1597 	   || reloc_sh_type == elfcpp::SHT_RELA)
1598 	  && object->section_info(i) == debug_line_shndx)
1599 	{
1600 	  reloc_shndx = i;
1601 	  this->track_relocs_type_ = reloc_sh_type;
1602 	  break;
1603 	}
1604     }
1605 
1606   // Finally, we need the symtab section to interpret the relocs.
1607   if (reloc_shndx != 0)
1608     {
1609       unsigned int symtab_shndx;
1610       for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1611         if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1612           {
1613 	    this->symtab_buffer_ = object->section_contents(
1614 		symtab_shndx, &this->symtab_buffer_size_, false);
1615             break;
1616           }
1617       if (this->symtab_buffer_ == NULL)
1618         return;
1619     }
1620 
1621   this->reloc_mapper_ =
1622       new Sized_elf_reloc_mapper<size, big_endian>(object,
1623 						   this->symtab_buffer_,
1624 						   this->symtab_buffer_size_);
1625   if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1626     return;
1627 
1628   // Now that we have successfully read all the data, parse the debug
1629   // info.
1630   this->data_valid_ = true;
1631   gold_debug(DEBUG_LOCATION, "read_line_mappings: %s shndx %u",
1632 	     object->name().c_str(), read_shndx);
1633   this->read_line_mappings(read_shndx);
1634 }
1635 
1636 // Read the DWARF header.
1637 
1638 template<int size, bool big_endian>
1639 const unsigned char*
read_header_prolog(const unsigned char * lineptr)1640 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1641     const unsigned char* lineptr)
1642 {
1643   uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1644   lineptr += 4;
1645 
1646   // In DWARF2/3, if the initial length is all 1 bits, then the offset
1647   // size is 8 and we need to read the next 8 bytes for the real length.
1648   if (initial_length == 0xffffffff)
1649     {
1650       header_.offset_size = 8;
1651       initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1652       lineptr += 8;
1653     }
1654   else
1655     header_.offset_size = 4;
1656 
1657   header_.total_length = initial_length;
1658 
1659   this->end_of_unit_ = lineptr + initial_length;
1660   gold_assert(this->end_of_unit_ <= buffer_end_);
1661 
1662   header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1663   lineptr += 2;
1664 
1665   // We can only read versions 2 and 3 of the DWARF line number table.
1666   // For other versions, just skip the entire line number table.
1667   if ((header_.version < 2 || header_.version > 4)
1668       && header_.version != DWARF5_EXPERIMENTAL_LINE_TABLE)
1669     return this->end_of_unit_;
1670 
1671   if (header_.offset_size == 4)
1672     header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1673   else
1674     header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1675   lineptr += header_.offset_size;
1676 
1677   this->end_of_header_length_ = lineptr;
1678 
1679   // If this is a two-level line table, we'll adjust these below.
1680   this->logicals_start_ = lineptr + header_.prologue_length;
1681   this->actuals_start_ = NULL;
1682 
1683   header_.min_insn_length = *lineptr;
1684   lineptr += 1;
1685 
1686   if (header_.version >= 4)
1687     {
1688       header_.max_ops_per_insn = *lineptr;
1689       lineptr += 1;
1690     }
1691 
1692   header_.default_is_stmt = *lineptr;
1693   lineptr += 1;
1694 
1695   header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1696   lineptr += 1;
1697 
1698   header_.line_range = *lineptr;
1699   lineptr += 1;
1700 
1701   header_.opcode_base = *lineptr;
1702   lineptr += 1;
1703 
1704   header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1705   header_.std_opcode_lengths[0] = 0;
1706   for (int i = 1; i < header_.opcode_base; i++)
1707     {
1708       header_.std_opcode_lengths[i] = *lineptr;
1709       lineptr += 1;
1710     }
1711 
1712   if (header_.version == DWARF5_EXPERIMENTAL_LINE_TABLE)
1713     {
1714       // Skip over fake empty directory and filename tables,
1715       // and fake extended opcode that hides the rest of the
1716       // section from old consumers.
1717       lineptr += 7;
1718 
1719       // Offsets to logicals and actuals tables.
1720       off_t logicals_offset;
1721       off_t actuals_offset;
1722       if (header_.offset_size == 4)
1723 	logicals_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1724       else
1725 	logicals_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1726       lineptr += header_.offset_size;
1727       if (header_.offset_size == 4)
1728 	actuals_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1729       else
1730 	actuals_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1731       lineptr += header_.offset_size;
1732 
1733       this->logicals_start_ = this->end_of_header_length_ + logicals_offset;
1734       if (actuals_offset > 0)
1735 	this->actuals_start_ = this->end_of_header_length_ + actuals_offset;
1736     }
1737 
1738   return lineptr;
1739 }
1740 
1741 // The header for a debug_line section is mildly complicated, because
1742 // the line info is very tightly encoded.
1743 
1744 template<int size, bool big_endian>
1745 const unsigned char*
read_header_tables(const unsigned char * lineptr)1746 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1747     const unsigned char* lineptr)
1748 {
1749   ++this->current_header_index_;
1750 
1751   // Create a new directories_ entry and a new files_ entry for our new
1752   // header.  We initialize each with a single empty element, because
1753   // dwarf indexes directory and filenames starting at 1.
