1 //===-- CPPBackend.cpp - Library for converting LLVM code to C++ code -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the writing of the LLVM IR as a set of C++ calls to the
11 // LLVM IR interface. The input module is assumed to be verified.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CPPTargetMachine.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InlineAsm.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/Pass.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/FormattedStream.h"
35 #include "llvm/Support/TargetRegistry.h"
36 #include <algorithm>
37 #include <cctype>
38 #include <cstdio>
39 #include <map>
40 #include <set>
41 using namespace llvm;
42 
43 static cl::opt<std::string>
44 FuncName("cppfname", cl::desc("Specify the name of the generated function"),
45          cl::value_desc("function name"));
46 
47 enum WhatToGenerate {
48   GenProgram,
49   GenModule,
50   GenContents,
51   GenFunction,
52   GenFunctions,
53   GenInline,
54   GenVariable,
55   GenType
56 };
57 
58 static cl::opt<WhatToGenerate> GenerationType("cppgen", cl::Optional,
59   cl::desc("Choose what kind of output to generate"),
60   cl::init(GenProgram),
61   cl::values(
62     clEnumValN(GenProgram,  "program",   "Generate a complete program"),
63     clEnumValN(GenModule,   "module",    "Generate a module definition"),
64     clEnumValN(GenContents, "contents",  "Generate contents of a module"),
65     clEnumValN(GenFunction, "function",  "Generate a function definition"),
66     clEnumValN(GenFunctions,"functions", "Generate all function definitions"),
67     clEnumValN(GenInline,   "inline",    "Generate an inline function"),
68     clEnumValN(GenVariable, "variable",  "Generate a variable definition"),
69     clEnumValN(GenType,     "type",      "Generate a type definition"),
70     clEnumValEnd
71   )
72 );
73 
74 static cl::opt<std::string> NameToGenerate("cppfor", cl::Optional,
75   cl::desc("Specify the name of the thing to generate"),
76   cl::init("!bad!"));
77 
LLVMInitializeCppBackendTarget()78 extern "C" void LLVMInitializeCppBackendTarget() {
79   // Register the target.
80   RegisterTargetMachine<CPPTargetMachine> X(TheCppBackendTarget);
81 }
82 
83 namespace {
84   typedef std::vector<Type*> TypeList;
85   typedef std::map<Type*,std::string> TypeMap;
86   typedef std::map<const Value*,std::string> ValueMap;
87   typedef std::set<std::string> NameSet;
88   typedef std::set<Type*> TypeSet;
89   typedef std::set<const Value*> ValueSet;
90   typedef std::map<const Value*,std::string> ForwardRefMap;
91 
92   /// CppWriter - This class is the main chunk of code that converts an LLVM
93   /// module to a C++ translation unit.
94   class CppWriter : public ModulePass {
95     std::unique_ptr<formatted_raw_ostream> OutOwner;
96     formatted_raw_ostream &Out;
97     const Module *TheModule;
98     uint64_t uniqueNum;
99     TypeMap TypeNames;
100     ValueMap ValueNames;
101     NameSet UsedNames;
102     TypeSet DefinedTypes;
103     ValueSet DefinedValues;
104     ForwardRefMap ForwardRefs;
105     bool is_inline;
106     unsigned indent_level;
107 
108   public:
109     static char ID;
CppWriter(std::unique_ptr<formatted_raw_ostream> o)110     explicit CppWriter(std::unique_ptr<formatted_raw_ostream> o)
111         : ModulePass(ID), OutOwner(std::move(o)), Out(*OutOwner), uniqueNum(0),
112           is_inline(false), indent_level(0) {}
113 
getPassName() const114     const char *getPassName() const override { return "C++ backend"; }
115 
116     bool runOnModule(Module &M) override;
117 
118     void printProgram(const std::string& fname, const std::string& modName );
119     void printModule(const std::string& fname, const std::string& modName );
120     void printContents(const std::string& fname, const std::string& modName );
121     void printFunction(const std::string& fname, const std::string& funcName );
122     void printFunctions();
