1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_LU_H
11 #define EIGEN_LU_H
12 
13 namespace Eigen {
14 
15 /** \ingroup LU_Module
16   *
17   * \class FullPivLU
18   *
19   * \brief LU decomposition of a matrix with complete pivoting, and related features
20   *
21   * \param MatrixType the type of the matrix of which we are computing the LU decomposition
22   *
23   * This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
24   * decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
25   * upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
26   * decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
27   * zeros are at the end.
28   *
29   * This decomposition provides the generic approach to solving systems of linear equations, computing
30   * the rank, invertibility, inverse, kernel, and determinant.
31   *
32   * This LU decomposition is very stable and well tested with large matrices. However there are use cases where the SVD
33   * decomposition is inherently more stable and/or flexible. For example, when computing the kernel of a matrix,
34   * working with the SVD allows to select the smallest singular values of the matrix, something that
35   * the LU decomposition doesn't see.
36   *
37   * The data of the LU decomposition can be directly accessed through the methods matrixLU(),
38   * permutationP(), permutationQ().
39   *
40   * As an exemple, here is how the original matrix can be retrieved:
41   * \include class_FullPivLU.cpp
42   * Output: \verbinclude class_FullPivLU.out
43   *
44   * \sa MatrixBase::fullPivLu(), MatrixBase::determinant(), MatrixBase::inverse()
45   */
46 template<typename _MatrixType> class FullPivLU
47 {
48   public:
49     typedef _MatrixType MatrixType;
50     enum {
51       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
52       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
53       Options = MatrixType::Options,
54       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
55       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
56     };
57     typedef typename MatrixType::Scalar Scalar;
58     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
59     typedef typename internal::traits<MatrixType>::StorageKind StorageKind;
60     typedef typename MatrixType::Index Index;
61     typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
62     typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
63     typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationQType;
64     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationPType;
65 
66     /**
67       * \brief Default Constructor.
68       *
69       * The default constructor is useful in cases in which the user intends to
70       * perform decompositions via LU::compute(const MatrixType&).
71       */
72     FullPivLU();
73 
74     /** \brief Default Constructor with memory preallocation
75       *
76       * Like the default constructor but with preallocation of the internal data
77       * according to the specified problem \a size.
78       * \sa FullPivLU()
79       */
80     FullPivLU(Index rows, Index cols);
81 
82     /** Constructor.
83       *
84       * \param matrix the matrix of which to compute the LU decomposition.
85       *               It is required to be nonzero.
86       */
87     FullPivLU(const MatrixType& matrix);
88 
89     /** Computes the LU decomposition of the given matrix.
90       *
91       * \param matrix the matrix of which to compute the LU decomposition.
92       *               It is required to be nonzero.
93       *
94       * \returns a reference to *this
95       */
96     FullPivLU& compute(const MatrixType& matrix);
97 
98     /** \returns the LU decomposition matrix: the upper-triangular part is U, the
99       * unit-lower-triangular part is L (at least for square matrices; in the non-square
100       * case, special care is needed, see the documentation of class FullPivLU).
101       *
102       * \sa matrixL(), matrixU()
103       */
matrixLU()104     inline const MatrixType& matrixLU() const
105     {
106       eigen_assert(m_isInitialized && "LU is not initialized.");
107       return m_lu;
108     }
109 
110     /** \returns the number of nonzero pivots in the LU decomposition.
111       * Here nonzero is meant in the exact sense, not in a fuzzy sense.
112       * So that notion isn't really intrinsically interesting, but it is
113       * still useful when implementing algorithms.
114       *
115       * \sa rank()
116       */
nonzeroPivots()117     inline Index nonzeroPivots() const
118     {
119       eigen_assert(m_isInitialized && "LU is not initialized.");
120       return m_nonzero_pivots;
121     }
122 
123     /** \returns the absolute value of the biggest pivot, i.e. the biggest
124       *          diagonal coefficient of U.