1754   gold_assert(static_cast<int>(this->directories_.size())
1755 	      == this->current_header_index_);
1756   gold_assert(static_cast<int>(this->files_.size())
1757 	      == this->current_header_index_);
1758   this->directories_.push_back(std::vector<std::string>(1));
1759   this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1760 
1761   // It is legal for the directory entry table to be empty.
1762   if (*lineptr)
1763     {
1764       int dirindex = 1;
1765       while (*lineptr)
1766         {
1767 	  const char* dirname = reinterpret_cast<const char*>(lineptr);
1768           gold_assert(dirindex
1769 		      == static_cast<int>(this->directories_.back().size()));
1770           this->directories_.back().push_back(dirname);
1771           lineptr += this->directories_.back().back().size() + 1;
1772           dirindex++;
1773         }
1774     }
1775   lineptr++;
1776 
1777   // It is also legal for the file entry table to be empty.
1778   if (*lineptr)
1779     {
1780       int fileindex = 1;
1781       size_t len;
1782       while (*lineptr)
1783         {
1784           const char* filename = reinterpret_cast<const char*>(lineptr);
1785           lineptr += strlen(filename) + 1;
1786 
1787           uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1788           lineptr += len;
1789 
1790           if (dirindex >= this->directories_.back().size())
1791             dirindex = 0;
1792 	  int dirindexi = static_cast<int>(dirindex);
1793 
1794           read_unsigned_LEB_128(lineptr, &len);   // mod_time
1795           lineptr += len;
1796 
1797           read_unsigned_LEB_128(lineptr, &len);   // filelength
1798           lineptr += len;
1799 
1800           gold_assert(fileindex
1801 		      == static_cast<int>(this->files_.back().size()));
1802           this->files_.back().push_back(std::make_pair(dirindexi, filename));
1803           fileindex++;
1804         }
1805     }
1806   lineptr++;
1807 
1808   return lineptr;
1809 }
1810 
1811 template<int size, bool big_endian>
1812 const unsigned char*
read_header_tables_v5(const unsigned char * lineptr)1813 Sized_dwarf_line_info<size, big_endian>::read_header_tables_v5(
1814     const unsigned char* lineptr)
1815 {
1816   size_t len;
1817 
1818   ++this->current_header_index_;
1819 
1820   // Create a new directories_ entry and a new files_ entry for our new
1821   // header.  We initialize each with a single empty element, because
1822   // dwarf indexes directory and filenames starting at 1.
1823   gold_assert(static_cast<int>(this->directories_.size())
1824 	      == this->current_header_index_);
1825   gold_assert(static_cast<int>(this->files_.size())
1826 	      == this->current_header_index_);
1827 
1828   // Read the directory list.
1829   uint64_t format_count = read_unsigned_LEB_128(lineptr, &len);
1830   lineptr += len;
1831 
1832   unsigned int *types = new unsigned int[format_count];
1833   unsigned int *forms = new unsigned int[format_count];
1834 
1835   for (unsigned int i = 0; i < format_count; i++)
1836     {
1837       types[i] = read_unsigned_LEB_128(lineptr, &len);
1838       lineptr += len;
1839       forms[i] = read_unsigned_LEB_128(lineptr, &len);
1840       lineptr += len;
1841     }
1842 
1843   uint64_t entry_count = read_unsigned_LEB_128(lineptr, &len);
1844   lineptr += len;
1845   this->directories_.push_back(std::vector<std::string>(1));
1846   std::vector<std::string>& dir_list = this->directories_.back();
1847 
1848   for (unsigned int j = 0; j < entry_count; j++)
1849     {
1850       std::string dirname;
1851 
1852       for (unsigned int i = 0; i < format_count; i++)
1853 	{
1854 	  if (types[i] == elfcpp::DW_LNCT_path)
1855 	    {
1856 	      if (forms[i] == elfcpp::DW_FORM_string)
1857 		{
1858 		  dirname = reinterpret_cast<const char*>(lineptr);
1859 		  lineptr += dirname.size() + 1;
1860 		}
1861 	      else if (forms[i] == elfcpp::DW_FORM_line_strp)
1862 		{
1863 		  uint64_t offset;
1864 		  if (header_.offset_size == 4)
1865 		    offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1866 		  else
1867 		    offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1868 		  typename Reloc_map::const_iterator it
1869 		      = this->reloc_map_.find(lineptr - this->buffer_);
1870 		  if (it != reloc_map_.end())
1871 		    {
1872 		      if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1873 			offset = 0;
1874 		      offset += it->second.second;
1875 		    }
1876 		  lineptr += header_.offset_size;
1877 		  dirname = reinterpret_cast<const char*>(this->str_buffer_
1878 							  + offset);
1879 		}
1880 	      else
1881 		return lineptr;
1882 	    }
1883 	  else
1884 	    return lineptr;
1885 	}
1886       dir_list.push_back(dirname);
1887     }
1888 
1889   delete[] types;
1890   delete[] forms;
1891 
1892   // Read the filenames list.