123     void printInline(const std::string& fname, const std::string& funcName );
124     void printVariable(const std::string& fname, const std::string& varName );
125     void printType(const std::string& fname, const std::string& typeName );
126 
127     void error(const std::string& msg);
128 
129 
130     formatted_raw_ostream& nl(formatted_raw_ostream &Out, int delta = 0);
in()131     inline void in() { indent_level++; }
out()132     inline void out() { if (indent_level >0) indent_level--; }
133 
134   private:
135     void printLinkageType(GlobalValue::LinkageTypes LT);
136     void printVisibilityType(GlobalValue::VisibilityTypes VisTypes);
137     void printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType);
138     void printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM);
139     void printCallingConv(CallingConv::ID cc);
140     void printEscapedString(const std::string& str);
141     void printCFP(const ConstantFP* CFP);
142 
143     std::string getCppName(Type* val);
144     inline void printCppName(Type* val);
145 
146     std::string getCppName(const Value* val);
147     inline void printCppName(const Value* val);
148 
149     void printAttributes(const AttributeSet &PAL, const std::string &name);
150     void printType(Type* Ty);
151     void printTypes(const Module* M);
152 
153     void printConstant(const Constant *CPV);
154     void printConstants(const Module* M);
155 
156     void printVariableUses(const GlobalVariable *GV);
157     void printVariableHead(const GlobalVariable *GV);
158     void printVariableBody(const GlobalVariable *GV);
159 
160     void printFunctionUses(const Function *F);
161     void printFunctionHead(const Function *F);
162     void printFunctionBody(const Function *F);
163     void printInstruction(const Instruction *I, const std::string& bbname);
164     std::string getOpName(const Value*);
165 
166     void printModuleBody();
167   };
168 } // end anonymous namespace.
169 
nl(formatted_raw_ostream & Out,int delta)170 formatted_raw_ostream &CppWriter::nl(formatted_raw_ostream &Out, int delta) {
171   Out << '\n';
172   if (delta >= 0 || indent_level >= unsigned(-delta))
173     indent_level += delta;
174   Out.indent(indent_level);
175   return Out;
176 }
177 
sanitize(std::string & str)178 static inline void sanitize(std::string &str) {
179   for (size_t i = 0; i < str.length(); ++i)
180     if (!isalnum(str[i]) && str[i] != '_')
181       str[i] = '_';
182 }
183 
getTypePrefix(Type * Ty)184 static std::string getTypePrefix(Type *Ty) {
185   switch (Ty->getTypeID()) {
186   case Type::VoidTyID:     return "void_";
187   case Type::IntegerTyID:
188     return "int" + utostr(cast<IntegerType>(Ty)->getBitWidth()) + "_";
189   case Type::FloatTyID:    return "float_";
190   case Type::DoubleTyID:   return "double_";
191   case Type::LabelTyID:    return "label_";
192   case Type::FunctionTyID: return "func_";
193   case Type::StructTyID:   return "struct_";
194   case Type::ArrayTyID:    return "array_";
195   case Type::PointerTyID:  return "ptr_";
196   case Type::VectorTyID:   return "packed_";
197   default:                 return "other_";
198   }
199 }
200 
error(const std::string & msg)201 void CppWriter::error(const std::string& msg) {
202   report_fatal_error(msg);
203 }
204 
ftostr(const APFloat & V)205 static inline std::string ftostr(const APFloat& V) {
206   std::string Buf;
207   if (&V.getSemantics() == &APFloat::IEEEdouble) {
208     raw_string_ostream(Buf) << V.convertToDouble();
209     return Buf;
210   } else if (&V.getSemantics() == &APFloat::IEEEsingle) {
211     raw_string_ostream(Buf) << (double)V.convertToFloat();
212     return Buf;
213   }
214   return "<unknown format in ftostr>"; // error
215 }
216 
217 // printCFP - Print a floating point constant .. very carefully :)
218 // This makes sure that conversion to/from floating yields the same binary
219 // result so that we don't lose precision.