125       */
maxPivot()126     RealScalar maxPivot() const { return m_maxpivot; }
127 
128     /** \returns the permutation matrix P
129       *
130       * \sa permutationQ()
131       */
permutationP()132     inline const PermutationPType& permutationP() const
133     {
134       eigen_assert(m_isInitialized && "LU is not initialized.");
135       return m_p;
136     }
137 
138     /** \returns the permutation matrix Q
139       *
140       * \sa permutationP()
141       */
permutationQ()142     inline const PermutationQType& permutationQ() const
143     {
144       eigen_assert(m_isInitialized && "LU is not initialized.");
145       return m_q;
146     }
147 
148     /** \returns the kernel of the matrix, also called its null-space. The columns of the returned matrix
149       * will form a basis of the kernel.
150       *
151       * \note If the kernel has dimension zero, then the returned matrix is a column-vector filled with zeros.
152       *
153       * \note This method has to determine which pivots should be considered nonzero.
154       *       For that, it uses the threshold value that you can control by calling
155       *       setThreshold(const RealScalar&).
156       *
157       * Example: \include FullPivLU_kernel.cpp
158       * Output: \verbinclude FullPivLU_kernel.out
159       *
160       * \sa image()
161       */
kernel()162     inline const internal::kernel_retval<FullPivLU> kernel() const
163     {
164       eigen_assert(m_isInitialized && "LU is not initialized.");
165       return internal::kernel_retval<FullPivLU>(*this);
166     }
167 
168     /** \returns the image of the matrix, also called its column-space. The columns of the returned matrix
169       * will form a basis of the kernel.
170       *
171       * \param originalMatrix the original matrix, of which *this is the LU decomposition.
172       *                       The reason why it is needed to pass it here, is that this allows
173       *                       a large optimization, as otherwise this method would need to reconstruct it
174       *                       from the LU decomposition.
175       *
176       * \note If the image has dimension zero, then the returned matrix is a column-vector filled with zeros.
177       *
178       * \note This method has to determine which pivots should be considered nonzero.
179       *       For that, it uses the threshold value that you can control by calling
180       *       setThreshold(const RealScalar&).
181       *
182       * Example: \include FullPivLU_image.cpp
183       * Output: \verbinclude FullPivLU_image.out
184       *
185       * \sa kernel()
186       */
187     inline const internal::image_retval<FullPivLU>
image(const MatrixType & originalMatrix)188       image(const MatrixType& originalMatrix) const
189     {
190       eigen_assert(m_isInitialized && "LU is not initialized.");
191       return internal::image_retval<FullPivLU>(*this, originalMatrix);
192     }
193 
194     /** \return a solution x to the equation Ax=b, where A is the matrix of which
195       * *this is the LU decomposition.
196       *
197       * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
198       *          the only requirement in order for the equation to make sense is that
199       *          b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
200       *
201       * \returns a solution.
202       *
203       * \note_about_checking_solutions
204       *
205       * \note_about_arbitrary_choice_of_solution
206       * \note_about_using_kernel_to_study_multiple_solutions
207       *
208       * Example: \include FullPivLU_solve.cpp
209       * Output: \verbinclude FullPivLU_solve.out
210       *
211       * \sa TriangularView::solve(), kernel(), inverse()
212       */
213     template<typename Rhs>
214     inline const internal::solve_retval<FullPivLU, Rhs>
solve(const MatrixBase<Rhs> & b)215     solve(const MatrixBase<Rhs>& b) const
216     {
217       eigen_assert(m_isInitialized && "LU is not initialized.");
218       return internal::solve_retval<FullPivLU, Rhs>(*this, b.derived());
219     }
220 
221     /** \returns the determinant of the matrix of which
222       * *this is the LU decomposition. It has only linear complexity
223       * (that is, O(n) where n is the dimension of the square matrix)
224       * as the LU decomposition has already been computed.
225       *
226       * \note This is only for square matrices.
227       *
228       * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
229       *       optimized paths.
230       *
231       * \warning a determinant can be very big or small, so for matrices
232       * of large enough dimension, there is a risk of overflow/underflow.
233       *
234       * \sa MatrixBase::determinant()
235       */
236     typename internal::traits<MatrixType>::Scalar determinant() const;
237 
238     /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
239       * who need to determine when pivots are to be considered nonzero. This is not used for the
240       * LU decomposition itself.
