1 // output.h -- manage the output file for gold   -*- C++ -*-
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25 
26 #include <list>
27 #include <vector>
28 
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33 
34 namespace gold
35 {
36 
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 
52 // An abtract class for data which has to go into the output file.
53 
54 class Output_data
55 {
56  public:
Output_data()57   explicit Output_data()
58     : address_(0), data_size_(0), offset_(-1),
59       is_address_valid_(false), is_data_size_valid_(false),
60       is_offset_valid_(false), is_data_size_fixed_(false),
61       has_dynamic_reloc_(false)
62   { }
63 
64   virtual
65   ~Output_data();
66 
67   // Return the address.  For allocated sections, this is only valid
68   // after Layout::finalize is finished.
69   uint64_t
address()70   address() const
71   {
72     gold_assert(this->is_address_valid_);
73     return this->address_;
74   }
75 
76   // Return the size of the data.  For allocated sections, this must
77   // be valid after Layout::finalize calls set_address, but need not
78   // be valid before then.
79   off_t
data_size()80   data_size() const
81   {
82     gold_assert(this->is_data_size_valid_);
83     return this->data_size_;
84   }
85 
86   // Get the current data size.
87   off_t
current_data_size()88   current_data_size() const
89   { return this->current_data_size_for_child(); }
90 
91   // Return true if data size is fixed.
92   bool
is_data_size_fixed()93   is_data_size_fixed() const
94   { return this->is_data_size_fixed_; }
95 
96   // Return the file offset.  This is only valid after
97   // Layout::finalize is finished.  For some non-allocated sections,
98   // it may not be valid until near the end of the link.
99   off_t
offset()100   offset() const
101   {
102     gold_assert(this->is_offset_valid_);
103     return this->offset_;
104   }
105 
106   // Reset the address, file offset and data size.  This essentially
107   // disables the sanity testing about duplicate and unknown settings.
108   void
reset_address_and_file_offset()109   reset_address_and_file_offset()
110   {
111     this->is_address_valid_ = false;
112     this->is_offset_valid_ = false;
113     if (!this->is_data_size_fixed_)
114       this->is_data_size_valid_ = false;
115     this->do_reset_address_and_file_offset();
116   }
117 
118   // As above, but just for data size.
119   void
reset_data_size()120   reset_data_size()
121   {
122     if (!this->is_data_size_fixed_)
123       this->is_data_size_valid_ = false;
124   }
125 
126   // Return true if address and file offset already have reset values. In
127   // other words, calling reset_address_and_file_offset will not change them.
128   bool
address_and_file_offset_have_reset_values()129   address_and_file_offset_have_reset_values() const
130   { return this->do_address_and_file_offset_have_reset_values(); }
131 
132   // Return the required alignment.
133   uint64_t
addralign()134   addralign() const
135   { return this->do_addralign(); }
136 
137   // Return whether this has a load address.
138   bool
has_load_address()139   has_load_address() const
140   { return this->do_has_load_address(); }
141 
142   // Return the load address.
143   uint64_t
load_address()144   load_address() const
145   { return this->do_load_address(); }
146 
147   // Return whether this is an Output_section.
148   bool
is_section()149   is_section() const
150   { return this->do_is_section(); }
151 
152   // Return whether this is an Output_section of the specified type.
153   bool
is_section_type(elfcpp::Elf_Word stt)154   is_section_type(elfcpp::Elf_Word stt) const
155   { return this->do_is_section_type(stt); }
156 
157   // Return whether this is an Output_section with the specified flag
158   // set.
159   bool
is_section_flag_set(elfcpp::Elf_Xword shf)160   is_section_flag_set(elfcpp::Elf_Xword shf) const
161   { return this->do_is_section_flag_set(shf); }
162 
163   // Return the output section that this goes in, if there is one.
164   Output_section*
output_section()165   output_section()
166   { return this->do_output_section(); }
167 
168   const Output_section*
output_section()169   output_section() const
170   { return this->do_output_section(); }
171 
172   // Return the output section index, if there is an output section.
173   unsigned int
out_shndx()174   out_shndx() const
175   { return this->do_out_shndx(); }
176 
177   // Set the output section index, if this is an output section.
178   void
set_out_shndx(unsigned int shndx)179   set_out_shndx(unsigned int shndx)
180   { this->do_set_out_shndx(shndx); }
181 
182   // Set the address and file offset of this data, and finalize the
183   // size of the data.  This is called during Layout::finalize for
184   // allocated sections.
185   void
set_address_and_file_offset(uint64_t addr,off_t off)186   set_address_and_file_offset(uint64_t addr, off_t off)
187   {
188     this->set_address(addr);
189     this->set_file_offset(off);
190     this->finalize_data_size();
191   }
192 
193   // Set the address.
194   void
set_address(uint64_t addr)195   set_address(uint64_t addr)
196   {
197     gold_assert(!this->is_address_valid_);
198     this->address_ = addr;
199     this->is_address_valid_ = true;
200   }
201 
202   // Set the file offset.
203   void
set_file_offset(off_t off)204   set_file_offset(off_t off)
205   {
206     gold_assert(!this->is_offset_valid_);
207     this->offset_ = off;
208     this->is_offset_valid_ = true;
209   }
210 
211   // Update the data size without finalizing it.
212   void
pre_finalize_data_size()213   pre_finalize_data_size()
214   {
215     if (!this->is_data_size_valid_)
216       {
217 	// Tell the child class to update the data size.
218 	this->update_data_size();
219       }
220   }
221 
222   // Finalize the data size.
223   void
finalize_data_size()224   finalize_data_size()
225   {
226     if (!this->is_data_size_valid_)
227       {
228 	// Tell the child class to set the data size.
229 	this->set_final_data_size();
230 	gold_assert(this->is_data_size_valid_);
231       }
232   }
233 
234   // Set the TLS offset.  Called only for SHT_TLS sections.
235   void
set_tls_offset(uint64_t tls_base)236   set_tls_offset(uint64_t tls_base)
237   { this->do_set_tls_offset(tls_base); }
238 
239   // Return the TLS offset, relative to the base of the TLS segment.
240   // Valid only for SHT_TLS sections.
241   uint64_t
tls_offset()242   tls_offset() const
243   { return this->do_tls_offset(); }
244 
245   // Write the data to the output file.  This is called after
246   // Layout::finalize is complete.
247   void
write(Output_file * file)248   write(Output_file* file)
249   { this->do_write(file); }
250 
251   // This is called by Layout::finalize to note that the sizes of
252   // allocated sections must now be fixed.
253   static void
layout_complete()254   layout_complete()
255   { Output_data::allocated_sizes_are_fixed = true; }
256 
257   // Used to check that layout has been done.
258   static bool
is_layout_complete()259   is_layout_complete()
260   { return Output_data::allocated_sizes_are_fixed; }
261 
262   // Note that a dynamic reloc has been applied to this data.
263   void
add_dynamic_reloc()264   add_dynamic_reloc()
265   { this->has_dynamic_reloc_ = true; }
266 
267   // Return whether a dynamic reloc has been applied.
268   bool
has_dynamic_reloc()269   has_dynamic_reloc() const
270   { return this->has_dynamic_reloc_; }
271 
272   // Whether the address is valid.
273   bool
is_address_valid()274   is_address_valid() const
275   { return this->is_address_valid_; }
276 
277   // Whether the file offset is valid.
278   bool
is_offset_valid()279   is_offset_valid() const
280   { return this->is_offset_valid_; }
281 
282   // Whether the data size is valid.
283   bool
is_data_size_valid()284   is_data_size_valid() const
285   { return this->is_data_size_valid_; }
286 
287   // Print information to the map file.
288   void
print_to_mapfile(Mapfile * mapfile)289   print_to_mapfile(Mapfile* mapfile) const
290   { return this->do_print_to_mapfile(mapfile); }
291 
292  protected:
293   // Functions that child classes may or in some cases must implement.
294 
295   // Write the data to the output file.
296   virtual void
297   do_write(Output_file*) = 0;
298 
299   // Return the required alignment.
300   virtual uint64_t
301   do_addralign() const = 0;
302 
303   // Return whether this has a load address.
304   virtual bool
do_has_load_address()305   do_has_load_address() const
306   { return false; }
307 
308   // Return the load address.
309   virtual uint64_t
do_load_address()310   do_load_address() const
311   { gold_unreachable(); }
312 
313   // Return whether this is an Output_section.
314   virtual bool
do_is_section()315   do_is_section() const
316   { return false; }
317 
318   // Return whether this is an Output_section of the specified type.
319   // This only needs to be implement by Output_section.
320   virtual bool
do_is_section_type(elfcpp::Elf_Word)321   do_is_section_type(elfcpp::Elf_Word) const
322   { return false; }
323 
324   // Return whether this is an Output_section with the specific flag
325   // set.  This only needs to be implemented by Output_section.
326   virtual bool
do_is_section_flag_set(elfcpp::Elf_Xword)327   do_is_section_flag_set(elfcpp::Elf_Xword) const
328   { return false; }
329 
330   // Return the output section, if there is one.
331   virtual Output_section*
do_output_section()332   do_output_section()
333   { return NULL; }
334 
335   virtual const Output_section*
do_output_section()336   do_output_section() const
337   { return NULL; }
338 
339   // Return the output section index, if there is an output section.
340   virtual unsigned int
do_out_shndx()341   do_out_shndx() const
342   { gold_unreachable(); }
343 
344   // Set the output section index, if this is an output section.
345   virtual void
do_set_out_shndx(unsigned int)346   do_set_out_shndx(unsigned int)
347   { gold_unreachable(); }
348 
349   // This is a hook for derived classes to set the preliminary data size.
350   // This is called by pre_finalize_data_size, normally called during
351   // Layout::finalize, before the section address is set, and is used
352   // during an incremental update, when we need to know the size of a
353   // section before allocating space in the output file.  For classes
354   // where the current data size is up to date, this default version of
355   // the method can be inherited.
356   virtual void
update_data_size()357   update_data_size()
358   { }
359 
360   // This is a hook for derived classes to set the data size.  This is
361   // called by finalize_data_size, normally called during
362   // Layout::finalize, when the section address is set.
363   virtual void
set_final_data_size()364   set_final_data_size()
365   { gold_unreachable(); }
366 
367   // A hook for resetting the address and file offset.
368   virtual void
do_reset_address_and_file_offset()369   do_reset_address_and_file_offset()
370   { }
371 
372   // Return true if address and file offset already have reset values. In
373   // other words, calling reset_address_and_file_offset will not change them.
374   // A child class overriding do_reset_address_and_file_offset may need to
375   // also override this.
376   virtual bool
do_address_and_file_offset_have_reset_values()377   do_address_and_file_offset_have_reset_values() const
378   { return !this->is_address_valid_ && !this->is_offset_valid_; }
379 
380   // Set the TLS offset.  Called only for SHT_TLS sections.
381   virtual void
do_set_tls_offset(uint64_t)382   do_set_tls_offset(uint64_t)
383   { gold_unreachable(); }
384 
385   // Return the TLS offset, relative to the base of the TLS segment.
386   // Valid only for SHT_TLS sections.
387   virtual uint64_t
do_tls_offset()388   do_tls_offset() const
389   { gold_unreachable(); }
390 
391   // Print to the map file.  This only needs to be implemented by
392   // classes which may appear in a PT_LOAD segment.
393   virtual void
do_print_to_mapfile(Mapfile *)394   do_print_to_mapfile(Mapfile*) const
395   { gold_unreachable(); }
396 
397   // Functions that child classes may call.
398 
399   // Reset the address.  The Output_section class needs this when an
400   // SHF_ALLOC input section is added to an output section which was
401   // formerly not SHF_ALLOC.
402   void
mark_address_invalid()403   mark_address_invalid()
404   { this->is_address_valid_ = false; }
405 
406   // Set the size of the data.
407   void
set_data_size(off_t data_size)408   set_data_size(off_t data_size)
409   {
410     gold_assert(!this->is_data_size_valid_
411 		&& !this->is_data_size_fixed_);
412     this->data_size_ = data_size;
413     this->is_data_size_valid_ = true;
414   }
415 
416   // Fix the data size.  Once it is fixed, it cannot be changed
417   // and the data size remains always valid.
418   void
fix_data_size()419   fix_data_size()
420   {
421     gold_assert(this->is_data_size_valid_);
422     this->is_data_size_fixed_ = true;
423   }
424 
425   // Get the current data size--this is for the convenience of
426   // sections which build up their size over time.
427   off_t
current_data_size_for_child()428   current_data_size_for_child() const
429   { return this->data_size_; }
430 
431   // Set the current data size--this is for the convenience of
432   // sections which build up their size over time.
433   void
set_current_data_size_for_child(off_t data_size)434   set_current_data_size_for_child(off_t data_size)
435   {
436     gold_assert(!this->is_data_size_valid_);
437     this->data_size_ = data_size;
438   }
439 
440   // Return default alignment for the target size.
441   static uint64_t
442   default_alignment();
443 
444   // Return default alignment for a specified size--32 or 64.
445   static uint64_t
446   default_alignment_for_size(int size);
447 
448  private:
449   Output_data(const Output_data&);
450   Output_data& operator=(const Output_data&);
451 
452   // This is used for verification, to make sure that we don't try to
453   // change any sizes of allocated sections after we set the section
454   // addresses.
455   static bool allocated_sizes_are_fixed;
456 
457   // Memory address in output file.
458   uint64_t address_;
459   // Size of data in output file.
460   off_t data_size_;
461   // File offset of contents in output file.
462   off_t offset_;
463   // Whether address_ is valid.
464   bool is_address_valid_ : 1;
465   // Whether data_size_ is valid.
466   bool is_data_size_valid_ : 1;
467   // Whether offset_ is valid.
468   bool is_offset_valid_ : 1;
469   // Whether data size is fixed.
470   bool is_data_size_fixed_ : 1;
471   // Whether any dynamic relocs have been applied to this section.
472   bool has_dynamic_reloc_ : 1;
473 };
474 
475 // Output the section headers.
476 
477 class Output_section_headers : public Output_data
478 {
479  public:
480   Output_section_headers(const Layout*,
481 			 const Layout::Segment_list*,
482 			 const Layout::Section_list*,
483 			 const Layout::Section_list*,
484 			 const Stringpool*,
485 			 const Output_section*);
486 
487  protected:
488   // Write the data to the file.
489   void
490   do_write(Output_file*);
491 
492   // Return the required alignment.
493   uint64_t
do_addralign()494   do_addralign() const
495   { return Output_data::default_alignment(); }
496 
497   // Write to a map file.
498   void
do_print_to_mapfile(Mapfile * mapfile)499   do_print_to_mapfile(Mapfile* mapfile) const
500   { mapfile->print_output_data(this, _("** section headers")); }
501 
502   // Update the data size.
503   void
update_data_size()504   update_data_size()
505   { this->set_data_size(this->do_size()); }
506 
507   // Set final data size.
508   void
set_final_data_size()509   set_final_data_size()
510   { this->set_data_size(this->do_size()); }
511 
512  private:
513   // Write the data to the file with the right size and endianness.
514   template<int size, bool big_endian>
515   void
516   do_sized_write(Output_file*);
517 
518   // Compute data size.
519   off_t
520   do_size() const;
521 
522   const Layout* layout_;
523   const Layout::Segment_list* segment_list_;
524   const Layout::Section_list* section_list_;
525   const Layout::Section_list* unattached_section_list_;
526   const Stringpool* secnamepool_;
527   const Output_section* shstrtab_section_;
528 };
529 
530 // Output the segment headers.
531 
532 class Output_segment_headers : public Output_data
533 {
534  public:
535   Output_segment_headers(const Layout::Segment_list& segment_list);
536 
537  protected:
538   // Write the data to the file.
539   void
540   do_write(Output_file*);
541 
542   // Return the required alignment.
543   uint64_t
do_addralign()544   do_addralign() const
545   { return Output_data::default_alignment(); }
546 
547   // Write to a map file.
548   void
do_print_to_mapfile(Mapfile * mapfile)549   do_print_to_mapfile(Mapfile* mapfile) const
550   { mapfile->print_output_data(this, _("** segment headers")); }
551 
552   // Set final data size.
553   void
set_final_data_size()554   set_final_data_size()
555   { this->set_data_size(this->do_size()); }
556 
557  private:
558   // Write the data to the file with the right size and endianness.
559   template<int size, bool big_endian>
560   void
561   do_sized_write(Output_file*);
562 
563   // Compute the current size.
564   off_t
565   do_size() const;
566 
567   const Layout::Segment_list& segment_list_;
568 };
569 
570 // Output the ELF file header.
571 
572 class Output_file_header : public Output_data
573 {
574  public:
575   Output_file_header(Target*,
576 		     const Symbol_table*,
577 		     const Output_segment_headers*);
578 
579   // Add information about the section headers.  We lay out the ELF
580   // file header before we create the section headers.
581   void set_section_info(const Output_section_headers*,
582 			const Output_section* shstrtab);
583 
584  protected:
585   // Write the data to the file.
586   void
587   do_write(Output_file*);
588 
589   // Return the required alignment.
590   uint64_t
do_addralign()591   do_addralign() const
592   { return Output_data::default_alignment(); }
593 
594   // Write to a map file.
595   void
do_print_to_mapfile(Mapfile * mapfile)596   do_print_to_mapfile(Mapfile* mapfile) const
597   { mapfile->print_output_data(this, _("** file header")); }
598 
599   // Set final data size.
600   void
set_final_data_size(void)601   set_final_data_size(void)
602   { this->set_data_size(this->do_size()); }
603 
604  private:
605   // Write the data to the file with the right size and endianness.
606   template<int size, bool big_endian>
607   void
608   do_sized_write(Output_file*);
609 
610   // Return the value to use for the entry address.
611   template<int size>
612   typename elfcpp::Elf_types<size>::Elf_Addr
613   entry();
614 
615   // Compute the current data size.
616   off_t
617   do_size() const;
618 
619   Target* target_;
620   const Symbol_table* symtab_;
621   const Output_segment_headers* segment_header_;
622   const Output_section_headers* section_header_;
623   const Output_section* shstrtab_;
624 };
625 
626 // Output sections are mainly comprised of input sections.  However,
627 // there are cases where we have data to write out which is not in an
628 // input section.  Output_section_data is used in such cases.  This is
629 // an abstract base class.
630 
631 class Output_section_data : public Output_data
632 {
633  public:
Output_section_data(off_t data_size,uint64_t addralign,bool is_data_size_fixed)634   Output_section_data(off_t data_size, uint64_t addralign,
635 		      bool is_data_size_fixed)
636     : Output_data(), output_section_(NULL), addralign_(addralign)
637   {
638     this->set_data_size(data_size);
639     if (is_data_size_fixed)
640       this->fix_data_size();
641   }
642 
Output_section_data(uint64_t addralign)643   Output_section_data(uint64_t addralign)
644     : Output_data(), output_section_(NULL), addralign_(addralign)
645   { }
646 
647   // Return the output section.
648   Output_section*
output_section()649   output_section()
650   { return this->output_section_; }
651 
652   const Output_section*
output_section()653   output_section() const
654   { return this->output_section_; }
655 
656   // Record the output section.
657   void
658   set_output_section(Output_section* os);
659 
660   // Add an input section, for SHF_MERGE sections.  This returns true
661   // if the section was handled.
662   bool
add_input_section(Relobj * object,unsigned int shndx)663   add_input_section(Relobj* object, unsigned int shndx)
664   { return this->do_add_input_section(object, shndx); }
665 
666   // Given an input OBJECT, an input section index SHNDX within that
667   // object, and an OFFSET relative to the start of that input
668   // section, return whether or not the corresponding offset within
669   // the output section is known.  If this function returns true, it
670   // sets *POUTPUT to the output offset.  The value -1 indicates that
671   // this input offset is being discarded.
672   bool
output_offset(const Relobj * object,unsigned int shndx,section_offset_type offset,section_offset_type * poutput)673   output_offset(const Relobj* object, unsigned int shndx,
674 		section_offset_type offset,
675 		section_offset_type* poutput) const
676   { return this->do_output_offset(object, shndx, offset, poutput); }
677 
678   // Return whether this is the merge section for the input section
679   // SHNDX in OBJECT.  This should return true when output_offset
680   // would return true for some values of OFFSET.
681   bool
is_merge_section_for(const Relobj * object,unsigned int shndx)682   is_merge_section_for(const Relobj* object, unsigned int shndx) const
683   { return this->do_is_merge_section_for(object, shndx); }
684 
685   // Write the contents to a buffer.  This is used for sections which
686   // require postprocessing, such as compression.
687   void
write_to_buffer(unsigned char * buffer)688   write_to_buffer(unsigned char* buffer)
689   { this->do_write_to_buffer(buffer); }
690 
691   // Print merge stats to stderr.  This should only be called for
692   // SHF_MERGE sections.
693   void
print_merge_stats(const char * section_name)694   print_merge_stats(const char* section_name)
695   { this->do_print_merge_stats(section_name); }
696 
697  protected:
698   // The child class must implement do_write.
699 
700   // The child class may implement specific adjustments to the output
701   // section.
702   virtual void
do_adjust_output_section(Output_section *)703   do_adjust_output_section(Output_section*)
704   { }
705 
706   // May be implemented by child class.  Return true if the section
707   // was handled.
708   virtual bool
do_add_input_section(Relobj *,unsigned int)709   do_add_input_section(Relobj*, unsigned int)
710   { gold_unreachable(); }
711 
712   // The child class may implement output_offset.
