1 //===-- tsan_interceptors.cc ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // FIXME: move as many interceptors as possible into
13 // sanitizer_common/sanitizer_common_interceptors.inc
14 //===----------------------------------------------------------------------===//
15 
16 #include "sanitizer_common/sanitizer_atomic.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_stacktrace.h"
22 #include "interception/interception.h"
23 #include "tsan_interceptors.h"
24 #include "tsan_interface.h"
25 #include "tsan_platform.h"
26 #include "tsan_suppressions.h"
27 #include "tsan_rtl.h"
28 #include "tsan_mman.h"
29 #include "tsan_fd.h"
30 
31 #if SANITIZER_POSIX
32 #include "sanitizer_common/sanitizer_posix.h"
33 #endif
34 
35 using namespace __tsan;  // NOLINT
36 
37 #if SANITIZER_FREEBSD || SANITIZER_MAC
38 #define __errno_location __error
39 #define stdout __stdoutp
40 #define stderr __stderrp
41 #endif
42 
43 #if SANITIZER_FREEBSD
44 #define __libc_realloc __realloc
45 #define __libc_calloc __calloc
46 #elif SANITIZER_MAC
47 #define __libc_malloc REAL(malloc)
48 #define __libc_realloc REAL(realloc)
49 #define __libc_calloc REAL(calloc)
50 #define __libc_free REAL(free)
51 #elif SANITIZER_ANDROID
52 #define __errno_location __errno
53 #define __libc_malloc REAL(malloc)
54 #define __libc_realloc REAL(realloc)
55 #define __libc_calloc REAL(calloc)
56 #define __libc_free REAL(free)
57 #define mallopt(a, b)
58 #endif
59 
60 #if SANITIZER_LINUX || SANITIZER_FREEBSD
61 #define PTHREAD_CREATE_DETACHED 1
62 #elif SANITIZER_MAC
63 #define PTHREAD_CREATE_DETACHED 2
64 #endif
65 
66 
67 #ifdef __mips__
68 const int kSigCount = 129;
69 #else
70 const int kSigCount = 65;
71 #endif
72 
73 struct my_siginfo_t {
74   // The size is determined by looking at sizeof of real siginfo_t on linux.
75   u64 opaque[128 / sizeof(u64)];
76 };
77 
78 #ifdef __mips__
79 struct ucontext_t {
80   u64 opaque[768 / sizeof(u64) + 1];
81 };
82 #else
83 struct ucontext_t {
84   // The size is determined by looking at sizeof of real ucontext_t on linux.
85   u64 opaque[936 / sizeof(u64) + 1];
86 };
87 #endif
88 
89 #if defined(__x86_64__) || defined(__mips__) \
90   || (defined(__powerpc64__) && defined(__BIG_ENDIAN__))
91 #define PTHREAD_ABI_BASE  "GLIBC_2.3.2"
92 #elif defined(__aarch64__) || (defined(__powerpc64__) \
93   && defined(__LITTLE_ENDIAN__))
94 #define PTHREAD_ABI_BASE  "GLIBC_2.17"
95 #endif
96 
97 extern "C" int pthread_attr_init(void *attr);
98 extern "C" int pthread_attr_destroy(void *attr);
99 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
100 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
101 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
102 extern "C" int pthread_setspecific(unsigned key, const void *v);
103 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
104 extern "C" int pthread_sigmask(int how, const __sanitizer_sigset_t *set,
105                                __sanitizer_sigset_t *oldset);
106 // REAL(sigfillset) defined in common interceptors.
107 DECLARE_REAL(int, sigfillset, __sanitizer_sigset_t *set)
108 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
109 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
110 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
111 extern "C" void *pthread_self();
112 extern "C" void _exit(int status);
113 extern "C" int *__errno_location();
114 extern "C" int fileno_unlocked(void *stream);
115 #if !SANITIZER_ANDROID
116 extern "C" void *__libc_calloc(uptr size, uptr n);
117 extern "C" void *__libc_realloc(void *ptr, uptr size);
118 #endif
119 extern "C" int dirfd(void *dirp);
120 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID
121 extern "C" int mallopt(int param, int value);
122 #endif
123 extern __sanitizer_FILE *stdout, *stderr;
124 const int PTHREAD_MUTEX_RECURSIVE = 1;
125 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
126 const int EINVAL = 22;
127 const int EBUSY = 16;
128 const int EOWNERDEAD = 130;
129 #if !SANITIZER_MAC
130 const int EPOLL_CTL_ADD = 1;
131 #endif
132 const int SIGILL = 4;
133 const int SIGABRT = 6;
134 const int SIGFPE = 8;
135 const int SIGSEGV = 11;
136 const int SIGPIPE = 13;
137 const int SIGTERM = 15;
138 #if defined(__mips__) || SANITIZER_MAC
139 const int SIGBUS = 10;
140 const int SIGSYS = 12;
141 #else
142 const int SIGBUS = 7;
143 const int SIGSYS = 31;
144 #endif
145 void *const MAP_FAILED = (void*)-1;
146 #if !SANITIZER_MAC
147 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
148 #endif
149 const int MAP_FIXED = 0x10;
150 typedef long long_t;  // NOLINT
151 
152 // From /usr/include/unistd.h
153 # define F_ULOCK 0      /* Unlock a previously locked region.  */
154 # define F_LOCK  1      /* Lock a region for exclusive use.  */
155 # define F_TLOCK 2      /* Test and lock a region for exclusive use.  */
156 # define F_TEST  3      /* Test a region for other processes locks.  */
157 
158 #define errno (*__errno_location())
159 
160 typedef void (*sighandler_t)(int sig);
161 typedef void (*sigactionhandler_t)(int sig, my_siginfo_t *siginfo, void *uctx);
162 
163 #if SANITIZER_ANDROID
164 struct sigaction_t {
165   u32 sa_flags;
166   union {
167     sighandler_t sa_handler;
168     sigactionhandler_t sa_sgiaction;
169   };
170   __sanitizer_sigset_t sa_mask;
171   void (*sa_restorer)();
172 };
173 #else
174 struct sigaction_t {
175 #ifdef __mips__
176   u32 sa_flags;
177 #endif
178   union {
179     sighandler_t sa_handler;
180     sigactionhandler_t sa_sigaction;
181   };
182 #if SANITIZER_FREEBSD
183   int sa_flags;
184   __sanitizer_sigset_t sa_mask;
185 #elif SANITIZER_MAC
186   __sanitizer_sigset_t sa_mask;
187   int sa_flags;
188 #else
189   __sanitizer_sigset_t sa_mask;
190 #ifndef __mips__
191   int sa_flags;
192 #endif
193   void (*sa_restorer)();
194 #endif
195 };
196 #endif
197 
198 const sighandler_t SIG_DFL = (sighandler_t)0;
199 const sighandler_t SIG_IGN = (sighandler_t)1;
200 const sighandler_t SIG_ERR = (sighandler_t)-1;
201 #if SANITIZER_FREEBSD || SANITIZER_MAC
202 const int SA_SIGINFO = 0x40;
203 const int SIG_SETMASK = 3;
204 #elif defined(__mips__)
205 const int SA_SIGINFO = 8;
206 const int SIG_SETMASK = 3;
207 #else
208 const int SA_SIGINFO = 4;
209 const int SIG_SETMASK = 2;
210 #endif
211 
212 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
213   (!cur_thread()->is_inited)
214 
215 static sigaction_t sigactions[kSigCount];
216 
217 namespace __tsan {
218 struct SignalDesc {
219   bool armed;
220   bool sigaction;
221   my_siginfo_t siginfo;
222   ucontext_t ctx;
223 };
224 
225 struct ThreadSignalContext {
226   int int_signal_send;
227   atomic_uintptr_t in_blocking_func;
228   atomic_uintptr_t have_pending_signals;
229   SignalDesc pending_signals[kSigCount];
230   // emptyset and oldset are too big for stack.
231   __sanitizer_sigset_t emptyset;
232   __sanitizer_sigset_t oldset;
233 };
234 
235 // The object is 64-byte aligned, because we want hot data to be located in
236 // a single cache line if possible (it's accessed in every interceptor).
237 static ALIGNED(64) char libignore_placeholder[sizeof(LibIgnore)];
libignore()238 static LibIgnore *libignore() {
239   return reinterpret_cast<LibIgnore*>(&libignore_placeholder[0]);
240 }
241 
InitializeLibIgnore()242 void InitializeLibIgnore() {
243   const SuppressionContext &supp = *Suppressions();
244   const uptr n = supp.SuppressionCount();
245   for (uptr i = 0; i < n; i++) {
246     const Suppression *s = supp.SuppressionAt(i);
247     if (0 == internal_strcmp(s->type, kSuppressionLib))
248       libignore()->AddIgnoredLibrary(s->templ);
249   }
250   libignore()->OnLibraryLoaded(0);
251 }
252 
253 }  // namespace __tsan
254 
SigCtx(ThreadState * thr)255 static ThreadSignalContext *SigCtx(ThreadState *thr) {
256   ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
257   if (ctx == 0 && !thr->is_dead) {
258     ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
259     MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
260     thr->signal_ctx = ctx;
261   }
262   return ctx;
263 }
264 
265 #if !SANITIZER_MAC
266 static unsigned g_thread_finalize_key;
267 #endif
268 
ScopedInterceptor(ThreadState * thr,const char * fname,uptr pc)269 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
270                                      uptr pc)
271     : thr_(thr)
272     , pc_(pc)
273     , in_ignored_lib_(false) {
274   if (!thr_->ignore_interceptors) {
275     Initialize(thr);
276     FuncEntry(thr, pc);
277   }
278   DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
279   if (!thr_->in_ignored_lib && libignore()->IsIgnored(pc)) {
280     in_ignored_lib_ = true;
281     thr_->in_ignored_lib = true;
282     ThreadIgnoreBegin(thr_, pc_);
283   }
284 }
285 
~ScopedInterceptor()286 ScopedInterceptor::~ScopedInterceptor() {
287   if (in_ignored_lib_) {
288     thr_->in_ignored_lib = false;
289     ThreadIgnoreEnd(thr_, pc_);
290   }
291   if (!thr_->ignore_interceptors) {
292     ProcessPendingSignals(thr_);
293     FuncExit(thr_);
294     CheckNoLocks(thr_);
295   }
296 }
297 
UserCallbackStart()298 void ScopedInterceptor::UserCallbackStart() {
299   if (in_ignored_lib_) {
300     thr_->in_ignored_lib = false;
301     ThreadIgnoreEnd(thr_, pc_);
302   }
303 }
304 
UserCallbackEnd()305 void ScopedInterceptor::UserCallbackEnd() {
306   if (in_ignored_lib_) {
307     thr_->in_ignored_lib = true;
308     ThreadIgnoreBegin(thr_, pc_);
309   }
310 }
311 
312 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
313 #if SANITIZER_FREEBSD
314 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
315 #else
316 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
317 #endif
318 
319 #define READ_STRING_OF_LEN(thr, pc, s, len, n)                 \
320   MemoryAccessRange((thr), (pc), (uptr)(s),                         \
321     common_flags()->strict_string_checks ? (len) + 1 : (n), false)
322 
323 #define READ_STRING(thr, pc, s, n)                             \
324     READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
325 
326 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
327 
328 struct BlockingCall {
BlockingCallBlockingCall329   explicit BlockingCall(ThreadState *thr)
330       : thr(thr)
331       , ctx(SigCtx(thr)) {
332     for (;;) {
333       atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
334       if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
335         break;
336       atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
337       ProcessPendingSignals(thr);
338     }
339     // When we are in a "blocking call", we process signals asynchronously
340     // (right when they arrive). In this context we do not expect to be
341     // executing any user/runtime code. The known interceptor sequence when
342     // this is not true is: pthread_join -> munmap(stack). It's fine
343     // to ignore munmap in this case -- we handle stack shadow separately.
344     thr->ignore_interceptors++;
345   }
346 
~BlockingCallBlockingCall347   ~BlockingCall() {
348     thr->ignore_interceptors--;
349     atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
350   }
351 
352   ThreadState *thr;
353   ThreadSignalContext *ctx;
354 };
355 
TSAN_INTERCEPTOR(unsigned,sleep,unsigned sec)356 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
357   SCOPED_TSAN_INTERCEPTOR(sleep, sec);
358   unsigned res = BLOCK_REAL(sleep)(sec);
359   AfterSleep(thr, pc);
360   return res;
361 }
362 
TSAN_INTERCEPTOR(int,usleep,long_t usec)363 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
364   SCOPED_TSAN_INTERCEPTOR(usleep, usec);
365   int res = BLOCK_REAL(usleep)(usec);
366   AfterSleep(thr, pc);
367   return res;
368 }
369 
TSAN_INTERCEPTOR(int,nanosleep,void * req,void * rem)370 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
371   SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
372   int res = BLOCK_REAL(nanosleep)(req, rem);
373   AfterSleep(thr, pc);
374   return res;
375 }
376 
377 // The sole reason tsan wraps atexit callbacks is to establish synchronization
378 // between callback setup and callback execution.