1893   format_count = read_unsigned_LEB_128(lineptr, &len);
1894   lineptr += len;
1895 
1896   types = new unsigned int[format_count];
1897   forms = new unsigned int[format_count];
1898 
1899   for (unsigned int i = 0; i < format_count; i++)
1900     {
1901       types[i] = read_unsigned_LEB_128(lineptr, &len);
1902       lineptr += len;
1903       forms[i] = read_unsigned_LEB_128(lineptr, &len);
1904       lineptr += len;
1905     }
1906 
1907   entry_count = read_unsigned_LEB_128(lineptr, &len);
1908   lineptr += len;
1909   this->files_.push_back(
1910       std::vector<std::pair<int, std::string> >(1));
1911   std::vector<std::pair<int, std::string> >& file_list = this->files_.back();
1912 
1913   for (unsigned int j = 0; j < entry_count; j++)
1914     {
1915       const char* path = NULL;
1916       int dirindex = 0;
1917 
1918       for (unsigned int i = 0; i < format_count; i++)
1919 	{
1920 	  if (types[i] == elfcpp::DW_LNCT_path)
1921 	    {
1922 	      if (forms[i] == elfcpp::DW_FORM_string)
1923 		{
1924 		  path = reinterpret_cast<const char*>(lineptr);
1925 		  lineptr += strlen(path) + 1;
1926 		}
1927 	      else if (forms[i] == elfcpp::DW_FORM_line_strp)
1928 		{
1929 		  uint64_t offset;
1930 		  if (header_.offset_size == 4)
1931 		    offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1932 		  else
1933 		    offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1934 		  typename Reloc_map::const_iterator it
1935 		      = this->reloc_map_.find(lineptr - this->buffer_);
1936 		  if (it != reloc_map_.end())
1937 		    {
1938 		      if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1939 			offset = 0;
1940 		      offset += it->second.second;
1941 		    }
1942 		  lineptr += header_.offset_size;
1943 		  path = reinterpret_cast<const char*>(this->str_buffer_
1944 						       + offset);
1945 		}
1946 	      else
1947 		return lineptr;
1948 	    }
1949 	  else if (types[i] == elfcpp::DW_LNCT_directory_index)
1950 	    {
1951 	      if (forms[i] == elfcpp::DW_FORM_udata)
1952 		{
1953 		  dirindex = read_unsigned_LEB_128(lineptr, &len);
1954 		  lineptr += len;
1955 		}
1956 	      else
1957 		return lineptr;
1958 	    }
1959 	  else
1960 	    return lineptr;
1961 	}
1962       gold_debug(DEBUG_LOCATION, "File %3d: %s",
1963 		 static_cast<int>(file_list.size()), path);
1964       file_list.push_back(std::make_pair<int, std::string>(dirindex, path));
1965     }
1966 
1967   delete[] types;
1968   delete[] forms;
1969 
1970   // Ignore the subprograms table; we don't need it for now.
1971   // Because it's the last thing in the header, we don't need
1972   // to figure out how long it is to skip over it.
1973 
1974   return lineptr;
1975 }
1976 
1977 // Process a single opcode in the .debug.line structure.
1978 
1979 template<int size, bool big_endian>
1980 bool
process_one_opcode(const unsigned char * start,struct LineStateMachine * lsm,size_t * len,std::vector<LineStateMachine> * logicals,bool is_logicals_table,bool is_actuals_table)1981 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1982     const unsigned char* start, struct LineStateMachine* lsm, size_t* len,
1983     std::vector<LineStateMachine>* logicals,
1984     bool is_logicals_table, bool is_actuals_table)
1985 {
1986   size_t oplen = 0;
1987   size_t templen;
1988   unsigned char opcode = *start;
1989   oplen++;
1990   start++;
1991 
1992   // If the opcode is great than the opcode_base, it is a special
1993   // opcode. Most line programs consist mainly of special opcodes.
1994   if (opcode >= header_.opcode_base)
1995     {
1996       opcode -= header_.opcode_base;
1997       const int advance_address = ((opcode / header_.line_range)
1998                                    * header_.min_insn_length);
1999       lsm->address += advance_address;
2000 
2001       const int advance_line = ((opcode % header_.line_range)
2002                                 + header_.line_base);
2003       lsm->line_num += advance_line;
2004       lsm->basic_block = true;
2005       *len = oplen;
2006       return true;
2007     }
2008 
2009   // Otherwise, we have the regular opcodes
2010   switch (opcode)
2011     {
2012     case elfcpp::DW_LNS_copy:
2013       lsm->basic_block = false;
2014       *len = oplen;
2015       return true;
2016 
2017     case elfcpp::DW_LNS_advance_pc:
2018       {
2019         const uint64_t advance_address
2020             = read_unsigned_LEB_128(start, &templen);
2021         oplen += templen;
2022         lsm->address += header_.min_insn_length * advance_address;
2023       }
2024       break;
2025 
2026     case elfcpp::DW_LNS_advance_line:
2027       {
2028         const int64_t advance_line = read_signed_LEB_128(start, &templen);
2029         oplen += templen;
2030         lsm->line_num += advance_line;
2031       }
2032       break;
2033 
2034     case elfcpp::DW_LNS_set_file:
2035       {
2036         const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
2037         oplen += templen;
2038         lsm->file_num = fileno;
2039       }
2040       break;
2041 
2042     case elfcpp::DW_LNS_set_column:
2043       {
2044         const uint64_t colno = read_unsigned_LEB_128(start, &templen);
2045         oplen += templen;
2046         lsm->column_num = colno;
2047       }
2048       break;
2049 
2050     case elfcpp::DW_LNS_negate_stmt:
2051       lsm->is_stmt = !lsm->is_stmt;
2052       break;
2053 
2054     case elfcpp::DW_LNS_set_basic_block:
2055       lsm->basic_block = true;
2056       break;
2057 
2058     case elfcpp::DW_LNS_fixed_advance_pc:
2059       {
2060         int advance_address;
2061         advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
2062         oplen += 2;
2063         lsm->address += advance_address;
2064       }
2065       break;
2066 
2067     case elfcpp::DW_LNS_const_add_pc:
2068       {
2069         const int advance_address = (header_.min_insn_length
2070                                      * ((255 - header_.opcode_base)
2071                                         / header_.line_range));
2072         lsm->address += advance_address;
2073       }
2074       break;
2075 
2076     case elfcpp::DW_LNS_set_subprogram:
2077     // aliased with elfcpp::DW_LNS_set_address_from_logical
2078       if (is_actuals_table)
2079 	{
2080 	  // elfcpp::DW_LNS_set_address_from_logical
2081 	  const int64_t advance_line = read_signed_LEB_128(start, &templen);
2082 	  oplen += templen;
2083 	  lsm->line_num += advance_line;
2084 	  if (lsm->line_num >= 1
2085 	      && lsm->line_num <= static_cast<int64_t>(logicals->size()))
2086 	    {
2087 	      const LineStateMachine& logical = (*logicals)[lsm->line_num - 1];
2088 	      lsm->address = logical.address;
2089 	      lsm->shndx = logical.shndx;
2090 	    }
2091 	}
2092       else if (is_logicals_table)
2093 	{
2094 	  // elfcpp::DW_LNS_set_subprogram
2095 	  // Ignore the subprogram number for now.