241       *
242       * When it needs to get the threshold value, Eigen calls threshold(). By default, this
243       * uses a formula to automatically determine a reasonable threshold.
244       * Once you have called the present method setThreshold(const RealScalar&),
245       * your value is used instead.
246       *
247       * \param threshold The new value to use as the threshold.
248       *
249       * A pivot will be considered nonzero if its absolute value is strictly greater than
250       *  \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
251       * where maxpivot is the biggest pivot.
252       *
253       * If you want to come back to the default behavior, call setThreshold(Default_t)
254       */
setThreshold(const RealScalar & threshold)255     FullPivLU& setThreshold(const RealScalar& threshold)
256     {
257       m_usePrescribedThreshold = true;
258       m_prescribedThreshold = threshold;
259       return *this;
260     }
261 
262     /** Allows to come back to the default behavior, letting Eigen use its default formula for
263       * determining the threshold.
264       *
265       * You should pass the special object Eigen::Default as parameter here.
266       * \code lu.setThreshold(Eigen::Default); \endcode
267       *
268       * See the documentation of setThreshold(const RealScalar&).
269       */
setThreshold(Default_t)270     FullPivLU& setThreshold(Default_t)
271     {
272       m_usePrescribedThreshold = false;
273       return *this;
274     }
275 
276     /** Returns the threshold that will be used by certain methods such as rank().
277       *
278       * See the documentation of setThreshold(const RealScalar&).
279       */
threshold()280     RealScalar threshold() const
281     {
282       eigen_assert(m_isInitialized || m_usePrescribedThreshold);
283       return m_usePrescribedThreshold ? m_prescribedThreshold
284       // this formula comes from experimenting (see "LU precision tuning" thread on the list)
285       // and turns out to be identical to Higham's formula used already in LDLt.
286                                       : NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
287     }
288 
289     /** \returns the rank of the matrix of which *this is the LU decomposition.
290       *
291       * \note This method has to determine which pivots should be considered nonzero.
292       *       For that, it uses the threshold value that you can control by calling
293       *       setThreshold(const RealScalar&).
294       */
rank()295     inline Index rank() const
296     {
297       using std::abs;
298       eigen_assert(m_isInitialized && "LU is not initialized.");
299       RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
300       Index result = 0;
301       for(Index i = 0; i < m_nonzero_pivots; ++i)
302         result += (abs(m_lu.coeff(i,i)) > premultiplied_threshold);
303       return result;
304     }
305 
306     /** \returns the dimension of the kernel of the matrix of which *this is the LU decomposition.
307       *
308       * \note This method has to determine which pivots should be considered nonzero.
309       *       For that, it uses the threshold value that you can control by calling
310       *       setThreshold(const RealScalar&).
311       */
dimensionOfKernel()312     inline Index dimensionOfKernel() const
313     {
314       eigen_assert(m_isInitialized && "LU is not initialized.");
315       return cols() - rank();
316     }
317 
318     /** \returns true if the matrix of which *this is the LU decomposition represents an injective
319       *          linear map, i.e. has trivial kernel; false otherwise.
320       *
321       * \note This method has to determine which pivots should be considered nonzero.
322       *       For that, it uses the threshold value that you can control by calling
323       *       setThreshold(const RealScalar&).
324       */
isInjective()325     inline bool isInjective() const
326     {
327       eigen_assert(m_isInitialized && "LU is not initialized.");
328       return rank() == cols();
329     }
330 
331     /** \returns true if the matrix of which *this is the LU decomposition represents a surjective
332       *          linear map; false otherwise.
333       *
334       * \note This method has to determine which pivots should be considered nonzero.
335       *       For that, it uses the threshold value that you can control by calling
336       *       setThreshold(const RealScalar&).
337       */
isSurjective()338     inline bool isSurjective() const
339     {
340       eigen_assert(m_isInitialized && "LU is not initialized.");
341       return rank() == rows();
342     }
343 
344     /** \returns true if the matrix of which *this is the LU decomposition is invertible.
345       *
346       * \note This method has to determine which pivots should be considered nonzero.
347       *       For that, it uses the threshold value that you can control by calling
348       *       setThreshold(const RealScalar&).