printCFP(const ConstantFP * CFP)220 void CppWriter::printCFP(const ConstantFP *CFP) {
221   bool ignored;
222   APFloat APF = APFloat(CFP->getValueAPF());  // copy
223   if (CFP->getType() == Type::getFloatTy(CFP->getContext()))
224     APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
225   Out << "ConstantFP::get(mod->getContext(), ";
226   Out << "APFloat(";
227 #if HAVE_PRINTF_A
228   char Buffer[100];
229   sprintf(Buffer, "%A", APF.convertToDouble());
230   if ((!strncmp(Buffer, "0x", 2) ||
231        !strncmp(Buffer, "-0x", 3) ||
232        !strncmp(Buffer, "+0x", 3)) &&
233       APF.bitwiseIsEqual(APFloat(atof(Buffer)))) {
234     if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
235       Out << "BitsToDouble(" << Buffer << ")";
236     else
237       Out << "BitsToFloat((float)" << Buffer << ")";
238     Out << ")";
239   } else {
240 #endif
241     std::string StrVal = ftostr(CFP->getValueAPF());
242 
243     while (StrVal[0] == ' ')
244       StrVal.erase(StrVal.begin());
245 
246     // Check to make sure that the stringized number is not some string like
247     // "Inf" or NaN.  Check that the string matches the "[-+]?[0-9]" regex.
248     if (((StrVal[0] >= '0' && StrVal[0] <= '9') ||
249          ((StrVal[0] == '-' || StrVal[0] == '+') &&
250           (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
251         (CFP->isExactlyValue(atof(StrVal.c_str())))) {
252       if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
253         Out <<  StrVal;
254       else
255         Out << StrVal << "f";
256     } else if (CFP->getType() == Type::getDoubleTy(CFP->getContext()))
257       Out << "BitsToDouble(0x"
258           << utohexstr(CFP->getValueAPF().bitcastToAPInt().getZExtValue())
259           << "ULL) /* " << StrVal << " */";
260     else
261       Out << "BitsToFloat(0x"
262           << utohexstr((uint32_t)CFP->getValueAPF().
263                                       bitcastToAPInt().getZExtValue())
264           << "U) /* " << StrVal << " */";
265     Out << ")";
266 #if HAVE_PRINTF_A
267   }
268 #endif
269   Out << ")";
270 }
271 
printCallingConv(CallingConv::ID cc)272 void CppWriter::printCallingConv(CallingConv::ID cc){
273   // Print the calling convention.
274   switch (cc) {
275   case CallingConv::C:     Out << "CallingConv::C"; break;
276   case CallingConv::Fast:  Out << "CallingConv::Fast"; break;
277   case CallingConv::Cold:  Out << "CallingConv::Cold"; break;
278   case CallingConv::FirstTargetCC: Out << "CallingConv::FirstTargetCC"; break;
279   default:                 Out << cc; break;
280   }
281 }
282 
printLinkageType(GlobalValue::LinkageTypes LT)283 void CppWriter::printLinkageType(GlobalValue::LinkageTypes LT) {
284   switch (LT) {
285   case GlobalValue::InternalLinkage:
286     Out << "GlobalValue::InternalLinkage"; break;
287   case GlobalValue::PrivateLinkage:
288     Out << "GlobalValue::PrivateLinkage"; break;
289   case GlobalValue::AvailableExternallyLinkage:
290     Out << "GlobalValue::AvailableExternallyLinkage "; break;
291   case GlobalValue::LinkOnceAnyLinkage:
292     Out << "GlobalValue::LinkOnceAnyLinkage "; break;
293   case GlobalValue::LinkOnceODRLinkage:
294     Out << "GlobalValue::LinkOnceODRLinkage "; break;
295   case GlobalValue::WeakAnyLinkage:
296     Out << "GlobalValue::WeakAnyLinkage"; break;
297   case GlobalValue::WeakODRLinkage:
298     Out << "GlobalValue::WeakODRLinkage"; break;
299   case GlobalValue::AppendingLinkage:
300     Out << "GlobalValue::AppendingLinkage"; break;
301   case GlobalValue::ExternalLinkage:
302     Out << "GlobalValue::ExternalLinkage"; break;
303   case GlobalValue::ExternalWeakLinkage:
304     Out << "GlobalValue::ExternalWeakLinkage"; break;
305   case GlobalValue::CommonLinkage:
306     Out << "GlobalValue::CommonLinkage"; break;
307   }
308 }
309 