2096 	  read_unsigned_LEB_128(start, &templen);
2097 	  oplen += templen;
2098 	  lsm->context = 0;
2099 	}
2100       break;
2101 
2102     case elfcpp::DW_LNS_inlined_call:
2103       if (is_logicals_table)
2104 	{
2105 	  const int64_t advance_line = read_signed_LEB_128(start, &templen);
2106 	  oplen += templen;
2107 	  start += templen;
2108 	  // Ignore the subprogram number for now.
2109 	  read_unsigned_LEB_128(start, &templen);
2110 	  oplen += templen;
2111 	  lsm->context = logicals->size() + advance_line;
2112 	}
2113       break;
2114 
2115     case elfcpp::DW_LNS_pop_context:
2116       if (is_logicals_table)
2117 	{
2118 	  const unsigned int context = lsm->context;
2119 	  if (context >= 1 && context <= logicals->size())
2120 	    {
2121 	      const LineStateMachine& logical = (*logicals)[context - 1];
2122 	      lsm->file_num = logical.file_num;
2123 	      lsm->line_num = logical.line_num;
2124 	      lsm->column_num = logical.column_num;
2125 	      lsm->is_stmt = logical.is_stmt;
2126 	      lsm->context = logical.context;
2127 	    }
2128 	}
2129       break;
2130 
2131     case elfcpp::DW_LNS_extended_op:
2132       {
2133         const uint64_t extended_op_len
2134             = read_unsigned_LEB_128(start, &templen);
2135         start += templen;
2136         oplen += templen + extended_op_len;
2137 
2138         const unsigned char extended_op = *start;
2139         start++;
2140 
2141         switch (extended_op)
2142           {
2143           case elfcpp::DW_LNE_end_sequence:
2144             // This means that the current byte is the one immediately
2145             // after a set of instructions.  Record the current line
2146             // for up to one less than the current address.
2147             lsm->line_num = -1;
2148             lsm->end_sequence = true;
2149             *len = oplen;
2150             return true;
2151 
2152           case elfcpp::DW_LNE_set_address:
2153             {
2154               lsm->address =
2155 		elfcpp::Swap_unaligned<size, big_endian>::readval(start);
2156               typename Reloc_map::const_iterator it
2157                   = this->reloc_map_.find(start - this->buffer_);
2158               if (it != reloc_map_.end())
2159                 {
2160 		  // If this is a SHT_RELA section, then ignore the
2161 		  // section contents.  This assumes that this is a
2162 		  // straight reloc which just uses the reloc addend.
2163 		  // The reloc addend has already been included in the
2164 		  // symbol value.
2165 		  if (this->track_relocs_type_ == elfcpp::SHT_RELA)
2166 		    lsm->address = 0;
2167 		  // Add in the symbol value.
2168 		  lsm->address += it->second.second;
2169                   lsm->shndx = it->second.first;
2170                 }
2171               else
2172                 {
2173                   // If we're a normal .o file, with relocs, every
2174                   // set_address should have an associated relocation.
2175 		  if (this->input_is_relobj())
2176                     this->data_valid_ = false;
2177                 }
2178               break;
2179             }
2180           case elfcpp::DW_LNE_define_file:
2181             {
2182               const char* filename  = reinterpret_cast<const char*>(start);
2183               templen = strlen(filename) + 1;
2184               start += templen;
2185 
2186               uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
2187 
2188               if (dirindex >= this->directories_.back().size())
2189                 dirindex = 0;
2190 	      int dirindexi = static_cast<int>(dirindex);
2191 
2192               // This opcode takes two additional ULEB128 parameters
2193               // (mod_time and filelength), but we don't use those
2194               // values.  Because OPLEN already tells us how far to
2195               // skip to the next opcode, we don't need to read
2196               // them at all.