713   virtual bool
do_output_offset(const Relobj *,unsigned int,section_offset_type,section_offset_type *)714   do_output_offset(const Relobj*, unsigned int, section_offset_type,
715 		   section_offset_type*) const
716   { return false; }
717 
718   // The child class may implement is_merge_section_for.
719   virtual bool
do_is_merge_section_for(const Relobj *,unsigned int)720   do_is_merge_section_for(const Relobj*, unsigned int) const
721   { return false; }
722 
723   // The child class may implement write_to_buffer.  Most child
724   // classes can not appear in a compressed section, and they do not
725   // implement this.
726   virtual void
do_write_to_buffer(unsigned char *)727   do_write_to_buffer(unsigned char*)
728   { gold_unreachable(); }
729 
730   // Print merge statistics.
731   virtual void
do_print_merge_stats(const char *)732   do_print_merge_stats(const char*)
733   { gold_unreachable(); }
734 
735   // Return the required alignment.
736   uint64_t
do_addralign()737   do_addralign() const
738   { return this->addralign_; }
739 
740   // Return the output section.
741   Output_section*
do_output_section()742   do_output_section()
743   { return this->output_section_; }
744 
745   const Output_section*
do_output_section()746   do_output_section() const
747   { return this->output_section_; }
748 
749   // Return the section index of the output section.
750   unsigned int
751   do_out_shndx() const;
752 
753   // Set the alignment.
754   void
755   set_addralign(uint64_t addralign);
756 
757  private:
758   // The output section for this section.
759   Output_section* output_section_;
760   // The required alignment.
761   uint64_t addralign_;
762 };
763 
764 // Some Output_section_data classes build up their data step by step,
765 // rather than all at once.  This class provides an interface for
766 // them.
767 
768 class Output_section_data_build : public Output_section_data
769 {
770  public:
Output_section_data_build(uint64_t addralign)771   Output_section_data_build(uint64_t addralign)
772     : Output_section_data(addralign)
773   { }
774 
Output_section_data_build(off_t data_size,uint64_t addralign)775   Output_section_data_build(off_t data_size, uint64_t addralign)
776     : Output_section_data(data_size, addralign, false)
777   { }
778 
779   // Set the current data size.
780   void
set_current_data_size(off_t data_size)781   set_current_data_size(off_t data_size)
782   { this->set_current_data_size_for_child(data_size); }
783 
784  protected:
785   // Set the final data size.
786   virtual void
set_final_data_size()787   set_final_data_size()
788   { this->set_data_size(this->current_data_size_for_child()); }
789 };
790 
791 // A simple case of Output_data in which we have constant data to
792 // output.
793 
794 class Output_data_const : public Output_section_data
795 {
796  public:
Output_data_const(const std::string & data,uint64_t addralign)797   Output_data_const(const std::string& data, uint64_t addralign)
798     : Output_section_data(data.size(), addralign, true), data_(data)
799   { }
800 
Output_data_const(const char * p,off_t len,uint64_t addralign)801   Output_data_const(const char* p, off_t len, uint64_t addralign)
802     : Output_section_data(len, addralign, true), data_(p, len)
803   { }
804 
Output_data_const(const unsigned char * p,off_t len,uint64_t addralign)805   Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
806     : Output_section_data(len, addralign, true),
807       data_(reinterpret_cast<const char*>(p), len)
808   { }
809 
810  protected:
811   // Write the data to the output file.
812   void
813   do_write(Output_file*);
814 
815   // Write the data to a buffer.
816   void
do_write_to_buffer(unsigned char * buffer)817   do_write_to_buffer(unsigned char* buffer)
818   { memcpy(buffer, this->data_.data(), this->data_.size()); }
819 
820   // Write to a map file.
821   void
do_print_to_mapfile(Mapfile * mapfile)822   do_print_to_mapfile(Mapfile* mapfile) const
823   { mapfile->print_output_data(this, _("** fill")); }
824 
825  private:
826   std::string data_;
827 };
828 
829 // Another version of Output_data with constant data, in which the
830 // buffer is allocated by the caller.
831 
832 class Output_data_const_buffer : public Output_section_data
833 {
834  public:
Output_data_const_buffer(const unsigned char * p,off_t len,uint64_t addralign,const char * map_name)835   Output_data_const_buffer(const unsigned char* p, off_t len,
836 			   uint64_t addralign, const char* map_name)
837     : Output_section_data(len, addralign, true),
838       p_(p), map_name_(map_name)
839   { }
840 
841  protected:
842   // Write the data the output file.
843   void
844   do_write(Output_file*);
845 
846   // Write the data to a buffer.
847   void
do_write_to_buffer(unsigned char * buffer)848   do_write_to_buffer(unsigned char* buffer)
849   { memcpy(buffer, this->p_, this->data_size()); }
850 
851   // Write to a map file.
852   void
do_print_to_mapfile(Mapfile * mapfile)853   do_print_to_mapfile(Mapfile* mapfile) const
854   { mapfile->print_output_data(this, _(this->map_name_)); }
855 
856  private:
857   // The data to output.
858   const unsigned char* p_;
859   // Name to use in a map file.  Maps are a rarely used feature, but
860   // the space usage is minor as aren't very many of these objects.
861   const char* map_name_;
862 };
863 
864 // A place holder for a fixed amount of data written out via some
865 // other mechanism.
866 
867 class Output_data_fixed_space : public Output_section_data
868 {
869  public:
Output_data_fixed_space(off_t data_size,uint64_t addralign,const char * map_name)870   Output_data_fixed_space(off_t data_size, uint64_t addralign,
871 			  const char* map_name)
872     : Output_section_data(data_size, addralign, true),
873       map_name_(map_name)
874   { }
875 
876  protected:
877   // Write out the data--the actual data must be written out
878   // elsewhere.
879   void
do_write(Output_file *)880   do_write(Output_file*)
881   { }
882 
883   // Write to a map file.
884   void
do_print_to_mapfile(Mapfile * mapfile)885   do_print_to_mapfile(Mapfile* mapfile) const
886   { mapfile->print_output_data(this, _(this->map_name_)); }
887 
888  private:
889   // Name to use in a map file.  Maps are a rarely used feature, but
890   // the space usage is minor as aren't very many of these objects.
891   const char* map_name_;
892 };
893 
894 // A place holder for variable sized data written out via some other
895 // mechanism.
896 
897 class Output_data_space : public Output_section_data_build
898 {
899  public:
Output_data_space(uint64_t addralign,const char * map_name)900   explicit Output_data_space(uint64_t addralign, const char* map_name)
901     : Output_section_data_build(addralign),
902       map_name_(map_name)
903   { }
904 
Output_data_space(off_t data_size,uint64_t addralign,const char * map_name)905   explicit Output_data_space(off_t data_size, uint64_t addralign,
906 			     const char* map_name)
907     : Output_section_data_build(data_size, addralign),
908       map_name_(map_name)
909   { }
910 
911   // Set the alignment.
912   void
set_space_alignment(uint64_t align)913   set_space_alignment(uint64_t align)
914   { this->set_addralign(align); }
915 
916  protected:
917   // Write out the data--the actual data must be written out
918   // elsewhere.
919   void
do_write(Output_file *)920   do_write(Output_file*)
921   { }
922 
923   // Write to a map file.
924   void
do_print_to_mapfile(Mapfile * mapfile)925   do_print_to_mapfile(Mapfile* mapfile) const
926   { mapfile->print_output_data(this, _(this->map_name_)); }
927 
928  private:
929   // Name to use in a map file.  Maps are a rarely used feature, but
930   // the space usage is minor as aren't very many of these objects.
931   const char* map_name_;
932 };
933 
934 // Fill fixed space with zeroes.  This is just like
935 // Output_data_fixed_space, except that the map name is known.
936 
937 class Output_data_zero_fill : public Output_section_data
938 {
939  public:
Output_data_zero_fill(off_t data_size,uint64_t addralign)940   Output_data_zero_fill(off_t data_size, uint64_t addralign)
941     : Output_section_data(data_size, addralign, true)
942   { }
943 
944  protected:
945   // There is no data to write out.
946   void
do_write(Output_file *)947   do_write(Output_file*)
948   { }
949 
950   // Write to a map file.
951   void
do_print_to_mapfile(Mapfile * mapfile)952   do_print_to_mapfile(Mapfile* mapfile) const
953   { mapfile->print_output_data(this, "** zero fill"); }
954 };
955 
956 // A string table which goes into an output section.
957 
958 class Output_data_strtab : public Output_section_data
959 {
960  public:
Output_data_strtab(Stringpool * strtab)961   Output_data_strtab(Stringpool* strtab)
962     : Output_section_data(1), strtab_(strtab)
963   { }
964 
965  protected:
966   // This is called to update the section size prior to assigning
967   // the address and file offset.
968   void
update_data_size()969   update_data_size()
970   { this->set_final_data_size(); }
971 
972   // This is called to set the address and file offset.  Here we make
973   // sure that the Stringpool is finalized.
974   void
975   set_final_data_size();
976 
977   // Write out the data.
978   void
979   do_write(Output_file*);
980 
981   // Write the data to a buffer.
982   void
do_write_to_buffer(unsigned char * buffer)983   do_write_to_buffer(unsigned char* buffer)
984   { this->strtab_->write_to_buffer(buffer, this->data_size()); }
985 
986   // Write to a map file.
987   void
do_print_to_mapfile(Mapfile * mapfile)988   do_print_to_mapfile(Mapfile* mapfile) const
989   { mapfile->print_output_data(this, _("** string table")); }
990 
991  private:
992   Stringpool* strtab_;
993 };
994 
995 // This POD class is used to represent a single reloc in the output
996 // file.  This could be a private class within Output_data_reloc, but
997 // the templatization is complex enough that I broke it out into a
998 // separate class.  The class is templatized on either elfcpp::SHT_REL
999 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1000 // relocation or an ordinary relocation.
1001 
1002 // A relocation can be against a global symbol, a local symbol, a
1003 // local section symbol, an output section, or the undefined symbol at
1004 // index 0.  We represent the latter by using a NULL global symbol.
1005 
1006 template<int sh_type, bool dynamic, int size, bool big_endian>
1007 class Output_reloc;
1008 
1009 template<bool dynamic, int size, bool big_endian>
1010 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1011 {
1012  public:
1013   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1014   typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1015 
1016   static const Address invalid_address = static_cast<Address>(0) - 1;
1017 
1018   // An uninitialized entry.  We need this because we want to put
1019   // instances of this class into an STL container.
Output_reloc()1020   Output_reloc()
1021     : local_sym_index_(INVALID_CODE)
1022   { }
1023 
1024   // We have a bunch of different constructors.  They come in pairs
1025   // depending on how the address of the relocation is specified.  It
1026   // can either be an offset in an Output_data or an offset in an
1027   // input section.
1028 
1029   // A reloc against a global symbol.
1030 
1031   Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1032 	       Address address, bool is_relative, bool is_symbolless,
1033 	       bool use_plt_offset);
1034 
1035   Output_reloc(Symbol* gsym, unsigned int type,
1036 	       Sized_relobj<size, big_endian>* relobj,
1037 	       unsigned int shndx, Address address, bool is_relative,
1038 	       bool is_symbolless, bool use_plt_offset);
1039 
1040   // A reloc against a local symbol or local section symbol.
1041 
1042   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1043 	       unsigned int local_sym_index, unsigned int type,
1044 	       Output_data* od, Address address, bool is_relative,
1045 	       bool is_symbolless, bool is_section_symbol,
1046 	       bool use_plt_offset);
1047 
1048   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1049 	       unsigned int local_sym_index, unsigned int type,
1050 	       unsigned int shndx, Address address, bool is_relative,
1051 	       bool is_symbolless, bool is_section_symbol,
1052 	       bool use_plt_offset);
1053 
1054   // A reloc against the STT_SECTION symbol of an output section.
1055 
1056   Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1057 	       Address address, bool is_relative);
1058 
1059   Output_reloc(Output_section* os, unsigned int type,
1060 	       Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1061 	       Address address, bool is_relative);
1062 
1063   // An absolute or relative relocation with no symbol.
1064 
1065   Output_reloc(unsigned int type, Output_data* od, Address address,
1066 	       bool is_relative);
1067 
1068   Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1069 	       unsigned int shndx, Address address, bool is_relative);
1070 
1071   // A target specific relocation.  The target will be called to get
1072   // the symbol index, passing ARG.  The type and offset will be set
1073   // as for other relocation types.
1074 
1075   Output_reloc(unsigned int type, void* arg, Output_data* od,
1076 	       Address address);
1077 
1078   Output_reloc(unsigned int type, void* arg,
1079 	       Sized_relobj<size, big_endian>* relobj,
1080 	       unsigned int shndx, Address address);
1081 
1082   // Return the reloc type.
1083   unsigned int
type()1084   type() const
1085   { return this->type_; }
1086 
1087   // Return whether this is a RELATIVE relocation.
1088   bool
is_relative()1089   is_relative() const
1090   { return this->is_relative_; }
1091 
1092   // Return whether this is a relocation which should not use
1093   // a symbol, but which obtains its addend from a symbol.
1094   bool
is_symbolless()1095   is_symbolless() const
1096   { return this->is_symbolless_; }
1097 
1098   // Return whether this is against a local section symbol.
1099   bool
is_local_section_symbol()1100   is_local_section_symbol() const
1101   {
1102     return (this->local_sym_index_ != GSYM_CODE
1103 	    && this->local_sym_index_ != SECTION_CODE
1104 	    && this->local_sym_index_ != INVALID_CODE
1105 	    && this->local_sym_index_ != TARGET_CODE
1106 	    && this->is_section_symbol_);
1107   }
1108 
1109   // Return whether this is a target specific relocation.
1110   bool
is_target_specific()1111   is_target_specific() const
1112   { return this->local_sym_index_ == TARGET_CODE; }
1113 
1114   // Return the argument to pass to the target for a target specific
1115   // relocation.
1116   void*
target_arg()1117   target_arg() const
1118   {
1119     gold_assert(this->local_sym_index_ == TARGET_CODE);
1120     return this->u1_.arg;
1121   }
1122 
1123   // For a local section symbol, return the offset of the input
1124   // section within the output section.  ADDEND is the addend being
1125   // applied to the input section.
1126   Address
1127   local_section_offset(Addend addend) const;
1128 
1129   // Get the value of the symbol referred to by a Rel relocation when
1130   // we are adding the given ADDEND.
1131   Address
1132   symbol_value(Addend addend) const;
1133 
1134   // If this relocation is against an input section, return the
1135   // relocatable object containing the input section.
1136   Sized_relobj<size, big_endian>*
get_relobj()1137   get_relobj() const
1138   {
1139     if (this->shndx_ == INVALID_CODE)
1140       return NULL;
1141     return this->u2_.relobj;
1142   }
1143 
1144   // Write the reloc entry to an output view.
1145   void
1146   write(unsigned char* pov) const;
1147 
1148   // Write the offset and info fields to Write_rel.
1149   template<typename Write_rel>
1150   void write_rel(Write_rel*) const;
1151 
1152   // This is used when sorting dynamic relocs.  Return -1 to sort this
1153   // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1154   int
1155   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1156     const;
1157 
1158   // Return whether this reloc should be sorted before the argument
1159   // when sorting dynamic relocs.
1160   bool
sort_before(const Output_reloc<elfcpp::SHT_REL,dynamic,size,big_endian> & r2)1161   sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1162 	      r2) const
1163   { return this->compare(r2) < 0; }
1164 
1165  private:
1166   // Record that we need a dynamic symbol index.
1167   void
1168   set_needs_dynsym_index();
1169 
1170   // Return the symbol index.
1171   unsigned int
1172   get_symbol_index() const;
1173 
1174   // Return the output address.
1175   Address
1176   get_address() const;
1177 
1178   // Codes for local_sym_index_.
1179   enum
1180   {
1181     // Global symbol.
1182     GSYM_CODE = -1U,
1183     // Output section.
1184     SECTION_CODE = -2U,
1185     // Target specific.
1186     TARGET_CODE = -3U,
1187     // Invalid uninitialized entry.
1188     INVALID_CODE = -4U
1189   };
1190 
1191   union
1192   {
1193     // For a local symbol or local section symbol
1194     // (this->local_sym_index_ >= 0), the object.  We will never
1195     // generate a relocation against a local symbol in a dynamic
1196     // object; that doesn't make sense.  And our callers will always
1197     // be templatized, so we use Sized_relobj here.
1198     Sized_relobj<size, big_endian>* relobj;
1199     // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1200     // symbol.  If this is NULL, it indicates a relocation against the
1201     // undefined 0 symbol.
1202     Symbol* gsym;
1203     // For a relocation against an output section
1204     // (this->local_sym_index_ == SECTION_CODE), the output section.
1205     Output_section* os;
1206     // For a target specific relocation, an argument to pass to the
1207     // target.
1208     void* arg;
1209   } u1_;
1210   union
1211   {
1212     // If this->shndx_ is not INVALID CODE, the object which holds the
1213     // input section being used to specify the reloc address.
1214     Sized_relobj<size, big_endian>* relobj;
1215     // If this->shndx_ is INVALID_CODE, the output data being used to
1216     // specify the reloc address.  This may be NULL if the reloc
1217     // address is absolute.
1218     Output_data* od;
1219   } u2_;
1220   // The address offset within the input section or the Output_data.
1221   Address address_;
1222   // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1223   // relocation against an output section, or TARGET_CODE for a target
1224   // specific relocation, or INVALID_CODE for an uninitialized value.
1225   // Otherwise, for a local symbol (this->is_section_symbol_ is
1226   // false), the local symbol index.  For a local section symbol
1227   // (this->is_section_symbol_ is true), the section index in the
1228   // input file.
1229   unsigned int local_sym_index_;
1230   // The reloc type--a processor specific code.
1231   unsigned int type_ : 28;
1232   // True if the relocation is a RELATIVE relocation.
1233   bool is_relative_ : 1;
1234   // True if the relocation is one which should not use
1235   // a symbol, but which obtains its addend from a symbol.
1236   bool is_symbolless_ : 1;
1237   // True if the relocation is against a section symbol.
1238   bool is_section_symbol_ : 1;
1239   // True if the addend should be the PLT offset.
1240   // (Used only for RELA, but stored here for space.)
1241   bool use_plt_offset_ : 1;
1242   // If the reloc address is an input section in an object, the
1243   // section index.  This is INVALID_CODE if the reloc address is
1244   // specified in some other way.
1245   unsigned int shndx_;
1246 };
1247 
1248 // The SHT_RELA version of Output_reloc<>.  This is just derived from
1249 // the SHT_REL version of Output_reloc, but it adds an addend.
1250 
1251 template<bool dynamic, int size, bool big_endian>
1252 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1253 {
1254  public:
1255   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1256   typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1257 
1258   // An uninitialized entry.
Output_reloc()1259   Output_reloc()
1260     : rel_()
1261   { }
1262 
1263   // A reloc against a global symbol.
1264 
Output_reloc(Symbol * gsym,unsigned int type,Output_data * od,Address address,Addend addend,bool is_relative,bool is_symbolless,bool use_plt_offset)1265   Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1266 	       Address address, Addend addend, bool is_relative,
1267 	       bool is_symbolless, bool use_plt_offset)
1268     : rel_(gsym, type, od, address, is_relative, is_symbolless,
1269 	   use_plt_offset),
1270       addend_(addend)
1271   { }
1272 
Output_reloc(Symbol * gsym,unsigned int type,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend,bool is_relative,bool is_symbolless,bool use_plt_offset)1273   Output_reloc(Symbol* gsym, unsigned int type,
1274 	       Sized_relobj<size, big_endian>* relobj,
1275 	       unsigned int shndx, Address address, Addend addend,
1276 	       bool is_relative, bool is_symbolless, bool use_plt_offset)
1277     : rel_(gsym, type, relobj, shndx, address, is_relative,
1278 	   is_symbolless, use_plt_offset), addend_(addend)
1279   { }
1280 
1281   // A reloc against a local symbol.
1282 
Output_reloc(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,Address address,Addend addend,bool is_relative,bool is_symbolless,bool is_section_symbol,bool use_plt_offset)1283   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1284 	       unsigned int local_sym_index, unsigned int type,
1285 	       Output_data* od, Address address,
1286 	       Addend addend, bool is_relative,
1287 	       bool is_symbolless, bool is_section_symbol,
1288 	       bool use_plt_offset)
1289     : rel_(relobj, local_sym_index, type, od, address, is_relative,
1290 	   is_symbolless, is_section_symbol, use_plt_offset),
1291       addend_(addend)
1292   { }
1293 
Output_reloc(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,unsigned int shndx,Address address,Addend addend,bool is_relative,bool is_symbolless,bool is_section_symbol,bool use_plt_offset)1294   Output_reloc(Sized_relobj<size, big_endian>* relobj,
1295 	       unsigned int local_sym_index, unsigned int type,
1296 	       unsigned int shndx, Address address,
1297 	       Addend addend, bool is_relative,
1298 	       bool is_symbolless, bool is_section_symbol,
1299 	       bool use_plt_offset)
1300     : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1301 	   is_symbolless, is_section_symbol, use_plt_offset),
1302       addend_(addend)
1303   { }
1304 
1305   // A reloc against the STT_SECTION symbol of an output section.