349       */
isInvertible()350     inline bool isInvertible() const
351     {
352       eigen_assert(m_isInitialized && "LU is not initialized.");
353       return isInjective() && (m_lu.rows() == m_lu.cols());
354     }
355 
356     /** \returns the inverse of the matrix of which *this is the LU decomposition.
357       *
358       * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
359       *       Use isInvertible() to first determine whether this matrix is invertible.
360       *
361       * \sa MatrixBase::inverse()
362       */
inverse()363     inline const internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType> inverse() const
364     {
365       eigen_assert(m_isInitialized && "LU is not initialized.");
366       eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the inverse of a non-square matrix!");
367       return internal::solve_retval<FullPivLU,typename MatrixType::IdentityReturnType>
368                (*this, MatrixType::Identity(m_lu.rows(), m_lu.cols()));
369     }
370 
371     MatrixType reconstructedMatrix() const;
372 
rows()373     inline Index rows() const { return m_lu.rows(); }
cols()374     inline Index cols() const { return m_lu.cols(); }
375 
376   protected:
377 
check_template_parameters()378     static void check_template_parameters()
379     {
380       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
381     }
382 
383     MatrixType m_lu;
384     PermutationPType m_p;
385     PermutationQType m_q;
386     IntColVectorType m_rowsTranspositions;
387     IntRowVectorType m_colsTranspositions;
388     Index m_det_pq, m_nonzero_pivots;
389     RealScalar m_maxpivot, m_prescribedThreshold;
390     bool m_isInitialized, m_usePrescribedThreshold;
391 };
392 
393 template<typename MatrixType>
FullPivLU()394 FullPivLU<MatrixType>::FullPivLU()
395   : m_isInitialized(false), m_usePrescribedThreshold(false)
396 {
397 }
398 
399 template<typename MatrixType>
FullPivLU(Index rows,Index cols)400 FullPivLU<MatrixType>::FullPivLU(Index rows, Index cols)
401   : m_lu(rows, cols),
402     m_p(rows),
403     m_q(cols),
404     m_rowsTranspositions(rows),
405     m_colsTranspositions(cols),
406     m_isInitialized(false),
407     m_usePrescribedThreshold(false)
408 {
409 }
410 
411 template<typename MatrixType>
FullPivLU(const MatrixType & matrix)412 FullPivLU<MatrixType>::FullPivLU(const MatrixType& matrix)
413   : m_lu(matrix.rows(), matrix.cols()),
414     m_p(matrix.rows()),
415     m_q(matrix.cols()),
416     m_rowsTranspositions(matrix.rows()),
417     m_colsTranspositions(matrix.cols()),
418     m_isInitialized(false),
419     m_usePrescribedThreshold(false)
420 {
421   compute(matrix);
422 }
423 
424 template<typename MatrixType>
compute(const MatrixType & matrix)425 FullPivLU<MatrixType>& FullPivLU<MatrixType>::compute(const MatrixType& matrix)
426 {
427   check_template_parameters();
428 
429   // the permutations are stored as int indices, so just to be sure:
430   eigen_assert(matrix.rows()<=NumTraits<int>::highest() && matrix.cols()<=NumTraits<int>::highest());
431 
432   m_isInitialized = true;
433   m_lu = matrix;
434 
435   const Index size = matrix.diagonalSize();
436   const Index rows = matrix.rows();
437   const Index cols = matrix.cols();
438 
439   // will store the transpositions, before we accumulate them at the end.
440   // can't accumulate on-the-fly because that will be done in reverse order for the rows.
441   m_rowsTranspositions.resize(matrix.rows());
442   m_colsTranspositions.resize(matrix.cols());
443   Index number_of_transpositions = 0; // number of NONTRIVIAL transpositions, i.e. m_rowsTranspositions[i]!=i
444 
445   m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
446   m_maxpivot = RealScalar(0);
447 
448   for(Index k = 0; k < size; ++k)
449   {
450     // First, we need to find the pivot.