2197 
2198               this->files_.back().push_back(std::make_pair(dirindexi,
2199 							   filename));
2200             }
2201             break;
2202           }
2203       }
2204       break;
2205 
2206     default:
2207       {
2208         // Ignore unknown opcode  silently
2209         for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
2210           {
2211             size_t templen;
2212             read_unsigned_LEB_128(start, &templen);
2213             start += templen;
2214             oplen += templen;
2215           }
2216       }
2217       break;
2218   }
2219   *len = oplen;
2220   return false;
2221 }
2222 
2223 // Read the debug information at LINEPTR and store it in the line
2224 // number map.
2225 
2226 template<int size, bool big_endian>
2227 unsigned const char*
read_lines(unsigned const char * lineptr,unsigned const char * endptr,std::vector<LineStateMachine> * logicals,bool is_logicals_table,bool is_actuals_table,unsigned int shndx)2228 Sized_dwarf_line_info<size, big_endian>::read_lines(
2229     unsigned const char* lineptr,
2230     unsigned const char* endptr,
2231     std::vector<LineStateMachine>* logicals,
2232     bool is_logicals_table,
2233     bool is_actuals_table,
2234     unsigned int shndx)
2235 {
2236   struct LineStateMachine lsm;
2237 
2238   while (lineptr < endptr)
2239     {
2240       ResetLineStateMachine(&lsm, header_.default_is_stmt);
2241       while (!lsm.end_sequence)
2242         {
2243           size_t oplength;
2244           if (lineptr >= endptr)
2245             break;
2246 
2247           bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength,
2248 						   logicals,
2249 						   is_logicals_table,
2250 						   is_actuals_table);
2251           lineptr += oplength;
2252 
2253           if (add_line)
2254             {
2255               if (is_logicals_table)
2256 		{
2257 		  logicals->push_back(lsm);
2258 		  gold_debug(DEBUG_LOCATION, "Logical %d [%3u:%08x]: "
2259 			     "file %d line %d context %u",
2260 			     static_cast<int>(logicals->size()),
2261 			     lsm.shndx, static_cast<int>(lsm.address),
2262 			     lsm.file_num, lsm.line_num, lsm.context);
2263 		}
2264 	      else if (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx)
2265 		{
2266 		  Offset_to_lineno_entry entry;
2267 
2268 		  if (is_actuals_table && lsm.line_num != -1)
2269 		    {
2270 		      if (lsm.line_num < 1
2271 			  || lsm.line_num > static_cast<int64_t>(logicals->size()))
2272 		        continue;
2273 		      const LineStateMachine& logical =
2274 			  (*logicals)[lsm.line_num - 1];
2275 		      gold_debug(DEBUG_LOCATION, "Actual [%3u:%08x]: "
2276 				 "logical %u file %d line %d context %u",
2277 				 lsm.shndx, static_cast<int>(lsm.address),
2278 				 lsm.line_num, logical.file_num,
2279 				 logical.line_num, lsm.context);
2280 		      entry.offset = static_cast<off_t>(lsm.address);
2281 		      entry.header_num = this->current_header_index_;
2282 		      entry.file_num =
2283 			  static_cast<unsigned int>(logical.file_num);
2284 		      entry.last_line_for_offset = true;
2285 		      entry.line_num = logical.line_num;
2286 		    }
2287 		  else
2288 		    {
2289 		      entry.offset = static_cast<off_t>(lsm.address);
2290 		      entry.header_num = this->current_header_index_;
2291 		      entry.file_num = static_cast<unsigned int>(lsm.file_num);
2292 		      entry.last_line_for_offset = true;
2293 		      entry.line_num = lsm.line_num;
2294 		    }
2295 
2296 		  std::vector<Offset_to_lineno_entry>&
2297 		    map(this->line_number_map_[lsm.shndx]);
2298 		  // If we see two consecutive entries with the same
2299 		  // offset and a real line number, then mark the first
2300 		  // one as non-canonical.
2301 		  if (!map.empty()
2302 		      && (map.back().offset == static_cast<off_t>(lsm.address))
2303 		      && lsm.line_num != -1
2304 		      && map.back().line_num != -1)
2305 		    map.back().last_line_for_offset = false;
2306 		  map.push_back(entry);
2307 		}
2308             }
2309 
2310         }
2311     }
2312 
2313   return endptr;
2314 }
2315 
2316 // Read the relocations into a Reloc_map.
2317 
2318 template<int size, bool big_endian>
2319 void
read_relocs()2320 Sized_dwarf_line_info<size, big_endian>::read_relocs()
2321 {
2322   if (this->symtab_buffer_ == NULL)
2323     return;
2324 
2325   off_t value;
2326   off_t reloc_offset;
2327   while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
2328     {
2329       const unsigned int shndx =
2330           this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
2331 
2332       // There is no reason to record non-ordinary section indexes, or
2333       // SHN_UNDEF, because they will never match the real section.
2334       if (shndx != 0)
2335 	this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
2336 
2337       this->reloc_mapper_->advance(reloc_offset + 1);
2338     }
2339 }
2340 
2341 // Read the line number info.