1306 
Output_reloc(Output_section * os,unsigned int type,Output_data * od,Address address,Addend addend,bool is_relative)1307   Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1308 	       Address address, Addend addend, bool is_relative)
1309     : rel_(os, type, od, address, is_relative), addend_(addend)
1310   { }
1311 
Output_reloc(Output_section * os,unsigned int type,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend,bool is_relative)1312   Output_reloc(Output_section* os, unsigned int type,
1313 	       Sized_relobj<size, big_endian>* relobj,
1314 	       unsigned int shndx, Address address, Addend addend,
1315 	       bool is_relative)
1316     : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1317   { }
1318 
1319   // An absolute or relative relocation with no symbol.
1320 
Output_reloc(unsigned int type,Output_data * od,Address address,Addend addend,bool is_relative)1321   Output_reloc(unsigned int type, Output_data* od, Address address,
1322 	       Addend addend, bool is_relative)
1323     : rel_(type, od, address, is_relative), addend_(addend)
1324   { }
1325 
Output_reloc(unsigned int type,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend,bool is_relative)1326   Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1327 	       unsigned int shndx, Address address, Addend addend,
1328 	       bool is_relative)
1329     : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1330   { }
1331 
1332   // A target specific relocation.  The target will be called to get
1333   // the symbol index and the addend, passing ARG.  The type and
1334   // offset will be set as for other relocation types.
1335 
Output_reloc(unsigned int type,void * arg,Output_data * od,Address address,Addend addend)1336   Output_reloc(unsigned int type, void* arg, Output_data* od,
1337 	       Address address, Addend addend)
1338     : rel_(type, arg, od, address), addend_(addend)
1339   { }
1340 
Output_reloc(unsigned int type,void * arg,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)1341   Output_reloc(unsigned int type, void* arg,
1342 	       Sized_relobj<size, big_endian>* relobj,
1343 	       unsigned int shndx, Address address, Addend addend)
1344     : rel_(type, arg, relobj, shndx, address), addend_(addend)
1345   { }
1346 
1347   // Return whether this is a RELATIVE relocation.
1348   bool
is_relative()1349   is_relative() const
1350   { return this->rel_.is_relative(); }
1351 
1352   // Return whether this is a relocation which should not use
1353   // a symbol, but which obtains its addend from a symbol.
1354   bool
is_symbolless()1355   is_symbolless() const
1356   { return this->rel_.is_symbolless(); }
1357 
1358   // If this relocation is against an input section, return the
1359   // relocatable object containing the input section.
1360   Sized_relobj<size, big_endian>*
get_relobj()1361   get_relobj() const
1362   { return this->rel_.get_relobj(); }
1363 
1364   // Write the reloc entry to an output view.
1365   void
1366   write(unsigned char* pov) const;
1367 
1368   // Return whether this reloc should be sorted before the argument
1369   // when sorting dynamic relocs.
1370   bool
sort_before(const Output_reloc<elfcpp::SHT_RELA,dynamic,size,big_endian> & r2)1371   sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1372 	      r2) const
1373   {
1374     int i = this->rel_.compare(r2.rel_);
1375     if (i < 0)
1376       return true;
1377     else if (i > 0)
1378       return false;
1379     else
1380       return this->addend_ < r2.addend_;
1381   }
1382 
1383  private:
1384   // The basic reloc.
1385   Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1386   // The addend.
1387   Addend addend_;
1388 };
1389 
1390 // Output_data_reloc_generic is a non-template base class for
1391 // Output_data_reloc_base.  This gives the generic code a way to hold
1392 // a pointer to a reloc section.
1393 
1394 class Output_data_reloc_generic : public Output_section_data_build
1395 {
1396  public:
Output_data_reloc_generic(int size,bool sort_relocs)1397   Output_data_reloc_generic(int size, bool sort_relocs)
1398     : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1399       relative_reloc_count_(0), sort_relocs_(sort_relocs)
1400   { }
1401 
1402   // Return the number of relative relocs in this section.
1403   size_t
relative_reloc_count()1404   relative_reloc_count() const
1405   { return this->relative_reloc_count_; }
1406 
1407   // Whether we should sort the relocs.
1408   bool
sort_relocs()1409   sort_relocs() const
1410   { return this->sort_relocs_; }
1411 
1412   // Add a reloc of type TYPE against the global symbol GSYM.  The
1413   // relocation applies to the data at offset ADDRESS within OD.
1414   virtual void
1415   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1416 		     uint64_t address, uint64_t addend) = 0;
1417 
1418   // Add a reloc of type TYPE against the global symbol GSYM.  The
1419   // relocation applies to data at offset ADDRESS within section SHNDX
1420   // of object file RELOBJ.  OD is the associated output section.
1421   virtual void
1422   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1423 		     Relobj* relobj, unsigned int shndx, uint64_t address,
1424 		     uint64_t addend) = 0;
1425 
1426   // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1427   // in RELOBJ.  The relocation applies to the data at offset ADDRESS
1428   // within OD.
1429   virtual void
1430   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1431 		    unsigned int type, Output_data* od, uint64_t address,
1432 		    uint64_t addend) = 0;
1433 
1434   // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1435   // in RELOBJ.  The relocation applies to the data at offset ADDRESS
1436   // within section SHNDX of RELOBJ.  OD is the associated output
1437   // section.
1438   virtual void
1439   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1440 		    unsigned int type, Output_data* od, unsigned int shndx,
1441 		    uint64_t address, uint64_t addend) = 0;
1442 
1443   // Add a reloc of type TYPE against the STT_SECTION symbol of the
1444   // output section OS.  The relocation applies to the data at offset
1445   // ADDRESS within OD.
1446   virtual void
1447   add_output_section_generic(Output_section *os, unsigned int type,
1448 			     Output_data* od, uint64_t address,
1449 			     uint64_t addend) = 0;
1450 
1451   // Add a reloc of type TYPE against the STT_SECTION symbol of the
1452   // output section OS.  The relocation applies to the data at offset
1453   // ADDRESS within section SHNDX of RELOBJ.  OD is the associated
1454   // output section.
1455   virtual void
1456   add_output_section_generic(Output_section* os, unsigned int type,
1457 			     Output_data* od, Relobj* relobj,
1458 			     unsigned int shndx, uint64_t address,
1459 			     uint64_t addend) = 0;
1460 
1461  protected:
1462   // Note that we've added another relative reloc.
1463   void
bump_relative_reloc_count()1464   bump_relative_reloc_count()
1465   { ++this->relative_reloc_count_; }
1466 
1467  private:
1468   // The number of relative relocs added to this section.  This is to
1469   // support DT_RELCOUNT.
1470   size_t relative_reloc_count_;
1471   // Whether to sort the relocations when writing them out, to make
1472   // the dynamic linker more efficient.
1473   bool sort_relocs_;
1474 };
1475 
1476 // Output_data_reloc is used to manage a section containing relocs.
1477 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
1478 // indicates whether this is a dynamic relocation or a normal
1479 // relocation.  Output_data_reloc_base is a base class.
1480 // Output_data_reloc is the real class, which we specialize based on
1481 // the reloc type.
1482 
1483 template<int sh_type, bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc_base : public Output_data_reloc_generic
1485 {
1486  public:
1487   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1488   typedef typename Output_reloc_type::Address Address;
1489   static const int reloc_size =
1490     Reloc_types<sh_type, size, big_endian>::reloc_size;
1491 
1492   // Construct the section.
Output_data_reloc_base(bool sort_relocs)1493   Output_data_reloc_base(bool sort_relocs)
1494     : Output_data_reloc_generic(size, sort_relocs)
1495   { }
1496 
1497  protected:
1498   // Write out the data.
1499   void
1500   do_write(Output_file*);
1501 
1502   // Set the entry size and the link.
1503   void
1504   do_adjust_output_section(Output_section* os);
1505 
1506   // Write to a map file.
1507   void
do_print_to_mapfile(Mapfile * mapfile)1508   do_print_to_mapfile(Mapfile* mapfile) const
1509   {
1510     mapfile->print_output_data(this,
1511 			       (dynamic
1512 				? _("** dynamic relocs")
1513 				: _("** relocs")));
1514   }
1515 
1516   // Add a relocation entry.
1517   void
add(Output_data * od,const Output_reloc_type & reloc)1518   add(Output_data* od, const Output_reloc_type& reloc)
1519   {
1520     this->relocs_.push_back(reloc);
1521     this->set_current_data_size(this->relocs_.size() * reloc_size);
1522     if (dynamic)
1523       od->add_dynamic_reloc();
1524     if (reloc.is_relative())
1525       this->bump_relative_reloc_count();
1526     Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1527     if (relobj != NULL)
1528       relobj->add_dyn_reloc(this->relocs_.size() - 1);
1529   }
1530 
1531  private:
1532   typedef std::vector<Output_reloc_type> Relocs;
1533 
1534   // The class used to sort the relocations.
1535   struct Sort_relocs_comparison
1536   {
1537     bool
operatorSort_relocs_comparison1538     operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1539     { return r1.sort_before(r2); }
1540   };
1541 
1542   // The relocations in this section.
1543   Relocs relocs_;
1544 };
1545 
1546 // The class which callers actually create.
1547 
1548 template<int sh_type, bool dynamic, int size, bool big_endian>
1549 class Output_data_reloc;
1550 
1551 // The SHT_REL version of Output_data_reloc.
1552 
1553 template<bool dynamic, int size, bool big_endian>
1554 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1555   : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1556 {
1557  private:
1558   typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1559 				 big_endian> Base;
1560 
1561  public:
1562   typedef typename Base::Output_reloc_type Output_reloc_type;
1563   typedef typename Output_reloc_type::Address Address;
1564 
Output_data_reloc(bool sr)1565   Output_data_reloc(bool sr)
1566     : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1567   { }
1568 
1569   // Add a reloc against a global symbol.
1570 
1571   void
add_global(Symbol * gsym,unsigned int type,Output_data * od,Address address)1572   add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1573   {
1574     this->add(od, Output_reloc_type(gsym, type, od, address,
1575 				    false, false, false));
1576   }
1577 
1578   void
add_global(Symbol * gsym,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1579   add_global(Symbol* gsym, unsigned int type, Output_data* od,
1580 	     Sized_relobj<size, big_endian>* relobj,
1581 	     unsigned int shndx, Address address)
1582   {
1583     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1584 				    false, false, false));
1585   }
1586 
1587   void
add_global_generic(Symbol * gsym,unsigned int type,Output_data * od,uint64_t address,uint64_t addend)1588   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1589 		     uint64_t address, uint64_t addend)
1590   {
1591     gold_assert(addend == 0);
1592     this->add(od, Output_reloc_type(gsym, type, od,
1593 				    convert_types<Address, uint64_t>(address),
1594 				    false, false, false));
1595   }
1596 
1597   void
add_global_generic(Symbol * gsym,unsigned int type,Output_data * od,Relobj * relobj,unsigned int shndx,uint64_t address,uint64_t addend)1598   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1599 		     Relobj* relobj, unsigned int shndx, uint64_t address,
1600 		     uint64_t addend)
1601   {
1602     gold_assert(addend == 0);
1603     Sized_relobj<size, big_endian>* sized_relobj =
1604       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1605     this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1606 				    convert_types<Address, uint64_t>(address),
1607 				    false, false, false));
1608   }
1609 
1610   // Add a RELATIVE reloc against a global symbol.  The final relocation
1611   // will not reference the symbol.
1612 
1613   void
add_global_relative(Symbol * gsym,unsigned int type,Output_data * od,Address address)1614   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1615 		      Address address)
1616   {
1617     this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1618 				    false));
1619   }
1620 
1621   void
add_global_relative(Symbol * gsym,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1622   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1623 		      Sized_relobj<size, big_endian>* relobj,
1624 		      unsigned int shndx, Address address)
1625   {
1626     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1627 				    true, true, false));
1628   }
1629 
1630   // Add a global relocation which does not use a symbol for the relocation,
1631   // but which gets its addend from a symbol.
1632 
1633   void
add_symbolless_global_addend(Symbol * gsym,unsigned int type,Output_data * od,Address address)1634   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1635 			       Output_data* od, Address address)
1636   {
1637     this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1638 				    false));
1639   }
1640 
1641   void
add_symbolless_global_addend(Symbol * gsym,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1642   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1643 			       Output_data* od,
1644 			       Sized_relobj<size, big_endian>* relobj,
1645 			       unsigned int shndx, Address address)
1646   {
1647     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1648 				    false, true, false));
1649   }
1650 
1651   // Add a reloc against a local symbol.
1652 
1653   void
add_local(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,Address address)1654   add_local(Sized_relobj<size, big_endian>* relobj,
1655 	    unsigned int local_sym_index, unsigned int type,
1656 	    Output_data* od, Address address)
1657   {
1658     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1659 				    address, false, false, false, false));
1660   }
1661 
1662   void
add_local(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,Address address)1663   add_local(Sized_relobj<size, big_endian>* relobj,
1664 	    unsigned int local_sym_index, unsigned int type,
1665 	    Output_data* od, unsigned int shndx, Address address)
1666   {
1667     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1668 				    address, false, false, false, false));
1669   }
1670 
1671   void
add_local_generic(Relobj * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,uint64_t address,uint64_t addend)1672   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1673 		    unsigned int type, Output_data* od, uint64_t address,
1674 		    uint64_t addend)
1675   {
1676     gold_assert(addend == 0);
1677     Sized_relobj<size, big_endian>* sized_relobj =
1678       static_cast<Sized_relobj<size, big_endian> *>(relobj);
1679     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1680 				    convert_types<Address, uint64_t>(address),
1681 				    false, false, false, false));
1682   }
1683 
1684   void
add_local_generic(Relobj * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,uint64_t address,uint64_t addend)1685   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1686 		    unsigned int type, Output_data* od, unsigned int shndx,
1687 		    uint64_t address, uint64_t addend)
1688   {
1689     gold_assert(addend == 0);
1690     Sized_relobj<size, big_endian>* sized_relobj =
1691       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1692     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1693 				    convert_types<Address, uint64_t>(address),
1694 				    false, false, false, false));
1695   }
1696 
1697   // Add a RELATIVE reloc against a local symbol.
1698 
1699   void
add_local_relative(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,Address address)1700   add_local_relative(Sized_relobj<size, big_endian>* relobj,
1701 		     unsigned int local_sym_index, unsigned int type,
1702 		     Output_data* od, Address address)
1703   {
1704     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1705 				    address, true, true, false, false));
1706   }
1707 
1708   void
add_local_relative(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,Address address)1709   add_local_relative(Sized_relobj<size, big_endian>* relobj,
1710 		     unsigned int local_sym_index, unsigned int type,
1711 		     Output_data* od, unsigned int shndx, Address address)
1712   {
1713     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1714 				    address, true, true, false, false));
1715   }
1716 
1717   void
add_local_relative(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,Address address,bool use_plt_offset)1718   add_local_relative(Sized_relobj<size, big_endian>* relobj,
1719 		     unsigned int local_sym_index, unsigned int type,
1720 		     Output_data* od, unsigned int shndx, Address address,
1721 		     bool use_plt_offset)
1722   {
1723     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1724 				    address, true, true, false,
1725 				    use_plt_offset));
1726   }
1727 
1728   // Add a local relocation which does not use a symbol for the relocation,
1729   // but which gets its addend from a symbol.
1730 
1731   void
add_symbolless_local_addend(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,Address address)1732   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1733 			      unsigned int local_sym_index, unsigned int type,
1734 			      Output_data* od, Address address)
1735   {
1736     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1737 				    address, false, true, false, false));
1738   }
1739 
1740   void
add_symbolless_local_addend(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,Address address)1741   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1742 			      unsigned int local_sym_index, unsigned int type,
1743 			      Output_data* od, unsigned int shndx,
1744 			      Address address)
1745   {
1746     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1747 				    address, false, true, false, false));
1748   }
1749 
1750   // Add a reloc against a local section symbol.  This will be
1751   // converted into a reloc against the STT_SECTION symbol of the
1752   // output section.
1753 
1754   void
add_local_section(Sized_relobj<size,big_endian> * relobj,unsigned int input_shndx,unsigned int type,Output_data * od,Address address)1755   add_local_section(Sized_relobj<size, big_endian>* relobj,
1756 		    unsigned int input_shndx, unsigned int type,
1757 		    Output_data* od, Address address)
1758   {
1759     this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1760 				    address, false, false, true, false));
1761   }
1762 
1763   void
add_local_section(Sized_relobj<size,big_endian> * relobj,unsigned int input_shndx,unsigned int type,Output_data * od,unsigned int shndx,Address address)1764   add_local_section(Sized_relobj<size, big_endian>* relobj,
1765 		    unsigned int input_shndx, unsigned int type,
1766 		    Output_data* od, unsigned int shndx, Address address)
1767   {
1768     this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1769 				    address, false, false, true, false));
1770   }
1771 
1772   // A reloc against the STT_SECTION symbol of an output section.
1773   // OS is the Output_section that the relocation refers to; OD is
1774   // the Output_data object being relocated.
1775 
1776   void
add_output_section(Output_section * os,unsigned int type,Output_data * od,Address address)1777   add_output_section(Output_section* os, unsigned int type,
1778 		     Output_data* od, Address address)
1779   { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1780 
1781   void
add_output_section(Output_section * os,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1782   add_output_section(Output_section* os, unsigned int type, Output_data* od,
1783 		     Sized_relobj<size, big_endian>* relobj,
1784 		     unsigned int shndx, Address address)
1785   { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1786 
1787   void
add_output_section_generic(Output_section * os,unsigned int type,Output_data * od,uint64_t address,uint64_t addend)1788   add_output_section_generic(Output_section* os, unsigned int type,
1789 			     Output_data* od, uint64_t address,
1790 			     uint64_t addend)
1791   {
1792     gold_assert(addend == 0);
1793     this->add(od, Output_reloc_type(os, type, od,
1794 				    convert_types<Address, uint64_t>(address),
1795 				    false));
1796   }
1797 
1798   void
add_output_section_generic(Output_section * os,unsigned int type,Output_data * od,Relobj * relobj,unsigned int shndx,uint64_t address,uint64_t addend)1799   add_output_section_generic(Output_section* os, unsigned int type,
1800 			     Output_data* od, Relobj* relobj,
1801 			     unsigned int shndx, uint64_t address,
1802 			     uint64_t addend)
1803   {
1804     gold_assert(addend == 0);
1805     Sized_relobj<size, big_endian>* sized_relobj =
1806       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1807     this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1808 				    convert_types<Address, uint64_t>(address),
1809 				    false));
1810   }
1811 
1812   // As above, but the reloc TYPE is relative
1813 
1814   void
add_output_section_relative(Output_section * os,unsigned int type,Output_data * od,Address address)1815   add_output_section_relative(Output_section* os, unsigned int type,
1816 			      Output_data* od, Address address)
1817   { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1818 
1819   void
add_output_section_relative(Output_section * os,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1820   add_output_section_relative(Output_section* os, unsigned int type,
1821 			      Output_data* od,
1822 			      Sized_relobj<size, big_endian>* relobj,
1823 			      unsigned int shndx, Address address)
1824   { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1825 
1826   // Add an absolute relocation.
1827 
1828   void
add_absolute(unsigned int type,Output_data * od,Address address)1829   add_absolute(unsigned int type, Output_data* od, Address address)
1830   { this->add(od, Output_reloc_type(type, od, address, false)); }
1831 
1832   void
add_absolute(unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1833   add_absolute(unsigned int type, Output_data* od,
1834 	       Sized_relobj<size, big_endian>* relobj,
1835 	       unsigned int shndx, Address address)
1836   { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1837 
1838   // Add a relative relocation
1839 
1840   void
add_relative(unsigned int type,Output_data * od,Address address)1841   add_relative(unsigned int type, Output_data* od, Address address)
1842   { this->add(od, Output_reloc_type(type, od, address, true)); }
1843 
1844   void
add_relative(unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1845   add_relative(unsigned int type, Output_data* od,
1846 	       Sized_relobj<size, big_endian>* relobj,
1847 	       unsigned int shndx, Address address)
1848   { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1849 
1850   // Add a target specific relocation.  A target which calls this must
1851   // define the reloc_symbol_index and reloc_addend virtual functions.
1852 
1853   void
add_target_specific(unsigned int type,void * arg,Output_data * od,Address address)1854   add_target_specific(unsigned int type, void* arg, Output_data* od,
1855 		      Address address)
1856   { this->add(od, Output_reloc_type(type, arg, od, address)); }
1857 
1858   void
add_target_specific(unsigned int type,void * arg,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address)1859   add_target_specific(unsigned int type, void* arg, Output_data* od,
1860 		      Sized_relobj<size, big_endian>* relobj,
1861 		      unsigned int shndx, Address address)
1862   { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1863 };
1864 
1865 // The SHT_RELA version of Output_data_reloc.
1866 
1867 template<bool dynamic, int size, bool big_endian>
1868 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1869   : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1870 {
1871  private:
1872   typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1873 				 big_endian> Base;
1874 
1875  public:
1876   typedef typename Base::Output_reloc_type Output_reloc_type;
1877   typedef typename Output_reloc_type::Address Address;
1878   typedef typename Output_reloc_type::Addend Addend;
1879 
Output_data_reloc(bool sr)1880   Output_data_reloc(bool sr)
1881     : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1882   { }
1883 
1884   // Add a reloc against a global symbol.
