1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 using namespace cv::cuda;
47 
48 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
49 
estimateRecommendedParams(int,int,int &,int &,int &)50 void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_no_cuda(); }
51 
createStereoBeliefPropagation(int,int,int,int)52 Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int, int, int, int) { throw_no_cuda(); return Ptr<cuda::StereoBeliefPropagation>(); }
53 
54 #else /* !defined (HAVE_CUDA) */
55 
56 namespace cv { namespace cuda { namespace device
57 {
58     namespace stereobp
59     {
60         void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
61         template<typename T, typename D>
62         void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
63         template<typename T>
64         void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
65         template <typename T>
66         void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
67         template <typename T>
68         void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
69             const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
70         template <typename T>
71         void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
72             const PtrStepSz<short>& disp, cudaStream_t stream);
73     }
74 }}}
75 
76 namespace
77 {
78     class StereoBPImpl : public cuda::StereoBeliefPropagation
79     {
80     public:
81         StereoBPImpl(int ndisp, int iters, int levels, int msg_type);
82 
83         void compute(InputArray left, InputArray right, OutputArray disparity);
84         void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream);
85         void compute(InputArray data, OutputArray disparity, Stream& stream);
86 
getMinDisparity() const87         int getMinDisparity() const { return 0; }
setMinDisparity(int)88         void setMinDisparity(int /*minDisparity*/) {}
89 
getNumDisparities() const90         int getNumDisparities() const { return ndisp_; }
setNumDisparities(int numDisparities)91         void setNumDisparities(int numDisparities) { ndisp_ = numDisparities; }
92 
getBlockSize() const93         int getBlockSize() const { return 0; }
setBlockSize(int)94         void setBlockSize(int /*blockSize*/) {}
95 
getSpeckleWindowSize() const96         int getSpeckleWindowSize() const { return 0; }
setSpeckleWindowSize(int)97         void setSpeckleWindowSize(int /*speckleWindowSize*/) {}
98 
getSpeckleRange() const99         int getSpeckleRange() const { return 0; }
setSpeckleRange(int)100         void setSpeckleRange(int /*speckleRange*/) {}
101 
getDisp12MaxDiff() const102         int getDisp12MaxDiff() const { return 0; }
setDisp12MaxDiff(int)103         void setDisp12MaxDiff(int /*disp12MaxDiff*/) {}
104 
getNumIters() const105         int getNumIters() const { return iters_; }
setNumIters(int iters)106         void setNumIters(int iters) { iters_ = iters; }
107 
getNumLevels() const108         int getNumLevels() const { return levels_; }
setNumLevels(int levels)109         void setNumLevels(int levels) { levels_ = levels; }
110 
getMaxDataTerm() const111         double getMaxDataTerm() const { return max_data_term_; }
setMaxDataTerm(double max_data_term)112         void setMaxDataTerm(double max_data_term) { max_data_term_ = (float) max_data_term; }
113 
getDataWeight() const114         double getDataWeight() const { return data_weight_; }
setDataWeight(double data_weight)115         void setDataWeight(double data_weight) { data_weight_ = (float) data_weight; }
116 
getMaxDiscTerm() const117         double getMaxDiscTerm() const { return max_disc_term_; }
setMaxDiscTerm(double max_disc_term)118         void setMaxDiscTerm(double max_disc_term) { max_disc_term_ = (float) max_disc_term; }
119 
getDiscSingleJump() const120         double getDiscSingleJump() const { return disc_single_jump_; }
setDiscSingleJump(double disc_single_jump)121         void setDiscSingleJump(double disc_single_jump) { disc_single_jump_ = (float) disc_single_jump; }
122 
getMsgType() const123         int getMsgType() const { return msg_type_; }
setMsgType(int msg_type)124         void setMsgType(int msg_type) { msg_type_ = msg_type; }
125 
126     private:
127         void init(Stream& stream);
128         void calcBP(OutputArray disp, Stream& stream);
129 
130         int ndisp_;
131         int iters_;
132         int levels_;
133         float max_data_term_;
134         float data_weight_;
135         float max_disc_term_;
136         float disc_single_jump_;
137         int msg_type_;
138 
139         float scale_;
140         int rows_, cols_;
141         std::vector<int> cols_all_, rows_all_;