379 struct AtExitCtx {
380   void (*f)();
381   void *arg;
382 };
383 
at_exit_wrapper(void * arg)384 static void at_exit_wrapper(void *arg) {
385   ThreadState *thr = cur_thread();
386   uptr pc = 0;
387   Acquire(thr, pc, (uptr)arg);
388   AtExitCtx *ctx = (AtExitCtx*)arg;
389   ((void(*)(void *arg))ctx->f)(ctx->arg);
390   __libc_free(ctx);
391 }
392 
393 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
394       void *arg, void *dso);
395 
396 #if !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,atexit,void (* f)())397 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
398   if (cur_thread()->in_symbolizer)
399     return 0;
400   // We want to setup the atexit callback even if we are in ignored lib
401   // or after fork.
402   SCOPED_INTERCEPTOR_RAW(atexit, f);
403   return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
404 }
405 #endif
406 
TSAN_INTERCEPTOR(int,__cxa_atexit,void (* f)(void * a),void * arg,void * dso)407 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
408   if (cur_thread()->in_symbolizer)
409     return 0;
410   SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
411   return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
412 }
413 
setup_at_exit_wrapper(ThreadState * thr,uptr pc,void (* f)(),void * arg,void * dso)414 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
415       void *arg, void *dso) {
416   AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
417   ctx->f = f;
418   ctx->arg = arg;
419   Release(thr, pc, (uptr)ctx);
420   // Memory allocation in __cxa_atexit will race with free during exit,
421   // because we do not see synchronization around atexit callback list.
422   ThreadIgnoreBegin(thr, pc);
423   int res = REAL(__cxa_atexit)(at_exit_wrapper, ctx, dso);
424   ThreadIgnoreEnd(thr, pc);
425   return res;
426 }
427 
428 #if !SANITIZER_MAC
on_exit_wrapper(int status,void * arg)429 static void on_exit_wrapper(int status, void *arg) {
430   ThreadState *thr = cur_thread();
431   uptr pc = 0;
432   Acquire(thr, pc, (uptr)arg);
433   AtExitCtx *ctx = (AtExitCtx*)arg;
434   ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
435   __libc_free(ctx);
436 }
437 
TSAN_INTERCEPTOR(int,on_exit,void (* f)(int,void *),void * arg)438 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
439   if (cur_thread()->in_symbolizer)
440     return 0;
441   SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
442   AtExitCtx *ctx = (AtExitCtx*)__libc_malloc(sizeof(AtExitCtx));
443   ctx->f = (void(*)())f;
444   ctx->arg = arg;
445   Release(thr, pc, (uptr)ctx);
446   // Memory allocation in __cxa_atexit will race with free during exit,
447   // because we do not see synchronization around atexit callback list.
448   ThreadIgnoreBegin(thr, pc);
449   int res = REAL(on_exit)(on_exit_wrapper, ctx);
450   ThreadIgnoreEnd(thr, pc);
451   return res;
452 }
453 #endif
454 
455 // Cleanup old bufs.
JmpBufGarbageCollect(ThreadState * thr,uptr sp)456 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
457   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
458     JmpBuf *buf = &thr->jmp_bufs[i];
459     if (buf->sp <= sp) {
460       uptr sz = thr->jmp_bufs.Size();
461       internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
462       thr->jmp_bufs.PopBack();
463       i--;
464     }
465   }
466 }
467 
SetJmp(ThreadState * thr,uptr sp,uptr mangled_sp)468 static void SetJmp(ThreadState *thr, uptr sp, uptr mangled_sp) {
469   if (!thr->is_inited)  // called from libc guts during bootstrap
470     return;
471   // Cleanup old bufs.
472   JmpBufGarbageCollect(thr, sp);
473   // Remember the buf.
474   JmpBuf *buf = thr->jmp_bufs.PushBack();
475   buf->sp = sp;
476   buf->mangled_sp = mangled_sp;
477   buf->shadow_stack_pos = thr->shadow_stack_pos;
478   ThreadSignalContext *sctx = SigCtx(thr);
479   buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
480   buf->in_blocking_func = sctx ?
481       atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
482       false;
483   buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
484       memory_order_relaxed);
485 }
486 
LongJmp(ThreadState * thr,uptr * env)487 static void LongJmp(ThreadState *thr, uptr *env) {
488 #ifdef __powerpc__
489   uptr mangled_sp = env[0];
490 #elif SANITIZER_FREEBSD || SANITIZER_MAC
491   uptr mangled_sp = env[2];
492 #elif defined(SANITIZER_LINUX)
493 # ifdef __aarch64__
494   uptr mangled_sp = env[13];
495 # else
496   uptr mangled_sp = env[6];
497 # endif
498 #endif
499   // Find the saved buf by mangled_sp.
500   for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
501     JmpBuf *buf = &thr->jmp_bufs[i];
502     if (buf->mangled_sp == mangled_sp) {
503       CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
504       // Unwind the stack.
505       while (thr->shadow_stack_pos > buf->shadow_stack_pos)
506         FuncExit(thr);
507       ThreadSignalContext *sctx = SigCtx(thr);
508       if (sctx) {
509         sctx->int_signal_send = buf->int_signal_send;
510         atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
511             memory_order_relaxed);
512       }
513       atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
514           memory_order_relaxed);
515       JmpBufGarbageCollect(thr, buf->sp - 1);  // do not collect buf->sp
516       return;
517     }
518   }
519   Printf("ThreadSanitizer: can't find longjmp buf\n");
520   CHECK(0);
521 }
522 
523 // FIXME: put everything below into a common extern "C" block?
__tsan_setjmp(uptr sp,uptr mangled_sp)524 extern "C" void __tsan_setjmp(uptr sp, uptr mangled_sp) {
525   SetJmp(cur_thread(), sp, mangled_sp);
526 }
527 
528 #if SANITIZER_MAC
529 TSAN_INTERCEPTOR(int, setjmp, void *env);
530 TSAN_INTERCEPTOR(int, _setjmp, void *env);
531 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
532 #else  // SANITIZER_MAC
533 // Not called.  Merely to satisfy TSAN_INTERCEPT().
534 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
535 int __interceptor_setjmp(void *env);
__interceptor_setjmp(void * env)536 extern "C" int __interceptor_setjmp(void *env) {
537   CHECK(0);
538   return 0;
539 }
540 
541 // FIXME: any reason to have a separate declaration?
542 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
543 int __interceptor__setjmp(void *env);
__interceptor__setjmp(void * env)544 extern "C" int __interceptor__setjmp(void *env) {
545   CHECK(0);
546   return 0;
547 }
548 
549 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
550 int __interceptor_sigsetjmp(void *env);
__interceptor_sigsetjmp(void * env)551 extern "C" int __interceptor_sigsetjmp(void *env) {
552   CHECK(0);
553   return 0;
554 }
555 
556 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
557 int __interceptor___sigsetjmp(void *env);
__interceptor___sigsetjmp(void * env)558 extern "C" int __interceptor___sigsetjmp(void *env) {
559   CHECK(0);
560   return 0;
561 }
562 
563 extern "C" int setjmp(void *env);
564 extern "C" int _setjmp(void *env);
565 extern "C" int sigsetjmp(void *env);
566 extern "C" int __sigsetjmp(void *env);
DEFINE_REAL(int,setjmp,void * env)567 DEFINE_REAL(int, setjmp, void *env)
568 DEFINE_REAL(int, _setjmp, void *env)
569 DEFINE_REAL(int, sigsetjmp, void *env)
570 DEFINE_REAL(int, __sigsetjmp, void *env)
571 #endif  // SANITIZER_MAC
572 
573 TSAN_INTERCEPTOR(void, longjmp, uptr *env, int val) {
574   {
575     SCOPED_TSAN_INTERCEPTOR(longjmp, env, val);
576   }
577   LongJmp(cur_thread(), env);
578   REAL(longjmp)(env, val);
579 }
580 
TSAN_INTERCEPTOR(void,siglongjmp,uptr * env,int val)581 TSAN_INTERCEPTOR(void, siglongjmp, uptr *env, int val) {
582   {
583     SCOPED_TSAN_INTERCEPTOR(siglongjmp, env, val);
584   }
585   LongJmp(cur_thread(), env);
586   REAL(siglongjmp)(env, val);
587 }
588 
589 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,malloc,uptr size)590 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
591   if (cur_thread()->in_symbolizer)
592     return __libc_malloc(size);
593   void *p = 0;
594   {
595     SCOPED_INTERCEPTOR_RAW(malloc, size);
596     p = user_alloc(thr, pc, size);
597   }
598   invoke_malloc_hook(p, size);
599   return p;
600 }
601 
TSAN_INTERCEPTOR(void *,__libc_memalign,uptr align,uptr sz)602 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
603   SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
604   return user_alloc(thr, pc, sz, align);
605 }
606 
TSAN_INTERCEPTOR(void *,calloc,uptr size,uptr n)607 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
608   if (cur_thread()->in_symbolizer)
609     return __libc_calloc(size, n);
610   void *p = 0;
611   {
612     SCOPED_INTERCEPTOR_RAW(calloc, size, n);
613     p = user_calloc(thr, pc, size, n);
614   }
615   invoke_malloc_hook(p, n * size);
616   return p;
617 }
618 
TSAN_INTERCEPTOR(void *,realloc,void * p,uptr size)619 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
620   if (cur_thread()->in_symbolizer)
621     return __libc_realloc(p, size);
622   if (p)
623     invoke_free_hook(p);
624   {
625     SCOPED_INTERCEPTOR_RAW(realloc, p, size);
626     p = user_realloc(thr, pc, p, size);
627   }
628   invoke_malloc_hook(p, size);
629   return p;
630 }
631 
TSAN_INTERCEPTOR(void,free,void * p)632 TSAN_INTERCEPTOR(void, free, void *p) {
633   if (p == 0)
634     return;
635   if (cur_thread()->in_symbolizer)
636     return __libc_free(p);
637   invoke_free_hook(p);
638   SCOPED_INTERCEPTOR_RAW(free, p);
639   user_free(thr, pc, p);
640 }
641 
TSAN_INTERCEPTOR(void,cfree,void * p)642 TSAN_INTERCEPTOR(void, cfree, void *p) {
643   if (p == 0)
644     return;
645   if (cur_thread()->in_symbolizer)
646     return __libc_free(p);
647   invoke_free_hook(p);
648   SCOPED_INTERCEPTOR_RAW(cfree, p);
649   user_free(thr, pc, p);
650 }
651 
TSAN_INTERCEPTOR(uptr,malloc_usable_size,void * p)652 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
653   SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
654   return user_alloc_usable_size(p);
655 }
656 #endif
657 
TSAN_INTERCEPTOR(uptr,strlen,const char * s)658 TSAN_INTERCEPTOR(uptr, strlen, const char *s) {
659   SCOPED_TSAN_INTERCEPTOR(strlen, s);
660   uptr len = internal_strlen(s);
661   MemoryAccessRange(thr, pc, (uptr)s, len + 1, false);
662   return len;
663 }
664 
TSAN_INTERCEPTOR(void *,memset,void * dst,int v,uptr size)665 TSAN_INTERCEPTOR(void*, memset, void *dst, int v, uptr size) {
666   // On FreeBSD we get here from libthr internals on thread initialization.
667   if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
668     SCOPED_TSAN_INTERCEPTOR(memset, dst, v, size);
669     MemoryAccessRange(thr, pc, (uptr)dst, size, true);
670   }
671   return internal_memset(dst, v, size);
672 }
673 
TSAN_INTERCEPTOR(void *,memcpy,void * dst,const void * src,uptr size)674 TSAN_INTERCEPTOR(void*, memcpy, void *dst, const void *src, uptr size) {
675   // On FreeBSD we get here from libthr internals on thread initialization.
676   if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
677     SCOPED_TSAN_INTERCEPTOR(memcpy, dst, src, size);
678     MemoryAccessRange(thr, pc, (uptr)dst, size, true);
679     MemoryAccessRange(thr, pc, (uptr)src, size, false);
680   }
681   // On OS X, calling internal_memcpy here will cause memory corruptions,
682   // because memcpy and memmove are actually aliases of the same implementation.
683   // We need to use internal_memmove here.