printVisibilityType(GlobalValue::VisibilityTypes VisType)310 void CppWriter::printVisibilityType(GlobalValue::VisibilityTypes VisType) {
311   switch (VisType) {
312   case GlobalValue::DefaultVisibility:
313     Out << "GlobalValue::DefaultVisibility";
314     break;
315   case GlobalValue::HiddenVisibility:
316     Out << "GlobalValue::HiddenVisibility";
317     break;
318   case GlobalValue::ProtectedVisibility:
319     Out << "GlobalValue::ProtectedVisibility";
320     break;
321   }
322 }
323 
printDLLStorageClassType(GlobalValue::DLLStorageClassTypes DSCType)324 void CppWriter::printDLLStorageClassType(
325                                     GlobalValue::DLLStorageClassTypes DSCType) {
326   switch (DSCType) {
327   case GlobalValue::DefaultStorageClass:
328     Out << "GlobalValue::DefaultStorageClass";
329     break;
330   case GlobalValue::DLLImportStorageClass:
331     Out << "GlobalValue::DLLImportStorageClass";
332     break;
333   case GlobalValue::DLLExportStorageClass:
334     Out << "GlobalValue::DLLExportStorageClass";
335     break;
336   }
337 }
338 
printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM)339 void CppWriter::printThreadLocalMode(GlobalVariable::ThreadLocalMode TLM) {
340   switch (TLM) {
341     case GlobalVariable::NotThreadLocal:
342       Out << "GlobalVariable::NotThreadLocal";
343       break;
344     case GlobalVariable::GeneralDynamicTLSModel:
345       Out << "GlobalVariable::GeneralDynamicTLSModel";
346       break;
347     case GlobalVariable::LocalDynamicTLSModel:
348       Out << "GlobalVariable::LocalDynamicTLSModel";
349       break;
350     case GlobalVariable::InitialExecTLSModel:
351       Out << "GlobalVariable::InitialExecTLSModel";
352       break;
353     case GlobalVariable::LocalExecTLSModel:
354       Out << "GlobalVariable::LocalExecTLSModel";
355       break;
356   }
357 }
358 
359 // printEscapedString - Print each character of the specified string, escaping
360 // it if it is not printable or if it is an escape char.
printEscapedString(const std::string & Str)361 void CppWriter::printEscapedString(const std::string &Str) {
362   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
363     unsigned char C = Str[i];
364     if (isprint(C) && C != '"' && C != '\\') {
365       Out << C;
366     } else {
367       Out << "\\x"
368           << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
369           << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
370     }
371   }
372 }
373 
getCppName(Type * Ty)374 std::string CppWriter::getCppName(Type* Ty) {
375   switch (Ty->getTypeID()) {
376   default:
377     break;
378   case Type::VoidTyID:
379     return "Type::getVoidTy(mod->getContext())";
380   case Type::IntegerTyID: {
381     unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth();
382     return "IntegerType::get(mod->getContext(), " + utostr(BitWidth) + ")";
383   }
384   case Type::X86_FP80TyID:
385     return "Type::getX86_FP80Ty(mod->getContext())";
386   case Type::FloatTyID:
387     return "Type::getFloatTy(mod->getContext())";
388   case Type::DoubleTyID:
389     return "Type::getDoubleTy(mod->getContext())";
390   case Type::LabelTyID:
391     return "Type::getLabelTy(mod->getContext())";
392   case Type::X86_MMXTyID:
393     return "Type::getX86_MMXTy(mod->getContext())";
394   }
395 
396   // Now, see if we've seen the type before and return that
397   TypeMap::iterator I = TypeNames.find(Ty);
398   if (I != TypeNames.end())
399     return I->second;
400 
401   // Okay, let's build a new name for this type. Start with a prefix
402   const char* prefix = nullptr;
403   switch (Ty->getTypeID()) {
404   case Type::FunctionTyID:    prefix = "FuncTy_"; break;
405   case Type::StructTyID:      prefix = "StructTy_"; break;
406   case Type::ArrayTyID:       prefix = "ArrayTy_"; break;
407   case Type::PointerTyID:     prefix = "PointerTy_"; break;