142         GpuMat u_, d_, l_, r_, u2_, d2_, l2_, r2_;
143         std::vector<GpuMat> datas_;
144         GpuMat outBuf_;
145     };
146 
147     const float DEFAULT_MAX_DATA_TERM = 10.0f;
148     const float DEFAULT_DATA_WEIGHT = 0.07f;
149     const float DEFAULT_MAX_DISC_TERM = 1.7f;
150     const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
151 
StereoBPImpl(int ndisp,int iters,int levels,int msg_type)152     StereoBPImpl::StereoBPImpl(int ndisp, int iters, int levels, int msg_type) :
153         ndisp_(ndisp), iters_(iters), levels_(levels),
154         max_data_term_(DEFAULT_MAX_DATA_TERM), data_weight_(DEFAULT_DATA_WEIGHT),
155         max_disc_term_(DEFAULT_MAX_DISC_TERM), disc_single_jump_(DEFAULT_DISC_SINGLE_JUMP),
156         msg_type_(msg_type)
157     {
158     }
159 
compute(InputArray left,InputArray right,OutputArray disparity)160     void StereoBPImpl::compute(InputArray left, InputArray right, OutputArray disparity)
161     {
162         compute(left, right, disparity, Stream::Null());
163     }
164 
compute(InputArray _left,InputArray _right,OutputArray disparity,Stream & stream)165     void StereoBPImpl::compute(InputArray _left, InputArray _right, OutputArray disparity, Stream& stream)
166     {
167         using namespace cv::cuda::device::stereobp;
168 
169         typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
170         static const comp_data_t comp_data_callers[2][5] =
171         {
172             {0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
173             {0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
174         };
175 
176         scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
177 
178         CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
179         CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
180         CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
181 
182         GpuMat left = _left.getGpuMat();
183         GpuMat right = _right.getGpuMat();
184 
185         CV_Assert( left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4 );
186         CV_Assert( left.size() == right.size() && left.type() == right.type() );
187 
188         rows_ = left.rows;
189         cols_ = left.cols;
190 
191         const int divisor = (int) pow(2.f, levels_ - 1.0f);
192         const int lowest_cols = cols_ / divisor;
193         const int lowest_rows = rows_ / divisor;
194         const int min_image_dim_size = 2;
195         CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
196 
197         init(stream);
198 
199         datas_[0].create(rows_ * ndisp_, cols_, msg_type_);
200 
201         comp_data_callers[msg_type_ == CV_32F][left.channels()](left, right, datas_[0], StreamAccessor::getStream(stream));
202 
203         calcBP(disparity, stream);
204     }
205 
compute(InputArray _data,OutputArray disparity,Stream & stream)206     void StereoBPImpl::compute(InputArray _data, OutputArray disparity, Stream& stream)
207     {
208         scale_ = msg_type_ == CV_32F ? 1.0f : 10.0f;
209 
210         CV_Assert( 0 < ndisp_ && 0 < iters_ && 0 < levels_ );
211         CV_Assert( msg_type_ == CV_32F || msg_type_ == CV_16S );
212         CV_Assert( msg_type_ == CV_32F || (1 << (levels_ - 1)) * scale_ * max_data_term_ < std::numeric_limits<short>::max() );
213 
214         GpuMat data = _data.getGpuMat();
215 
216         CV_Assert( (data.type() == msg_type_) && (data.rows % ndisp_ == 0) );
217 
218         rows_ = data.rows / ndisp_;
219         cols_ = data.cols;
220 
221         const int divisor = (int) pow(2.f, levels_ - 1.0f);
222         const int lowest_cols = cols_ / divisor;
223         const int lowest_rows = rows_ / divisor;
224         const int min_image_dim_size = 2;
225         CV_Assert( std::min(lowest_cols, lowest_rows) > min_image_dim_size );
226 
227         init(stream);
228 
229         data.copyTo(datas_[0], stream);
230 
231         calcBP(disparity, stream);
232     }
233 
init(Stream & stream)234     void StereoBPImpl::init(Stream& stream)
235     {
236         using namespace cv::cuda::device::stereobp;
237 
238         u_.create(rows_ * ndisp_, cols_, msg_type_);
239         d_.create(rows_ * ndisp_, cols_, msg_type_);
240         l_.create(rows_ * ndisp_, cols_, msg_type_);
241         r_.create(rows_ * ndisp_, cols_, msg_type_);
242 
243         if (levels_ & 1)
244         {
245             //can clear less area
246             u_.setTo(0, stream);
247             d_.setTo(0, stream);
248             l_.setTo(0, stream);
249             r_.setTo(0, stream);
250         }
251 
252         if (levels_ > 1)
253         {
254             int less_rows = (rows_ + 1) / 2;
255             int less_cols = (cols_ + 1) / 2;