684   return internal_memmove(dst, src, size);
685 }
686 
TSAN_INTERCEPTOR(void *,memmove,void * dst,void * src,uptr n)687 TSAN_INTERCEPTOR(void*, memmove, void *dst, void *src, uptr n) {
688   if (!COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED) {
689     SCOPED_TSAN_INTERCEPTOR(memmove, dst, src, n);
690     MemoryAccessRange(thr, pc, (uptr)dst, n, true);
691     MemoryAccessRange(thr, pc, (uptr)src, n, false);
692   }
693   return REAL(memmove)(dst, src, n);
694 }
695 
TSAN_INTERCEPTOR(char *,strchr,char * s,int c)696 TSAN_INTERCEPTOR(char*, strchr, char *s, int c) {
697   SCOPED_TSAN_INTERCEPTOR(strchr, s, c);
698   char *res = REAL(strchr)(s, c);
699   uptr len = internal_strlen(s);
700   uptr n = res ? (char*)res - (char*)s + 1 : len + 1;
701   READ_STRING_OF_LEN(thr, pc, s, len, n);
702   return res;
703 }
704 
705 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(char *,strchrnul,char * s,int c)706 TSAN_INTERCEPTOR(char*, strchrnul, char *s, int c) {
707   SCOPED_TSAN_INTERCEPTOR(strchrnul, s, c);
708   char *res = REAL(strchrnul)(s, c);
709   uptr len = (char*)res - (char*)s + 1;
710   READ_STRING(thr, pc, s, len);
711   return res;
712 }
713 #endif
714 
TSAN_INTERCEPTOR(char *,strrchr,char * s,int c)715 TSAN_INTERCEPTOR(char*, strrchr, char *s, int c) {
716   SCOPED_TSAN_INTERCEPTOR(strrchr, s, c);
717   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s) + 1, false);
718   return REAL(strrchr)(s, c);
719 }
720 
TSAN_INTERCEPTOR(char *,strcpy,char * dst,const char * src)721 TSAN_INTERCEPTOR(char*, strcpy, char *dst, const char *src) {  // NOLINT
722   SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);  // NOLINT
723   uptr srclen = internal_strlen(src);
724   MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
725   MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
726   return REAL(strcpy)(dst, src);  // NOLINT
727 }
728 
TSAN_INTERCEPTOR(char *,strncpy,char * dst,char * src,uptr n)729 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
730   SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
731   uptr srclen = internal_strnlen(src, n);
732   MemoryAccessRange(thr, pc, (uptr)dst, n, true);
733   MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
734   return REAL(strncpy)(dst, src, n);
735 }
736 
TSAN_INTERCEPTOR(char *,strdup,const char * str)737 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
738   SCOPED_TSAN_INTERCEPTOR(strdup, str);
739   // strdup will call malloc, so no instrumentation is required here.
740   return REAL(strdup)(str);
741 }
742 
fix_mmap_addr(void ** addr,long_t sz,int flags)743 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
744   if (*addr) {
745     if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
746       if (flags & MAP_FIXED) {
747         errno = EINVAL;
748         return false;
749       } else {
750         *addr = 0;
751       }
752     }
753   }
754   return true;
755 }
756 
TSAN_INTERCEPTOR(void *,mmap,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF_T off)757 TSAN_INTERCEPTOR(void *, mmap, void *addr, SIZE_T sz, int prot, int flags,
758                  int fd, OFF_T off) {
759   SCOPED_TSAN_INTERCEPTOR(mmap, addr, sz, prot, flags, fd, off);
760   if (!fix_mmap_addr(&addr, sz, flags))
761     return MAP_FAILED;
762   void *res = REAL(mmap)(addr, sz, prot, flags, fd, off);
763   if (res != MAP_FAILED) {
764     if (fd > 0)
765       FdAccess(thr, pc, fd);
766     MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
767   }
768   return res;
769 }
770 
771 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,mmap64,void * addr,SIZE_T sz,int prot,int flags,int fd,OFF64_T off)772 TSAN_INTERCEPTOR(void *, mmap64, void *addr, SIZE_T sz, int prot, int flags,
773                  int fd, OFF64_T off) {
774   SCOPED_TSAN_INTERCEPTOR(mmap64, addr, sz, prot, flags, fd, off);
775   if (!fix_mmap_addr(&addr, sz, flags))
776     return MAP_FAILED;
777   void *res = REAL(mmap64)(addr, sz, prot, flags, fd, off);
778   if (res != MAP_FAILED) {
779     if (fd > 0)
780       FdAccess(thr, pc, fd);
781     MemoryRangeImitateWrite(thr, pc, (uptr)res, sz);
782   }
783   return res;
784 }
785 #define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
786 #else
787 #define TSAN_MAYBE_INTERCEPT_MMAP64
788 #endif
789 
TSAN_INTERCEPTOR(int,munmap,void * addr,long_t sz)790 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
791   SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
792   if (sz != 0) {
793     // If sz == 0, munmap will return EINVAL and don't unmap any memory.
794     DontNeedShadowFor((uptr)addr, sz);
795     ctx->metamap.ResetRange(thr, pc, (uptr)addr, (uptr)sz);
796   }
797   int res = REAL(munmap)(addr, sz);
798   return res;
799 }
800 
801 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,memalign,uptr align,uptr sz)802 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
803   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
804   return user_alloc(thr, pc, sz, align);
805 }
806 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
807 #else
808 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
809 #endif
810 
811 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(void *,aligned_alloc,uptr align,uptr sz)812 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
813   SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
814   return user_alloc(thr, pc, sz, align);
815 }
816 
TSAN_INTERCEPTOR(void *,valloc,uptr sz)817 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
818   SCOPED_INTERCEPTOR_RAW(valloc, sz);
819   return user_alloc(thr, pc, sz, GetPageSizeCached());
820 }
821 #endif
822 
823 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,pvalloc,uptr sz)824 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
825   SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
826   sz = RoundUp(sz, GetPageSizeCached());
827   return user_alloc(thr, pc, sz, GetPageSizeCached());
828 }
829 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
830 #else
831 #define TSAN_MAYBE_INTERCEPT_PVALLOC
832 #endif
833 
834 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,posix_memalign,void ** memptr,uptr align,uptr sz)835 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
836   SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
837   *memptr = user_alloc(thr, pc, sz, align);
838   return 0;
839 }
840 #endif
841 
842 // __cxa_guard_acquire and friends need to be intercepted in a special way -
843 // regular interceptors will break statically-linked libstdc++. Linux
844 // interceptors are especially defined as weak functions (so that they don't
845 // cause link errors when user defines them as well). So they silently
846 // auto-disable themselves when such symbol is already present in the binary. If
847 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
848 // will silently replace our interceptor.  That's why on Linux we simply export
849 // these interceptors with INTERFACE_ATTRIBUTE.
850 // On OS X, we don't support statically linking, so we just use a regular
851 // interceptor.
852 #if SANITIZER_MAC
853 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
854 #else
855 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
856   extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
857 #endif
858 
859 // Used in thread-safe function static initialization.
STDCXX_INTERCEPTOR(int,__cxa_guard_acquire,atomic_uint32_t * g)860 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
861   SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
862   for (;;) {
863     u32 cmp = atomic_load(g, memory_order_acquire);
864     if (cmp == 0) {
865       if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
866         return 1;
867     } else if (cmp == 1) {
868       Acquire(thr, pc, (uptr)g);
869       return 0;
870     } else {
871       internal_sched_yield();
872     }
873   }
874 }
875 
STDCXX_INTERCEPTOR(void,__cxa_guard_release,atomic_uint32_t * g)876 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
877   SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
878   Release(thr, pc, (uptr)g);
879   atomic_store(g, 1, memory_order_release);
880 }
881 
STDCXX_INTERCEPTOR(void,__cxa_guard_abort,atomic_uint32_t * g)882 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
883   SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
884   atomic_store(g, 0, memory_order_relaxed);
885 }
886 
887 namespace __tsan {
DestroyThreadState()888 void DestroyThreadState() {
889   ThreadState *thr = cur_thread();
890   ThreadFinish(thr);
891   ThreadSignalContext *sctx = thr->signal_ctx;
892   if (sctx) {
893     thr->signal_ctx = 0;
894     UnmapOrDie(sctx, sizeof(*sctx));
895   }
896   cur_thread_finalize();
897 }
898 }  // namespace __tsan
899 
900 #if !SANITIZER_MAC
thread_finalize(void * v)901 static void thread_finalize(void *v) {
902   uptr iter = (uptr)v;
903   if (iter > 1) {
904     if (pthread_setspecific(g_thread_finalize_key, (void*)(iter - 1))) {
905       Printf("ThreadSanitizer: failed to set thread key\n");
906       Die();
907     }
908     return;
909   }
910   DestroyThreadState();
911 }
912 #endif
913 
914 
915 struct ThreadParam {
916   void* (*callback)(void *arg);
917   void *param;
918   atomic_uintptr_t tid;
919 };
920 
__tsan_thread_start_func(void * arg)921 extern "C" void *__tsan_thread_start_func(void *arg) {
922   ThreadParam *p = (ThreadParam*)arg;
923   void* (*callback)(void *arg) = p->callback;
924   void *param = p->param;
925   int tid = 0;
926   {
927     ThreadState *thr = cur_thread();
928     // Thread-local state is not initialized yet.
929     ScopedIgnoreInterceptors ignore;
930 #if !SANITIZER_MAC
931     ThreadIgnoreBegin(thr, 0);
932     if (pthread_setspecific(g_thread_finalize_key,
933                             (void *)GetPthreadDestructorIterations())) {
934       Printf("ThreadSanitizer: failed to set thread key\n");
935       Die();
936     }
937     ThreadIgnoreEnd(thr, 0);
938 #endif
939     while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
940       internal_sched_yield();
941     ThreadStart(thr, tid, GetTid());
942     atomic_store(&p->tid, 0, memory_order_release);
943   }
944   void *res = callback(param);
945   // Prevent the callback from being tail called,
946   // it mixes up stack traces.
947   volatile int foo = 42;
948   foo++;
949   return res;
950 }
951 
TSAN_INTERCEPTOR(int,pthread_create,void * th,void * attr,void * (* callback)(void *),void * param)952 TSAN_INTERCEPTOR(int, pthread_create,
953     void *th, void *attr, void *(*callback)(void*), void * param) {
954   SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
955   if (ctx->after_multithreaded_fork) {
956     if (flags()->die_after_fork) {
957       Report("ThreadSanitizer: starting new threads after multi-threaded "
958           "fork is not supported. Dying (set die_after_fork=0 to override)\n");
959       Die();
960     } else {
961       VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
962           "fork is not supported (pid %d). Continuing because of "
963           "die_after_fork=0, but you are on your own\n", internal_getpid());
964     }
965   }
966   __sanitizer_pthread_attr_t myattr;
967   if (attr == 0) {
968     pthread_attr_init(&myattr);
969     attr = &myattr;
970   }
971   int detached = 0;
972   REAL(pthread_attr_getdetachstate)(attr, &detached);
973   AdjustStackSize(attr);
974 
975   ThreadParam p;
976   p.callback = callback;
977   p.param = param;
978   atomic_store(&p.tid, 0, memory_order_relaxed);
979   int res = -1;
980   {
981     // Otherwise we see false positives in pthread stack manipulation.
982     ScopedIgnoreInterceptors ignore;
983     ThreadIgnoreBegin(thr, pc);
984     res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
985     ThreadIgnoreEnd(thr, pc);
986   }
987   if (res == 0) {
988     int tid = ThreadCreate(thr, pc, *(uptr*)th,
989                            detached == PTHREAD_CREATE_DETACHED);
990     CHECK_NE(tid, 0);
991     // Synchronization on p.tid serves two purposes:
992     // 1. ThreadCreate must finish before the new thread starts.
993     //    Otherwise the new thread can call pthread_detach, but the pthread_t
994     //    identifier is not yet registered in ThreadRegistry by ThreadCreate.
995     // 2. ThreadStart must finish before this thread continues.
996     //    Otherwise, this thread can call pthread_detach and reset thr->sync
997     //    before the new thread got a chance to acquire from it in ThreadStart.
998     atomic_store(&p.tid, tid, memory_order_release);
999     while (atomic_load(&p.tid, memory_order_acquire) != 0)
1000       internal_sched_yield();
1001   }
1002   if (attr == &myattr)
1003     pthread_attr_destroy(&myattr);
1004   return res;
1005 }
1006 
TSAN_INTERCEPTOR(int,pthread_join,void * th,void ** ret)1007 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1008   SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1009   int tid = ThreadTid(thr, pc, (uptr)th);
1010   ThreadIgnoreBegin(thr, pc);
1011   int res = BLOCK_REAL(pthread_join)(th, ret);
1012   ThreadIgnoreEnd(thr, pc);
1013   if (res == 0) {
1014     ThreadJoin(thr, pc, tid);
1015   }
1016   return res;
1017 }
1018 
1019 DEFINE_REAL_PTHREAD_FUNCTIONS
1020 
TSAN_INTERCEPTOR(int,pthread_detach,void * th)1021 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1022   SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
1023   int tid = ThreadTid(thr, pc, (uptr)th);
1024   int res = REAL(pthread_detach)(th);
1025   if (res == 0) {
1026     ThreadDetach(thr, pc, tid);
1027   }
1028   return res;
1029 }
1030 
1031 // Problem:
1032 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1033 // pthread_cond_t has different size in the different versions.
1034 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1035 // after pthread_cond_t (old cond is smaller).
1036 // If we call old REAL functions for new pthread_cond_t, we will lose  some
1037 // functionality (e.g. old functions do not support waiting against
1038 // CLOCK_REALTIME).
1039 // Proper handling would require to have 2 versions of interceptors as well.
1040 // But this is messy, in particular requires linker scripts when sanitizer
1041 // runtime is linked into a shared library.