1885 
1886   void
add_global(Symbol * gsym,unsigned int type,Output_data * od,Address address,Addend addend)1887   add_global(Symbol* gsym, unsigned int type, Output_data* od,
1888 	     Address address, Addend addend)
1889   {
1890     this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1891 				    false, false, false));
1892   }
1893 
1894   void
add_global(Symbol * gsym,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)1895   add_global(Symbol* gsym, unsigned int type, Output_data* od,
1896 	     Sized_relobj<size, big_endian>* relobj,
1897 	     unsigned int shndx, Address address,
1898 	     Addend addend)
1899   {
1900     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1901 				    addend, false, false, false));
1902   }
1903 
1904   void
add_global_generic(Symbol * gsym,unsigned int type,Output_data * od,uint64_t address,uint64_t addend)1905   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1906 		     uint64_t address, uint64_t addend)
1907   {
1908     this->add(od, Output_reloc_type(gsym, type, od,
1909 				    convert_types<Address, uint64_t>(address),
1910 				    convert_types<Addend, uint64_t>(addend),
1911 				    false, false, false));
1912   }
1913 
1914   void
add_global_generic(Symbol * gsym,unsigned int type,Output_data * od,Relobj * relobj,unsigned int shndx,uint64_t address,uint64_t addend)1915   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1916 		     Relobj* relobj, unsigned int shndx, uint64_t address,
1917 		     uint64_t addend)
1918   {
1919     Sized_relobj<size, big_endian>* sized_relobj =
1920       static_cast<Sized_relobj<size, big_endian>*>(relobj);
1921     this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1922 				    convert_types<Address, uint64_t>(address),
1923 				    convert_types<Addend, uint64_t>(addend),
1924 				    false, false, false));
1925   }
1926 
1927   // Add a RELATIVE reloc against a global symbol.  The final output
1928   // relocation will not reference the symbol, but we must keep the symbol
1929   // information long enough to set the addend of the relocation correctly
1930   // when it is written.
1931 
1932   void
add_global_relative(Symbol * gsym,unsigned int type,Output_data * od,Address address,Addend addend,bool use_plt_offset)1933   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1934 		      Address address, Addend addend, bool use_plt_offset)
1935   {
1936     this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1937 				    true, use_plt_offset));
1938   }
1939 
1940   void
add_global_relative(Symbol * gsym,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend,bool use_plt_offset)1941   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1942 		      Sized_relobj<size, big_endian>* relobj,
1943 		      unsigned int shndx, Address address, Addend addend,
1944 		      bool use_plt_offset)
1945   {
1946     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1947 				    addend, true, true, use_plt_offset));
1948   }
1949 
1950   // Add a global relocation which does not use a symbol for the relocation,
1951   // but which gets its addend from a symbol.
1952 
1953   void
add_symbolless_global_addend(Symbol * gsym,unsigned int type,Output_data * od,Address address,Addend addend)1954   add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1955 			       Address address, Addend addend)
1956   {
1957     this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1958 				    false, true, false));
1959   }
1960 
1961   void
add_symbolless_global_addend(Symbol * gsym,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)1962   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1963 			       Output_data* od,
1964 			       Sized_relobj<size, big_endian>* relobj,
1965 			       unsigned int shndx, Address address,
1966 			       Addend addend)
1967   {
1968     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1969 				    addend, false, true, false));
1970   }
1971 
1972   // Add a reloc against a local symbol.
1973 
1974   void
add_local(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,Address address,Addend addend)1975   add_local(Sized_relobj<size, big_endian>* relobj,
1976 	    unsigned int local_sym_index, unsigned int type,
1977 	    Output_data* od, Address address, Addend addend)
1978   {
1979     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1980 				    addend, false, false, false, false));
1981   }
1982 
1983   void
add_local(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,Address address,Addend addend)1984   add_local(Sized_relobj<size, big_endian>* relobj,
1985 	    unsigned int local_sym_index, unsigned int type,
1986 	    Output_data* od, unsigned int shndx, Address address,
1987 	    Addend addend)
1988   {
1989     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1990 				    address, addend, false, false, false,
1991 				    false));
1992   }
1993 
1994   void
add_local_generic(Relobj * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,uint64_t address,uint64_t addend)1995   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1996 		    unsigned int type, Output_data* od, uint64_t address,
1997 		    uint64_t addend)
1998   {
1999     Sized_relobj<size, big_endian>* sized_relobj =
2000       static_cast<Sized_relobj<size, big_endian> *>(relobj);
2001     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
2002 				    convert_types<Address, uint64_t>(address),
2003 				    convert_types<Addend, uint64_t>(addend),
2004 				    false, false, false, false));
2005   }
2006 
2007   void
add_local_generic(Relobj * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,uint64_t address,uint64_t addend)2008   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2009 		    unsigned int type, Output_data* od, unsigned int shndx,
2010 		    uint64_t address, uint64_t addend)
2011   {
2012     Sized_relobj<size, big_endian>* sized_relobj =
2013       static_cast<Sized_relobj<size, big_endian>*>(relobj);
2014     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2015 				    convert_types<Address, uint64_t>(address),
2016 				    convert_types<Addend, uint64_t>(addend),
2017 				    false, false, false, false));
2018   }
2019 
2020   // Add a RELATIVE reloc against a local symbol.
2021 
2022   void
add_local_relative(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,Address address,Addend addend,bool use_plt_offset)2023   add_local_relative(Sized_relobj<size, big_endian>* relobj,
2024 		     unsigned int local_sym_index, unsigned int type,
2025 		     Output_data* od, Address address, Addend addend,
2026 		     bool use_plt_offset)
2027   {
2028     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2029 				    addend, true, true, false,
2030 				    use_plt_offset));
2031   }
2032 
2033   void
add_local_relative(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,Address address,Addend addend,bool use_plt_offset)2034   add_local_relative(Sized_relobj<size, big_endian>* relobj,
2035 		     unsigned int local_sym_index, unsigned int type,
2036 		     Output_data* od, unsigned int shndx, Address address,
2037 		     Addend addend, bool use_plt_offset)
2038   {
2039     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2040 				    address, addend, true, true, false,
2041 				    use_plt_offset));
2042   }
2043 
2044   // Add a local relocation which does not use a symbol for the relocation,
2045   // but which gets it's addend from a symbol.
2046 
2047   void
add_symbolless_local_addend(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,Address address,Addend addend)2048   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2049 			      unsigned int local_sym_index, unsigned int type,
2050 			      Output_data* od, Address address, Addend addend)
2051   {
2052     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2053 				    addend, false, true, false, false));
2054   }
2055 
2056   void
add_symbolless_local_addend(Sized_relobj<size,big_endian> * relobj,unsigned int local_sym_index,unsigned int type,Output_data * od,unsigned int shndx,Address address,Addend addend)2057   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2058 			      unsigned int local_sym_index, unsigned int type,
2059 			      Output_data* od, unsigned int shndx,
2060 			      Address address, Addend addend)
2061   {
2062     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2063 				    address, addend, false, true, false,
2064 				    false));
2065   }
2066 
2067   // Add a reloc against a local section symbol.  This will be
2068   // converted into a reloc against the STT_SECTION symbol of the
2069   // output section.
2070 
2071   void
add_local_section(Sized_relobj<size,big_endian> * relobj,unsigned int input_shndx,unsigned int type,Output_data * od,Address address,Addend addend)2072   add_local_section(Sized_relobj<size, big_endian>* relobj,
2073 		    unsigned int input_shndx, unsigned int type,
2074 		    Output_data* od, Address address, Addend addend)
2075   {
2076     this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2077 				    addend, false, false, true, false));
2078   }
2079 
2080   void
add_local_section(Sized_relobj<size,big_endian> * relobj,unsigned int input_shndx,unsigned int type,Output_data * od,unsigned int shndx,Address address,Addend addend)2081   add_local_section(Sized_relobj<size, big_endian>* relobj,
2082 		    unsigned int input_shndx, unsigned int type,
2083 		    Output_data* od, unsigned int shndx, Address address,
2084 		    Addend addend)
2085   {
2086     this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2087 				    address, addend, false, false, true,
2088 				    false));
2089   }
2090 
2091   // A reloc against the STT_SECTION symbol of an output section.
2092 
2093   void
add_output_section(Output_section * os,unsigned int type,Output_data * od,Address address,Addend addend)2094   add_output_section(Output_section* os, unsigned int type, Output_data* od,
2095 		     Address address, Addend addend)
2096   { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2097 
2098   void
add_output_section(Output_section * os,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)2099   add_output_section(Output_section* os, unsigned int type, Output_data* od,
2100 		     Sized_relobj<size, big_endian>* relobj,
2101 		     unsigned int shndx, Address address, Addend addend)
2102   {
2103     this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2104 				    addend, false));
2105   }
2106 
2107   void
add_output_section_generic(Output_section * os,unsigned int type,Output_data * od,uint64_t address,uint64_t addend)2108   add_output_section_generic(Output_section* os, unsigned int type,
2109 			     Output_data* od, uint64_t address,
2110 			     uint64_t addend)
2111   {
2112     this->add(od, Output_reloc_type(os, type, od,
2113 				    convert_types<Address, uint64_t>(address),
2114 				    convert_types<Addend, uint64_t>(addend),
2115 				    false));
2116   }
2117 
2118   void
add_output_section_generic(Output_section * os,unsigned int type,Output_data * od,Relobj * relobj,unsigned int shndx,uint64_t address,uint64_t addend)2119   add_output_section_generic(Output_section* os, unsigned int type,
2120 			     Output_data* od, Relobj* relobj,
2121 			     unsigned int shndx, uint64_t address,
2122 			     uint64_t addend)
2123   {
2124     Sized_relobj<size, big_endian>* sized_relobj =
2125       static_cast<Sized_relobj<size, big_endian>*>(relobj);
2126     this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2127 				    convert_types<Address, uint64_t>(address),
2128 				    convert_types<Addend, uint64_t>(addend),
2129 				    false));
2130   }
2131 
2132   // As above, but the reloc TYPE is relative
2133 
2134   void
add_output_section_relative(Output_section * os,unsigned int type,Output_data * od,Address address,Addend addend)2135   add_output_section_relative(Output_section* os, unsigned int type,
2136 			      Output_data* od, Address address, Addend addend)
2137   { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2138 
2139   void
add_output_section_relative(Output_section * os,unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)2140   add_output_section_relative(Output_section* os, unsigned int type,
2141 			      Output_data* od,
2142 			      Sized_relobj<size, big_endian>* relobj,
2143 			      unsigned int shndx, Address address,
2144 			      Addend addend)
2145   {
2146     this->add(od, Output_reloc_type(os, type, relobj, shndx,
2147 				    address, addend, true));
2148   }
2149 
2150   // Add an absolute relocation.
2151 
2152   void
add_absolute(unsigned int type,Output_data * od,Address address,Addend addend)2153   add_absolute(unsigned int type, Output_data* od, Address address,
2154 	       Addend addend)
2155   { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2156 
2157   void
add_absolute(unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)2158   add_absolute(unsigned int type, Output_data* od,
2159 	       Sized_relobj<size, big_endian>* relobj,
2160 	       unsigned int shndx, Address address, Addend addend)
2161   {
2162     this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2163 				    false));
2164   }
2165 
2166   // Add a relative relocation
2167 
2168   void
add_relative(unsigned int type,Output_data * od,Address address,Addend addend)2169   add_relative(unsigned int type, Output_data* od, Address address,
2170 	       Addend addend)
2171   { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2172 
2173   void
add_relative(unsigned int type,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)2174   add_relative(unsigned int type, Output_data* od,
2175 	       Sized_relobj<size, big_endian>* relobj,
2176 	       unsigned int shndx, Address address, Addend addend)
2177   {
2178     this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2179 				    true));
2180   }
2181 
2182   // Add a target specific relocation.  A target which calls this must
2183   // define the reloc_symbol_index and reloc_addend virtual functions.
2184 
2185   void
add_target_specific(unsigned int type,void * arg,Output_data * od,Address address,Addend addend)2186   add_target_specific(unsigned int type, void* arg, Output_data* od,
2187 		      Address address, Addend addend)
2188   { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2189 
2190   void
add_target_specific(unsigned int type,void * arg,Output_data * od,Sized_relobj<size,big_endian> * relobj,unsigned int shndx,Address address,Addend addend)2191   add_target_specific(unsigned int type, void* arg, Output_data* od,
2192 		      Sized_relobj<size, big_endian>* relobj,
2193 		      unsigned int shndx, Address address, Addend addend)
2194   {
2195     this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2196 				    addend));
2197   }
2198 };
2199 
2200 // Output_relocatable_relocs represents a relocation section in a
2201 // relocatable link.  The actual data is written out in the target
2202 // hook relocate_relocs.  This just saves space for it.
2203 
2204 template<int sh_type, int size, bool big_endian>
2205 class Output_relocatable_relocs : public Output_section_data
2206 {
2207  public:
Output_relocatable_relocs(Relocatable_relocs * rr)2208   Output_relocatable_relocs(Relocatable_relocs* rr)
2209     : Output_section_data(Output_data::default_alignment_for_size(size)),
2210       rr_(rr)
2211   { }
2212 
2213   void
2214   set_final_data_size();
2215 
2216   // Write out the data.  There is nothing to do here.
2217   void
do_write(Output_file *)2218   do_write(Output_file*)
2219   { }
2220 
2221   // Write to a map file.
2222   void
do_print_to_mapfile(Mapfile * mapfile)2223   do_print_to_mapfile(Mapfile* mapfile) const
2224   { mapfile->print_output_data(this, _("** relocs")); }
2225 
2226  private:
2227   // The relocs associated with this input section.
2228   Relocatable_relocs* rr_;
2229 };
2230 
2231 // Handle a GROUP section.
2232 
2233 template<int size, bool big_endian>
2234 class Output_data_group : public Output_section_data
2235 {
2236  public:
2237   // The constructor clears *INPUT_SHNDXES.
2238   Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2239 		    section_size_type entry_count,
2240 		    elfcpp::Elf_Word flags,
2241 		    std::vector<unsigned int>* input_shndxes);
2242 
2243   void
2244   do_write(Output_file*);
2245 
2246   // Write to a map file.
2247   void
do_print_to_mapfile(Mapfile * mapfile)2248   do_print_to_mapfile(Mapfile* mapfile) const
2249   { mapfile->print_output_data(this, _("** group")); }
2250 
2251   // Set final data size.
2252   void
set_final_data_size()2253   set_final_data_size()
2254   { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2255 
2256  private:
2257   // The input object.
2258   Sized_relobj_file<size, big_endian>* relobj_;
2259   // The group flag word.
2260   elfcpp::Elf_Word flags_;
2261   // The section indexes of the input sections in this group.
2262   std::vector<unsigned int> input_shndxes_;
2263 };
2264 
2265 // Output_data_got is used to manage a GOT.  Each entry in the GOT is
2266 // for one symbol--either a global symbol or a local symbol in an
2267 // object.  The target specific code adds entries to the GOT as
2268 // needed.  The GOT_SIZE template parameter is the size in bits of a
2269 // GOT entry, typically 32 or 64.
2270 
2271 class Output_data_got_base : public Output_section_data_build
2272 {
2273  public:
Output_data_got_base(uint64_t align)2274   Output_data_got_base(uint64_t align)
2275     : Output_section_data_build(align)
2276   { }
2277 
Output_data_got_base(off_t data_size,uint64_t align)2278   Output_data_got_base(off_t data_size, uint64_t align)
2279     : Output_section_data_build(data_size, align)
2280   { }
2281 
2282   // Reserve the slot at index I in the GOT.
2283   void
reserve_slot(unsigned int i)2284   reserve_slot(unsigned int i)
2285   { this->do_reserve_slot(i); }
2286 
2287  protected:
2288   // Reserve the slot at index I in the GOT.
2289   virtual void
2290   do_reserve_slot(unsigned int i) = 0;
2291 };
2292 
2293 template<int got_size, bool big_endian>
2294 class Output_data_got : public Output_data_got_base
2295 {
2296  public:
2297   typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2298 
Output_data_got()2299   Output_data_got()
2300     : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2301       entries_(), free_list_()
2302   { }
2303 
Output_data_got(off_t data_size)2304   Output_data_got(off_t data_size)
2305     : Output_data_got_base(data_size,
2306 			   Output_data::default_alignment_for_size(got_size)),
2307       entries_(), free_list_()
2308   {
2309     // For an incremental update, we have an existing GOT section.
2310     // Initialize the list of entries and the free list.
2311     this->entries_.resize(data_size / (got_size / 8));
2312     this->free_list_.init(data_size, false);
2313   }
2314 
2315   // Add an entry for a global symbol to the GOT.  Return true if this
2316   // is a new GOT entry, false if the symbol was already in the GOT.
2317   bool
2318   add_global(Symbol* gsym, unsigned int got_type);
2319 
2320   // Like add_global, but use the PLT offset of the global symbol if
2321   // it has one.
2322   bool
2323   add_global_plt(Symbol* gsym, unsigned int got_type);
2324 
2325   // Like add_global, but for a TLS symbol where the value will be
2326   // offset using Target::tls_offset_for_global.
2327   bool
add_global_tls(Symbol * gsym,unsigned int got_type)2328   add_global_tls(Symbol* gsym, unsigned int got_type)
2329   { return add_global_plt(gsym, got_type); }
2330 
2331   // Add an entry for a global symbol to the GOT, and add a dynamic
2332   // relocation of type R_TYPE for the GOT entry.
2333   void
2334   add_global_with_rel(Symbol* gsym, unsigned int got_type,
2335 		      Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2336 
2337   // Add a pair of entries for a global symbol to the GOT, and add
2338   // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2339   void
2340   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2341 			   Output_data_reloc_generic* rel_dyn,
2342 			   unsigned int r_type_1, unsigned int r_type_2);
2343 
2344   // Add an entry for a local symbol to the GOT.  This returns true if
2345   // this is a new GOT entry, false if the symbol already has a GOT
2346   // entry.
2347   bool
2348   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2349 
2350   // Like add_local, but use the PLT offset of the local symbol if it
2351   // has one.
2352   bool
2353   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2354 
2355   // Like add_local, but for a TLS symbol where the value will be
2356   // offset using Target::tls_offset_for_local.
2357   bool
add_local_tls(Relobj * object,unsigned int sym_index,unsigned int got_type)2358   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2359   { return add_local_plt(object, sym_index, got_type); }
2360 
2361   // Add an entry for a local symbol to the GOT, and add a dynamic
2362   // relocation of type R_TYPE for the GOT entry.
2363   void
2364   add_local_with_rel(Relobj* object, unsigned int sym_index,
2365 		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2366 		     unsigned int r_type);
2367 
2368   // Add a pair of entries for a local symbol to the GOT, and add
2369   // a dynamic relocation of type R_TYPE using the section symbol of
2370   // the output section to which input section SHNDX maps, on the first.
2371   // The first got entry will have a value of zero, the second the
2372   // value of the local symbol.
2373   void
2374   add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2375 			  unsigned int shndx, unsigned int got_type,
2376 			  Output_data_reloc_generic* rel_dyn,
2377 			  unsigned int r_type);
2378 
2379   // Add a pair of entries for a local symbol to the GOT, and add
2380   // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2381   // The first got entry will have a value of zero, the second the
2382   // value of the local symbol offset by Target::tls_offset_for_local.
2383   void
2384   add_local_tls_pair(Relobj* object, unsigned int sym_index,
2385 		     unsigned int got_type,
2386 		     Output_data_reloc_generic* rel_dyn,
2387 		     unsigned int r_type);
2388 
2389   // Add a constant to the GOT.  This returns the offset of the new
2390   // entry from the start of the GOT.
2391   unsigned int
add_constant(Valtype constant)2392   add_constant(Valtype constant)
2393   { return this->add_got_entry(Got_entry(constant)); }
2394 
2395   // Add a pair of constants to the GOT.  This returns the offset of
2396   // the new entry from the start of the GOT.
2397   unsigned int
add_constant_pair(Valtype c1,Valtype c2)2398   add_constant_pair(Valtype c1, Valtype c2)
2399   { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
2400 
2401   // Replace GOT entry I with a new constant.
2402   void
replace_constant(unsigned int i,Valtype constant)2403   replace_constant(unsigned int i, Valtype constant)
2404   {
2405     this->replace_got_entry(i, Got_entry(constant));
2406   }
2407 
2408   // Reserve a slot in the GOT for a local symbol.
2409   void
2410   reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2411 		unsigned int got_type);
2412 
2413   // Reserve a slot in the GOT for a global symbol.
2414   void
2415   reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2416 
2417  protected:
2418   // Write out the GOT table.
2419   void
2420   do_write(Output_file*);
2421 
2422   // Write to a map file.
2423   void
do_print_to_mapfile(Mapfile * mapfile)2424   do_print_to_mapfile(Mapfile* mapfile) const
2425   { mapfile->print_output_data(this, _("** GOT")); }
2426 
2427   // Reserve the slot at index I in the GOT.
2428   virtual void
do_reserve_slot(unsigned int i)2429   do_reserve_slot(unsigned int i)
2430   { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2431 
2432   // Return the number of words in the GOT.
2433   unsigned int
num_entries()2434   num_entries () const
2435   { return this->entries_.size(); }
2436 
2437   // Return the offset into the GOT of GOT entry I.
2438   unsigned int
got_offset(unsigned int i)2439   got_offset(unsigned int i) const
2440   { return i * (got_size / 8); }
2441 
2442  private:
2443   // This POD class holds a single GOT entry.
2444   class Got_entry
2445   {
2446    public:
2447     // Create a zero entry.