451 
452     // biggest coefficient in the remaining bottom-right corner (starting at row k, col k)
453     Index row_of_biggest_in_corner, col_of_biggest_in_corner;
454     RealScalar biggest_in_corner;
455     biggest_in_corner = m_lu.bottomRightCorner(rows-k, cols-k)
456                         .cwiseAbs()
457                         .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
458     row_of_biggest_in_corner += k; // correct the values! since they were computed in the corner,
459     col_of_biggest_in_corner += k; // need to add k to them.
460 
461     if(biggest_in_corner==RealScalar(0))
462     {
463       // before exiting, make sure to initialize the still uninitialized transpositions
464       // in a sane state without destroying what we already have.
465       m_nonzero_pivots = k;
466       for(Index i = k; i < size; ++i)
467       {
468         m_rowsTranspositions.coeffRef(i) = i;
469         m_colsTranspositions.coeffRef(i) = i;
470       }
471       break;
472     }
473 
474     if(biggest_in_corner > m_maxpivot) m_maxpivot = biggest_in_corner;
475 
476     // Now that we've found the pivot, we need to apply the row/col swaps to
477     // bring it to the location (k,k).
478 
479     m_rowsTranspositions.coeffRef(k) = row_of_biggest_in_corner;
480     m_colsTranspositions.coeffRef(k) = col_of_biggest_in_corner;
481     if(k != row_of_biggest_in_corner) {
482       m_lu.row(k).swap(m_lu.row(row_of_biggest_in_corner));
483       ++number_of_transpositions;
484     }
485     if(k != col_of_biggest_in_corner) {
486       m_lu.col(k).swap(m_lu.col(col_of_biggest_in_corner));
487       ++number_of_transpositions;
488     }
489 
490     // Now that the pivot is at the right location, we update the remaining
491     // bottom-right corner by Gaussian elimination.
492 
493     if(k<rows-1)
494       m_lu.col(k).tail(rows-k-1) /= m_lu.coeff(k,k);
495     if(k<size-1)
496       m_lu.block(k+1,k+1,rows-k-1,cols-k-1).noalias() -= m_lu.col(k).tail(rows-k-1) * m_lu.row(k).tail(cols-k-1);
497   }
498 
499   // the main loop is over, we still have to accumulate the transpositions to find the
500   // permutations P and Q
501 
502   m_p.setIdentity(rows);
503   for(Index k = size-1; k >= 0; --k)
504     m_p.applyTranspositionOnTheRight(k, m_rowsTranspositions.coeff(k));
505 
506   m_q.setIdentity(cols);
507   for(Index k = 0; k < size; ++k)
508     m_q.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k));
509 
510   m_det_pq = (number_of_transpositions%2) ? -1 : 1;
511   return *this;
512 }
513 
514 template<typename MatrixType>
determinant()515 typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant() const
516 {
517   eigen_assert(m_isInitialized && "LU is not initialized.");
518   eigen_assert(m_lu.rows() == m_lu.cols() && "You can't take the determinant of a non-square matrix!");
519   return Scalar(m_det_pq) * Scalar(m_lu.diagonal().prod());
520 }
521 
522 /** \returns the matrix represented by the decomposition,
523  * i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
524  * This function is provided for debug purposes. */
525 template<typename MatrixType>
reconstructedMatrix()526 MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
527 {
528   eigen_assert(m_isInitialized && "LU is not initialized.");
529   const Index smalldim = (std::min)(m_lu.rows(), m_lu.cols());
530   // LU
531   MatrixType res(m_lu.rows(),m_lu.cols());
532   // FIXME the .toDenseMatrix() should not be needed...
533   res = m_lu.leftCols(smalldim)
534             .template triangularView<UnitLower>().toDenseMatrix()
535       * m_lu.topRows(smalldim)
536             .template triangularView<Upper>().toDenseMatrix();
537 
538   // P^{-1}(LU)
539   res = m_p.inverse() * res;
540 
541   // (P^{-1}LU)Q^{-1}
542   res = res * m_q.inverse();
543 
544   return res;
545 }
546 
547 /********* Implementation of kernel() **************************************************/
548 
549 namespace internal {
550 template<typename _MatrixType>
551 struct kernel_retval<FullPivLU<_MatrixType> >
552   : kernel_retval_base<FullPivLU<_MatrixType> >
553 {
554   EIGEN_MAKE_KERNEL_HELPERS(FullPivLU<_MatrixType>)
555 
556   enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
557             MatrixType::MaxColsAtCompileTime,
558             MatrixType::MaxRowsAtCompileTime)
559   };
560 
561   template<typename Dest> void evalTo(Dest& dst) const
562   {
563     using std::abs;
564     const Index cols = dec().matrixLU().cols(), dimker = cols - rank();
565     if(dimker == 0)
566     {
567       // The Kernel is just {0}, so it doesn't have a basis properly speaking, but let's
568       // avoid crashing/asserting as that depends on floating point calculations. Let's
569       // just return a single column vector filled with zeros.