1042 // Instead we assume we don't have dynamic libraries built against old
1043 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1044 // that allows to work with old libraries (but this mode does not support
1045 // some features, e.g. pthread_condattr_getpshared).
init_cond(void * c,bool force=false)1046 static void *init_cond(void *c, bool force = false) {
1047   // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1048   // So we allocate additional memory on the side large enough to hold
1049   // any pthread_cond_t object. Always call new REAL functions, but pass
1050   // the aux object to them.
1051   // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1052   // first word of pthread_cond_t to zero.
1053   // It's all relevant only for linux.
1054   if (!common_flags()->legacy_pthread_cond)
1055     return c;
1056   atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1057   uptr cond = atomic_load(p, memory_order_acquire);
1058   if (!force && cond != 0)
1059     return (void*)cond;
1060   void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1061   internal_memset(newcond, 0, pthread_cond_t_sz);
1062   if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1063       memory_order_acq_rel))
1064     return newcond;
1065   WRAP(free)(newcond);
1066   return (void*)cond;
1067 }
1068 
1069 struct CondMutexUnlockCtx {
1070   ScopedInterceptor *si;
1071   ThreadState *thr;
1072   uptr pc;
1073   void *m;
1074 };
1075 
cond_mutex_unlock(CondMutexUnlockCtx * arg)1076 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1077   // pthread_cond_wait interceptor has enabled async signal delivery
1078   // (see BlockingCall below). Disable async signals since we are running
1079   // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1080   // since the thread is cancelled, so we have to manually execute them
1081   // (the thread still can run some user code due to pthread_cleanup_push).
1082   ThreadSignalContext *ctx = SigCtx(arg->thr);
1083   CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1084   atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1085   MutexLock(arg->thr, arg->pc, (uptr)arg->m);
1086   // Undo BlockingCall ctor effects.
1087   arg->thr->ignore_interceptors--;
1088   arg->si->~ScopedInterceptor();
1089 }
1090 
INTERCEPTOR(int,pthread_cond_init,void * c,void * a)1091 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1092   void *cond = init_cond(c, true);
1093   SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1094   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1095   return REAL(pthread_cond_init)(cond, a);
1096 }
1097 
INTERCEPTOR(int,pthread_cond_wait,void * c,void * m)1098 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1099   void *cond = init_cond(c);
1100   SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1101   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1102   MutexUnlock(thr, pc, (uptr)m);
1103   CondMutexUnlockCtx arg = {&si, thr, pc, m};
1104   int res = 0;
1105   // This ensures that we handle mutex lock even in case of pthread_cancel.
1106   // See test/tsan/cond_cancel.cc.
1107   {
1108     // Enable signal delivery while the thread is blocked.
1109     BlockingCall bc(thr);
1110     res = call_pthread_cancel_with_cleanup(
1111         (int(*)(void *c, void *m, void *abstime))REAL(pthread_cond_wait),
1112         cond, m, 0, (void(*)(void *arg))cond_mutex_unlock, &arg);
1113   }
1114   if (res == errno_EOWNERDEAD)
1115     MutexRepair(thr, pc, (uptr)m);
1116   MutexLock(thr, pc, (uptr)m);
1117   return res;
1118 }
1119 
INTERCEPTOR(int,pthread_cond_timedwait,void * c,void * m,void * abstime)1120 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1121   void *cond = init_cond(c);
1122   SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1123   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1124   MutexUnlock(thr, pc, (uptr)m);
1125   CondMutexUnlockCtx arg = {&si, thr, pc, m};
1126   int res = 0;
1127   // This ensures that we handle mutex lock even in case of pthread_cancel.
1128   // See test/tsan/cond_cancel.cc.
1129   {
1130     BlockingCall bc(thr);
1131     res = call_pthread_cancel_with_cleanup(
1132         REAL(pthread_cond_timedwait), cond, m, abstime,
1133         (void(*)(void *arg))cond_mutex_unlock, &arg);
1134   }
1135   if (res == errno_EOWNERDEAD)
1136     MutexRepair(thr, pc, (uptr)m);
1137   MutexLock(thr, pc, (uptr)m);
1138   return res;
1139 }
1140 
INTERCEPTOR(int,pthread_cond_signal,void * c)1141 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1142   void *cond = init_cond(c);
1143   SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1144   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1145   return REAL(pthread_cond_signal)(cond);
1146 }
1147 
INTERCEPTOR(int,pthread_cond_broadcast,void * c)1148 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1149   void *cond = init_cond(c);
1150   SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1151   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1152   return REAL(pthread_cond_broadcast)(cond);
1153 }
1154 
INTERCEPTOR(int,pthread_cond_destroy,void * c)1155 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1156   void *cond = init_cond(c);
1157   SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1158   MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1159   int res = REAL(pthread_cond_destroy)(cond);
1160   if (common_flags()->legacy_pthread_cond) {
1161     // Free our aux cond and zero the pointer to not leave dangling pointers.
1162     WRAP(free)(cond);
1163     atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1164   }
1165   return res;
1166 }
1167 
TSAN_INTERCEPTOR(int,pthread_mutex_init,void * m,void * a)1168 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1169   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1170   int res = REAL(pthread_mutex_init)(m, a);
1171   if (res == 0) {
1172     bool recursive = false;
1173     if (a) {
1174       int type = 0;
1175       if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1176         recursive = (type == PTHREAD_MUTEX_RECURSIVE
1177             || type == PTHREAD_MUTEX_RECURSIVE_NP);
1178     }
1179     MutexCreate(thr, pc, (uptr)m, false, recursive, false);
1180   }
1181   return res;
1182 }
1183 
TSAN_INTERCEPTOR(int,pthread_mutex_destroy,void * m)1184 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1185   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1186   int res = REAL(pthread_mutex_destroy)(m);
1187   if (res == 0 || res == EBUSY) {
1188     MutexDestroy(thr, pc, (uptr)m);
1189   }
1190   return res;
1191 }
1192 
TSAN_INTERCEPTOR(int,pthread_mutex_trylock,void * m)1193 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1194   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1195   int res = REAL(pthread_mutex_trylock)(m);
1196   if (res == EOWNERDEAD)
1197     MutexRepair(thr, pc, (uptr)m);
1198   if (res == 0 || res == EOWNERDEAD)
1199     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1200   return res;
1201 }
1202 
1203 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_mutex_timedlock,void * m,void * abstime)1204 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1205   SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1206   int res = REAL(pthread_mutex_timedlock)(m, abstime);
1207   if (res == 0) {
1208     MutexLock(thr, pc, (uptr)m);
1209   }
1210   return res;
1211 }
1212 #endif
1213 
1214 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_spin_init,void * m,int pshared)1215 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1216   SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1217   int res = REAL(pthread_spin_init)(m, pshared);
1218   if (res == 0) {
1219     MutexCreate(thr, pc, (uptr)m, false, false, false);
1220   }
1221   return res;
1222 }
1223 
TSAN_INTERCEPTOR(int,pthread_spin_destroy,void * m)1224 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1225   SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1226   int res = REAL(pthread_spin_destroy)(m);
1227   if (res == 0) {
1228     MutexDestroy(thr, pc, (uptr)m);
1229   }
1230   return res;
1231 }
1232 
TSAN_INTERCEPTOR(int,pthread_spin_lock,void * m)1233 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1234   SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1235   int res = REAL(pthread_spin_lock)(m);
1236   if (res == 0) {
1237     MutexLock(thr, pc, (uptr)m);
1238   }
1239   return res;
1240 }
1241 
TSAN_INTERCEPTOR(int,pthread_spin_trylock,void * m)1242 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1243   SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1244   int res = REAL(pthread_spin_trylock)(m);
1245   if (res == 0) {
1246     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1247   }
1248   return res;
1249 }
1250 
TSAN_INTERCEPTOR(int,pthread_spin_unlock,void * m)1251 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1252   SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1253   MutexUnlock(thr, pc, (uptr)m);
1254   int res = REAL(pthread_spin_unlock)(m);
1255   return res;
1256 }
1257 #endif
1258 
TSAN_INTERCEPTOR(int,pthread_rwlock_init,void * m,void * a)1259 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1260   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1261   int res = REAL(pthread_rwlock_init)(m, a);
1262   if (res == 0) {
1263     MutexCreate(thr, pc, (uptr)m, true, false, false);
1264   }
1265   return res;
1266 }
1267 
TSAN_INTERCEPTOR(int,pthread_rwlock_destroy,void * m)1268 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1269   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1270   int res = REAL(pthread_rwlock_destroy)(m);
1271   if (res == 0) {
1272     MutexDestroy(thr, pc, (uptr)m);
1273   }
1274   return res;
1275 }
1276 
TSAN_INTERCEPTOR(int,pthread_rwlock_rdlock,void * m)1277 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1278   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1279   int res = REAL(pthread_rwlock_rdlock)(m);
1280   if (res == 0) {
1281     MutexReadLock(thr, pc, (uptr)m);
1282   }
1283   return res;
1284 }
1285 
TSAN_INTERCEPTOR(int,pthread_rwlock_tryrdlock,void * m)1286 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1287   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1288   int res = REAL(pthread_rwlock_tryrdlock)(m);
1289   if (res == 0) {
1290     MutexReadLock(thr, pc, (uptr)m, /*try_lock=*/true);
1291   }
1292   return res;
1293 }
1294 
1295 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedrdlock,void * m,void * abstime)1296 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1297   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1298   int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1299   if (res == 0) {
1300     MutexReadLock(thr, pc, (uptr)m);
1301   }
1302   return res;
1303 }
1304 #endif
1305 
TSAN_INTERCEPTOR(int,pthread_rwlock_wrlock,void * m)1306 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1307   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1308   int res = REAL(pthread_rwlock_wrlock)(m);
1309   if (res == 0) {
1310     MutexLock(thr, pc, (uptr)m);
1311   }
1312   return res;
1313 }
1314 
TSAN_INTERCEPTOR(int,pthread_rwlock_trywrlock,void * m)1315 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1316   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1317   int res = REAL(pthread_rwlock_trywrlock)(m);
1318   if (res == 0) {
1319     MutexLock(thr, pc, (uptr)m, /*rec=*/1, /*try_lock=*/true);
1320   }
1321   return res;
1322 }
1323 
1324 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_rwlock_timedwrlock,void * m,void * abstime)1325 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1326   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1327   int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1328   if (res == 0) {
1329     MutexLock(thr, pc, (uptr)m);
1330   }
1331   return res;
1332 }
1333 #endif
1334 
TSAN_INTERCEPTOR(int,pthread_rwlock_unlock,void * m)1335 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1336   SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1337   MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1338   int res = REAL(pthread_rwlock_unlock)(m);
1339   return res;
1340 }
1341 
1342 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pthread_barrier_init,void * b,void * a,unsigned count)1343 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1344   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1345   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1346   int res = REAL(pthread_barrier_init)(b, a, count);
1347   return res;
1348 }
1349 
TSAN_INTERCEPTOR(int,pthread_barrier_destroy,void * b)1350 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1351   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1352   MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1353   int res = REAL(pthread_barrier_destroy)(b);
1354   return res;
1355 }
1356 
TSAN_INTERCEPTOR(int,pthread_barrier_wait,void * b)1357 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1358   SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1359   Release(thr, pc, (uptr)b);
1360   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1361   int res = REAL(pthread_barrier_wait)(b);
1362   MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1363   if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1364     Acquire(thr, pc, (uptr)b);
1365   }
1366   return res;
1367 }
1368 #endif
1369 
TSAN_INTERCEPTOR(int,pthread_once,void * o,void (* f)())1370 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1371   SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1372   if (o == 0 || f == 0)
1373     return EINVAL;
1374   atomic_uint32_t *a;
1375   if (!SANITIZER_MAC)
1376     a = static_cast<atomic_uint32_t*>(o);
1377   else  // On OS X, pthread_once_t has a header with a long-sized signature.