2342 
2343 template<int size, bool big_endian>
2344 void
read_line_mappings(unsigned int shndx)2345 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
2346 {
2347   gold_assert(this->data_valid_ == true);
2348 
2349   this->read_relocs();
2350   while (this->buffer_ < this->buffer_end_)
2351     {
2352       const unsigned char* lineptr = this->buffer_;
2353       std::vector<LineStateMachine> logicals;
2354 
2355       lineptr = this->read_header_prolog(lineptr);
2356       if (header_.version >= 2 && header_.version <= 4)
2357 	{
2358 	  lineptr = this->read_header_tables(lineptr);
2359 	  lineptr = this->read_lines(this->logicals_start_,
2360 				     this->end_of_unit_,
2361 				     NULL,
2362 				     false,
2363 				     false,
2364 				     shndx);
2365 	}
2366       else if (header_.version == DWARF5_EXPERIMENTAL_LINE_TABLE)
2367 	{
2368 	  lineptr = this->read_header_tables_v5(lineptr);
2369 	  if (this->actuals_start_ != NULL)
2370 	    {
2371 	      lineptr = this->read_lines(this->logicals_start_,
2372 					 this->actuals_start_,
2373 					 &logicals,
2374 					 true,
2375 					 false,
2376 					 shndx);
2377 	      lineptr = this->read_lines(this->actuals_start_,
2378 					 this->end_of_unit_,
2379 					 &logicals,
2380 					 false,
2381 					 true,
2382 					 shndx);
2383 	    }
2384 	  else
2385 	    {
2386 	      lineptr = this->read_lines(this->logicals_start_,
2387 					 this->end_of_unit_,
2388 					 NULL,
2389 					 false,
2390 					 false,
2391 					 shndx);
2392 	    }
2393 	}
2394       this->buffer_ = this->end_of_unit_;
2395     }
2396 
2397   // Sort the lines numbers, so addr2line can use binary search.
2398   for (typename Lineno_map::iterator it = line_number_map_.begin();
2399        it != line_number_map_.end();
2400        ++it)
2401     // Each vector needs to be sorted by offset.
2402     std::sort(it->second.begin(), it->second.end());
2403 }
2404 
2405 // Some processing depends on whether the input is a .o file or not.
2406 // For instance, .o files have relocs, and have .debug_lines
2407 // information on a per section basis.  .so files, on the other hand,
2408 // lack relocs, and offsets are unique, so we can ignore the section
2409 // information.
2410 
2411 template<int size, bool big_endian>
2412 bool
input_is_relobj()2413 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
2414 {
2415   // Only .o files have relocs and the symtab buffer that goes with them.
2416   return this->symtab_buffer_ != NULL;
2417 }
2418 
2419 // Given an Offset_to_lineno_entry vector, and an offset, figure out
2420 // if the offset points into a function according to the vector (see
2421 // comments below for the algorithm).  If it does, return an iterator
2422 // into the vector that points to the line-number that contains that
2423 // offset.  If not, it returns vector::end().
2424 
2425 static std::vector<Offset_to_lineno_entry>::const_iterator
offset_to_iterator(const std::vector<Offset_to_lineno_entry> * offsets,off_t offset)2426 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
2427                    off_t offset)
2428 {
2429   const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
2430 
2431   // lower_bound() returns the smallest offset which is >= lookup_key.
2432   // If no offset in offsets is >= lookup_key, returns end().
2433   std::vector<Offset_to_lineno_entry>::const_iterator it
2434       = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
2435 
2436   // This code is easiest to understand with a concrete example.
2437   // Here's a possible offsets array:
2438   // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16},  // 0
2439   //  {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20},  // 1
2440   //  {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22},  // 2
2441   //  {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25},  // 3
2442   //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1},  // 4
2443   //  {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65},  // 5
2444   //  {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66},  // 6
2445   //  {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1},  // 7
2446   //  {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48},  // 8
2447   //  {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47},  // 9
2448   //  {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49},  // 10
2449   //  {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50},  // 11
2450   //  {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51},  // 12
2451   //  {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1},  // 13
2452   //  {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19},  // 14
2453   //  {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20},  // 15
2454   //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67},  // 16
2455   //  {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1},  // 17
2456   //  {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66},  // 18
2457   //  {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68},  // 19
2458   //  {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1},  // 20
2459   // The entries with line_num == -1 mark the end of a function: the
2460   // associated offset is one past the last instruction in the
2461   // function.  This can correspond to the beginning of the next
2462   // function (as is true for offset 3232); alternately, there can be
2463   // a gap between the end of one function and the start of the next
2464   // (as is true for some others, most obviously from 3236->5764).
2465   //
2466   // Case 1: lookup_key has offset == 10.  lower_bound returns
2467   //         offsets[0].  Since it's not an exact match and we're
2468   //         at the beginning of offsets, we return end() (invalid).
2469   // Case 2: lookup_key has offset 10000.  lower_bound returns
2470   //         offset[21] (end()).  We return end() (invalid).
2471   // Case 3: lookup_key has offset == 3211.  lower_bound matches
2472   //         offsets[0] exactly, and that's the entry we return.
2473   // Case 4: lookup_key has offset == 3232.  lower_bound returns
2474   //         offsets[4].  That's an exact match, but indicates
2475   //         end-of-function.  We check if offsets[5] is also an
2476   //         exact match but not end-of-function.  It is, so we
2477   //         return offsets[5].
2478   // Case 5: lookup_key has offset == 3214.  lower_bound returns
2479   //         offsets[1].  Since it's not an exact match, we back
2480   //         up to the offset that's < lookup_key, offsets[0].
2481   //         We note offsets[0] is a valid entry (not end-of-function),
2482   //         so that's the entry we return.
