1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/LU>
12 using namespace std;
13 
lu_non_invertible()14 template<typename MatrixType> void lu_non_invertible()
15 {
16   typedef typename MatrixType::Index Index;
17   typedef typename MatrixType::RealScalar RealScalar;
18   /* this test covers the following files:
19      LU.h
20   */
21   Index rows, cols, cols2;
22   if(MatrixType::RowsAtCompileTime==Dynamic)
23   {
24     rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
25   }
26   else
27   {
28     rows = MatrixType::RowsAtCompileTime;
29   }
30   if(MatrixType::ColsAtCompileTime==Dynamic)
31   {
32     cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
33     cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
34   }
35   else
36   {
37     cols2 = cols = MatrixType::ColsAtCompileTime;
38   }
39 
40   enum {
41     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
42     ColsAtCompileTime = MatrixType::ColsAtCompileTime
43   };
44   typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType;
45   typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType;
46   typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime>
47           CMatrixType;
48   typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime>
49           RMatrixType;
50 
51   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
52 
53   // The image of the zero matrix should consist of a single (zero) column vector
54   VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1));
55 
56   MatrixType m1(rows, cols), m3(rows, cols2);
57   CMatrixType m2(cols, cols2);
58   createRandomPIMatrixOfRank(rank, rows, cols, m1);
59 
60   FullPivLU<MatrixType> lu;
61 
62   // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank
63   // of singular values are either 0 or 1.
64   // So it's not clear at all that the epsilon should play any role there.
65   lu.setThreshold(RealScalar(0.01));
66   lu.compute(m1);
67 
68   MatrixType u(rows,cols);
69   u = lu.matrixLU().template triangularView<Upper>();
70   RMatrixType l = RMatrixType::Identity(rows,rows);
71   l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>()
72     = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols));
73 
74   VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u);
75 
76   KernelMatrixType m1kernel = lu.kernel();
77   ImageMatrixType m1image = lu.image(m1);
78 
79   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
80   VERIFY(rank == lu.rank());
81   VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
82   VERIFY(!lu.isInjective());
83   VERIFY(!lu.isInvertible());
84   VERIFY(!lu.isSurjective());
85   VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
86   VERIFY(m1image.fullPivLu().rank() == rank);
87   VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image);
88 
89   m2 = CMatrixType::Random(cols,cols2);
90   m3 = m1*m2;
91   m2 = CMatrixType::Random(cols,cols2);
92   // test that the code, which does resize(), may be applied to an xpr
93   m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3);
94   VERIFY_IS_APPROX(m3, m1*m2);
95 }
96 
lu_invertible()97 template<typename MatrixType> void lu_invertible()
98 {
99   /* this test covers the following files:
100      LU.h
101   */
102   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
103   DenseIndex size = MatrixType::RowsAtCompileTime;
104   if( size==Dynamic)
105     size = internal::random<DenseIndex>(1,EIGEN_TEST_MAX_SIZE);
106 
107   MatrixType m1(size, size), m2(size, size), m3(size, size);
108   FullPivLU<MatrixType> lu;
109   lu.setThreshold(RealScalar(0.01));
110   do {
111     m1 = MatrixType::Random(size,size);
112     lu.compute(m1);
113   } while(!lu.isInvertible());
114 
115   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix());
116   VERIFY(0 == lu.dimensionOfKernel());
117   VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector
118   VERIFY(size == lu.rank());
119   VERIFY(lu.isInjective());
120   VERIFY(lu.isSurjective());
121   VERIFY(lu.isInvertible());
122   VERIFY(lu.image(m1).fullPivLu().isInvertible());
123   m3 = MatrixType::Random(size,size);
124   m2 = lu.solve(m3);
125   VERIFY_IS_APPROX(m3, m1*m2);
126   VERIFY_IS_APPROX(m2, lu.inverse()*m3);
127 
128   // Regression test for Bug 302
129   MatrixType m4 = MatrixType::Random(size,size);
130   VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4);
131 }
132 
lu_partial_piv()133 template<typename MatrixType> void lu_partial_piv()
134 {
135   /* this test covers the following files:
136      PartialPivLU.h
137   */
138   typedef typename MatrixType::Index Index;
139   Index rows = internal::random<Index>(1,4);
140   Index cols = rows;
141 
142   MatrixType m1(cols, rows);
143   m1.setRandom();
144   PartialPivLU<MatrixType> plu(m1);
145 
146   VERIFY_IS_APPROX(m1, plu.reconstructedMatrix());
147 }
148 
lu_verify_assert()149 template<typename MatrixType> void lu_verify_assert()
150 {
151   MatrixType tmp;
152 
153   FullPivLU<MatrixType> lu;
154   VERIFY_RAISES_ASSERT(lu.matrixLU())
155   VERIFY_RAISES_ASSERT(lu.permutationP())
156   VERIFY_RAISES_ASSERT(lu.permutationQ())
157   VERIFY_RAISES_ASSERT(lu.kernel())
158   VERIFY_RAISES_ASSERT(lu.image(tmp))
159   VERIFY_RAISES_ASSERT(lu.solve(tmp))
160   VERIFY_RAISES_ASSERT(lu.determinant())
161   VERIFY_RAISES_ASSERT(lu.rank())
162   VERIFY_RAISES_ASSERT(lu.dimensionOfKernel())
163   VERIFY_RAISES_ASSERT(lu.isInjective())
164   VERIFY_RAISES_ASSERT(lu.isSurjective())
165   VERIFY_RAISES_ASSERT(lu.isInvertible())
166   VERIFY_RAISES_ASSERT(lu.inverse())
167 
168   PartialPivLU<MatrixType> plu;
169   VERIFY_RAISES_ASSERT(plu.matrixLU())
170   VERIFY_RAISES_ASSERT(plu.permutationP())
171   VERIFY_RAISES_ASSERT(plu.solve(tmp))
172   VERIFY_RAISES_ASSERT(plu.determinant())
173   VERIFY_RAISES_ASSERT(plu.inverse())
174 }
175 
test_lu()176 void test_lu()
177 {
178   for(int i = 0; i < g_repeat; i++) {
179     CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() );
180     CALL_SUBTEST_1( lu_invertible<Matrix3f>() );
181     CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() );
182 
183     CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) );
184     CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) );
185 
186     CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() );
187     CALL_SUBTEST_3( lu_invertible<MatrixXf>() );
188     CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() );
189 
190     CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() );
191     CALL_SUBTEST_4( lu_invertible<MatrixXd>() );
192     CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() );
193     CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() );
194 
195     CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() );
196     CALL_SUBTEST_5( lu_invertible<MatrixXcf>() );
197     CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() );
198 
199     CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() );
200     CALL_SUBTEST_6( lu_invertible<MatrixXcd>() );
201     CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() );
202     CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() );
203 
204     CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() ));
205 
206     // Test problem size constructors
207     CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) );
208     CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); );
209   }
210 }
211