1378     a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1379   u32 v = atomic_load(a, memory_order_acquire);
1380   if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1381                                                memory_order_relaxed)) {
1382     (*f)();
1383     if (!thr->in_ignored_lib)
1384       Release(thr, pc, (uptr)o);
1385     atomic_store(a, 2, memory_order_release);
1386   } else {
1387     while (v != 2) {
1388       internal_sched_yield();
1389       v = atomic_load(a, memory_order_acquire);
1390     }
1391     if (!thr->in_ignored_lib)
1392       Acquire(thr, pc, (uptr)o);
1393   }
1394   return 0;
1395 }
1396 
1397 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__xstat,int version,const char * path,void * buf)1398 TSAN_INTERCEPTOR(int, __xstat, int version, const char *path, void *buf) {
1399   SCOPED_TSAN_INTERCEPTOR(__xstat, version, path, buf);
1400   READ_STRING(thr, pc, path, 0);
1401   return REAL(__xstat)(version, path, buf);
1402 }
1403 #define TSAN_MAYBE_INTERCEPT___XSTAT TSAN_INTERCEPT(__xstat)
1404 #else
1405 #define TSAN_MAYBE_INTERCEPT___XSTAT
1406 #endif
1407 
TSAN_INTERCEPTOR(int,stat,const char * path,void * buf)1408 TSAN_INTERCEPTOR(int, stat, const char *path, void *buf) {
1409 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
1410   SCOPED_TSAN_INTERCEPTOR(stat, path, buf);
1411   READ_STRING(thr, pc, path, 0);
1412   return REAL(stat)(path, buf);
1413 #else
1414   SCOPED_TSAN_INTERCEPTOR(__xstat, 0, path, buf);
1415   READ_STRING(thr, pc, path, 0);
1416   return REAL(__xstat)(0, path, buf);
1417 #endif
1418 }
1419 
1420 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__xstat64,int version,const char * path,void * buf)1421 TSAN_INTERCEPTOR(int, __xstat64, int version, const char *path, void *buf) {
1422   SCOPED_TSAN_INTERCEPTOR(__xstat64, version, path, buf);
1423   READ_STRING(thr, pc, path, 0);
1424   return REAL(__xstat64)(version, path, buf);
1425 }
1426 #define TSAN_MAYBE_INTERCEPT___XSTAT64 TSAN_INTERCEPT(__xstat64)
1427 #else
1428 #define TSAN_MAYBE_INTERCEPT___XSTAT64
1429 #endif
1430 
1431 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,stat64,const char * path,void * buf)1432 TSAN_INTERCEPTOR(int, stat64, const char *path, void *buf) {
1433   SCOPED_TSAN_INTERCEPTOR(__xstat64, 0, path, buf);
1434   READ_STRING(thr, pc, path, 0);
1435   return REAL(__xstat64)(0, path, buf);
1436 }
1437 #define TSAN_MAYBE_INTERCEPT_STAT64 TSAN_INTERCEPT(stat64)
1438 #else
1439 #define TSAN_MAYBE_INTERCEPT_STAT64
1440 #endif
1441 
1442 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__lxstat,int version,const char * path,void * buf)1443 TSAN_INTERCEPTOR(int, __lxstat, int version, const char *path, void *buf) {
1444   SCOPED_TSAN_INTERCEPTOR(__lxstat, version, path, buf);
1445   READ_STRING(thr, pc, path, 0);
1446   return REAL(__lxstat)(version, path, buf);
1447 }
1448 #define TSAN_MAYBE_INTERCEPT___LXSTAT TSAN_INTERCEPT(__lxstat)
1449 #else
1450 #define TSAN_MAYBE_INTERCEPT___LXSTAT
1451 #endif
1452 
TSAN_INTERCEPTOR(int,lstat,const char * path,void * buf)1453 TSAN_INTERCEPTOR(int, lstat, const char *path, void *buf) {
1454 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
1455   SCOPED_TSAN_INTERCEPTOR(lstat, path, buf);
1456   READ_STRING(thr, pc, path, 0);
1457   return REAL(lstat)(path, buf);
1458 #else
1459   SCOPED_TSAN_INTERCEPTOR(__lxstat, 0, path, buf);
1460   READ_STRING(thr, pc, path, 0);
1461   return REAL(__lxstat)(0, path, buf);
1462 #endif
1463 }
1464 
1465 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__lxstat64,int version,const char * path,void * buf)1466 TSAN_INTERCEPTOR(int, __lxstat64, int version, const char *path, void *buf) {
1467   SCOPED_TSAN_INTERCEPTOR(__lxstat64, version, path, buf);
1468   READ_STRING(thr, pc, path, 0);
1469   return REAL(__lxstat64)(version, path, buf);
1470 }
1471 #define TSAN_MAYBE_INTERCEPT___LXSTAT64 TSAN_INTERCEPT(__lxstat64)
1472 #else
1473 #define TSAN_MAYBE_INTERCEPT___LXSTAT64
1474 #endif
1475 
1476 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,lstat64,const char * path,void * buf)1477 TSAN_INTERCEPTOR(int, lstat64, const char *path, void *buf) {
1478   SCOPED_TSAN_INTERCEPTOR(__lxstat64, 0, path, buf);
1479   READ_STRING(thr, pc, path, 0);
1480   return REAL(__lxstat64)(0, path, buf);
1481 }
1482 #define TSAN_MAYBE_INTERCEPT_LSTAT64 TSAN_INTERCEPT(lstat64)
1483 #else
1484 #define TSAN_MAYBE_INTERCEPT_LSTAT64
1485 #endif
1486 
1487 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat,int version,int fd,void * buf)1488 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1489   SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1490   if (fd > 0)
1491     FdAccess(thr, pc, fd);
1492   return REAL(__fxstat)(version, fd, buf);
1493 }
1494 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1495 #else
1496 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1497 #endif
1498 
TSAN_INTERCEPTOR(int,fstat,int fd,void * buf)1499 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1500 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID
1501   SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1502   if (fd > 0)
1503     FdAccess(thr, pc, fd);
1504   return REAL(fstat)(fd, buf);
1505 #else
1506   SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1507   if (fd > 0)
1508     FdAccess(thr, pc, fd);
1509   return REAL(__fxstat)(0, fd, buf);
1510 #endif
1511 }
1512 
1513 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,__fxstat64,int version,int fd,void * buf)1514 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1515   SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1516   if (fd > 0)
1517     FdAccess(thr, pc, fd);
1518   return REAL(__fxstat64)(version, fd, buf);
1519 }
1520 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1521 #else
1522 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1523 #endif
1524 
1525 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(int,fstat64,int fd,void * buf)1526 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1527   SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1528   if (fd > 0)
1529     FdAccess(thr, pc, fd);
1530   return REAL(__fxstat64)(0, fd, buf);
1531 }
1532 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1533 #else
1534 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1535 #endif
1536 
TSAN_INTERCEPTOR(int,open,const char * name,int flags,int mode)1537 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1538   SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1539   READ_STRING(thr, pc, name, 0);
1540   int fd = REAL(open)(name, flags, mode);
1541   if (fd >= 0)
1542     FdFileCreate(thr, pc, fd);
1543   return fd;
1544 }
1545 
1546 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,open64,const char * name,int flags,int mode)1547 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1548   SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1549   READ_STRING(thr, pc, name, 0);
1550   int fd = REAL(open64)(name, flags, mode);
1551   if (fd >= 0)
1552     FdFileCreate(thr, pc, fd);
1553   return fd;
1554 }
1555 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1556 #else
1557 #define TSAN_MAYBE_INTERCEPT_OPEN64
1558 #endif
1559 
TSAN_INTERCEPTOR(int,creat,const char * name,int mode)1560 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1561   SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1562   READ_STRING(thr, pc, name, 0);
1563   int fd = REAL(creat)(name, mode);
1564   if (fd >= 0)
1565     FdFileCreate(thr, pc, fd);
1566   return fd;
1567 }
1568 
1569 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,creat64,const char * name,int mode)1570 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1571   SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1572   READ_STRING(thr, pc, name, 0);
1573   int fd = REAL(creat64)(name, mode);
1574   if (fd >= 0)
1575     FdFileCreate(thr, pc, fd);
1576   return fd;
1577 }
1578 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1579 #else
1580 #define TSAN_MAYBE_INTERCEPT_CREAT64
1581 #endif
1582 
TSAN_INTERCEPTOR(int,dup,int oldfd)1583 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1584   SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1585   int newfd = REAL(dup)(oldfd);
1586   if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1587     FdDup(thr, pc, oldfd, newfd, true);
1588   return newfd;
1589 }
1590 
TSAN_INTERCEPTOR(int,dup2,int oldfd,int newfd)1591 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1592   SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1593   int newfd2 = REAL(dup2)(oldfd, newfd);
1594   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1595     FdDup(thr, pc, oldfd, newfd2, false);
1596   return newfd2;
1597 }
1598 
1599 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,dup3,int oldfd,int newfd,int flags)1600 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1601   SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1602   int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1603   if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1604     FdDup(thr, pc, oldfd, newfd2, false);
1605   return newfd2;
1606 }
1607 #endif
1608 
1609 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,eventfd,unsigned initval,int flags)1610 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1611   SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1612   int fd = REAL(eventfd)(initval, flags);
1613   if (fd >= 0)
1614     FdEventCreate(thr, pc, fd);
1615   return fd;
1616 }
1617 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1618 #else
1619 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1620 #endif
1621 
1622 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,signalfd,int fd,void * mask,int flags)1623 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1624   SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1625   if (fd >= 0)
1626     FdClose(thr, pc, fd);
1627   fd = REAL(signalfd)(fd, mask, flags);
1628   if (fd >= 0)
1629     FdSignalCreate(thr, pc, fd);
1630   return fd;
1631 }
1632 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1633 #else
1634 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1635 #endif
1636 
1637 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init,int fake)1638 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1639   SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1640   int fd = REAL(inotify_init)(fake);
1641   if (fd >= 0)
1642     FdInotifyCreate(thr, pc, fd);
1643   return fd;
1644 }
1645 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1646 #else
1647 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1648 #endif
1649 
1650 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,inotify_init1,int flags)1651 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1652   SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1653   int fd = REAL(inotify_init1)(flags);
1654   if (fd >= 0)
1655     FdInotifyCreate(thr, pc, fd);
1656   return fd;
1657 }
1658 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1659 #else
1660 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1661 #endif
1662 
TSAN_INTERCEPTOR(int,socket,int domain,int type,int protocol)1663 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1664   SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1665   int fd = REAL(socket)(domain, type, protocol);
1666   if (fd >= 0)
1667     FdSocketCreate(thr, pc, fd);
1668   return fd;
1669 }
1670 
TSAN_INTERCEPTOR(int,socketpair,int domain,int type,int protocol,int * fd)1671 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1672   SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1673   int res = REAL(socketpair)(domain, type, protocol, fd);
1674   if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1675     FdPipeCreate(thr, pc, fd[0], fd[1]);
1676   return res;
1677 }
1678 
TSAN_INTERCEPTOR(int,connect,int fd,void * addr,unsigned addrlen)1679 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1680   SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1681   FdSocketConnecting(thr, pc, fd);
1682   int res = REAL(connect)(fd, addr, addrlen);
1683   if (res == 0 && fd >= 0)
1684     FdSocketConnect(thr, pc, fd);
1685   return res;
1686 }
1687 
TSAN_INTERCEPTOR(int,bind,int fd,void * addr,unsigned addrlen)1688 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1689   SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1690   int res = REAL(bind)(fd, addr, addrlen);
1691   if (fd > 0 && res == 0)
1692     FdAccess(thr, pc, fd);
1693   return res;
1694 }
1695 
TSAN_INTERCEPTOR(int,listen,int fd,int backlog)1696 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1697   SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1698   int res = REAL(listen)(fd, backlog);
1699   if (fd > 0 && res == 0)
1700     FdAccess(thr, pc, fd);
1701   return res;
1702 }
1703 
1704 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create,int size)1705 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1706   SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1707   int fd = REAL(epoll_create)(size);
1708   if (fd >= 0)
1709     FdPollCreate(thr, pc, fd);
1710   return fd;
1711 }
1712 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE TSAN_INTERCEPT(epoll_create)
1713 #else
1714 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE
1715 #endif
1716 
1717 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_create1,int flags)1718 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1719   SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1720   int fd = REAL(epoll_create1)(flags);
1721   if (fd >= 0)
1722     FdPollCreate(thr, pc, fd);
1723   return fd;
1724 }
1725 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1 TSAN_INTERCEPT(epoll_create1)
1726 #else
1727 #define TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1
1728 #endif
1729 
TSAN_INTERCEPTOR(int,close,int fd)1730 TSAN_INTERCEPTOR(int, close, int fd) {
1731   SCOPED_TSAN_INTERCEPTOR(close, fd);
1732   if (fd >= 0)
1733     FdClose(thr, pc, fd);
1734   return REAL(close)(fd);
1735 }
1736 
1737 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,__close,int fd)1738 TSAN_INTERCEPTOR(int, __close, int fd) {
1739   SCOPED_TSAN_INTERCEPTOR(__close, fd);
1740   if (fd >= 0)
1741     FdClose(thr, pc, fd);
1742   return REAL(__close)(fd);
1743 }
1744 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1745 #else
1746 #define TSAN_MAYBE_INTERCEPT___CLOSE
1747 #endif
1748 
1749 // glibc guts
1750 #if SANITIZER_LINUX && !SANITIZER_ANDROID
TSAN_INTERCEPTOR(void,__res_iclose,void * state,bool free_addr)1751 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1752   SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1753   int fds[64];
1754   int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1755   for (int i = 0; i < cnt; i++) {
1756     if (fds[i] > 0)
1757       FdClose(thr, pc, fds[i]);
1758   }
1759   REAL(__res_iclose)(state, free_addr);
1760 }
1761 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1762 #else
1763 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1764 #endif
1765 
TSAN_INTERCEPTOR(int,pipe,int * pipefd)1766 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1767   SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1768   int res = REAL(pipe)(pipefd);
1769   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1770     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1771   return res;
1772 }
1773 
1774 #if !SANITIZER_MAC
TSAN_INTERCEPTOR(int,pipe2,int * pipefd,int flags)1775 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1776   SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1777   int res = REAL(pipe2)(pipefd, flags);
1778   if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1779     FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1780   return res;
1781 }
1782 #endif
1783 
TSAN_INTERCEPTOR(long_t,send,int fd,void * buf,long_t len,int flags)1784 TSAN_INTERCEPTOR(long_t, send, int fd, void *buf, long_t len, int flags) {
1785   SCOPED_TSAN_INTERCEPTOR(send, fd, buf, len, flags);
1786   if (fd >= 0) {
1787     FdAccess(thr, pc, fd);
1788     FdRelease(thr, pc, fd);
1789   }
1790   int res = REAL(send)(fd, buf, len, flags);
1791   return res;
1792 }
1793 
TSAN_INTERCEPTOR(long_t,sendmsg,int fd,void * msg,int flags)1794 TSAN_INTERCEPTOR(long_t, sendmsg, int fd, void *msg, int flags) {
1795   SCOPED_TSAN_INTERCEPTOR(sendmsg, fd, msg, flags);
1796   if (fd >= 0) {
1797     FdAccess(thr, pc, fd);
1798     FdRelease(thr, pc, fd);
1799   }
1800   int res = REAL(sendmsg)(fd, msg, flags);
1801   return res;
1802 }
1803 
TSAN_INTERCEPTOR(long_t,recv,int fd,void * buf,long_t len,int flags)1804 TSAN_INTERCEPTOR(long_t, recv, int fd, void *buf, long_t len, int flags) {
1805   SCOPED_TSAN_INTERCEPTOR(recv, fd, buf, len, flags);
1806   if (fd >= 0)
1807     FdAccess(thr, pc, fd);
1808   int res = REAL(recv)(fd, buf, len, flags);
1809   if (res >= 0 && fd >= 0) {
1810     FdAcquire(thr, pc, fd);
1811   }
1812   return res;
1813 }
1814 
TSAN_INTERCEPTOR(int,unlink,char * path)1815 TSAN_INTERCEPTOR(int, unlink, char *path) {
1816   SCOPED_TSAN_INTERCEPTOR(unlink, path);
1817   Release(thr, pc, File2addr(path));
1818   int res = REAL(unlink)(path);
1819   return res;
1820 }
1821 
TSAN_INTERCEPTOR(void *,tmpfile,int fake)1822 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1823   SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1824   void *res = REAL(tmpfile)(fake);
1825   if (res) {
1826     int fd = fileno_unlocked(res);
1827     if (fd >= 0)
1828       FdFileCreate(thr, pc, fd);
1829   }
1830   return res;
1831 }
1832 
1833 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(void *,tmpfile64,int fake)1834 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1835   SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1836   void *res = REAL(tmpfile64)(fake);
1837   if (res) {
1838     int fd = fileno_unlocked(res);
1839     if (fd >= 0)
1840       FdFileCreate(thr, pc, fd);
1841   }
1842   return res;
1843 }
1844 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1845 #else
1846 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1847 #endif
1848 
TSAN_INTERCEPTOR(uptr,fread,void * ptr,uptr size,uptr nmemb,void * f)1849 TSAN_INTERCEPTOR(uptr, fread, void *ptr, uptr size, uptr nmemb, void *f) {
1850   // libc file streams can call user-supplied functions, see fopencookie.