2483   // Case 6: lookup_key has offset == 4000.  lower_bound returns
2484   //         offsets[8].  Since it's not an exact match, we back
2485   //         up to offsets[7].  Since offsets[7] indicates
2486   //         end-of-function, we know lookup_key is between
2487   //         functions, so we return end() (not a valid offset).
2488   // Case 7: lookup_key has offset == 5794.  lower_bound returns
2489   //         offsets[19].  Since it's not an exact match, we back
2490   //         up to offsets[16].  Note we back up to the *first*
2491   //         entry with offset 5793, not just offsets[19-1].
2492   //         We note offsets[16] is a valid entry, so we return it.
2493   //         If offsets[16] had had line_num == -1, we would have
2494   //         checked offsets[17].  The reason for this is that
2495   //         16 and 17 can be in an arbitrary order, since we sort
2496   //         only by offset and last_line_for_offset.  (Note it
2497   //         doesn't help to use line_number as a tertiary sort key,
2498   //         since sometimes we want the -1 to be first and sometimes
2499   //         we want it to be last.)
2500 
2501   // This deals with cases (1) and (2).
2502   if ((it == offsets->begin() && offset < it->offset)
2503       || it == offsets->end())
2504     return offsets->end();
2505 
2506   // This deals with cases (3) and (4).
2507   if (offset == it->offset)
2508     {
2509       while (it != offsets->end()
2510              && it->offset == offset
2511              && it->line_num == -1)
2512         ++it;
2513       if (it == offsets->end() || it->offset != offset)
2514         return offsets->end();
2515       else
2516         return it;
2517     }
2518 
2519   // This handles the first part of case (7) -- we back up to the
2520   // *first* entry that has the offset that's behind us.
2521   gold_assert(it != offsets->begin());
2522   std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2523   --it;
2524   const off_t range_value = it->offset;
2525   while (it != offsets->begin() && (it-1)->offset == range_value)
2526     --it;
2527 
2528   // This handles cases (5), (6), and (7): if any entry in the
2529   // equal_range [it, range_end) has a line_num != -1, it's a valid
2530   // match.  If not, we're not in a function.  The line number we saw
2531   // last for an offset will be sorted first, so it'll get returned if
2532   // it's present.
2533   for (; it != range_end; ++it)
2534     if (it->line_num != -1)
2535       return it;
2536   return offsets->end();
2537 }
2538 
2539 // Returns the canonical filename:lineno for the address passed in.
2540 // If other_lines is not NULL, appends the non-canonical lines
2541 // assigned to the same address.
2542 
2543 template<int size, bool big_endian>
2544 std::string
do_addr2line(unsigned int shndx,off_t offset,std::vector<std::string> * other_lines)2545 Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2546     unsigned int shndx,
2547     off_t offset,
2548     std::vector<std::string>* other_lines)
2549 {
2550   gold_debug(DEBUG_LOCATION, "do_addr2line: shndx %u offset %08x",
2551 	     shndx, static_cast<int>(offset));
2552 
2553   if (this->data_valid_ == false)
2554     return "";
2555 
2556   const std::vector<Offset_to_lineno_entry>* offsets;
2557   // If we do not have reloc information, then our input is a .so or
2558   // some similar data structure where all the information is held in
2559   // the offset.  In that case, we ignore the input shndx.
2560   if (this->input_is_relobj())
2561     offsets = &this->line_number_map_[shndx];
2562   else
2563     offsets = &this->line_number_map_[-1U];
2564   if (offsets->empty())
2565     return "";
2566 
2567   typename std::vector<Offset_to_lineno_entry>::const_iterator it
2568       = offset_to_iterator(offsets, offset);
2569   if (it == offsets->end())
2570     return "";
2571 
2572   std::string result = this->format_file_lineno(*it);
2573   gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s",
2574 	     result.c_str());
2575   if (other_lines != NULL)
2576     {
2577       unsigned int last_file_num = it->file_num;
2578       int last_line_num = it->line_num;
2579       // Return up to 4 more locations from the beginning of the function
2580       // for fuzzy matching.
2581       for (++it; it != offsets->end(); ++it)
2582 	{
2583 	  if (it->offset == offset && it->line_num == -1)
2584 	    continue;  // The end of a previous function.
2585 	  if (it->line_num == -1)
2586 	    break;  // The end of the current function.
2587 	  if (it->file_num != last_file_num || it->line_num != last_line_num)
2588 	    {
2589 	      other_lines->push_back(this->format_file_lineno(*it));
2590 	      gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s",
2591 			 other_lines->back().c_str());
2592 	      last_file_num = it->file_num;
2593 	      last_line_num = it->line_num;
2594 	    }
2595 	  if (it->offset > offset && other_lines->size() >= 4)
2596 	    break;
2597 	}
2598     }
2599 
2600   return result;
2601 }
2602 
2603 // Convert the file_num + line_num into a string.