570       dst.setZero();
571       return;
572     }
573 
574     /* Let us use the following lemma:
575       *
576       * Lemma: If the matrix A has the LU decomposition PAQ = LU,
577       * then Ker A = Q(Ker U).
578       *
579       * Proof: trivial: just keep in mind that P, Q, L are invertible.
580       */
581 
582     /* Thus, all we need to do is to compute Ker U, and then apply Q.
583       *
584       * U is upper triangular, with eigenvalues sorted so that any zeros appear at the end.
585       * Thus, the diagonal of U ends with exactly
586       * dimKer zero's. Let us use that to construct dimKer linearly
587       * independent vectors in Ker U.
588       */
589 
590     Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
591     RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
592     Index p = 0;
593     for(Index i = 0; i < dec().nonzeroPivots(); ++i)
594       if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
595         pivots.coeffRef(p++) = i;
596     eigen_internal_assert(p == rank());
597 
598     // we construct a temporaty trapezoid matrix m, by taking the U matrix and
599     // permuting the rows and cols to bring the nonnegligible pivots to the top of
600     // the main diagonal. We need that to be able to apply our triangular solvers.
601     // FIXME when we get triangularView-for-rectangular-matrices, this can be simplified
602     Matrix<typename MatrixType::Scalar, Dynamic, Dynamic, MatrixType::Options,
603            MaxSmallDimAtCompileTime, MatrixType::MaxColsAtCompileTime>
604       m(dec().matrixLU().block(0, 0, rank(), cols));
605     for(Index i = 0; i < rank(); ++i)
606     {
607       if(i) m.row(i).head(i).setZero();
608       m.row(i).tail(cols-i) = dec().matrixLU().row(pivots.coeff(i)).tail(cols-i);
609     }
610     m.block(0, 0, rank(), rank());
611     m.block(0, 0, rank(), rank()).template triangularView<StrictlyLower>().setZero();
612     for(Index i = 0; i < rank(); ++i)
613       m.col(i).swap(m.col(pivots.coeff(i)));
614 
615     // ok, we have our trapezoid matrix, we can apply the triangular solver.
616     // notice that the math behind this suggests that we should apply this to the
617     // negative of the RHS, but for performance we just put the negative sign elsewhere, see below.
618     m.topLeftCorner(rank(), rank())
619      .template triangularView<Upper>().solveInPlace(
620         m.topRightCorner(rank(), dimker)
621       );
622 
623     // now we must undo the column permutation that we had applied!
624     for(Index i = rank()-1; i >= 0; --i)
625       m.col(i).swap(m.col(pivots.coeff(i)));
626 
627     // see the negative sign in the next line, that's what we were talking about above.
628     for(Index i = 0; i < rank(); ++i) dst.row(dec().permutationQ().indices().coeff(i)) = -m.row(i).tail(dimker);
629     for(Index i = rank(); i < cols; ++i) dst.row(dec().permutationQ().indices().coeff(i)).setZero();
630     for(Index k = 0; k < dimker; ++k) dst.coeffRef(dec().permutationQ().indices().coeff(rank()+k), k) = Scalar(1);
631   }
632 };
633 
634 /***** Implementation of image() *****************************************************/
635 
636 template<typename _MatrixType>
637 struct image_retval<FullPivLU<_MatrixType> >
638   : image_retval_base<FullPivLU<_MatrixType> >
639 {
640   EIGEN_MAKE_IMAGE_HELPERS(FullPivLU<_MatrixType>)
641 
642   enum { MaxSmallDimAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(
643             MatrixType::MaxColsAtCompileTime,
644             MatrixType::MaxRowsAtCompileTime)
645   };
646 
647   template<typename Dest> void evalTo(Dest& dst) const
648   {
649     using std::abs;
650     if(rank() == 0)
651     {
652       // The Image is just {0}, so it doesn't have a basis properly speaking, but let's
653       // avoid crashing/asserting as that depends on floating point calculations. Let's
654       // just return a single column vector filled with zeros.