256 
257             u2_.create(less_rows * ndisp_, less_cols, msg_type_);
258             d2_.create(less_rows * ndisp_, less_cols, msg_type_);
259             l2_.create(less_rows * ndisp_, less_cols, msg_type_);
260             r2_.create(less_rows * ndisp_, less_cols, msg_type_);
261 
262             if ((levels_ & 1) == 0)
263             {
264                 u2_.setTo(0, stream);
265                 d2_.setTo(0, stream);
266                 l2_.setTo(0, stream);
267                 r2_.setTo(0, stream);
268             }
269         }
270 
271         load_constants(ndisp_, max_data_term_, scale_ * data_weight_, scale_ * max_disc_term_, scale_ * disc_single_jump_);
272 
273         datas_.resize(levels_);
274 
275         cols_all_.resize(levels_);
276         rows_all_.resize(levels_);
277 
278         cols_all_[0] = cols_;
279         rows_all_[0] = rows_;
280     }
281 
calcBP(OutputArray disp,Stream & _stream)282     void StereoBPImpl::calcBP(OutputArray disp, Stream& _stream)
283     {
284         using namespace cv::cuda::device::stereobp;
285 
286         typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
287         static const data_step_down_t data_step_down_callers[2] =
288         {
289             data_step_down_gpu<short>, data_step_down_gpu<float>
290         };
291 
292         typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
293         static const level_up_messages_t level_up_messages_callers[2] =
294         {
295             level_up_messages_gpu<short>, level_up_messages_gpu<float>
296         };
297 
298         typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
299         static const calc_all_iterations_t calc_all_iterations_callers[2] =
300         {
301             calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
302         };
303 
304         typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
305         static const output_t output_callers[2] =
306         {
307             output_gpu<short>, output_gpu<float>
308         };
309 
310         const int funcIdx = msg_type_ == CV_32F;
311 
312         cudaStream_t stream = StreamAccessor::getStream(_stream);
313 
314         for (int i = 1; i < levels_; ++i)
315         {
316             cols_all_[i] = (cols_all_[i-1] + 1) / 2;
317             rows_all_[i] = (rows_all_[i-1] + 1) / 2;
318 
319             datas_[i].create(rows_all_[i] * ndisp_, cols_all_[i], msg_type_);
320 
321             data_step_down_callers[funcIdx](cols_all_[i], rows_all_[i], rows_all_[i-1], datas_[i-1], datas_[i], stream);
322         }
323 
324         PtrStepSzb mus[] = {u_, u2_};
325         PtrStepSzb mds[] = {d_, d2_};
326         PtrStepSzb mrs[] = {r_, r2_};
327         PtrStepSzb mls[] = {l_, l2_};
328 
329         int mem_idx = (levels_ & 1) ? 0 : 1;
330 
331         for (int i = levels_ - 1; i >= 0; --i)
332         {
333             // for lower level we have already computed messages by setting to zero
334             if (i != levels_ - 1)
335                 level_up_messages_callers[funcIdx](mem_idx, cols_all_[i], rows_all_[i], rows_all_[i+1], mus, mds, mls, mrs, stream);
336 
337             calc_all_iterations_callers[funcIdx](cols_all_[i], rows_all_[i], iters_, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas_[i], stream);
338 
339             mem_idx = (mem_idx + 1) & 1;
340         }
341 
342         const int dtype = disp.fixedType() ? disp.type() : CV_16SC1;
343 
344         disp.create(rows_, cols_, dtype);
345         GpuMat out = disp.getGpuMat();
346 
347         if (dtype != CV_16SC1)
348         {
349             outBuf_.create(rows_, cols_, CV_16SC1);
350             out = outBuf_;
351         }
352 
353         out.setTo(0, _stream);
354 
355         output_callers[funcIdx](u_, d_, l_, r_, datas_.front(), out, stream);
356 
357         if (dtype != CV_16SC1)
358             out.convertTo(disp, dtype, _stream);
359     }
360 }
361 
createStereoBeliefPropagation(int ndisp,int iters,int levels,int msg_type)362 Ptr<cuda::StereoBeliefPropagation> cv::cuda::createStereoBeliefPropagation(int ndisp, int iters, int levels, int msg_type)
363 {
364     return makePtr<StereoBPImpl>(ndisp, iters, levels, msg_type);
365 }
366 
estimateRecommendedParams(int width,int height,int & ndisp,int & iters,int & levels)367 void cv::cuda::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
368 {
369     ndisp = width / 4;
370     if ((ndisp & 1) != 0)
371         ndisp++;
372 
373     int mm = std::max(width, height);
374     iters = mm / 100 + 2;
375 
376     levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
377     if (levels == 0) levels++;
378 }
379 
380 #endif /* !defined (HAVE_CUDA) */
381