Got_entry()2448     Got_entry()
2449       : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false)
2450     { this->u_.constant = 0; }
2451 
2452     // Create a global symbol entry.
Got_entry(Symbol * gsym,bool use_plt_or_tls_offset)2453     Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2454       : local_sym_index_(GSYM_CODE),
2455 	use_plt_or_tls_offset_(use_plt_or_tls_offset)
2456     { this->u_.gsym = gsym; }
2457 
2458     // Create a local symbol entry.
Got_entry(Relobj * object,unsigned int local_sym_index,bool use_plt_or_tls_offset)2459     Got_entry(Relobj* object, unsigned int local_sym_index,
2460 	      bool use_plt_or_tls_offset)
2461       : local_sym_index_(local_sym_index),
2462 	use_plt_or_tls_offset_(use_plt_or_tls_offset)
2463     {
2464       gold_assert(local_sym_index != GSYM_CODE
2465 		  && local_sym_index != CONSTANT_CODE
2466 		  && local_sym_index != RESERVED_CODE
2467 		  && local_sym_index == this->local_sym_index_);
2468       this->u_.object = object;
2469     }
2470 
2471     // Create a constant entry.  The constant is a host value--it will
2472     // be swapped, if necessary, when it is written out.
Got_entry(Valtype constant)2473     explicit Got_entry(Valtype constant)
2474       : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2475     { this->u_.constant = constant; }
2476 
2477     // Write the GOT entry to an output view.
2478     void
2479     write(unsigned int got_indx, unsigned char* pov) const;
2480 
2481    private:
2482     enum
2483     {
2484       GSYM_CODE = 0x7fffffff,
2485       CONSTANT_CODE = 0x7ffffffe,
2486       RESERVED_CODE = 0x7ffffffd
2487     };
2488 
2489     union
2490     {
2491       // For a local symbol, the object.
2492       Relobj* object;
2493       // For a global symbol, the symbol.
2494       Symbol* gsym;
2495       // For a constant, the constant.
2496       Valtype constant;
2497     } u_;
2498     // For a local symbol, the local symbol index.  This is GSYM_CODE
2499     // for a global symbol, or CONSTANT_CODE for a constant.
2500     unsigned int local_sym_index_ : 31;
2501     // Whether to use the PLT offset of the symbol if it has one.
2502     // For TLS symbols, whether to offset the symbol value.
2503     bool use_plt_or_tls_offset_ : 1;
2504   };
2505 
2506   typedef std::vector<Got_entry> Got_entries;
2507 
2508   // Create a new GOT entry and return its offset.
2509   unsigned int
2510   add_got_entry(Got_entry got_entry);
2511 
2512   // Create a pair of new GOT entries and return the offset of the first.
2513   unsigned int
2514   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2515 
2516   // Replace GOT entry I with a new value.
2517   void
2518   replace_got_entry(unsigned int i, Got_entry got_entry);
2519 
2520   // Return the offset into the GOT of the last entry added.
2521   unsigned int
last_got_offset()2522   last_got_offset() const
2523   { return this->got_offset(this->num_entries() - 1); }
2524 
2525   // Set the size of the section.
2526   void
set_got_size()2527   set_got_size()
2528   { this->set_current_data_size(this->got_offset(this->num_entries())); }
2529 
2530   // The list of GOT entries.
2531   Got_entries entries_;
2532 
2533   // List of available regions within the section, for incremental
2534   // update links.
2535   Free_list free_list_;
2536 };
2537 
2538 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2539 // section.
2540 
2541 class Output_data_dynamic : public Output_section_data
2542 {
2543  public:
Output_data_dynamic(Stringpool * pool)2544   Output_data_dynamic(Stringpool* pool)
2545     : Output_section_data(Output_data::default_alignment()),
2546       entries_(), pool_(pool)
2547   { }
2548 
2549   // Add a new dynamic entry with a fixed numeric value.
2550   void
add_constant(elfcpp::DT tag,unsigned int val)2551   add_constant(elfcpp::DT tag, unsigned int val)
2552   { this->add_entry(Dynamic_entry(tag, val)); }
2553 
2554   // Add a new dynamic entry with the address of output data.
2555   void
add_section_address(elfcpp::DT tag,const Output_data * od)2556   add_section_address(elfcpp::DT tag, const Output_data* od)
2557   { this->add_entry(Dynamic_entry(tag, od, false)); }
2558 
2559   // Add a new dynamic entry with the address of output data
2560   // plus a constant offset.
2561   void
add_section_plus_offset(elfcpp::DT tag,const Output_data * od,unsigned int offset)2562   add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2563 			  unsigned int offset)
2564   { this->add_entry(Dynamic_entry(tag, od, offset)); }
2565 
2566   // Add a new dynamic entry with the size of output data.
2567   void
add_section_size(elfcpp::DT tag,const Output_data * od)2568   add_section_size(elfcpp::DT tag, const Output_data* od)
2569   { this->add_entry(Dynamic_entry(tag, od, true)); }
2570 
2571   // Add a new dynamic entry with the total size of two output datas.
2572   void
add_section_size(elfcpp::DT tag,const Output_data * od,const Output_data * od2)2573   add_section_size(elfcpp::DT tag, const Output_data* od,
2574 		   const Output_data* od2)
2575   { this->add_entry(Dynamic_entry(tag, od, od2)); }
2576 
2577   // Add a new dynamic entry with the address of a symbol.
2578   void
add_symbol(elfcpp::DT tag,const Symbol * sym)2579   add_symbol(elfcpp::DT tag, const Symbol* sym)
2580   { this->add_entry(Dynamic_entry(tag, sym)); }
2581 
2582   // Add a new dynamic entry with a string.
2583   void
add_string(elfcpp::DT tag,const char * str)2584   add_string(elfcpp::DT tag, const char* str)
2585   { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2586 
2587   void
add_string(elfcpp::DT tag,const std::string & str)2588   add_string(elfcpp::DT tag, const std::string& str)
2589   { this->add_string(tag, str.c_str()); }
2590 
2591   // Add a new dynamic entry with custom value.
2592   void
add_custom(elfcpp::DT tag)2593   add_custom(elfcpp::DT tag)
2594   { this->add_entry(Dynamic_entry(tag)); }
2595 
2596  protected:
2597   // Adjust the output section to set the entry size.
2598   void
2599   do_adjust_output_section(Output_section*);
2600 
2601   // Set the final data size.
2602   void
2603   set_final_data_size();
2604 
2605   // Write out the dynamic entries.
2606   void
2607   do_write(Output_file*);
2608 
2609   // Write to a map file.
2610   void
do_print_to_mapfile(Mapfile * mapfile)2611   do_print_to_mapfile(Mapfile* mapfile) const
2612   { mapfile->print_output_data(this, _("** dynamic")); }
2613 
2614  private:
2615   // This POD class holds a single dynamic entry.
2616   class Dynamic_entry
2617   {
2618    public:
2619     // Create an entry with a fixed numeric value.
Dynamic_entry(elfcpp::DT tag,unsigned int val)2620     Dynamic_entry(elfcpp::DT tag, unsigned int val)
2621       : tag_(tag), offset_(DYNAMIC_NUMBER)
2622     { this->u_.val = val; }
2623 
2624     // Create an entry with the size or address of a section.
Dynamic_entry(elfcpp::DT tag,const Output_data * od,bool section_size)2625     Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2626       : tag_(tag),
2627 	offset_(section_size
2628 		? DYNAMIC_SECTION_SIZE
2629 		: DYNAMIC_SECTION_ADDRESS)
2630     {
2631       this->u_.od = od;
2632       this->od2 = NULL;
2633     }
2634 
2635     // Create an entry with the size of two sections.
Dynamic_entry(elfcpp::DT tag,const Output_data * od,const Output_data * od2)2636     Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2637       : tag_(tag),
2638 	offset_(DYNAMIC_SECTION_SIZE)
2639     {
2640       this->u_.od = od;
2641       this->od2 = od2;
2642     }
2643 
2644     // Create an entry with the address of a section plus a constant offset.
Dynamic_entry(elfcpp::DT tag,const Output_data * od,unsigned int offset)2645     Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2646       : tag_(tag),
2647 	offset_(offset)
2648     { this->u_.od = od; }
2649 
2650     // Create an entry with the address of a symbol.
Dynamic_entry(elfcpp::DT tag,const Symbol * sym)2651     Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2652       : tag_(tag), offset_(DYNAMIC_SYMBOL)
2653     { this->u_.sym = sym; }
2654 
2655     // Create an entry with a string.
Dynamic_entry(elfcpp::DT tag,const char * str)2656     Dynamic_entry(elfcpp::DT tag, const char* str)
2657       : tag_(tag), offset_(DYNAMIC_STRING)
2658     { this->u_.str = str; }
2659 
2660     // Create an entry with a custom value.
Dynamic_entry(elfcpp::DT tag)2661     Dynamic_entry(elfcpp::DT tag)
2662       : tag_(tag), offset_(DYNAMIC_CUSTOM)
2663     { }
2664 
2665     // Return the tag of this entry.
2666     elfcpp::DT
tag()2667     tag() const
2668     { return this->tag_; }
2669 
2670     // Write the dynamic entry to an output view.
2671     template<int size, bool big_endian>
2672     void
2673     write(unsigned char* pov, const Stringpool*) const;
2674 
2675    private:
2676     // Classification is encoded in the OFFSET field.
2677     enum Classification
2678     {
2679       // Section address.
2680       DYNAMIC_SECTION_ADDRESS = 0,
2681       // Number.
2682       DYNAMIC_NUMBER = -1U,
2683       // Section size.
2684       DYNAMIC_SECTION_SIZE = -2U,
2685       // Symbol adress.
2686       DYNAMIC_SYMBOL = -3U,
2687       // String.
2688       DYNAMIC_STRING = -4U,
2689       // Custom value.
2690       DYNAMIC_CUSTOM = -5U
2691       // Any other value indicates a section address plus OFFSET.
2692     };
2693 
2694     union
2695     {
2696       // For DYNAMIC_NUMBER.
2697       unsigned int val;
2698       // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2699       const Output_data* od;
2700       // For DYNAMIC_SYMBOL.
2701       const Symbol* sym;
2702       // For DYNAMIC_STRING.
2703       const char* str;
2704     } u_;
2705     // For DYNAMIC_SYMBOL with two sections.
2706     const Output_data* od2;
2707     // The dynamic tag.
2708     elfcpp::DT tag_;
2709     // The type of entry (Classification) or offset within a section.
2710     unsigned int offset_;
2711   };
2712 
2713   // Add an entry to the list.
2714   void
add_entry(const Dynamic_entry & entry)2715   add_entry(const Dynamic_entry& entry)
2716   { this->entries_.push_back(entry); }
2717 
2718   // Sized version of write function.
2719   template<int size, bool big_endian>
2720   void
2721   sized_write(Output_file* of);
2722 
2723   // The type of the list of entries.
2724   typedef std::vector<Dynamic_entry> Dynamic_entries;
2725 
2726   // The entries.
2727   Dynamic_entries entries_;
2728   // The pool used for strings.
2729   Stringpool* pool_;
2730 };
2731 
2732 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2733 // which may be required if the object file has more than
2734 // SHN_LORESERVE sections.
2735 
2736 class Output_symtab_xindex : public Output_section_data
2737 {
2738  public:
Output_symtab_xindex(size_t symcount)2739   Output_symtab_xindex(size_t symcount)
2740     : Output_section_data(symcount * 4, 4, true),
2741       entries_()
2742   { }
2743 
2744   // Add an entry: symbol number SYMNDX has section SHNDX.
2745   void
add(unsigned int symndx,unsigned int shndx)2746   add(unsigned int symndx, unsigned int shndx)
2747   { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2748 
2749  protected:
2750   void
2751   do_write(Output_file*);
2752 
2753   // Write to a map file.
2754   void
do_print_to_mapfile(Mapfile * mapfile)2755   do_print_to_mapfile(Mapfile* mapfile) const
2756   { mapfile->print_output_data(this, _("** symtab xindex")); }
2757 
2758  private:
2759   template<bool big_endian>
2760   void
2761   endian_do_write(unsigned char*);
2762 
2763   // It is likely that most symbols will not require entries.  Rather
2764   // than keep a vector for all symbols, we keep pairs of symbol index
2765   // and section index.
2766   typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2767 
2768   // The entries we need.
2769   Xindex_entries entries_;
2770 };
2771 
2772 // A relaxed input section.
2773 class Output_relaxed_input_section : public Output_section_data_build
2774 {
2775  public:
2776   // We would like to call relobj->section_addralign(shndx) to get the
2777   // alignment but we do not want the constructor to fail.  So callers
2778   // are repsonsible for ensuring that.
Output_relaxed_input_section(Relobj * relobj,unsigned int shndx,uint64_t addralign)2779   Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2780 			       uint64_t addralign)
2781     : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2782   { }
2783 
2784   // Return the Relobj of this relaxed input section.
2785   Relobj*
relobj()2786   relobj() const
2787   { return this->relobj_; }
2788 
2789   // Return the section index of this relaxed input section.
2790   unsigned int
shndx()2791   shndx() const
2792   { return this->shndx_; }
2793 
2794  protected:
2795   void
set_relobj(Relobj * relobj)2796   set_relobj(Relobj* relobj)
2797   { this->relobj_ = relobj; }
2798 
2799   void
set_shndx(unsigned int shndx)2800   set_shndx(unsigned int shndx)
2801   { this->shndx_ = shndx; }
2802 
2803  private:
2804   Relobj* relobj_;
2805   unsigned int shndx_;
2806 };
2807 
2808 // This class describes properties of merge data sections.  It is used
2809 // as a key type for maps.
2810 class Merge_section_properties
2811 {
2812  public:
Merge_section_properties(bool is_string,uint64_t entsize,uint64_t addralign)2813   Merge_section_properties(bool is_string, uint64_t entsize,
2814 			     uint64_t addralign)
2815     : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2816   { }
2817 
2818   // Whether this equals to another Merge_section_properties MSP.
2819   bool
eq(const Merge_section_properties & msp)2820   eq(const Merge_section_properties& msp) const
2821   {
2822     return ((this->is_string_ == msp.is_string_)
2823 	    && (this->entsize_ == msp.entsize_)
2824 	    && (this->addralign_ == msp.addralign_));
2825   }
2826 
2827   // Compute a hash value for this using 64-bit FNV-1a hash.
2828   size_t
hash_value()2829   hash_value() const
2830   {
2831     uint64_t h = 14695981039346656037ULL;	// FNV offset basis.
2832     uint64_t prime = 1099511628211ULL;
2833     h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2834     h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2835     h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2836     return h;
2837   }
2838 
2839   // Functors for associative containers.
2840   struct equal_to
2841   {
2842     bool
operatorequal_to2843     operator()(const Merge_section_properties& msp1,
2844 	       const Merge_section_properties& msp2) const
2845     { return msp1.eq(msp2); }
2846   };
2847 
2848   struct hash
2849   {
2850     size_t
operatorhash2851     operator()(const Merge_section_properties& msp) const
2852     { return msp.hash_value(); }
2853   };
2854 
2855  private:
2856   // Whether this merge data section is for strings.
2857   bool is_string_;
2858   // Entsize of this merge data section.
2859   uint64_t entsize_;
2860   // Address alignment.
2861   uint64_t addralign_;
2862 };
2863 
2864 // This class is used to speed up look up of special input sections in an
2865 // Output_section.
2866 
2867 class Output_section_lookup_maps
2868 {
2869  public:
Output_section_lookup_maps()2870   Output_section_lookup_maps()
2871     : is_valid_(true), merge_sections_by_properties_(),
2872       merge_sections_by_id_(), relaxed_input_sections_by_id_()
2873   { }
2874 
2875   // Whether the maps are valid.
2876   bool
is_valid()2877   is_valid() const
2878   { return this->is_valid_; }
2879 
2880   // Invalidate the maps.
2881   void
invalidate()2882   invalidate()
2883   { this->is_valid_ = false; }
2884 
2885   // Clear the maps.
2886   void
clear()2887   clear()
2888   {
2889     this->merge_sections_by_properties_.clear();
2890     this->merge_sections_by_id_.clear();
2891     this->relaxed_input_sections_by_id_.clear();
2892     // A cleared map is valid.
2893     this->is_valid_ = true;
2894   }
2895 
2896   // Find a merge section by merge section properties.  Return NULL if none
2897   // is found.
2898   Output_merge_base*
find_merge_section(const Merge_section_properties & msp)2899   find_merge_section(const Merge_section_properties& msp) const
2900   {
2901     gold_assert(this->is_valid_);
2902     Merge_sections_by_properties::const_iterator p =
2903       this->merge_sections_by_properties_.find(msp);
2904     return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2905   }
2906 
2907   // Find a merge section by section ID of a merge input section.  Return NULL
2908   // if none is found.
2909   Output_merge_base*
find_merge_section(const Object * object,unsigned int shndx)2910   find_merge_section(const Object* object, unsigned int shndx) const
2911   {
2912     gold_assert(this->is_valid_);
2913     Merge_sections_by_id::const_iterator p =
2914       this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2915     return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2916   }
2917 
2918   // Add a merge section pointed by POMB with properties MSP.
2919   void
add_merge_section(const Merge_section_properties & msp,Output_merge_base * pomb)2920   add_merge_section(const Merge_section_properties& msp,
2921 		    Output_merge_base* pomb)
2922   {
2923     std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2924     std::pair<Merge_sections_by_properties::iterator, bool> result =
2925       this->merge_sections_by_properties_.insert(value);
2926     gold_assert(result.second);
2927   }
2928 
2929   // Add a mapping from a merged input section in OBJECT with index SHNDX
2930   // to a merge output section pointed by POMB.
2931   void
add_merge_input_section(const Object * object,unsigned int shndx,Output_merge_base * pomb)2932   add_merge_input_section(const Object* object, unsigned int shndx,
2933 			  Output_merge_base* pomb)
2934   {
2935     Const_section_id csid(object, shndx);
2936     std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2937     std::pair<Merge_sections_by_id::iterator, bool> result =
2938       this->merge_sections_by_id_.insert(value);
2939     gold_assert(result.second);
2940   }
2941 
2942   // Find a relaxed input section of OBJECT with index SHNDX.
2943   Output_relaxed_input_section*
find_relaxed_input_section(const Object * object,unsigned int shndx)2944   find_relaxed_input_section(const Object* object, unsigned int shndx) const
2945   {
2946     gold_assert(this->is_valid_);
2947     Relaxed_input_sections_by_id::const_iterator p =
2948       this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2949     return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2950   }
2951 
2952   // Add a relaxed input section pointed by POMB and whose original input
2953   // section is in OBJECT with index SHNDX.
2954   void
add_relaxed_input_section(const Relobj * relobj,unsigned int shndx,Output_relaxed_input_section * poris)2955   add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2956 			    Output_relaxed_input_section* poris)
2957   {
2958     Const_section_id csid(relobj, shndx);
2959     std::pair<Const_section_id, Output_relaxed_input_section*>
2960       value(csid, poris);
2961     std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2962       this->relaxed_input_sections_by_id_.insert(value);
2963     gold_assert(result.second);
2964   }
2965 
2966  private:
2967   typedef Unordered_map<Const_section_id, Output_merge_base*,
2968 			Const_section_id_hash>
2969     Merge_sections_by_id;
2970 
2971   typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2972 			Merge_section_properties::hash,
2973 			Merge_section_properties::equal_to>
2974     Merge_sections_by_properties;
2975 
2976   typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2977 			Const_section_id_hash>
2978     Relaxed_input_sections_by_id;
2979 
2980   // Whether this is valid
2981   bool is_valid_;
2982   // Merge sections by merge section properties.
2983   Merge_sections_by_properties merge_sections_by_properties_;
2984   // Merge sections by section IDs.
2985   Merge_sections_by_id merge_sections_by_id_;
2986   // Relaxed sections by section IDs.
2987   Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2988 };
2989 
2990 // This abstract base class defines the interface for the
2991 // types of methods used to fill free space left in an output
2992 // section during an incremental link.  These methods are used
2993 // to insert dummy compilation units into debug info so that
2994 // debug info consumers can scan the debug info serially.
2995 
2996 class Output_fill
2997 {
2998  public:
Output_fill()2999   Output_fill()
3000     : is_big_endian_(parameters->target().is_big_endian())
3001   { }
3002 
3003   virtual
~Output_fill()3004   ~Output_fill()
3005   { }
3006 
3007   // Return the smallest size chunk of free space that can be
3008   // filled with a dummy compilation unit.
3009   size_t
minimum_hole_size()3010   minimum_hole_size() const
3011   { return this->do_minimum_hole_size(); }
3012 
3013   // Write a fill pattern of length LEN at offset OFF in the file.
3014   void
write(Output_file * of,off_t off,size_t len)3015   write(Output_file* of, off_t off, size_t len) const
3016   { this->do_write(of, off, len); }
3017 
3018  protected:
3019   virtual size_t
3020   do_minimum_hole_size() const = 0;
3021 
3022   virtual void
3023   do_write(Output_file* of, off_t off, size_t len) const = 0;
3024 
3025   bool
is_big_endian()3026   is_big_endian() const
3027   { return this->is_big_endian_; }
3028 
3029  private:
3030   bool is_big_endian_;
3031 };
3032 
3033 // Fill method that introduces a dummy compilation unit in
3034 // a .debug_info or .debug_types section.
