1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef LIBMEMUNREACHABLE_ALLOCATOR_H_
18 #define LIBMEMUNREACHABLE_ALLOCATOR_H_
19
20 #include <atomic>
21 #include <cstddef>
22 #include <functional>
23 #include <list>
24 #include <map>
25 #include <memory>
26 #include <set>
27 #include <unordered_map>
28 #include <unordered_set>
29 #include <vector>
30 extern std::atomic<int> heap_count;
31
32 class HeapImpl;
33
34 template<typename T>
35 class Allocator;
36
37
38 // Non-templated class that implements wraps HeapImpl to keep
39 // implementation out of the header file
40 class Heap {
41 public:
42 Heap();
43 ~Heap();
44
45 // Copy constructor that does not take ownership of impl_
Heap(const Heap & other)46 Heap(const Heap& other) : impl_(other.impl_), owns_impl_(false) {}
47
48 // Assignment disabled
49 Heap& operator=(const Heap&) = delete;
50
51 // Allocate size bytes
52 void* allocate(size_t size);
53
54 // Deallocate allocation returned by allocate
55 void deallocate(void*);
56
57 bool empty();
58
59 static void deallocate(HeapImpl* impl, void* ptr);
60
61 // Allocate a class of type T
62 template<class T>
allocate()63 T* allocate() {
64 return reinterpret_cast<T*>(allocate(sizeof(T)));
65 }
66
67 // Comparators, copied objects will be equal
68 bool operator ==(const Heap& other) const {
69 return impl_ == other.impl_;
70 }
71 bool operator !=(const Heap& other) const {
72 return !(*this == other);
73 }
74
75 // std::unique_ptr wrapper that allocates using allocate and deletes using
76 // deallocate
77 template<class T>
78 using unique_ptr = std::unique_ptr<T, std::function<void(void*)>>;
79
80 template<class T, class... Args>
make_unique(Args &&...args)81 unique_ptr<T> make_unique(Args&&... args) {
82 HeapImpl* impl = impl_;
83 return unique_ptr<T>(new (allocate<T>()) T(std::forward<Args>(args)...),
84 [impl](void* ptr) {
85 reinterpret_cast<T*>(ptr)->~T();
86 deallocate(impl, ptr);
87 });
88 }
89
90 // std::unique_ptr wrapper that allocates using allocate and deletes using
91 // deallocate
92 template<class T>
93 using shared_ptr = std::shared_ptr<T>;
94
95 template<class T, class... Args>
96 shared_ptr<T> make_shared(Args&&... args);
97
98 protected:
99 HeapImpl* impl_;
100 bool owns_impl_;
101 };
102
103 // STLAllocator implements the std allocator interface on top of a Heap
104 template<typename T>
105 class STLAllocator {
106 public:
107 using value_type = T;
~STLAllocator()108 ~STLAllocator() {
109 }
110
111 // Construct an STLAllocator on top of a Heap
STLAllocator(const Heap & heap)112 STLAllocator(const Heap& heap) :
113 heap_(heap) {
114 }
115
116 // Rebind an STLAllocator from an another STLAllocator
117 template<typename U>
STLAllocator(const STLAllocator<U> & other)118 STLAllocator(const STLAllocator<U>& other) :
119 heap_(other.heap_) {
120 }
121
122 STLAllocator(const STLAllocator&) = default;
123 STLAllocator<T>& operator=(const STLAllocator<T>&) = default;
124
allocate(std::size_t n)125 T* allocate(std::size_t n) {
126 return reinterpret_cast<T*>(heap_.allocate(n * sizeof(T)));
127 }
128
deallocate(T * ptr,std::size_t)129 void deallocate(T* ptr, std::size_t) {
130 heap_.deallocate(ptr);
131 }
132
133 template<typename U>
134 bool operator ==(const STLAllocator<U>& other) const {
135 return heap_ == other.heap_;
136 }
137 template<typename U>
138 inline bool operator !=(const STLAllocator<U>& other) const {
139 return !(this == other);
140 }
141
142 template<typename U>
143 friend class STLAllocator;
144
145 protected:
146 Heap heap_;
147 };
148
149
150 // Allocator extends STLAllocator with some convenience methods for allocating
151 // a single object and for constructing unique_ptr and shared_ptr objects with
152 // appropriate deleters.
153 template<class T>
154 class Allocator : public STLAllocator<T> {
155 public:
~Allocator()156 ~Allocator() {}
157
Allocator(const Heap & other)158 Allocator(const Heap& other) :
159 STLAllocator<T>(other) {
160 }
161
162 template<typename U>
Allocator(const STLAllocator<U> & other)163 Allocator(const STLAllocator<U>& other) :
164 STLAllocator<T>(other) {
165 }
166
167 Allocator(const Allocator&) = default;
168 Allocator<T>& operator=(const Allocator<T>&) = default;
169
170 using STLAllocator<T>::allocate;
171 using STLAllocator<T>::deallocate;
172 using STLAllocator<T>::heap_;
173
allocate()174 T* allocate() {
175 return STLAllocator<T>::allocate(1);
176 }
deallocate(void * ptr)177 void deallocate(void* ptr) {
178 heap_.deallocate(ptr);
179 }
180
181 using shared_ptr = Heap::shared_ptr<T>;
182
183 template<class... Args>
make_shared(Args &&...args)184 shared_ptr make_shared(Args&& ...args) {
185 return heap_.template make_shared<T>(std::forward<Args>(args)...);
186 }
187
188 using unique_ptr = Heap::unique_ptr<T>;
189
190 template<class... Args>
make_unique(Args &&...args)191 unique_ptr make_unique(Args&& ...args) {
192 return heap_.template make_unique<T>(std::forward<Args>(args)...);
193 }
194 };
195
196 // std::unique_ptr wrapper that allocates using allocate and deletes using
197 // deallocate. Implemented outside class definition in order to pass
198 // Allocator<T> to shared_ptr.
199 template<class T, class... Args>
make_shared(Args &&...args)200 inline Heap::shared_ptr<T> Heap::make_shared(Args&&... args) {
201 return std::allocate_shared<T, Allocator<T>, Args...>(Allocator<T>(*this),
202 std::forward<Args>(args)...);
203 }
204
205 namespace allocator {
206
207 template<class T>
208 using vector = std::vector<T, Allocator<T>>;
209
210 template<class T>
211 using list = std::list<T, Allocator<T>>;
212
213 template<class Key, class T, class Compare = std::less<Key>>
214 using map = std::map<Key, T, Compare, Allocator<std::pair<const Key, T>>>;
215
216 template<class Key, class T, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>>
217 using unordered_map = std::unordered_map<Key, T, Hash, KeyEqual, Allocator<std::pair<const Key, T>>>;
218
219 template<class Key, class Hash = std::hash<Key>, class KeyEqual = std::equal_to<Key>>
220 using unordered_set = std::unordered_set<Key, Hash, KeyEqual, Allocator<Key>>;
221
222 template<class Key, class Compare = std::less<Key>>
223 using set = std::set<Key, Compare, Allocator<Key>>;
224
225 using string = std::basic_string<char, std::char_traits<char>, Allocator<char>>;
226 }
227
228 #endif
229