655       dst.setZero();
656       return;
657     }
658 
659     Matrix<Index, Dynamic, 1, 0, MaxSmallDimAtCompileTime, 1> pivots(rank());
660     RealScalar premultiplied_threshold = dec().maxPivot() * dec().threshold();
661     Index p = 0;
662     for(Index i = 0; i < dec().nonzeroPivots(); ++i)
663       if(abs(dec().matrixLU().coeff(i,i)) > premultiplied_threshold)
664         pivots.coeffRef(p++) = i;
665     eigen_internal_assert(p == rank());
666 
667     for(Index i = 0; i < rank(); ++i)
668       dst.col(i) = originalMatrix().col(dec().permutationQ().indices().coeff(pivots.coeff(i)));
669   }
670 };
671 
672 /***** Implementation of solve() *****************************************************/
673 
674 template<typename _MatrixType, typename Rhs>
675 struct solve_retval<FullPivLU<_MatrixType>, Rhs>
676   : solve_retval_base<FullPivLU<_MatrixType>, Rhs>
677 {
678   EIGEN_MAKE_SOLVE_HELPERS(FullPivLU<_MatrixType>,Rhs)
679 
680   template<typename Dest> void evalTo(Dest& dst) const
681   {
682     /* The decomposition PAQ = LU can be rewritten as A = P^{-1} L U Q^{-1}.
683      * So we proceed as follows:
684      * Step 1: compute c = P * rhs.
685      * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
686      * Step 3: replace c by the solution x to Ux = c. May or may not exist.
687      * Step 4: result = Q * c;
688      */
689 
690     const Index rows = dec().rows(), cols = dec().cols(),
691               nonzero_pivots = dec().nonzeroPivots();
692     eigen_assert(rhs().rows() == rows);
693     const Index smalldim = (std::min)(rows, cols);
694 
695     if(nonzero_pivots == 0)
696     {
697       dst.setZero();
698       return;
699     }
700 
701     typename Rhs::PlainObject c(rhs().rows(), rhs().cols());
702 
703     // Step 1
704     c = dec().permutationP() * rhs();
705 
706     // Step 2
707     dec().matrixLU()
708         .topLeftCorner(smalldim,smalldim)
709         .template triangularView<UnitLower>()
710         .solveInPlace(c.topRows(smalldim));
711     if(rows>cols)
712     {
713       c.bottomRows(rows-cols)
714         -= dec().matrixLU().bottomRows(rows-cols)
715          * c.topRows(cols);
716     }
717 
718     // Step 3
719     dec().matrixLU()
720         .topLeftCorner(nonzero_pivots, nonzero_pivots)
721         .template triangularView<Upper>()
722         .solveInPlace(c.topRows(nonzero_pivots));
723 
724     // Step 4
725     for(Index i = 0; i < nonzero_pivots; ++i)
726       dst.row(dec().permutationQ().indices().coeff(i)) = c.row(i);
727     for(Index i = nonzero_pivots; i < dec().matrixLU().cols(); ++i)
728       dst.row(dec().permutationQ().indices().coeff(i)).setZero();
729   }
730 };
731 
732 } // end namespace internal
733 
734 /******* MatrixBase methods *****************************************************************/
735 
736 /** \lu_module
737   *
738   * \return the full-pivoting LU decomposition of \c *this.
739   *
740   * \sa class FullPivLU
741   */
742 template<typename Derived>
743 inline const FullPivLU<typename MatrixBase<Derived>::PlainObject>
744 MatrixBase<Derived>::fullPivLu() const
745 {
746   return FullPivLU<PlainObject>(eval());
747 }
748 
749 } // end namespace Eigen
750 
751 #endif // EIGEN_LU_H
752