2604 
2605 template<int size, bool big_endian>
2606 std::string
format_file_lineno(const Offset_to_lineno_entry & loc) const2607 Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2608     const Offset_to_lineno_entry& loc) const
2609 {
2610   std::string ret;
2611 
2612   gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2613   gold_assert(loc.file_num
2614 	      < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2615   const std::pair<int, std::string>& filename_pair
2616       = this->files_[loc.header_num][loc.file_num];
2617   const std::string& filename = filename_pair.second;
2618 
2619   gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2620   gold_assert(filename_pair.first
2621               < static_cast<int>(this->directories_[loc.header_num].size()));
2622   const std::string& dirname
2623       = this->directories_[loc.header_num][filename_pair.first];
2624 
2625   if (!dirname.empty())
2626     {
2627       ret += dirname;
2628       ret += "/";
2629     }
2630   ret += filename;
2631   if (ret.empty())
2632     ret = "(unknown)";
2633 
2634   char buffer[64];   // enough to hold a line number
2635   snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2636   ret += ":";
2637   ret += buffer;
2638 
2639   return ret;
2640 }
2641 
2642 // Dwarf_line_info routines.
2643 
2644 static unsigned int next_generation_count = 0;
2645 
2646 struct Addr2line_cache_entry
2647 {
2648   Object* object;
2649   unsigned int shndx;
2650   Dwarf_line_info* dwarf_line_info;
2651   unsigned int generation_count;
2652   unsigned int access_count;
2653 
Addr2line_cache_entrygold::Addr2line_cache_entry2654   Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2655       : object(o), shndx(s), dwarf_line_info(d),
2656         generation_count(next_generation_count), access_count(0)
2657   {
2658     if (next_generation_count < (1U << 31))
2659       ++next_generation_count;
2660   }
2661 };
2662 // We expect this cache to be small, so don't bother with a hashtable
2663 // or priority queue or anything: just use a simple vector.
2664 static std::vector<Addr2line_cache_entry> addr2line_cache;
2665 
2666 std::string
one_addr2line(Object * object,unsigned int shndx,off_t offset,size_t cache_size,std::vector<std::string> * other_lines)2667 Dwarf_line_info::one_addr2line(Object* object,
2668                                unsigned int shndx, off_t offset,
2669                                size_t cache_size,
2670                                std::vector<std::string>* other_lines)
2671 {
2672   Dwarf_line_info* lineinfo = NULL;
2673   std::vector<Addr2line_cache_entry>::iterator it;
2674 
2675   // First, check the cache.  If we hit, update the counts.
2676   for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2677     {
2678       if (it->object == object && it->shndx == shndx)
2679         {
2680           lineinfo = it->dwarf_line_info;
2681           it->generation_count = next_generation_count;
2682           // We cap generation_count at 2^31 -1 to avoid overflow.
2683           if (next_generation_count < (1U << 31))
2684             ++next_generation_count;
2685           // We cap access_count at 31 so 2^access_count doesn't overflow
2686           if (it->access_count < 31)
2687             ++it->access_count;
2688           break;
2689         }
2690     }
2691 
2692   // If we don't hit the cache, create a new object and insert into the
2693   // cache.
2694   if (lineinfo == NULL)
2695   {
2696     switch (parameters->size_and_endianness())
2697       {
2698 #ifdef HAVE_TARGET_32_LITTLE
2699         case Parameters::TARGET_32_LITTLE:
2700           lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2701 #endif
2702 #ifdef HAVE_TARGET_32_BIG
2703         case Parameters::TARGET_32_BIG:
2704           lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2705 #endif
2706 #ifdef HAVE_TARGET_64_LITTLE
2707         case Parameters::TARGET_64_LITTLE:
2708           lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2709 #endif
2710 #ifdef HAVE_TARGET_64_BIG
2711         case Parameters::TARGET_64_BIG:
2712           lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2713 #endif
2714         default:
2715           gold_unreachable();
2716       }
2717     addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2718   }
2719 
2720   // Now that we have our object, figure out the answer
2721   std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2722 
2723   // Finally, if our cache has grown too big, delete old objects.  We
2724   // assume the common (probably only) case is deleting only one object.
2725   // We use a pretty simple scheme to evict: function of LRU and MFU.
2726   while (addr2line_cache.size() > cache_size)
2727     {
2728       unsigned int lowest_score = ~0U;
2729       std::vector<Addr2line_cache_entry>::iterator lowest
2730           = addr2line_cache.end();
2731       for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2732         {
2733           const unsigned int score = (it->generation_count
2734                                       + (1U << it->access_count));
2735           if (score < lowest_score)
2736             {
2737               lowest_score = score;
2738               lowest = it;
2739             }
2740         }
2741       if (lowest != addr2line_cache.end())
2742         {
2743           delete lowest->dwarf_line_info;
2744           addr2line_cache.erase(lowest);
2745         }
2746     }
2747 
2748   return retval;
2749 }
2750 
2751 void
clear_addr2line_cache()2752 Dwarf_line_info::clear_addr2line_cache()
2753 {
2754   for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2755        it != addr2line_cache.end();
2756        ++it)
2757     delete it->dwarf_line_info;
2758   addr2line_cache.clear();
2759 }
2760 
2761 #ifdef HAVE_TARGET_32_LITTLE
2762 template
2763 class Sized_dwarf_line_info<32, false>;
2764 #endif
2765 
2766 #ifdef HAVE_TARGET_32_BIG
2767 template
2768 class Sized_dwarf_line_info<32, true>;
2769 #endif
2770 
2771 #ifdef HAVE_TARGET_64_LITTLE
2772 template
2773 class Sized_dwarf_line_info<64, false>;
2774 #endif
2775 
2776 #ifdef HAVE_TARGET_64_BIG
2777 template
2778 class Sized_dwarf_line_info<64, true>;
2779 #endif
2780 
2781 } // End namespace gold.
2782