1851   {
1852     SCOPED_TSAN_INTERCEPTOR(fread, ptr, size, nmemb, f);
1853     MemoryAccessRange(thr, pc, (uptr)ptr, size * nmemb, true);
1854   }
1855   return REAL(fread)(ptr, size, nmemb, f);
1856 }
1857 
TSAN_INTERCEPTOR(uptr,fwrite,const void * p,uptr size,uptr nmemb,void * f)1858 TSAN_INTERCEPTOR(uptr, fwrite, const void *p, uptr size, uptr nmemb, void *f) {
1859   // libc file streams can call user-supplied functions, see fopencookie.
1860   {
1861     SCOPED_TSAN_INTERCEPTOR(fwrite, p, size, nmemb, f);
1862     MemoryAccessRange(thr, pc, (uptr)p, size * nmemb, false);
1863   }
1864   return REAL(fwrite)(p, size, nmemb, f);
1865 }
1866 
FlushStreams()1867 static void FlushStreams() {
1868   // Flushing all the streams here may freeze the process if a child thread is
1869   // performing file stream operations at the same time.
1870   REAL(fflush)(stdout);
1871   REAL(fflush)(stderr);
1872 }
1873 
TSAN_INTERCEPTOR(void,abort,int fake)1874 TSAN_INTERCEPTOR(void, abort, int fake) {
1875   SCOPED_TSAN_INTERCEPTOR(abort, fake);
1876   FlushStreams();
1877   REAL(abort)(fake);
1878 }
1879 
TSAN_INTERCEPTOR(int,puts,const char * s)1880 TSAN_INTERCEPTOR(int, puts, const char *s) {
1881   SCOPED_TSAN_INTERCEPTOR(puts, s);
1882   MemoryAccessRange(thr, pc, (uptr)s, internal_strlen(s), false);
1883   return REAL(puts)(s);
1884 }
1885 
TSAN_INTERCEPTOR(int,rmdir,char * path)1886 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1887   SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1888   Release(thr, pc, Dir2addr(path));
1889   int res = REAL(rmdir)(path);
1890   return res;
1891 }
1892 
TSAN_INTERCEPTOR(int,closedir,void * dirp)1893 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1894   SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1895   int fd = dirfd(dirp);
1896   FdClose(thr, pc, fd);
1897   return REAL(closedir)(dirp);
1898 }
1899 
1900 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_ctl,int epfd,int op,int fd,void * ev)1901 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1902   SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1903   if (epfd >= 0)
1904     FdAccess(thr, pc, epfd);
1905   if (epfd >= 0 && fd >= 0)
1906     FdAccess(thr, pc, fd);
1907   if (op == EPOLL_CTL_ADD && epfd >= 0)
1908     FdRelease(thr, pc, epfd);
1909   int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1910   return res;
1911 }
1912 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL TSAN_INTERCEPT(epoll_ctl)
1913 #else
1914 #define TSAN_MAYBE_INTERCEPT_EPOLL_CTL
1915 #endif
1916 
1917 #if SANITIZER_LINUX
TSAN_INTERCEPTOR(int,epoll_wait,int epfd,void * ev,int cnt,int timeout)1918 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1919   SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1920   if (epfd >= 0)
1921     FdAccess(thr, pc, epfd);
1922   int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1923   if (res > 0 && epfd >= 0)
1924     FdAcquire(thr, pc, epfd);
1925   return res;
1926 }
1927 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT TSAN_INTERCEPT(epoll_wait)
1928 #else
1929 #define TSAN_MAYBE_INTERCEPT_EPOLL_WAIT
1930 #endif
1931 
1932 namespace __tsan {
1933 
CallUserSignalHandler(ThreadState * thr,bool sync,bool acquire,bool sigact,int sig,my_siginfo_t * info,void * uctx)1934 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1935     bool sigact, int sig, my_siginfo_t *info, void *uctx) {
1936   if (acquire)
1937     Acquire(thr, 0, (uptr)&sigactions[sig]);
1938   // Ensure that the handler does not spoil errno.
1939   const int saved_errno = errno;
1940   errno = 99;
1941   // This code races with sigaction. Be careful to not read sa_sigaction twice.
1942   // Also need to remember pc for reporting before the call,
1943   // because the handler can reset it.
1944   volatile uptr pc = sigact ?
1945      (uptr)sigactions[sig].sa_sigaction :
1946      (uptr)sigactions[sig].sa_handler;
1947   if (pc != (uptr)SIG_DFL && pc != (uptr)SIG_IGN) {
1948     if (sigact)
1949       ((sigactionhandler_t)pc)(sig, info, uctx);
1950     else
1951       ((sighandler_t)pc)(sig);
1952   }
1953   // We do not detect errno spoiling for SIGTERM,
1954   // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1955   // tsan reports false positive in such case.
1956   // It's difficult to properly detect this situation (reraise),
1957   // because in async signal processing case (when handler is called directly
1958   // from rtl_generic_sighandler) we have not yet received the reraised
1959   // signal; and it looks too fragile to intercept all ways to reraise a signal.
1960   if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1961     VarSizeStackTrace stack;
1962     // StackTrace::GetNestInstructionPc(pc) is used because return address is
1963     // expected, OutputReport() will undo this.
1964     ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1965     ThreadRegistryLock l(ctx->thread_registry);
1966     ScopedReport rep(ReportTypeErrnoInSignal);
1967     if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1968       rep.AddStack(stack, true);
1969       OutputReport(thr, rep);
1970     }
1971   }
1972   errno = saved_errno;
1973 }
1974 
ProcessPendingSignals(ThreadState * thr)1975 void ProcessPendingSignals(ThreadState *thr) {
1976   ThreadSignalContext *sctx = SigCtx(thr);
1977   if (sctx == 0 ||
1978       atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1979     return;
1980   atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1981   atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1982   CHECK_EQ(0, REAL(sigfillset)(&sctx->emptyset));
1983   CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &sctx->emptyset, &sctx->oldset));
1984   for (int sig = 0; sig < kSigCount; sig++) {
1985     SignalDesc *signal = &sctx->pending_signals[sig];
1986     if (signal->armed) {
1987       signal->armed = false;
1988       CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1989           &signal->siginfo, &signal->ctx);
1990     }
1991   }
1992   CHECK_EQ(0, pthread_sigmask(SIG_SETMASK, &sctx->oldset, 0));
1993   atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1994 }
1995 
1996 }  // namespace __tsan
1997 
is_sync_signal(ThreadSignalContext * sctx,int sig)1998 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1999   return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL ||
2000       sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
2001       // If we are sending signal to ourselves, we must process it now.
2002       (sctx && sig == sctx->int_signal_send);
2003 }
2004 
rtl_generic_sighandler(bool sigact,int sig,my_siginfo_t * info,void * ctx)2005 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
2006     my_siginfo_t *info, void *ctx) {
2007   ThreadState *thr = cur_thread();
2008   ThreadSignalContext *sctx = SigCtx(thr);
2009   if (sig < 0 || sig >= kSigCount) {
2010     VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
2011     return;
2012   }
2013   // Don't mess with synchronous signals.
2014   const bool sync = is_sync_signal(sctx, sig);
2015   if (sync ||
2016       // If we are in blocking function, we can safely process it now
2017       // (but check if we are in a recursive interceptor,
2018       // i.e. pthread_join()->munmap()).
2019       (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
2020     atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
2021     if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
2022       // We ignore interceptors in blocking functions,
2023       // temporary enbled them again while we are calling user function.
2024       int const i = thr->ignore_interceptors;
2025       thr->ignore_interceptors = 0;
2026       atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
2027       CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
2028       thr->ignore_interceptors = i;
2029       atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
2030     } else {
2031       // Be very conservative with when we do acquire in this case.
2032       // It's unsafe to do acquire in async handlers, because ThreadState
2033       // can be in inconsistent state.
2034       // SIGSYS looks relatively safe -- it's synchronous and can actually
2035       // need some global state.
2036       bool acq = (sig == SIGSYS);
2037       CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
2038     }
2039     atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2040     return;
2041   }
2042 
2043   if (sctx == 0)
2044     return;
2045   SignalDesc *signal = &sctx->pending_signals[sig];
2046   if (signal->armed == false) {
2047     signal->armed = true;
2048     signal->sigaction = sigact;
2049     if (info)
2050       internal_memcpy(&signal->siginfo, info, sizeof(*info));
2051     if (ctx)
2052       internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2053     atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
2054   }
2055 }
2056 
rtl_sighandler(int sig)2057 static void rtl_sighandler(int sig) {
2058   rtl_generic_sighandler(false, sig, 0, 0);
2059 }
2060 
rtl_sigaction(int sig,my_siginfo_t * info,void * ctx)2061 static void rtl_sigaction(int sig, my_siginfo_t *info, void *ctx) {
2062   rtl_generic_sighandler(true, sig, info, ctx);
2063 }
2064 
TSAN_INTERCEPTOR(int,sigaction,int sig,sigaction_t * act,sigaction_t * old)2065 TSAN_INTERCEPTOR(int, sigaction, int sig, sigaction_t *act, sigaction_t *old) {
2066   SCOPED_TSAN_INTERCEPTOR(sigaction, sig, act, old);
2067   if (old)
2068     internal_memcpy(old, &sigactions[sig], sizeof(*old));
2069   if (act == 0)
2070     return 0;
2071   // Copy act into sigactions[sig].
2072   // Can't use struct copy, because compiler can emit call to memcpy.
2073   // Can't use internal_memcpy, because it copies byte-by-byte,
2074   // and signal handler reads the sa_handler concurrently. It it can read
2075   // some bytes from old value and some bytes from new value.
2076   // Use volatile to prevent insertion of memcpy.