408   case Type::VectorTyID:      prefix = "VectorTy_"; break;
409   default:                    prefix = "OtherTy_"; break; // prevent breakage
410   }
411 
412   // See if the type has a name in the symboltable and build accordingly
413   std::string name;
414   if (StructType *STy = dyn_cast<StructType>(Ty))
415     if (STy->hasName())
416       name = STy->getName();
417 
418   if (name.empty())
419     name = utostr(uniqueNum++);
420 
421   name = std::string(prefix) + name;
422   sanitize(name);
423 
424   // Save the name
425   return TypeNames[Ty] = name;
426 }
427 
printCppName(Type * Ty)428 void CppWriter::printCppName(Type* Ty) {
429   printEscapedString(getCppName(Ty));
430 }
431 
getCppName(const Value * val)432 std::string CppWriter::getCppName(const Value* val) {
433   std::string name;
434   ValueMap::iterator I = ValueNames.find(val);
435   if (I != ValueNames.end() && I->first == val)
436     return  I->second;
437 
438   if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(val)) {
439     name = std::string("gvar_") +
440       getTypePrefix(GV->getType()->getElementType());
441   } else if (isa<Function>(val)) {
442     name = std::string("func_");
443   } else if (const Constant* C = dyn_cast<Constant>(val)) {
444     name = std::string("const_") + getTypePrefix(C->getType());
445   } else if (const Argument* Arg = dyn_cast<Argument>(val)) {
446     if (is_inline) {
447       unsigned argNum = std::distance(Arg->getParent()->arg_begin(),
448                                       Function::const_arg_iterator(Arg)) + 1;
449       name = std::string("arg_") + utostr(argNum);
450       NameSet::iterator NI = UsedNames.find(name);
451       if (NI != UsedNames.end())
452         name += std::string("_") + utostr(uniqueNum++);
453       UsedNames.insert(name);
454       return ValueNames[val] = name;
455     } else {
456       name = getTypePrefix(val->getType());
457     }
458   } else {
459     name = getTypePrefix(val->getType());
460   }
461   if (val->hasName())
462     name += val->getName();
463   else
464     name += utostr(uniqueNum++);
465   sanitize(name);
466   NameSet::iterator NI = UsedNames.find(name);
467   if (NI != UsedNames.end())
468     name += std::string("_") + utostr(uniqueNum++);
469   UsedNames.insert(name);
470   return ValueNames[val] = name;
471 }
472 
printCppName(const Value * val)473 void CppWriter::printCppName(const Value* val) {
474   printEscapedString(getCppName(val));
475 }
476 
printAttributes(const AttributeSet & PAL,const std::string & name)477 void CppWriter::printAttributes(const AttributeSet &PAL,
478                                 const std::string &name) {
479   Out << "AttributeSet " << name << "_PAL;";
480   nl(Out);
481   if (!PAL.isEmpty()) {
482     Out << '{'; in(); nl(Out);
483     Out << "SmallVector<AttributeSet, 4> Attrs;"; nl(Out);
484     Out << "AttributeSet PAS;"; in(); nl(Out);
485     for (unsigned i = 0; i < PAL.getNumSlots(); ++i) {
486       unsigned index = PAL.getSlotIndex(i);
487       AttrBuilder attrs(PAL.getSlotAttributes(i), index);
488       Out << "{"; in(); nl(Out);
489       Out << "AttrBuilder B;"; nl(Out);
490 
491 #define HANDLE_ATTR(X)                                                  \
492       if (attrs.contains(Attribute::X)) {                               \
493         Out << "B.addAttribute(Attribute::" #X ");"; nl(Out);           \
494         attrs.removeAttribute(Attribute::X);                            \
495       }
496 
497       HANDLE_ATTR(SExt);
498       HANDLE_ATTR(ZExt);
499       HANDLE_ATTR(NoReturn);
500       HANDLE_ATTR(InReg);
501       HANDLE_ATTR(StructRet);
502       HANDLE_ATTR(NoUnwind);
503       HANDLE_ATTR(NoAlias);
504       HANDLE_ATTR(ByVal);
505       HANDLE_ATTR(InAlloca);
506       HANDLE_ATTR(Nest);
507       HANDLE_ATTR(ReadNone);
508       HANDLE_ATTR(ReadOnly);
509       HANDLE_ATTR(NoInline);