3035 
3036 class Output_fill_debug_info : public Output_fill
3037 {
3038  public:
Output_fill_debug_info(bool is_debug_types)3039   Output_fill_debug_info(bool is_debug_types)
3040     : is_debug_types_(is_debug_types)
3041   { }
3042 
3043  protected:
3044   virtual size_t
3045   do_minimum_hole_size() const;
3046 
3047   virtual void
3048   do_write(Output_file* of, off_t off, size_t len) const;
3049 
3050  private:
3051   // Version of the header.
3052   static const int version = 4;
3053   // True if this is a .debug_types section.
3054   bool is_debug_types_;
3055 };
3056 
3057 // Fill method that introduces a dummy compilation unit in
3058 // a .debug_line section.
3059 
3060 class Output_fill_debug_line : public Output_fill
3061 {
3062  public:
Output_fill_debug_line()3063   Output_fill_debug_line()
3064   { }
3065 
3066  protected:
3067   virtual size_t
3068   do_minimum_hole_size() const;
3069 
3070   virtual void
3071   do_write(Output_file* of, off_t off, size_t len) const;
3072 
3073  private:
3074   // Version of the header.  We write a DWARF-3 header because it's smaller
3075   // and many tools have not yet been updated to understand the DWARF-4 header.
3076   static const int version = 3;
3077   // Length of the portion of the header that follows the header_length
3078   // field.  This includes the following fields:
3079   // minimum_instruction_length, default_is_stmt, line_base, line_range,
3080   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3081   // The standard_opcode_lengths array is 12 bytes long, and the
3082   // include_directories and filenames fields each contain only a single
3083   // null byte.
3084   static const size_t header_length = 19;
3085 };
3086 
3087 // An output section.  We don't expect to have too many output
3088 // sections, so we don't bother to do a template on the size.
3089 
3090 class Output_section : public Output_data
3091 {
3092  public:
3093   // Create an output section, giving the name, type, and flags.
3094   Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3095   virtual ~Output_section();
3096 
3097   // Add a new input section SHNDX, named NAME, with header SHDR, from
3098   // object OBJECT.  RELOC_SHNDX is the index of a relocation section
3099   // which applies to this section, or 0 if none, or -1 if more than
3100   // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3101   // in a linker script; in that case we need to keep track of input
3102   // sections associated with an output section.  Return the offset
3103   // within the output section.
3104   template<int size, bool big_endian>
3105   off_t
3106   add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3107 		    unsigned int shndx, const char* name,
3108 		    const elfcpp::Shdr<size, big_endian>& shdr,
3109 		    unsigned int reloc_shndx, bool have_sections_script);
3110 
3111   // Add generated data POSD to this output section.
3112   void
3113   add_output_section_data(Output_section_data* posd);
3114 
3115   // Add a relaxed input section PORIS called NAME to this output section
3116   // with LAYOUT.
3117   void
3118   add_relaxed_input_section(Layout* layout,
3119 			    Output_relaxed_input_section* poris,
3120 			    const std::string& name);
3121 
3122   // Return the section name.
3123   const char*
name()3124   name() const
3125   { return this->name_; }
3126 
3127   // Return the section type.
3128   elfcpp::Elf_Word
type()3129   type() const
3130   { return this->type_; }
3131 
3132   // Return the section flags.
3133   elfcpp::Elf_Xword
flags()3134   flags() const
3135   { return this->flags_; }
3136 
3137   typedef std::map<Section_id, unsigned int> Section_layout_order;
3138 
3139   void
3140   update_section_layout(const Section_layout_order* order_map);
3141 
3142   // Update the output section flags based on input section flags.
3143   void
3144   update_flags_for_input_section(elfcpp::Elf_Xword flags);
3145 
3146   // Return the entsize field.
3147   uint64_t
entsize()3148   entsize() const
3149   { return this->entsize_; }
3150 
3151   // Set the entsize field.
3152   void
3153   set_entsize(uint64_t v);
3154 
3155   // Set the load address.
3156   void
set_load_address(uint64_t load_address)3157   set_load_address(uint64_t load_address)
3158   {
3159     this->load_address_ = load_address;
3160     this->has_load_address_ = true;
3161   }
3162 
3163   // Set the link field to the output section index of a section.
3164   void
set_link_section(const Output_data * od)3165   set_link_section(const Output_data* od)
3166   {
3167     gold_assert(this->link_ == 0
3168 		&& !this->should_link_to_symtab_
3169 		&& !this->should_link_to_dynsym_);
3170     this->link_section_ = od;
3171   }
3172 
3173   // Set the link field to a constant.
3174   void
set_link(unsigned int v)3175   set_link(unsigned int v)
3176   {
3177     gold_assert(this->link_section_ == NULL
3178 		&& !this->should_link_to_symtab_
3179 		&& !this->should_link_to_dynsym_);
3180     this->link_ = v;
3181   }
3182 
3183   // Record that this section should link to the normal symbol table.
3184   void
set_should_link_to_symtab()3185   set_should_link_to_symtab()
3186   {
3187     gold_assert(this->link_section_ == NULL
3188 		&& this->link_ == 0
3189 		&& !this->should_link_to_dynsym_);
3190     this->should_link_to_symtab_ = true;
3191   }
3192 
3193   // Record that this section should link to the dynamic symbol table.
3194   void
set_should_link_to_dynsym()3195   set_should_link_to_dynsym()
3196   {
3197     gold_assert(this->link_section_ == NULL
3198 		&& this->link_ == 0
3199 		&& !this->should_link_to_symtab_);
3200     this->should_link_to_dynsym_ = true;
3201   }
3202 
3203   // Return the info field.
3204   unsigned int
info()3205   info() const
3206   {
3207     gold_assert(this->info_section_ == NULL
3208 		&& this->info_symndx_ == NULL);
3209     return this->info_;
3210   }
3211 
3212   // Set the info field to the output section index of a section.
3213   void
set_info_section(const Output_section * os)3214   set_info_section(const Output_section* os)
3215   {
3216     gold_assert((this->info_section_ == NULL
3217 		 || (this->info_section_ == os
3218 		     && this->info_uses_section_index_))
3219 		&& this->info_symndx_ == NULL
3220 		&& this->info_ == 0);
3221     this->info_section_ = os;
3222     this->info_uses_section_index_= true;
3223   }
3224 
3225   // Set the info field to the symbol table index of a symbol.
3226   void
set_info_symndx(const Symbol * sym)3227   set_info_symndx(const Symbol* sym)
3228   {
3229     gold_assert(this->info_section_ == NULL
3230 		&& (this->info_symndx_ == NULL
3231 		    || this->info_symndx_ == sym)
3232 		&& this->info_ == 0);
3233     this->info_symndx_ = sym;
3234   }
3235 
3236   // Set the info field to the symbol table index of a section symbol.
3237   void
set_info_section_symndx(const Output_section * os)3238   set_info_section_symndx(const Output_section* os)
3239   {
3240     gold_assert((this->info_section_ == NULL
3241 		 || (this->info_section_ == os
3242 		     && !this->info_uses_section_index_))
3243 		&& this->info_symndx_ == NULL
3244 		&& this->info_ == 0);
3245     this->info_section_ = os;
3246     this->info_uses_section_index_ = false;
3247   }
3248 
3249   // Set the info field to a constant.
3250   void
set_info(unsigned int v)3251   set_info(unsigned int v)
3252   {
3253     gold_assert(this->info_section_ == NULL
3254 		&& this->info_symndx_ == NULL
3255 		&& (this->info_ == 0
3256 		    || this->info_ == v));
3257     this->info_ = v;
3258   }
3259 
3260   // Set the addralign field.
3261   void
set_addralign(uint64_t v)3262   set_addralign(uint64_t v)
3263   { this->addralign_ = v; }
3264 
3265   void
checkpoint_set_addralign(uint64_t val)3266   checkpoint_set_addralign(uint64_t val)
3267   {
3268     if (this->checkpoint_ != NULL)
3269       this->checkpoint_->set_addralign(val);
3270   }
3271 
3272   // Whether the output section index has been set.
3273   bool
has_out_shndx()3274   has_out_shndx() const
3275   { return this->out_shndx_ != -1U; }
3276 
3277   // Indicate that we need a symtab index.
3278   void
set_needs_symtab_index()3279   set_needs_symtab_index()
3280   { this->needs_symtab_index_ = true; }
3281 
3282   // Return whether we need a symtab index.
3283   bool
needs_symtab_index()3284   needs_symtab_index() const
3285   { return this->needs_symtab_index_; }
3286 
3287   // Get the symtab index.
3288   unsigned int
symtab_index()3289   symtab_index() const
3290   {
3291     gold_assert(this->symtab_index_ != 0);
3292     return this->symtab_index_;
3293   }
3294 
3295   // Set the symtab index.
3296   void
set_symtab_index(unsigned int index)3297   set_symtab_index(unsigned int index)
3298   {
3299     gold_assert(index != 0);
3300     this->symtab_index_ = index;
3301   }
3302 
3303   // Indicate that we need a dynsym index.
3304   void
set_needs_dynsym_index()3305   set_needs_dynsym_index()
3306   { this->needs_dynsym_index_ = true; }
3307 
3308   // Return whether we need a dynsym index.
3309   bool
needs_dynsym_index()3310   needs_dynsym_index() const
3311   { return this->needs_dynsym_index_; }
3312 
3313   // Get the dynsym index.
3314   unsigned int
dynsym_index()3315   dynsym_index() const
3316   {
3317     gold_assert(this->dynsym_index_ != 0);
3318     return this->dynsym_index_;
3319   }
3320 
3321   // Set the dynsym index.
3322   void
set_dynsym_index(unsigned int index)3323   set_dynsym_index(unsigned int index)
3324   {
3325     gold_assert(index != 0);
3326     this->dynsym_index_ = index;
3327   }
3328 
3329   // Sort the attached input sections.
3330   void
3331   sort_attached_input_sections();
3332 
3333   // Return whether the input sections sections attachd to this output
3334   // section may require sorting.  This is used to handle constructor
3335   // priorities compatibly with GNU ld.
3336   bool
may_sort_attached_input_sections()3337   may_sort_attached_input_sections() const
3338   { return this->may_sort_attached_input_sections_; }
3339 
3340   // Record that the input sections attached to this output section
3341   // may require sorting.
3342   void
set_may_sort_attached_input_sections()3343   set_may_sort_attached_input_sections()
3344   { this->may_sort_attached_input_sections_ = true; }
3345 
3346    // Returns true if input sections must be sorted according to the
3347   // order in which their name appear in the --section-ordering-file.
3348   bool
input_section_order_specified()3349   input_section_order_specified()
3350   { return this->input_section_order_specified_; }
3351 
3352   // Record that input sections must be sorted as some of their names
3353   // match the patterns specified through --section-ordering-file.
3354   void
set_input_section_order_specified()3355   set_input_section_order_specified()
3356   { this->input_section_order_specified_ = true; }
3357 
3358   // Return whether the input sections attached to this output section
3359   // require sorting.  This is used to handle constructor priorities
3360   // compatibly with GNU ld.
3361   bool
must_sort_attached_input_sections()3362   must_sort_attached_input_sections() const
3363   { return this->must_sort_attached_input_sections_; }
3364 
3365   // Record that the input sections attached to this output section
3366   // require sorting.
3367   void
set_must_sort_attached_input_sections()3368   set_must_sort_attached_input_sections()
3369   { this->must_sort_attached_input_sections_ = true; }
3370 
3371   // Get the order in which this section appears in the PT_LOAD output
3372   // segment.
3373   Output_section_order
order()3374   order() const
3375   { return this->order_; }
3376 
3377   // Set the order for this section.
3378   void
set_order(Output_section_order order)3379   set_order(Output_section_order order)
3380   { this->order_ = order; }
3381 
3382   // Return whether this section holds relro data--data which has
3383   // dynamic relocations but which may be marked read-only after the
3384   // dynamic relocations have been completed.
3385   bool
is_relro()3386   is_relro() const
3387   { return this->is_relro_; }
3388 
3389   // Record that this section holds relro data.
3390   void
set_is_relro()3391   set_is_relro()
3392   { this->is_relro_ = true; }
3393 
3394   // Record that this section does not hold relro data.
3395   void
clear_is_relro()3396   clear_is_relro()
3397   { this->is_relro_ = false; }
3398 
3399   // True if this is a small section: a section which holds small
3400   // variables.
3401   bool
is_small_section()3402   is_small_section() const
3403   { return this->is_small_section_; }
3404 
3405   // Record that this is a small section.
3406   void
set_is_small_section()3407   set_is_small_section()
3408   { this->is_small_section_ = true; }
3409 
3410   // True if this is a large section: a section which holds large
3411   // variables.
3412   bool
is_large_section()3413   is_large_section() const
3414   { return this->is_large_section_; }
3415 
3416   // Record that this is a large section.
3417   void
set_is_large_section()3418   set_is_large_section()
3419   { this->is_large_section_ = true; }
3420 
3421   // True if this is a large data (not BSS) section.
3422   bool
is_large_data_section()3423   is_large_data_section()
3424   { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3425 
3426   // Return whether this section should be written after all the input
3427   // sections are complete.
3428   bool
after_input_sections()3429   after_input_sections() const
3430   { return this->after_input_sections_; }
3431 
3432   // Record that this section should be written after all the input
3433   // sections are complete.
3434   void
set_after_input_sections()3435   set_after_input_sections()
3436   { this->after_input_sections_ = true; }
3437 
3438   // Return whether this section requires postprocessing after all
3439   // relocations have been applied.
3440   bool
requires_postprocessing()3441   requires_postprocessing() const
3442   { return this->requires_postprocessing_; }
3443 
3444   bool
is_unique_segment()3445   is_unique_segment() const
3446   { return this->is_unique_segment_; }
3447 
3448   void
set_is_unique_segment()3449   set_is_unique_segment()
3450   { this->is_unique_segment_ = true; }
3451 
extra_segment_flags()3452   uint64_t extra_segment_flags() const
3453   { return this->extra_segment_flags_; }
3454 
3455   void
set_extra_segment_flags(uint64_t flags)3456   set_extra_segment_flags(uint64_t flags)
3457   { this->extra_segment_flags_ = flags; }
3458 
segment_alignment()3459   uint64_t segment_alignment() const
3460   { return this->segment_alignment_; }
3461 
3462   void
set_segment_alignment(uint64_t align)3463   set_segment_alignment(uint64_t align)
3464   { this->segment_alignment_ = align; }
3465 
3466   // If a section requires postprocessing, return the buffer to use.
3467   unsigned char*
postprocessing_buffer()3468   postprocessing_buffer() const
3469   {
3470     gold_assert(this->postprocessing_buffer_ != NULL);
3471     return this->postprocessing_buffer_;
3472   }
3473 
3474   // If a section requires postprocessing, create the buffer to use.
3475   void
3476   create_postprocessing_buffer();
3477 
3478   // If a section requires postprocessing, this is the size of the
3479   // buffer to which relocations should be applied.
3480   off_t
postprocessing_buffer_size()3481   postprocessing_buffer_size() const
3482   { return this->current_data_size_for_child(); }
3483 
3484   // Modify the section name.  This is only permitted for an
3485   // unallocated section, and only before the size has been finalized.
3486   // Otherwise the name will not get into Layout::namepool_.
3487   void
set_name(const char * newname)3488   set_name(const char* newname)
3489   {
3490     gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3491     gold_assert(!this->is_data_size_valid());
3492     this->name_ = newname;
3493   }
3494 
3495   // Return whether the offset OFFSET in the input section SHNDX in
3496   // object OBJECT is being included in the link.
3497   bool
3498   is_input_address_mapped(const Relobj* object, unsigned int shndx,
3499 			  off_t offset) const;
3500 
3501   // Return the offset within the output section of OFFSET relative to
3502   // the start of input section SHNDX in object OBJECT.
3503   section_offset_type
3504   output_offset(const Relobj* object, unsigned int shndx,
3505 		section_offset_type offset) const;
3506 
3507   // Return the output virtual address of OFFSET relative to the start
3508   // of input section SHNDX in object OBJECT.
3509   uint64_t
3510   output_address(const Relobj* object, unsigned int shndx,
3511 		 off_t offset) const;
3512 
3513   // Look for the merged section for input section SHNDX in object
3514   // OBJECT.  If found, return true, and set *ADDR to the address of
3515   // the start of the merged section.  This is not necessary the
3516   // output offset corresponding to input offset 0 in the section,
3517   // since the section may be mapped arbitrarily.
3518   bool
3519   find_starting_output_address(const Relobj* object, unsigned int shndx,
3520 			       uint64_t* addr) const;
3521 
3522   // Record that this output section was found in the SECTIONS clause
3523   // of a linker script.
3524   void
set_found_in_sections_clause()3525   set_found_in_sections_clause()
3526   { this->found_in_sections_clause_ = true; }
3527 
3528   // Return whether this output section was found in the SECTIONS
3529   // clause of a linker script.
3530   bool
found_in_sections_clause()3531   found_in_sections_clause() const
3532   { return this->found_in_sections_clause_; }
3533 
3534   // Write the section header into *OPHDR.
3535   template<int size, bool big_endian>
3536   void
3537   write_header(const Layout*, const Stringpool*,
3538 	       elfcpp::Shdr_write<size, big_endian>*) const;
3539 
3540   // The next few calls are for linker script support.
3541 
3542   // In some cases we need to keep a list of the input sections
3543   // associated with this output section.  We only need the list if we
3544   // might have to change the offsets of the input section within the
3545   // output section after we add the input section.  The ordinary
3546   // input sections will be written out when we process the object
3547   // file, and as such we don't need to track them here.  We do need
3548   // to track Output_section_data objects here.  We store instances of
3549   // this structure in a std::vector, so it must be a POD.  There can
3550   // be many instances of this structure, so we use a union to save
3551   // some space.
3552   class Input_section
3553   {
3554    public:
Input_section()3555     Input_section()
3556       : shndx_(0), p2align_(0)
3557     {
3558       this->u1_.data_size = 0;
3559       this->u2_.object = NULL;
3560     }
3561 
3562     // For an ordinary input section.
Input_section(Relobj * object,unsigned int shndx,off_t data_size,uint64_t addralign)3563     Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3564 		  uint64_t addralign)
3565       : shndx_(shndx),
3566 	p2align_(ffsll(static_cast<long long>(addralign))),
3567 	section_order_index_(0)
3568     {
3569       gold_assert(shndx != OUTPUT_SECTION_CODE
3570 		  && shndx != MERGE_DATA_SECTION_CODE
3571 		  && shndx != MERGE_STRING_SECTION_CODE
3572 		  && shndx != RELAXED_INPUT_SECTION_CODE);
3573       this->u1_.data_size = data_size;
3574       this->u2_.object = object;
3575     }
3576 
3577     // For a non-merge output section.
Input_section(Output_section_data * posd)3578     Input_section(Output_section_data* posd)
3579       : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3580 	section_order_index_(0)
3581     {
3582       this->u1_.data_size = 0;
3583       this->u2_.posd = posd;
3584     }
3585 
3586     // For a merge section.
Input_section(Output_section_data * posd,bool is_string,uint64_t entsize)3587     Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3588       : shndx_(is_string
3589 	       ? MERGE_STRING_SECTION_CODE
3590 	       : MERGE_DATA_SECTION_CODE),
3591 	p2align_(0),
3592 	section_order_index_(0)
3593     {
3594       this->u1_.entsize = entsize;
3595       this->u2_.posd = posd;
3596     }
3597 
3598     // For a relaxed input section.
Input_section(Output_relaxed_input_section * psection)3599     Input_section(Output_relaxed_input_section* psection)
3600       : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3601 	section_order_index_(0)
3602     {
3603       this->u1_.data_size = 0;
3604       this->u2_.poris = psection;
3605     }
3606 
3607     unsigned int
section_order_index()3608     section_order_index() const
3609     {
3610       return this->section_order_index_;
3611     }
3612 
3613     void
set_section_order_index(unsigned int number)3614     set_section_order_index(unsigned int number)
3615     {
3616       this->section_order_index_ = number;
3617     }
3618 
3619     // The required alignment.
3620     uint64_t
addralign()3621     addralign() const
3622     {
3623       if (this->p2align_ != 0)
3624 	return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3625       else if (!this->is_input_section())
3626 	return this->u2_.posd->addralign();
3627       else
3628 	return 0;
3629     }
3630 
3631     // Set the required alignment, which must be either 0 or a power of 2.
3632     // For input sections that are sub-classes of Output_section_data, a
3633     // alignment of zero means asking the underlying object for alignment.
3634     void
set_addralign(uint64_t addralign)3635     set_addralign(uint64_t addralign)
3636     {
3637       if (addralign == 0)
3638 	this->p2align_ = 0;
3639       else
3640 	{
3641 	  gold_assert((addralign & (addralign - 1)) == 0);
3642 	  this->p2align_ = ffsll(static_cast<long long>(addralign));
3643 	}
3644     }
3645 
3646     // Return the current required size, without finalization.
3647     off_t
3648     current_data_size() const;
3649 
3650     // Return the required size.
3651     off_t
3652     data_size() const;
3653 
3654     // Whether this is an input section.
3655     bool
is_input_section()3656     is_input_section() const
3657     {
3658       return (this->shndx_ != OUTPUT_SECTION_CODE
3659 	      && this->shndx_ != MERGE_DATA_SECTION_CODE
3660 	      && this->shndx_ != MERGE_STRING_SECTION_CODE
3661 	      && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3662     }
3663 
3664     // Return whether this is a merge section which matches the
3665     // parameters.