2077   sigactions[sig].sa_handler = *(volatile sighandler_t*)&act->sa_handler;
2078   sigactions[sig].sa_flags = *(volatile int*)&act->sa_flags;
2079   internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2080       sizeof(sigactions[sig].sa_mask));
2081 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
2082   sigactions[sig].sa_restorer = act->sa_restorer;
2083 #endif
2084   sigaction_t newact;
2085   internal_memcpy(&newact, act, sizeof(newact));
2086   REAL(sigfillset)(&newact.sa_mask);
2087   if (act->sa_handler != SIG_IGN && act->sa_handler != SIG_DFL) {
2088     if (newact.sa_flags & SA_SIGINFO)
2089       newact.sa_sigaction = rtl_sigaction;
2090     else
2091       newact.sa_handler = rtl_sighandler;
2092   }
2093   ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2094   int res = REAL(sigaction)(sig, &newact, 0);
2095   return res;
2096 }
2097 
TSAN_INTERCEPTOR(sighandler_t,signal,int sig,sighandler_t h)2098 TSAN_INTERCEPTOR(sighandler_t, signal, int sig, sighandler_t h) {
2099   sigaction_t act;
2100   act.sa_handler = h;
2101   REAL(memset)(&act.sa_mask, -1, sizeof(act.sa_mask));
2102   act.sa_flags = 0;
2103   sigaction_t old;
2104   int res = sigaction(sig, &act, &old);
2105   if (res)
2106     return SIG_ERR;
2107   return old.sa_handler;
2108 }
2109 
TSAN_INTERCEPTOR(int,sigsuspend,const __sanitizer_sigset_t * mask)2110 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
2111   SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
2112   return REAL(sigsuspend)(mask);
2113 }
2114 
TSAN_INTERCEPTOR(int,raise,int sig)2115 TSAN_INTERCEPTOR(int, raise, int sig) {
2116   SCOPED_TSAN_INTERCEPTOR(raise, sig);
2117   ThreadSignalContext *sctx = SigCtx(thr);
2118   CHECK_NE(sctx, 0);
2119   int prev = sctx->int_signal_send;
2120   sctx->int_signal_send = sig;
2121   int res = REAL(raise)(sig);
2122   CHECK_EQ(sctx->int_signal_send, sig);
2123   sctx->int_signal_send = prev;
2124   return res;
2125 }
2126 
TSAN_INTERCEPTOR(int,kill,int pid,int sig)2127 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2128   SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2129   ThreadSignalContext *sctx = SigCtx(thr);
2130   CHECK_NE(sctx, 0);
2131   int prev = sctx->int_signal_send;
2132   if (pid == (int)internal_getpid()) {
2133     sctx->int_signal_send = sig;
2134   }
2135   int res = REAL(kill)(pid, sig);
2136   if (pid == (int)internal_getpid()) {
2137     CHECK_EQ(sctx->int_signal_send, sig);
2138     sctx->int_signal_send = prev;
2139   }
2140   return res;
2141 }
2142 
TSAN_INTERCEPTOR(int,pthread_kill,void * tid,int sig)2143 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2144   SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2145   ThreadSignalContext *sctx = SigCtx(thr);
2146   CHECK_NE(sctx, 0);
2147   int prev = sctx->int_signal_send;
2148   if (tid == pthread_self()) {
2149     sctx->int_signal_send = sig;
2150   }
2151   int res = REAL(pthread_kill)(tid, sig);
2152   if (tid == pthread_self()) {
2153     CHECK_EQ(sctx->int_signal_send, sig);
2154     sctx->int_signal_send = prev;
2155   }
2156   return res;
2157 }
2158 
TSAN_INTERCEPTOR(int,gettimeofday,void * tv,void * tz)2159 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2160   SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2161   // It's intercepted merely to process pending signals.
2162   return REAL(gettimeofday)(tv, tz);
2163 }
2164 
TSAN_INTERCEPTOR(int,getaddrinfo,void * node,void * service,void * hints,void * rv)2165 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2166     void *hints, void *rv) {
2167   SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2168   // We miss atomic synchronization in getaddrinfo,
2169   // and can report false race between malloc and free
2170   // inside of getaddrinfo. So ignore memory accesses.
2171   ThreadIgnoreBegin(thr, pc);
2172   int res = REAL(getaddrinfo)(node, service, hints, rv);
2173   ThreadIgnoreEnd(thr, pc);
2174   return res;
2175 }
2176 
TSAN_INTERCEPTOR(int,fork,int fake)2177 TSAN_INTERCEPTOR(int, fork, int fake) {
2178   if (cur_thread()->in_symbolizer)
2179     return REAL(fork)(fake);
2180   SCOPED_INTERCEPTOR_RAW(fork, fake);
2181   ForkBefore(thr, pc);
2182   int pid = REAL(fork)(fake);
2183   if (pid == 0) {
2184     // child
2185     ForkChildAfter(thr, pc);
2186     FdOnFork(thr, pc);
2187   } else if (pid > 0) {
2188     // parent
2189     ForkParentAfter(thr, pc);
2190   } else {
2191     // error
2192     ForkParentAfter(thr, pc);
2193   }
2194   return pid;
2195 }
2196 
TSAN_INTERCEPTOR(int,vfork,int fake)2197 TSAN_INTERCEPTOR(int, vfork, int fake) {
2198   // Some programs (e.g. openjdk) call close for all file descriptors
2199   // in the child process. Under tsan it leads to false positives, because
2200   // address space is shared, so the parent process also thinks that
2201   // the descriptors are closed (while they are actually not).
2202   // This leads to false positives due to missed synchronization.
2203   // Strictly saying this is undefined behavior, because vfork child is not
2204   // allowed to call any functions other than exec/exit. But this is what
2205   // openjdk does, so we want to handle it.
2206   // We could disable interceptors in the child process. But it's not possible
2207   // to simply intercept and wrap vfork, because vfork child is not allowed
2208   // to return from the function that calls vfork, and that's exactly what
2209   // we would do. So this would require some assembly trickery as well.
2210   // Instead we simply turn vfork into fork.
2211   return WRAP(fork)(fake);
2212 }
2213 
2214 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2215 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2216                                     void *data);
2217 struct dl_iterate_phdr_data {
2218   ThreadState *thr;
2219   uptr pc;
2220   dl_iterate_phdr_cb_t cb;
2221   void *data;
2222 };
2223 
IsAppNotRodata(uptr addr)2224 static bool IsAppNotRodata(uptr addr) {
2225   return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2226 }
2227 
dl_iterate_phdr_cb(__sanitizer_dl_phdr_info * info,SIZE_T size,void * data)2228 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2229                               void *data) {
2230   dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2231   // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2232   // accessible in dl_iterate_phdr callback. But we don't see synchronization
2233   // inside of dynamic linker, so we "unpoison" it here in order to not
2234   // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2235   // because some libc functions call __libc_dlopen.
2236   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2237     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2238                      internal_strlen(info->dlpi_name));
2239   int res = cbdata->cb(info, size, cbdata->data);
2240   // Perform the check one more time in case info->dlpi_name was overwritten
2241   // by user callback.
2242   if (info && IsAppNotRodata((uptr)info->dlpi_name))
2243     MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2244                      internal_strlen(info->dlpi_name));
2245   return res;
2246 }
2247 
TSAN_INTERCEPTOR(int,dl_iterate_phdr,dl_iterate_phdr_cb_t cb,void * data)2248 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2249   SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2250   dl_iterate_phdr_data cbdata;
2251   cbdata.thr = thr;
2252   cbdata.pc = pc;
2253   cbdata.cb = cb;
2254   cbdata.data = data;
2255   int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2256   return res;
2257 }
2258 #endif
2259 
OnExit(ThreadState * thr)2260 static int OnExit(ThreadState *thr) {
2261   int status = Finalize(thr);
2262   FlushStreams();
2263   return status;
2264 }
2265 
2266 struct TsanInterceptorContext {
2267   ThreadState *thr;
2268   const uptr caller_pc;
2269   const uptr pc;
2270 };
2271 
2272 #if !SANITIZER_MAC
HandleRecvmsg(ThreadState * thr,uptr pc,__sanitizer_msghdr * msg)2273 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2274     __sanitizer_msghdr *msg) {
2275   int fds[64];
2276   int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2277   for (int i = 0; i < cnt; i++)
2278     FdEventCreate(thr, pc, fds[i]);
2279 }
2280 #endif
2281 
2282 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2283 // Causes interceptor recursion (getaddrinfo() and fopen())
2284 #undef SANITIZER_INTERCEPT_GETADDRINFO
2285 // There interceptors do not seem to be strictly necessary for tsan.
2286 // But we see cases where the interceptors consume 70% of execution time.
2287 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2288 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2289 // function "writes to" the buffer. Then, the same memory is "written to"
2290 // twice, first as buf and then as pwbufp (both of them refer to the same
2291 // addresses).
2292 #undef SANITIZER_INTERCEPT_GETPWENT
2293 #undef SANITIZER_INTERCEPT_GETPWENT_R
2294 #undef SANITIZER_INTERCEPT_FGETPWENT
2295 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2296 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2297 // __tls_get_addr can be called with mis-aligned stack due to:
2298 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2299 // There are two potential issues:
2300 // 1. Sanitizer code contains a MOVDQA spill (it does not seem to be the case
2301 // right now). or 2. ProcessPendingSignal calls user handler which contains
2302 // MOVDQA spill (this happens right now).
2303 // Since the interceptor only initializes memory for msan, the simplest solution
2304 // is to disable the interceptor in tsan (other sanitizers do not call
2305 // signal handlers from COMMON_INTERCEPTOR_ENTER).
2306 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2307 
2308 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2309 
2310 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size)                    \
2311   MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr,                 \
2312                     ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2313                     true)
2314 
2315 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size)                       \
2316   MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr,                  \
2317                     ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2318                     false)
2319 
2320 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...)      \
2321   SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__);         \
2322   TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2323   ctx = (void *)&_ctx;                                \
2324   (void) ctx;
2325 
2326 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2327   SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__);              \
2328   TsanInterceptorContext _ctx = {thr, caller_pc, pc};     \
2329   ctx = (void *)&_ctx;                                    \
2330   (void) ctx;
2331 
2332 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2333   Acquire(thr, pc, File2addr(path));                  \
2334   if (file) {                                         \
2335     int fd = fileno_unlocked(file);                   \
2336     if (fd >= 0) FdFileCreate(thr, pc, fd);           \
2337   }
2338 
2339 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2340   if (file) {                                    \
2341     int fd = fileno_unlocked(file);              \
2342     if (fd >= 0) FdClose(thr, pc, fd);           \
2343   }
2344 
2345 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2346   libignore()->OnLibraryLoaded(filename)
2347 
2348 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2349   libignore()->OnLibraryUnloaded()
2350 
2351 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2352   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2353 
2354 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2355   Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2356 
2357 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2358   Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2359 
2360 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2361   FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2362 
2363 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2364   FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2365 
2366 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2367   FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2368 
2369 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2370   FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2371 
2372 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2373   ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2374 
2375 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2376   __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2377 
2378 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2379 
2380 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2381   OnExit(((TsanInterceptorContext *) ctx)->thr)
2382 
2383 #define COMMON_INTERCEPTOR_MUTEX_LOCK(ctx, m) \
2384   MutexLock(((TsanInterceptorContext *)ctx)->thr, \
2385             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2386 
2387 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2388   MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2389             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2390 
2391 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2392   MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2393             ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2394 
2395 #if !SANITIZER_MAC
2396 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2397   HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2398       ((TsanInterceptorContext *)ctx)->pc, msg)
2399 #endif
2400 
2401 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end)                           \
2402   if (TsanThread *t = GetCurrentThread()) {                                    \
2403     *begin = t->tls_begin();                                                   \
2404     *end = t->tls_end();                                                       \
2405   } else {                                                                     \
2406     *begin = *end = 0;                                                         \
2407   }
2408 
2409 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2410 
2411 #define TSAN_SYSCALL() \
2412   ThreadState *thr = cur_thread(); \
2413   if (thr->ignore_interceptors) \
2414     return; \
2415   ScopedSyscall scoped_syscall(thr) \
2416 /**/
2417 
2418 struct ScopedSyscall {
2419   ThreadState *thr;
2420 
ScopedSyscallScopedSyscall2421   explicit ScopedSyscall(ThreadState *thr)
2422       : thr(thr) {
2423     Initialize(thr);
2424   }
2425 
~ScopedSyscallScopedSyscall2426   ~ScopedSyscall() {
2427     ProcessPendingSignals(thr);
2428   }
2429 };
2430 
2431 #if !SANITIZER_MAC
syscall_access_range(uptr pc,uptr p,uptr s,bool write)2432 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2433   TSAN_SYSCALL();
2434   MemoryAccessRange(thr, pc, p, s, write);
2435 }
2436 
syscall_acquire(uptr pc,uptr addr)2437 static void syscall_acquire(uptr pc, uptr addr) {
2438   TSAN_SYSCALL();
2439   Acquire(thr, pc, addr);
2440   DPrintf("syscall_acquire(%p)\n", addr);
2441 }
2442 
syscall_release(uptr pc,uptr addr)2443 static void syscall_release(uptr pc, uptr addr) {
2444   TSAN_SYSCALL();
2445   DPrintf("syscall_release(%p)\n", addr);
2446   Release(thr, pc, addr);
2447 }
2448 
syscall_fd_close(uptr pc,int fd)2449 static void syscall_fd_close(uptr pc, int fd) {
2450   TSAN_SYSCALL();
2451   FdClose(thr, pc, fd);
2452 }
2453 
syscall_fd_acquire(uptr pc,int fd)2454 static USED void syscall_fd_acquire(uptr pc, int fd) {
2455   TSAN_SYSCALL();
2456   FdAcquire(thr, pc, fd);
2457   DPrintf("syscall_fd_acquire(%p)\n", fd);
2458 }
2459 
syscall_fd_release(uptr pc,int fd)2460 static USED void syscall_fd_release(uptr pc, int fd) {
2461   TSAN_SYSCALL();
2462   DPrintf("syscall_fd_release(%p)\n", fd);
2463   FdRelease(thr, pc, fd);
2464 }
2465 
syscall_pre_fork(uptr pc)2466 static void syscall_pre_fork(uptr pc) {
2467   TSAN_SYSCALL();
2468   ForkBefore(thr, pc);
2469 }
2470 
syscall_post_fork(uptr pc,int pid)2471 static void syscall_post_fork(uptr pc, int pid) {
2472   TSAN_SYSCALL();
2473   if (pid == 0) {
2474     // child
2475     ForkChildAfter(thr, pc);
2476     FdOnFork(thr, pc);
2477   } else if (pid > 0) {
2478     // parent
2479     ForkParentAfter(thr, pc);
2480   } else {
2481     // error
2482     ForkParentAfter(thr, pc);
2483   }
2484 }
2485 #endif
2486 
2487 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2488   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2489 
2490 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2491   syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2492 
2493 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2494   do {                                       \
2495     (void)(p);                               \
2496     (void)(s);                               \
2497   } while (false)
2498 
2499 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2500   do {                                        \
2501     (void)(p);                                \
2502     (void)(s);                                \
2503   } while (false)
2504 
2505 #define COMMON_SYSCALL_ACQUIRE(addr) \
2506     syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2507 
2508 #define COMMON_SYSCALL_RELEASE(addr) \
2509     syscall_release(GET_CALLER_PC(), (uptr)(addr))
2510 
2511 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2512 
2513 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2514 
2515 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2516 
2517 #define COMMON_SYSCALL_PRE_FORK() \
2518   syscall_pre_fork(GET_CALLER_PC())
2519 
2520 #define COMMON_SYSCALL_POST_FORK(res) \
2521   syscall_post_fork(GET_CALLER_PC(), res)
2522 
2523 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2524 
2525 namespace __tsan {
2526 
finalize(void * arg)2527 static void finalize(void *arg) {
2528   ThreadState *thr = cur_thread();
2529   int status = Finalize(thr);
2530   // Make sure the output is not lost.
2531   FlushStreams();
2532   if (status)
2533     Die();
2534 }
2535 
2536 #if !SANITIZER_MAC && !SANITIZER_ANDROID
unreachable()2537 static void unreachable() {
2538   Report("FATAL: ThreadSanitizer: unreachable called\n");
2539   Die();
2540 }
2541 #endif
2542 
InitializeInterceptors()2543 void InitializeInterceptors() {
2544 #if !SANITIZER_MAC
2545   // We need to setup it early, because functions like dlsym() can call it.
2546   REAL(memset) = internal_memset;
2547   REAL(memcpy) = internal_memcpy;
2548 #endif
2549 
2550   // Instruct libc malloc to consume less memory.
2551 #if SANITIZER_LINUX
2552   mallopt(1, 0);  // M_MXFAST
2553   mallopt(-3, 32*1024);  // M_MMAP_THRESHOLD
2554 #endif
2555 
2556   InitializeCommonInterceptors();
2557 
2558 #if !SANITIZER_MAC
2559   // We can not use TSAN_INTERCEPT to get setjmp addr,
2560   // because it does &setjmp and setjmp is not present in some versions of libc.
2561   using __interception::GetRealFunctionAddress;
2562   GetRealFunctionAddress("setjmp", (uptr*)&REAL(setjmp), 0, 0);
2563   GetRealFunctionAddress("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2564   GetRealFunctionAddress("sigsetjmp", (uptr*)&REAL(sigsetjmp), 0, 0);
2565   GetRealFunctionAddress("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2566 #endif
2567 
2568   TSAN_INTERCEPT(longjmp);
2569   TSAN_INTERCEPT(siglongjmp);
2570 
2571   TSAN_INTERCEPT(malloc);
2572   TSAN_INTERCEPT(__libc_memalign);
2573   TSAN_INTERCEPT(calloc);
2574   TSAN_INTERCEPT(realloc);
2575   TSAN_INTERCEPT(free);
2576   TSAN_INTERCEPT(cfree);
2577   TSAN_INTERCEPT(mmap);
2578   TSAN_MAYBE_INTERCEPT_MMAP64;
2579   TSAN_INTERCEPT(munmap);
2580   TSAN_MAYBE_INTERCEPT_MEMALIGN;
2581   TSAN_INTERCEPT(valloc);
2582   TSAN_MAYBE_INTERCEPT_PVALLOC;
2583   TSAN_INTERCEPT(posix_memalign);
2584 
2585   TSAN_INTERCEPT(strlen);
2586   TSAN_INTERCEPT(memset);
2587   TSAN_INTERCEPT(memcpy);
2588   TSAN_INTERCEPT(memmove);
2589   TSAN_INTERCEPT(strchr);
2590   TSAN_INTERCEPT(strchrnul);
2591   TSAN_INTERCEPT(strrchr);
2592   TSAN_INTERCEPT(strcpy);  // NOLINT
2593   TSAN_INTERCEPT(strncpy);
2594   TSAN_INTERCEPT(strdup);
2595 
2596   TSAN_INTERCEPT(pthread_create);
2597   TSAN_INTERCEPT(pthread_join);
2598   TSAN_INTERCEPT(pthread_detach);
2599 
2600   TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2601   TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2602   TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2603   TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2604   TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2605   TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2606 
2607   TSAN_INTERCEPT(pthread_mutex_init);
2608   TSAN_INTERCEPT(pthread_mutex_destroy);
2609   TSAN_INTERCEPT(pthread_mutex_trylock);
2610   TSAN_INTERCEPT(pthread_mutex_timedlock);
2611 
2612   TSAN_INTERCEPT(pthread_spin_init);
2613   TSAN_INTERCEPT(pthread_spin_destroy);
2614   TSAN_INTERCEPT(pthread_spin_lock);
2615   TSAN_INTERCEPT(pthread_spin_trylock);
2616   TSAN_INTERCEPT(pthread_spin_unlock);
2617 
2618   TSAN_INTERCEPT(pthread_rwlock_init);
2619   TSAN_INTERCEPT(pthread_rwlock_destroy);
2620   TSAN_INTERCEPT(pthread_rwlock_rdlock);
2621   TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2622   TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2623   TSAN_INTERCEPT(pthread_rwlock_wrlock);
2624   TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2625   TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2626   TSAN_INTERCEPT(pthread_rwlock_unlock);
2627 
2628   TSAN_INTERCEPT(pthread_barrier_init);
2629   TSAN_INTERCEPT(pthread_barrier_destroy);
2630   TSAN_INTERCEPT(pthread_barrier_wait);
2631 
2632   TSAN_INTERCEPT(pthread_once);
2633 
2634   TSAN_INTERCEPT(stat);
2635   TSAN_MAYBE_INTERCEPT___XSTAT;
2636   TSAN_MAYBE_INTERCEPT_STAT64;
2637   TSAN_MAYBE_INTERCEPT___XSTAT64;
2638   TSAN_INTERCEPT(lstat);
2639   TSAN_MAYBE_INTERCEPT___LXSTAT;
2640   TSAN_MAYBE_INTERCEPT_LSTAT64;
2641   TSAN_MAYBE_INTERCEPT___LXSTAT64;
2642   TSAN_INTERCEPT(fstat);
2643   TSAN_MAYBE_INTERCEPT___FXSTAT;
2644   TSAN_MAYBE_INTERCEPT_FSTAT64;
2645   TSAN_MAYBE_INTERCEPT___FXSTAT64;
2646   TSAN_INTERCEPT(open);
2647   TSAN_MAYBE_INTERCEPT_OPEN64;
2648   TSAN_INTERCEPT(creat);
2649   TSAN_MAYBE_INTERCEPT_CREAT64;
2650   TSAN_INTERCEPT(dup);
2651   TSAN_INTERCEPT(dup2);
2652   TSAN_INTERCEPT(dup3);
2653   TSAN_MAYBE_INTERCEPT_EVENTFD;
2654   TSAN_MAYBE_INTERCEPT_SIGNALFD;
2655   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2656   TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2657   TSAN_INTERCEPT(socket);
2658   TSAN_INTERCEPT(socketpair);
2659   TSAN_INTERCEPT(connect);
2660   TSAN_INTERCEPT(bind);
2661   TSAN_INTERCEPT(listen);
2662   TSAN_MAYBE_INTERCEPT_EPOLL_CREATE;
2663   TSAN_MAYBE_INTERCEPT_EPOLL_CREATE1;
2664   TSAN_INTERCEPT(close);
2665   TSAN_MAYBE_INTERCEPT___CLOSE;
2666   TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2667   TSAN_INTERCEPT(pipe);
2668   TSAN_INTERCEPT(pipe2);
2669 
2670   TSAN_INTERCEPT(send);
2671   TSAN_INTERCEPT(sendmsg);
2672   TSAN_INTERCEPT(recv);
2673 
2674   TSAN_INTERCEPT(unlink);
2675   TSAN_INTERCEPT(tmpfile);
2676   TSAN_MAYBE_INTERCEPT_TMPFILE64;
2677   TSAN_INTERCEPT(fread);
2678   TSAN_INTERCEPT(fwrite);
2679   TSAN_INTERCEPT(abort);
2680   TSAN_INTERCEPT(puts);
2681   TSAN_INTERCEPT(rmdir);
2682   TSAN_INTERCEPT(closedir);
2683 
2684   TSAN_MAYBE_INTERCEPT_EPOLL_CTL;
2685   TSAN_MAYBE_INTERCEPT_EPOLL_WAIT;
2686 
2687   TSAN_INTERCEPT(sigaction);
2688   TSAN_INTERCEPT(signal);
2689   TSAN_INTERCEPT(sigsuspend);
2690   TSAN_INTERCEPT(raise);
2691   TSAN_INTERCEPT(kill);
2692   TSAN_INTERCEPT(pthread_kill);
2693   TSAN_INTERCEPT(sleep);
2694   TSAN_INTERCEPT(usleep);
2695   TSAN_INTERCEPT(nanosleep);
2696   TSAN_INTERCEPT(gettimeofday);
2697   TSAN_INTERCEPT(getaddrinfo);
2698 
2699   TSAN_INTERCEPT(fork);
2700   TSAN_INTERCEPT(vfork);
2701 #if !SANITIZER_ANDROID
2702   TSAN_INTERCEPT(dl_iterate_phdr);
2703 #endif
2704   TSAN_INTERCEPT(on_exit);
2705   TSAN_INTERCEPT(__cxa_atexit);
2706   TSAN_INTERCEPT(_exit);
2707 
2708 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2709   // Need to setup it, because interceptors check that the function is resolved.
2710   // But atexit is emitted directly into the module, so can't be resolved.
2711   REAL(atexit) = (int(*)(void(*)()))unreachable;
2712 #endif
2713 
2714   if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2715     Printf("ThreadSanitizer: failed to setup atexit callback\n");
2716     Die();
2717   }
2718 
2719 #if !SANITIZER_MAC
2720   if (pthread_key_create(&g_thread_finalize_key, &thread_finalize)) {
2721     Printf("ThreadSanitizer: failed to create thread key\n");
2722     Die();
2723   }
2724 #endif
2725 
2726   FdInit();
2727 }
2728 
2729 }  // namespace __tsan
2730 
2731 // Invisible barrier for tests.
2732 // There were several unsuccessful iterations for this functionality:
2733 // 1. Initially it was implemented in user code using
2734 //    REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2735 //    MacOS. Futexes are linux-specific for this matter.
2736 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2737 //    "as-if synchronized via sleep" messages in reports which failed some
2738 //    output tests.
2739 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2740 //    visible events, which lead to "failed to restore stack trace" failures.
2741 // Note that no_sanitize_thread attribute does not turn off atomic interception
2742 // so attaching it to the function defined in user code does not help.
2743 // That's why we now have what we have.
2744 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_init(u64 * barrier,u32 count)2745 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2746   if (count >= (1 << 8)) {
2747       Printf("barrier_init: count is too large (%d)\n", count);
2748       Die();
2749   }
2750   // 8 lsb is thread count, the remaining are count of entered threads.
2751   *barrier = count;
2752 }
2753 
2754 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
__tsan_testonly_barrier_wait(u64 * barrier)2755 void __tsan_testonly_barrier_wait(u64 *barrier) {
2756   unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2757   unsigned old_epoch = (old >> 8) / (old & 0xff);
2758   for (;;) {
2759     unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2760     unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2761     if (cur_epoch != old_epoch)
2762       return;
2763     internal_sched_yield();
2764   }
2765 }
2766