3666     bool
is_merge_section(bool is_string,uint64_t entsize,uint64_t addralign)3667     is_merge_section(bool is_string, uint64_t entsize,
3668 		     uint64_t addralign) const
3669     {
3670       return (this->shndx_ == (is_string
3671 			       ? MERGE_STRING_SECTION_CODE
3672 			       : MERGE_DATA_SECTION_CODE)
3673 	      && this->u1_.entsize == entsize
3674 	      && this->addralign() == addralign);
3675     }
3676 
3677     // Return whether this is a merge section for some input section.
3678     bool
is_merge_section()3679     is_merge_section() const
3680     {
3681       return (this->shndx_ == MERGE_DATA_SECTION_CODE
3682 	      || this->shndx_ == MERGE_STRING_SECTION_CODE);
3683     }
3684 
3685     // Return whether this is a relaxed input section.
3686     bool
is_relaxed_input_section()3687     is_relaxed_input_section() const
3688     { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3689 
3690     // Return whether this is a generic Output_section_data.
3691     bool
is_output_section_data()3692     is_output_section_data() const
3693     {
3694       return this->shndx_ == OUTPUT_SECTION_CODE;
3695     }
3696 
3697     // Return the object for an input section.
3698     Relobj*
3699     relobj() const;
3700 
3701     // Return the input section index for an input section.
3702     unsigned int
3703     shndx() const;
3704 
3705     // For non-input-sections, return the associated Output_section_data
3706     // object.
3707     Output_section_data*
output_section_data()3708     output_section_data() const
3709     {
3710       gold_assert(!this->is_input_section());
3711       return this->u2_.posd;
3712     }
3713 
3714     // For a merge section, return the Output_merge_base pointer.
3715     Output_merge_base*
output_merge_base()3716     output_merge_base() const
3717     {
3718       gold_assert(this->is_merge_section());
3719       return this->u2_.pomb;
3720     }
3721 
3722     // Return the Output_relaxed_input_section object.
3723     Output_relaxed_input_section*
relaxed_input_section()3724     relaxed_input_section() const
3725     {
3726       gold_assert(this->is_relaxed_input_section());
3727       return this->u2_.poris;
3728     }
3729 
3730     // Set the output section.
3731     void
set_output_section(Output_section * os)3732     set_output_section(Output_section* os)
3733     {
3734       gold_assert(!this->is_input_section());
3735       Output_section_data* posd =
3736 	this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3737       posd->set_output_section(os);
3738     }
3739 
3740     // Set the address and file offset.  This is called during
3741     // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
3742     // the enclosing section.
3743     void
3744     set_address_and_file_offset(uint64_t address, off_t file_offset,
3745 				off_t section_file_offset);
3746 
3747     // Reset the address and file offset.
3748     void
3749     reset_address_and_file_offset();
3750 
3751     // Finalize the data size.
3752     void
3753     finalize_data_size();
3754 
3755     // Add an input section, for SHF_MERGE sections.
3756     bool
add_input_section(Relobj * object,unsigned int shndx)3757     add_input_section(Relobj* object, unsigned int shndx)
3758     {
3759       gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3760 		  || this->shndx_ == MERGE_STRING_SECTION_CODE);
3761       return this->u2_.posd->add_input_section(object, shndx);
3762     }
3763 
3764     // Given an input OBJECT, an input section index SHNDX within that
3765     // object, and an OFFSET relative to the start of that input
3766     // section, return whether or not the output offset is known.  If
3767     // this function returns true, it sets *POUTPUT to the offset in
3768     // the output section, relative to the start of the input section
3769     // in the output section.  *POUTPUT may be different from OFFSET
3770     // for a merged section.
3771     bool
3772     output_offset(const Relobj* object, unsigned int shndx,
3773 		  section_offset_type offset,
3774 		  section_offset_type* poutput) const;
3775 
3776     // Return whether this is the merge section for the input section
3777     // SHNDX in OBJECT.
3778     bool
3779     is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3780 
3781     // Write out the data.  This does nothing for an input section.
3782     void
3783     write(Output_file*);
3784 
3785     // Write the data to a buffer.  This does nothing for an input
3786     // section.
3787     void
3788     write_to_buffer(unsigned char*);
3789 
3790     // Print to a map file.
3791     void
3792     print_to_mapfile(Mapfile*) const;
3793 
3794     // Print statistics about merge sections to stderr.
3795     void
print_merge_stats(const char * section_name)3796     print_merge_stats(const char* section_name)
3797     {
3798       if (this->shndx_ == MERGE_DATA_SECTION_CODE
3799 	  || this->shndx_ == MERGE_STRING_SECTION_CODE)
3800 	this->u2_.posd->print_merge_stats(section_name);
3801     }
3802 
3803    private:
3804     // Code values which appear in shndx_.  If the value is not one of
3805     // these codes, it is the input section index in the object file.
3806     enum
3807     {
3808       // An Output_section_data.
3809       OUTPUT_SECTION_CODE = -1U,
3810       // An Output_section_data for an SHF_MERGE section with
3811       // SHF_STRINGS not set.
3812       MERGE_DATA_SECTION_CODE = -2U,
3813       // An Output_section_data for an SHF_MERGE section with
3814       // SHF_STRINGS set.
3815       MERGE_STRING_SECTION_CODE = -3U,
3816       // An Output_section_data for a relaxed input section.
3817       RELAXED_INPUT_SECTION_CODE = -4U
3818     };
3819 
3820     // For an ordinary input section, this is the section index in the
3821     // input file.  For an Output_section_data, this is
3822     // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3823     // MERGE_STRING_SECTION_CODE.
3824     unsigned int shndx_;
3825     // The required alignment, stored as a power of 2.
3826     unsigned int p2align_;
3827     union
3828     {
3829       // For an ordinary input section, the section size.
3830       off_t data_size;
3831       // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3832       // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3833       // entity size.
3834       uint64_t entsize;
3835     } u1_;
3836     union
3837     {
3838       // For an ordinary input section, the object which holds the
3839       // input section.
3840       Relobj* object;
3841       // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3842       // MERGE_STRING_SECTION_CODE, the data.
3843       Output_section_data* posd;
3844       Output_merge_base* pomb;
3845       // For RELAXED_INPUT_SECTION_CODE, the data.
3846       Output_relaxed_input_section* poris;
3847     } u2_;
3848     // The line number of the pattern it matches in the --section-ordering-file
3849     // file.  It is 0 if does not match any pattern.
3850     unsigned int section_order_index_;
3851   };
3852 
3853   // Store the list of input sections for this Output_section into the
3854   // list passed in.  This removes the input sections, leaving only
3855   // any Output_section_data elements.  This returns the size of those
3856   // Output_section_data elements.  ADDRESS is the address of this
3857   // output section.  FILL is the fill value to use, in case there are
3858   // any spaces between the remaining Output_section_data elements.
3859   uint64_t
3860   get_input_sections(uint64_t address, const std::string& fill,
3861 		     std::list<Input_section>*);
3862 
3863   // Add a script input section.  A script input section can either be
3864   // a plain input section or a sub-class of Output_section_data.
3865   void
3866   add_script_input_section(const Input_section& input_section);
3867 
3868   // Set the current size of the output section.
3869   void
set_current_data_size(off_t size)3870   set_current_data_size(off_t size)
3871   { this->set_current_data_size_for_child(size); }
3872 
3873   // End of linker script support.
3874 
3875   // Save states before doing section layout.
3876   // This is used for relaxation.
3877   void
3878   save_states();
3879 
3880   // Restore states prior to section layout.
3881   void
3882   restore_states();
3883 
3884   // Discard states.
3885   void
3886   discard_states();
3887 
3888   // Convert existing input sections to relaxed input sections.
3889   void
3890   convert_input_sections_to_relaxed_sections(
3891       const std::vector<Output_relaxed_input_section*>& sections);
3892 
3893   // Find a relaxed input section to an input section in OBJECT
3894   // with index SHNDX.  Return NULL if none is found.
3895   const Output_relaxed_input_section*
3896   find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3897 
3898   // Whether section offsets need adjustment due to relaxation.
3899   bool
section_offsets_need_adjustment()3900   section_offsets_need_adjustment() const
3901   { return this->section_offsets_need_adjustment_; }
3902 
3903   // Set section_offsets_need_adjustment to be true.
3904   void
set_section_offsets_need_adjustment()3905   set_section_offsets_need_adjustment()
3906   { this->section_offsets_need_adjustment_ = true; }
3907 
3908   // Set section_offsets_need_adjustment to be false.
3909   void
clear_section_offsets_need_adjustment()3910   clear_section_offsets_need_adjustment()
3911   { this->section_offsets_need_adjustment_ = false; }
3912 
3913   // Adjust section offsets of input sections in this.  This is
3914   // requires if relaxation caused some input sections to change sizes.
3915   void
3916   adjust_section_offsets();
3917 
3918   // Whether this is a NOLOAD section.
3919   bool
is_noload()3920   is_noload() const
3921   { return this->is_noload_; }
3922 
3923   // Set NOLOAD flag.
3924   void
set_is_noload()3925   set_is_noload()
3926   { this->is_noload_ = true; }
3927 
3928   // Print merge statistics to stderr.
3929   void
3930   print_merge_stats();
3931 
3932   // Set a fixed layout for the section.  Used for incremental update links.
3933   void
3934   set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3935 		   uint64_t sh_addralign);
3936 
3937   // Return TRUE if the section has a fixed layout.
3938   bool
has_fixed_layout()3939   has_fixed_layout() const
3940   { return this->has_fixed_layout_; }
3941 
3942   // Set flag to allow patch space for this section.  Used for full
3943   // incremental links.
3944   void
set_is_patch_space_allowed()3945   set_is_patch_space_allowed()
3946   { this->is_patch_space_allowed_ = true; }
3947 
3948   // Set a fill method to use for free space left in the output section
3949   // during incremental links.
3950   void
set_free_space_fill(Output_fill * free_space_fill)3951   set_free_space_fill(Output_fill* free_space_fill)
3952   {
3953     this->free_space_fill_ = free_space_fill;
3954     this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3955   }
3956 
3957   // Reserve space within the fixed layout for the section.  Used for
3958   // incremental update links.
3959   void
3960   reserve(uint64_t sh_offset, uint64_t sh_size);
3961 
3962   // Allocate space from the free list for the section.  Used for
3963   // incremental update links.
3964   off_t
3965   allocate(off_t len, uint64_t addralign);
3966 
3967   typedef std::vector<Input_section> Input_section_list;
3968 
3969   // Allow access to the input sections.
3970   const Input_section_list&
input_sections()3971   input_sections() const
3972   { return this->input_sections_; }
3973 
3974   Input_section_list&
input_sections()3975   input_sections()
3976   { return this->input_sections_; }
3977 
3978  protected:
3979   // Return the output section--i.e., the object itself.
3980   Output_section*
do_output_section()3981   do_output_section()
3982   { return this; }
3983 
3984   const Output_section*
do_output_section()3985   do_output_section() const
3986   { return this; }
3987 
3988   // Return the section index in the output file.
3989   unsigned int
do_out_shndx()3990   do_out_shndx() const
3991   {
3992     gold_assert(this->out_shndx_ != -1U);
3993     return this->out_shndx_;
3994   }
3995 
3996   // Set the output section index.
3997   void
do_set_out_shndx(unsigned int shndx)3998   do_set_out_shndx(unsigned int shndx)
3999   {
4000     gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
4001     this->out_shndx_ = shndx;
4002   }
4003 
4004   // Update the data size of the Output_section.  For a typical
4005   // Output_section, there is nothing to do, but if there are any
4006   // Output_section_data objects we need to do a trial layout
4007   // here.
4008   virtual void
4009   update_data_size();
4010 
4011   // Set the final data size of the Output_section.  For a typical
4012   // Output_section, there is nothing to do, but if there are any
4013   // Output_section_data objects we need to set their final addresses
4014   // here.
4015   virtual void
4016   set_final_data_size();
4017 
4018   // Reset the address and file offset.
4019   void
4020   do_reset_address_and_file_offset();
4021 
4022   // Return true if address and file offset already have reset values. In
4023   // other words, calling reset_address_and_file_offset will not change them.
4024   bool
4025   do_address_and_file_offset_have_reset_values() const;
4026 
4027   // Write the data to the file.  For a typical Output_section, this
4028   // does nothing: the data is written out by calling Object::Relocate
4029   // on each input object.  But if there are any Output_section_data
4030   // objects we do need to write them out here.
4031   virtual void
4032   do_write(Output_file*);
4033 
4034   // Return the address alignment--function required by parent class.
4035   uint64_t
do_addralign()4036   do_addralign() const
4037   { return this->addralign_; }
4038 
4039   // Return whether there is a load address.
4040   bool
do_has_load_address()4041   do_has_load_address() const
4042   { return this->has_load_address_; }
4043 
4044   // Return the load address.
4045   uint64_t
do_load_address()4046   do_load_address() const
4047   {
4048     gold_assert(this->has_load_address_);
4049     return this->load_address_;
4050   }
4051 
4052   // Return whether this is an Output_section.
4053   bool
do_is_section()4054   do_is_section() const
4055   { return true; }
4056 
4057   // Return whether this is a section of the specified type.
4058   bool
do_is_section_type(elfcpp::Elf_Word type)4059   do_is_section_type(elfcpp::Elf_Word type) const
4060   { return this->type_ == type; }
4061 
4062   // Return whether the specified section flag is set.
4063   bool
do_is_section_flag_set(elfcpp::Elf_Xword flag)4064   do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4065   { return (this->flags_ & flag) != 0; }
4066 
4067   // Set the TLS offset.  Called only for SHT_TLS sections.
4068   void
4069   do_set_tls_offset(uint64_t tls_base);
4070 
4071   // Return the TLS offset, relative to the base of the TLS segment.
4072   // Valid only for SHT_TLS sections.
4073   uint64_t
do_tls_offset()4074   do_tls_offset() const
4075   { return this->tls_offset_; }
4076 
4077   // This may be implemented by a child class.
4078   virtual void
do_finalize_name(Layout *)4079   do_finalize_name(Layout*)
4080   { }
4081 
4082   // Print to the map file.
4083   virtual void
4084   do_print_to_mapfile(Mapfile*) const;
4085 
4086   // Record that this section requires postprocessing after all
4087   // relocations have been applied.  This is called by a child class.
4088   void
set_requires_postprocessing()4089   set_requires_postprocessing()
4090   {
4091     this->requires_postprocessing_ = true;
4092     this->after_input_sections_ = true;
4093   }
4094 
4095   // Write all the data of an Output_section into the postprocessing
4096   // buffer.
4097   void
4098   write_to_postprocessing_buffer();
4099 
4100   // Whether this always keeps an input section list
4101   bool
always_keeps_input_sections()4102   always_keeps_input_sections() const
4103   { return this->always_keeps_input_sections_; }
4104 
4105   // Always keep an input section list.
4106   void
set_always_keeps_input_sections()4107   set_always_keeps_input_sections()
4108   {
4109     gold_assert(this->current_data_size_for_child() == 0);
4110     this->always_keeps_input_sections_ = true;
4111   }
4112 
4113  private:
4114   // We only save enough information to undo the effects of section layout.
4115   class Checkpoint_output_section
4116   {
4117    public:
Checkpoint_output_section(uint64_t addralign,elfcpp::Elf_Xword flags,const Input_section_list & input_sections,off_t first_input_offset,bool attached_input_sections_are_sorted)4118     Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4119 			      const Input_section_list& input_sections,
4120 			      off_t first_input_offset,
4121 			      bool attached_input_sections_are_sorted)
4122       : addralign_(addralign), flags_(flags),
4123 	input_sections_(input_sections),
4124 	input_sections_size_(input_sections_.size()),
4125 	input_sections_copy_(), first_input_offset_(first_input_offset),
4126 	attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4127     { }
4128 
4129     virtual
~Checkpoint_output_section()4130     ~Checkpoint_output_section()
4131     { }
4132 
4133     // Return the address alignment.
4134     uint64_t
addralign()4135     addralign() const
4136     { return this->addralign_; }
4137 
4138     void
set_addralign(uint64_t val)4139     set_addralign(uint64_t val)
4140     { this->addralign_ = val; }
4141 
4142     // Return the section flags.
4143     elfcpp::Elf_Xword
flags()4144     flags() const
4145     { return this->flags_; }
4146 
4147     // Return a reference to the input section list copy.
4148     Input_section_list*
input_sections()4149     input_sections()
4150     { return &this->input_sections_copy_; }
4151 
4152     // Return the size of input_sections at the time when checkpoint is
4153     // taken.
4154     size_t
input_sections_size()4155     input_sections_size() const
4156     { return this->input_sections_size_; }
4157 
4158     // Whether input sections are copied.
4159     bool
input_sections_saved()4160     input_sections_saved() const
4161     { return this->input_sections_copy_.size() == this->input_sections_size_; }
4162 
4163     off_t
first_input_offset()4164     first_input_offset() const
4165     { return this->first_input_offset_; }
4166 
4167     bool
attached_input_sections_are_sorted()4168     attached_input_sections_are_sorted() const
4169     { return this->attached_input_sections_are_sorted_; }
4170 
4171     // Save input sections.
4172     void
save_input_sections()4173     save_input_sections()
4174     {
4175       this->input_sections_copy_.reserve(this->input_sections_size_);
4176       this->input_sections_copy_.clear();
4177       Input_section_list::const_iterator p = this->input_sections_.begin();
4178       gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4179       for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4180 	this->input_sections_copy_.push_back(*p);
4181     }
4182 
4183    private:
4184     // The section alignment.
4185     uint64_t addralign_;
4186     // The section flags.
4187     elfcpp::Elf_Xword flags_;
4188     // Reference to the input sections to be checkpointed.
4189     const Input_section_list& input_sections_;
4190     // Size of the checkpointed portion of input_sections_;
4191     size_t input_sections_size_;
4192     // Copy of input sections.
4193     Input_section_list input_sections_copy_;
4194     // The offset of the first entry in input_sections_.
4195     off_t first_input_offset_;
4196     // True if the input sections attached to this output section have
4197     // already been sorted.
4198     bool attached_input_sections_are_sorted_;
4199   };
4200 
4201   // This class is used to sort the input sections.
4202   class Input_section_sort_entry;
4203 
4204   // This is the sort comparison function for ctors and dtors.
4205   struct Input_section_sort_compare
4206   {
4207     bool
4208     operator()(const Input_section_sort_entry&,
4209 	       const Input_section_sort_entry&) const;
4210   };
4211 
4212   // This is the sort comparison function for .init_array and .fini_array.
4213   struct Input_section_sort_init_fini_compare
4214   {
4215     bool
4216     operator()(const Input_section_sort_entry&,
4217 	       const Input_section_sort_entry&) const;
4218   };
4219 
4220   // This is the sort comparison function when a section order is specified
4221   // from an input file.
4222   struct Input_section_sort_section_order_index_compare
4223   {
4224     bool
4225     operator()(const Input_section_sort_entry&,
4226 	       const Input_section_sort_entry&) const;
4227   };
4228 
4229   // This is the sort comparison function for .text to sort sections with
4230   // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4231   struct Input_section_sort_section_prefix_special_ordering_compare
4232   {
4233     bool
4234     operator()(const Input_section_sort_entry&,
4235 	       const Input_section_sort_entry&) const;
4236   };
4237 
4238   // This is the sort comparison function for sorting sections by name.
4239   struct Input_section_sort_section_name_compare
4240   {
4241     bool
4242     operator()(const Input_section_sort_entry&,
4243 	       const Input_section_sort_entry&) const;
4244   };
4245 
4246   // Fill data.  This is used to fill in data between input sections.
4247   // It is also used for data statements (BYTE, WORD, etc.) in linker
4248   // scripts.  When we have to keep track of the input sections, we
4249   // can use an Output_data_const, but we don't want to have to keep
4250   // track of input sections just to implement fills.
4251   class Fill
4252   {
4253    public:
Fill(off_t section_offset,off_t length)4254     Fill(off_t section_offset, off_t length)
4255       : section_offset_(section_offset),
4256 	length_(convert_to_section_size_type(length))
4257     { }
4258 
4259     // Return section offset.
4260     off_t
section_offset()4261     section_offset() const
4262     { return this->section_offset_; }
4263 
4264     // Return fill length.
4265     section_size_type
length()4266     length() const
4267     { return this->length_; }
4268 
4269    private:
4270     // The offset within the output section.
4271     off_t section_offset_;
4272     // The length of the space to fill.
4273     section_size_type length_;
4274   };
4275 
4276   typedef std::vector<Fill> Fill_list;
4277 
4278   // Map used during relaxation of existing sections.  This map
4279   // a section id an input section list index.  We assume that
4280   // Input_section_list is a vector.
4281   typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4282 
4283   // Add a new output section by Input_section.
4284   void
4285   add_output_section_data(Input_section*);
4286 
4287   // Add an SHF_MERGE input section.  Returns true if the section was
4288   // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
4289   // stores information about the merged input sections.
4290   bool
4291   add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4292 			  uint64_t entsize, uint64_t addralign,
4293 			  bool keeps_input_sections);
4294 
4295   // Add an output SHF_MERGE section POSD to this output section.
4296   // IS_STRING indicates whether it is a SHF_STRINGS section, and
4297   // ENTSIZE is the entity size.  This returns the entry added to
4298   // input_sections_.
4299   void
4300   add_output_merge_section(Output_section_data* posd, bool is_string,
4301 			   uint64_t entsize);
4302 
4303   // Find the merge section into which an input section with index SHNDX in
4304   // OBJECT has been added.  Return NULL if none found.
4305   Output_section_data*
4306   find_merge_section(const Relobj* object, unsigned int shndx) const;
4307 
4308   // Build a relaxation map.
4309   void
4310   build_relaxation_map(
4311       const Input_section_list& input_sections,
4312       size_t limit,
4313       Relaxation_map* map) const;
4314 
4315   // Convert input sections in an input section list into relaxed sections.
4316   void
4317   convert_input_sections_in_list_to_relaxed_sections(
4318       const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4319       const Relaxation_map& map,
4320       Input_section_list* input_sections);
4321 
4322   // Build the lookup maps for merge and relaxed input sections.
4323   void
4324   build_lookup_maps() const;
4325 
4326   // Most of these fields are only valid after layout.
4327 
4328   // The name of the section.  This will point into a Stringpool.
4329   const char* name_;
4330   // The section address is in the parent class.
4331   // The section alignment.
4332   uint64_t addralign_;
4333   // The section entry size.
4334   uint64_t entsize_;
4335   // The load address.  This is only used when using a linker script
4336   // with a SECTIONS clause.  The has_load_address_ field indicates
4337   // whether this field is valid.
4338   uint64_t load_address_;
4339   // The file offset is in the parent class.
4340   // Set the section link field to the index of this section.
4341   const Output_data* link_section_;
4342   // If link_section_ is NULL, this is the link field.
4343   unsigned int link_;
4344   // Set the section info field to the index of this section.
4345   const Output_section* info_section_;
4346   // If info_section_ is NULL, set the info field to the symbol table
4347   // index of this symbol.
4348   const Symbol* info_symndx_;
4349   // If info_section_ and info_symndx_ are NULL, this is the section
4350   // info field.
4351   unsigned int info_;
4352   // The section type.
4353   const elfcpp::Elf_Word type_;
4354   // The section flags.
4355   elfcpp::Elf_Xword flags_;
4356   // The order of this section in the output segment.
4357   Output_section_order order_;
4358   // The section index.
4359   unsigned int out_shndx_;
4360   // If there is a STT_SECTION for this output section in the normal
4361   // symbol table, this is the symbol index.  This starts out as zero.
4362   // It is initialized in Layout::finalize() to be the index, or -1U
4363   // if there isn't one.
4364   unsigned int symtab_index_;
4365   // If there is a STT_SECTION for this output section in the dynamic
4366   // symbol table, this is the symbol index.  This starts out as zero.
4367   // It is initialized in Layout::finalize() to be the index, or -1U
4368   // if there isn't one.
4369   unsigned int dynsym_index_;
4370   // The input sections.  This will be empty in cases where we don't
4371   // need to keep track of them.
4372   Input_section_list input_sections_;
4373   // The offset of the first entry in input_sections_.
4374   off_t first_input_offset_;
4375   // The fill data.  This is separate from input_sections_ because we
4376   // often will need fill sections without needing to keep track of
4377   // input sections.
4378   Fill_list fills_;
4379   // If the section requires postprocessing, this buffer holds the
4380   // section contents during relocation.
4381   unsigned char* postprocessing_buffer_;
4382   // Whether this output section needs a STT_SECTION symbol in the
4383   // normal symbol table.  This will be true if there is a relocation
4384   // which needs it.
4385   bool needs_symtab_index_ : 1;
4386   // Whether this output section needs a STT_SECTION symbol in the
4387   // dynamic symbol table.  This will be true if there is a dynamic
4388   // relocation which needs it.
4389   bool needs_dynsym_index_ : 1;
4390   // Whether the link field of this output section should point to the
4391   // normal symbol table.
4392   bool should_link_to_symtab_ : 1;
4393   // Whether the link field of this output section should point to the
4394   // dynamic symbol table.
4395   bool should_link_to_dynsym_ : 1;
4396   // Whether this section should be written after all the input
4397   // sections are complete.
4398   bool after_input_sections_ : 1;
4399   // Whether this section requires post processing after all
4400   // relocations have been applied.
4401   bool requires_postprocessing_ : 1;
4402   // Whether an input section was mapped to this output section
4403   // because of a SECTIONS clause in a linker script.
4404   bool found_in_sections_clause_ : 1;
4405   // Whether this section has an explicitly specified load address.
4406   bool has_load_address_ : 1;
4407   // True if the info_section_ field means the section index of the
4408   // section, false if it means the symbol index of the corresponding
4409   // section symbol.
4410   bool info_uses_section_index_ : 1;
4411   // True if input sections attached to this output section have to be
4412   // sorted according to a specified order.
4413   bool input_section_order_specified_ : 1;
4414   // True if the input sections attached to this output section may
4415   // need sorting.
4416   bool may_sort_attached_input_sections_ : 1;
4417   // True if the input sections attached to this output section must
4418   // be sorted.
4419   bool must_sort_attached_input_sections_ : 1;
4420   // True if the input sections attached to this output section have
4421   // already been sorted.
4422   bool attached_input_sections_are_sorted_ : 1;
4423   // True if this section holds relro data.
4424   bool is_relro_ : 1;
4425   // True if this is a small section.
4426   bool is_small_section_ : 1;
4427   // True if this is a large section.
4428   bool is_large_section_ : 1;
4429   // Whether code-fills are generated at write.
4430   bool generate_code_fills_at_write_ : 1;
4431   // Whether the entry size field should be zero.
4432   bool is_entsize_zero_ : 1;
4433   // Whether section offsets need adjustment due to relaxation.
4434   bool section_offsets_need_adjustment_ : 1;
4435   // Whether this is a NOLOAD section.
4436   bool is_noload_ : 1;
4437   // Whether this always keeps input section.
4438   bool always_keeps_input_sections_ : 1;
4439   // Whether this section has a fixed layout, for incremental update links.
4440   bool has_fixed_layout_ : 1;
4441   // True if we can add patch space to this section.
4442   bool is_patch_space_allowed_ : 1;
4443   // True if this output section goes into a unique segment.
4444   bool is_unique_segment_ : 1;
4445   // For SHT_TLS sections, the offset of this section relative to the base
4446   // of the TLS segment.
4447   uint64_t tls_offset_;
4448   // Additional segment flags, specified via linker plugin, when mapping some
4449   // input sections to unique segments.
4450   uint64_t extra_segment_flags_;
4451   // Segment alignment specified via linker plugin, when mapping some
4452   // input sections to unique segments.
4453   uint64_t segment_alignment_;
4454   // Saved checkpoint.
4455   Checkpoint_output_section* checkpoint_;
4456   // Fast lookup maps for merged and relaxed input sections.
4457   Output_section_lookup_maps* lookup_maps_;
4458   // List of available regions within the section, for incremental
4459   // update links.
4460   Free_list free_list_;
4461   // Method for filling chunks of free space.
4462   Output_fill* free_space_fill_;
4463   // Amount added as patch space for incremental linking.
4464   off_t patch_space_;
4465 };
4466 
4467 // An output segment.  PT_LOAD segments are built from collections of
4468 // output sections.  Other segments typically point within PT_LOAD
4469 // segments, and are built directly as needed.
4470 //
4471 // NOTE: We want to use the copy constructor for this class.  During
4472 // relaxation, we may try built the segments multiple times.  We do
4473 // that by copying the original segment list before lay-out, doing
4474 // a trial lay-out and roll-back to the saved copied if we need to
4475 // to the lay-out again.
4476 
4477 class Output_segment
4478 {
4479  public:
4480   // Create an output segment, specifying the type and flags.
4481   Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4482 
4483   // Return the virtual address.
4484   uint64_t
vaddr()4485   vaddr() const
4486   { return this->vaddr_; }
4487 
4488   // Return the physical address.
4489   uint64_t
paddr()4490   paddr() const
4491   { return this->paddr_; }
4492 
4493   // Return the segment type.
4494   elfcpp::Elf_Word
type()4495   type() const
4496   { return this->type_; }
4497 
4498   // Return the segment flags.
4499   elfcpp::Elf_Word
flags()4500   flags() const
4501   { return this->flags_; }
4502 
4503   // Return the memory size.
4504   uint64_t
memsz()4505   memsz() const
4506   { return this->memsz_; }
4507 
4508   // Return the file size.
4509   off_t
filesz()4510   filesz() const
4511   { return this->filesz_; }
4512 
4513   // Return the file offset.
4514   off_t
offset()4515   offset() const
4516   { return this->offset_; }
4517 
4518   // Whether this is a segment created to hold large data sections.
4519   bool
is_large_data_segment()4520   is_large_data_segment() const
4521   { return this->is_large_data_segment_; }
4522 
4523   // Record that this is a segment created to hold large data
4524   // sections.
4525   void
set_is_large_data_segment()4526   set_is_large_data_segment()
4527   { this->is_large_data_segment_ = true; }
4528 
4529   bool
is_unique_segment()4530   is_unique_segment() const
4531   { return this->is_unique_segment_; }
4532 
4533   // Mark segment as unique, happens when linker plugins request that
4534   // certain input sections be mapped to unique segments.
4535   void
set_is_unique_segment()4536   set_is_unique_segment()
4537   { this->is_unique_segment_ = true; }
4538 
4539   // Return the maximum alignment of the Output_data.
4540   uint64_t
4541   maximum_alignment();
4542 
4543   // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
4544   // the segment flags to use.
4545   void
4546   add_output_section_to_load(Layout* layout, Output_section* os,
4547 			     elfcpp::Elf_Word seg_flags);
4548 
4549   // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
4550   // is the segment flags to use.
4551   void
4552   add_output_section_to_nonload(Output_section* os,
4553 				elfcpp::Elf_Word seg_flags);
4554 
4555   // Remove an Output_section from this segment.  It is an error if it
4556   // is not present.
4557   void
4558   remove_output_section(Output_section* os);
4559 
4560   // Add an Output_data (which need not be an Output_section) to the
4561   // start of this segment.
4562   void
4563   add_initial_output_data(Output_data*);
4564 
4565   // Return true if this segment has any sections which hold actual
4566   // data, rather than being a BSS section.
4567   bool
4568   has_any_data_sections() const;
4569 
4570   // Whether this segment has a dynamic relocs.
4571   bool
4572   has_dynamic_reloc() const;
4573 
4574   // Return the first section.
4575   Output_section*
4576   first_section() const;
4577 
4578   // Return the address of the first section.
4579   uint64_t
first_section_load_address()4580   first_section_load_address() const
4581   {
4582     const Output_section* os = this->first_section();
4583     return os->has_load_address() ? os->load_address() : os->address();
4584   }
4585 
4586   // Return whether the addresses have been set already.
4587   bool
are_addresses_set()4588   are_addresses_set() const
4589   { return this->are_addresses_set_; }
4590 
4591   // Set the addresses.
4592   void
set_addresses(uint64_t vaddr,uint64_t paddr)4593   set_addresses(uint64_t vaddr, uint64_t paddr)
4594   {
4595     this->vaddr_ = vaddr;
4596     this->paddr_ = paddr;
4597     this->are_addresses_set_ = true;
4598   }
4599 
4600   // Update the flags for the flags of an output section added to this
4601   // segment.
4602   void
update_flags_for_output_section(elfcpp::Elf_Xword flags)4603   update_flags_for_output_section(elfcpp::Elf_Xword flags)
4604   {
4605     // The ELF ABI specifies that a PT_TLS segment should always have
4606     // PF_R as the flags.
4607     if (this->type() != elfcpp::PT_TLS)
4608       this->flags_ |= flags;
4609   }
4610 
4611   // Set the segment flags.  This is only used if we have a PHDRS
4612   // clause which explicitly specifies the flags.
4613   void
set_flags(elfcpp::Elf_Word flags)4614   set_flags(elfcpp::Elf_Word flags)
4615   { this->flags_ = flags; }
4616 
4617   // Set the address of the segment to ADDR and the offset to *POFF
4618   // and set the addresses and offsets of all contained output
4619   // sections accordingly.  Set the section indexes of all contained
4620   // output sections starting with *PSHNDX.  If RESET is true, first
4621   // reset the addresses of the contained sections.  Return the
4622   // address of the immediately following segment.  Update *POFF and
4623   // *PSHNDX.  This should only be called for a PT_LOAD segment.
4624   uint64_t
4625   set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
4626 			unsigned int* increase_relro, bool* has_relro,
4627 			off_t* poff, unsigned int* pshndx);
4628 
4629   // Set the minimum alignment of this segment.  This may be adjusted
4630   // upward based on the section alignments.
4631   void
set_minimum_p_align(uint64_t align)4632   set_minimum_p_align(uint64_t align)
4633   {
4634     if (align > this->min_p_align_)
4635       this->min_p_align_ = align;
4636   }
4637 
4638   // Set the offset of this segment based on the section.  This should
4639   // only be called for a non-PT_LOAD segment.
4640   void
4641   set_offset(unsigned int increase);
4642 
4643   // Set the TLS offsets of the sections contained in the PT_TLS segment.
4644   void
4645   set_tls_offsets();
4646 
4647   // Return the number of output sections.
4648   unsigned int
4649   output_section_count() const;
4650 
4651   // Return the section attached to the list segment with the lowest
4652   // load address.  This is used when handling a PHDRS clause in a
4653   // linker script.
4654   Output_section*
4655   section_with_lowest_load_address() const;
4656 
4657   // Write the segment header into *OPHDR.
4658   template<int size, bool big_endian>
4659   void
4660   write_header(elfcpp::Phdr_write<size, big_endian>*);
4661 
4662   // Write the section headers of associated sections into V.
4663   template<int size, bool big_endian>
4664   unsigned char*
4665   write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4666 			unsigned int* pshndx) const;
4667 
4668   // Print the output sections in the map file.
4669   void
4670   print_sections_to_mapfile(Mapfile*) const;
4671 
4672  private:
4673   typedef std::vector<Output_data*> Output_data_list;
4674 
4675   // Find the maximum alignment in an Output_data_list.
4676   static uint64_t
4677   maximum_alignment_list(const Output_data_list*);
4678 
4679   // Return whether the first data section is a relro section.
4680   bool
4681   is_first_section_relro() const;
4682 
4683   // Set the section addresses in an Output_data_list.
4684   uint64_t
4685   set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4686 			     uint64_t addr, off_t* poff, unsigned int* pshndx,
4687 			     bool* in_tls);
4688 
4689   // Return the number of Output_sections in an Output_data_list.
4690   unsigned int
4691   output_section_count_list(const Output_data_list*) const;
4692 
4693   // Return whether an Output_data_list has a dynamic reloc.
4694   bool
4695   has_dynamic_reloc_list(const Output_data_list*) const;
4696 
4697   // Find the section with the lowest load address in an
4698   // Output_data_list.
4699   void
4700   lowest_load_address_in_list(const Output_data_list* pdl,
4701 			      Output_section** found,
4702 			      uint64_t* found_lma) const;
4703 
4704   // Find the first and last entries by address.
4705   void
4706   find_first_and_last_list(const Output_data_list* pdl,
4707 			   const Output_data** pfirst,
4708 			   const Output_data** plast) const;
4709 
4710   // Write the section headers in the list into V.
4711   template<int size, bool big_endian>
4712   unsigned char*
4713   write_section_headers_list(const Layout*, const Stringpool*,
4714 			     const Output_data_list*, unsigned char* v,
4715 			     unsigned int* pshdx) const;
4716 
4717   // Print a section list to the mapfile.
4718   void
4719   print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4720 
4721   // NOTE: We want to use the copy constructor.  Currently, shallow copy
4722   // works for us so we do not need to write our own copy constructor.
4723 
4724   // The list of output data attached to this segment.
4725   Output_data_list output_lists_[ORDER_MAX];
4726   // The segment virtual address.
4727   uint64_t vaddr_;
4728   // The segment physical address.
4729   uint64_t paddr_;
4730   // The size of the segment in memory.
4731   uint64_t memsz_;
4732   // The maximum section alignment.  The is_max_align_known_ field
4733   // indicates whether this has been finalized.
4734   uint64_t max_align_;
4735   // The required minimum value for the p_align field.  This is used
4736   // for PT_LOAD segments.  Note that this does not mean that
4737   // addresses should be aligned to this value; it means the p_paddr
4738   // and p_vaddr fields must be congruent modulo this value.  For
4739   // non-PT_LOAD segments, the dynamic linker works more efficiently
4740   // if the p_align field has the more conventional value, although it
4741   // can align as needed.
4742   uint64_t min_p_align_;
4743   // The offset of the segment data within the file.
4744   off_t offset_;
4745   // The size of the segment data in the file.
4746   off_t filesz_;
4747   // The segment type;
4748   elfcpp::Elf_Word type_;
4749   // The segment flags.
4750   elfcpp::Elf_Word flags_;
4751   // Whether we have finalized max_align_.
4752   bool is_max_align_known_ : 1;
4753   // Whether vaddr and paddr were set by a linker script.
4754   bool are_addresses_set_ : 1;
4755   // Whether this segment holds large data sections.
4756   bool is_large_data_segment_ : 1;
4757   // Whether this was marked as a unique segment via a linker plugin.
4758   bool is_unique_segment_ : 1;
4759 };
4760 
4761 // This class represents the output file.
4762 
4763 class Output_file
4764 {
4765  public:
4766   Output_file(const char* name);
4767 
4768   // Indicate that this is a temporary file which should not be
4769   // output.
4770   void
set_is_temporary()4771   set_is_temporary()
4772   { this->is_temporary_ = true; }
4773 
4774   // Try to open an existing file. Returns false if the file doesn't
4775   // exist, has a size of 0 or can't be mmaped.  This method is
4776   // thread-unsafe.  If BASE_NAME is not NULL, use the contents of
4777   // that file as the base for incremental linking.
4778   bool
4779   open_base_file(const char* base_name, bool writable);
4780 
4781   // Open the output file.  FILE_SIZE is the final size of the file.
4782   // If the file already exists, it is deleted/truncated.  This method
4783   // is thread-unsafe.
4784   void
4785   open(off_t file_size);
4786 
4787   // Resize the output file.  This method is thread-unsafe.
4788   void
4789   resize(off_t file_size);
4790 
4791   // Close the output file (flushing all buffered data) and make sure
4792   // there are no errors.  This method is thread-unsafe.
4793   void
4794   close();
4795 
4796   // Return the size of this file.
4797   off_t
filesize()4798   filesize()
4799   { return this->file_size_; }
4800 
4801   // Return the name of this file.
4802   const char*
filename()4803   filename()
4804   { return this->name_; }
4805 
4806   // We currently always use mmap which makes the view handling quite
4807   // simple.  In the future we may support other approaches.
4808 
4809   // Write data to the output file.
4810   void
write(off_t offset,const void * data,size_t len)4811   write(off_t offset, const void* data, size_t len)
4812   { memcpy(this->base_ + offset, data, len); }
4813 
4814   // Get a buffer to use to write to the file, given the offset into
4815   // the file and the size.
4816   unsigned char*
get_output_view(off_t start,size_t size)4817   get_output_view(off_t start, size_t size)
4818   {
4819     gold_assert(start >= 0
4820 		&& start + static_cast<off_t>(size) <= this->file_size_);
4821     return this->base_ + start;
4822   }
4823 
4824   // VIEW must have been returned by get_output_view.  Write the
4825   // buffer to the file, passing in the offset and the size.
4826   void
write_output_view(off_t,size_t,unsigned char *)4827   write_output_view(off_t, size_t, unsigned char*)
4828   { }
4829 
4830   // Get a read/write buffer.  This is used when we want to write part
4831   // of the file, read it in, and write it again.
4832   unsigned char*
get_input_output_view(off_t start,size_t size)4833   get_input_output_view(off_t start, size_t size)
4834   { return this->get_output_view(start, size); }
4835 
4836   // Write a read/write buffer back to the file.
4837   void
write_input_output_view(off_t,size_t,unsigned char *)4838   write_input_output_view(off_t, size_t, unsigned char*)
4839   { }
4840 
4841   // Get a read buffer.  This is used when we just want to read part
4842   // of the file back it in.
4843   const unsigned char*
get_input_view(off_t start,size_t size)4844   get_input_view(off_t start, size_t size)
4845   { return this->get_output_view(start, size); }
4846 
4847   // Release a read bfufer.
4848   void
free_input_view(off_t,size_t,const unsigned char *)4849   free_input_view(off_t, size_t, const unsigned char*)
4850   { }
4851 
4852  private:
4853   // Map the file into memory or, if that fails, allocate anonymous
4854   // memory.
4855   void
4856   map();
4857 
4858   // Allocate anonymous memory for the file.
4859   bool
4860   map_anonymous();
4861 
4862   // Map the file into memory.
4863   bool
4864   map_no_anonymous(bool);
4865 
4866   // Unmap the file from memory (and flush to disk buffers).
4867   void
4868   unmap();
4869 
4870   // File name.
4871   const char* name_;
4872   // File descriptor.
4873   int o_;
4874   // File size.
4875   off_t file_size_;
4876   // Base of file mapped into memory.
4877   unsigned char* base_;
4878   // True iff base_ points to a memory buffer rather than an output file.
4879   bool map_is_anonymous_;
4880   // True if base_ was allocated using new rather than mmap.
4881   bool map_is_allocated_;
4882   // True if this is a temporary file which should not be output.
4883   bool is_temporary_;
4884 };
4885 
4886 } // End namespace gold.
4887 
4888 #endif // !defined(GOLD_OUTPUT_H)
4889