510       HANDLE_ATTR(AlwaysInline);
511       HANDLE_ATTR(OptimizeNone);
512       HANDLE_ATTR(OptimizeForSize);
513       HANDLE_ATTR(StackProtect);
514       HANDLE_ATTR(StackProtectReq);
515       HANDLE_ATTR(StackProtectStrong);
516       HANDLE_ATTR(SafeStack);
517       HANDLE_ATTR(NoCapture);
518       HANDLE_ATTR(NoRedZone);
519       HANDLE_ATTR(NoImplicitFloat);
520       HANDLE_ATTR(Naked);
521       HANDLE_ATTR(InlineHint);
522       HANDLE_ATTR(ReturnsTwice);
523       HANDLE_ATTR(UWTable);
524       HANDLE_ATTR(NonLazyBind);
525       HANDLE_ATTR(MinSize);
526 #undef HANDLE_ATTR
527 
528       if (attrs.contains(Attribute::StackAlignment)) {
529         Out << "B.addStackAlignmentAttr(" << attrs.getStackAlignment()<<')';
530         nl(Out);
531         attrs.removeAttribute(Attribute::StackAlignment);
532       }
533 
534       Out << "PAS = AttributeSet::get(mod->getContext(), ";
535       if (index == ~0U)
536         Out << "~0U,";
537       else
538         Out << index << "U,";
539       Out << " B);"; out(); nl(Out);
540       Out << "}"; out(); nl(Out);
541       nl(Out);
542       Out << "Attrs.push_back(PAS);"; nl(Out);
543     }
544     Out << name << "_PAL = AttributeSet::get(mod->getContext(), Attrs);";
545     nl(Out);
546     out(); nl(Out);
547     Out << '}'; nl(Out);
548   }
549 }
550 
printType(Type * Ty)551 void CppWriter::printType(Type* Ty) {
552   // We don't print definitions for primitive types
553   if (Ty->isFloatingPointTy() || Ty->isX86_MMXTy() || Ty->isIntegerTy() ||
554       Ty->isLabelTy() || Ty->isMetadataTy() || Ty->isVoidTy() ||
555       Ty->isTokenTy())
556     return;
557 
558   // If we already defined this type, we don't need to define it again.
559   if (DefinedTypes.find(Ty) != DefinedTypes.end())
560     return;
561 
562   // Everything below needs the name for the type so get it now.
563   std::string typeName(getCppName(Ty));
564 
565   // Print the type definition
566   switch (Ty->getTypeID()) {
567   case Type::FunctionTyID:  {
568     FunctionType* FT = cast<FunctionType>(Ty);
569     Out << "std::vector<Type*>" << typeName << "_args;";
570     nl(Out);
571     FunctionType::param_iterator PI = FT->param_begin();
572     FunctionType::param_iterator PE = FT->param_end();
573     for (; PI != PE; ++PI) {
574       Type* argTy = static_cast<Type*>(*PI);
575       printType(argTy);
576       std::string argName(getCppName(argTy));
577       Out << typeName << "_args.push_back(" << argName;
578       Out << ");";
579       nl(Out);
580     }
581     printType(FT->getReturnType());
582     std::string retTypeName(getCppName(FT->getReturnType()));
583     Out << "FunctionType* " << typeName << " = FunctionType::get(";
584     in(); nl(Out) << "/*Result=*/" << retTypeName;
585     Out << ",";
586     nl(Out) << "/*Params=*/" << typeName << "_args,";
587     nl(Out) << "/*isVarArg=*/" << (FT->isVarArg() ? "true" : "false") << ");";
588     out();
589     nl(Out);
590     break;
591   }
592   case Type::StructTyID: {
593     StructType* ST = cast<StructType>(Ty);
594     if (!ST->isLiteral()) {
595       Out << "StructType *" << typeName << " = mod->getTypeByName(\"";
596       printEscapedString(ST->getName());
597       Out << "\");";
598       nl(Out);
599       Out << "if (!" << typeName << ") {";
600       nl(Out);
601       Out << typeName << " = ";
602       Out << "StructType::create(mod->getContext(), \"";
603       printEscapedString(ST->getName());
604       Out << "\");";
605       nl(Out);
606       Out << "}";
607       nl(Out);
608       // Indicate that this type is now defined.
609       DefinedTypes.insert(Ty);
610     }
611 
612     Out << "std::vector<Type*>" << typeName << "_fields;";
613     nl(Out);
614     StructType::element_iterator EI = ST->element_begin();
615     StructType::element_iterator EE = ST->element_end();
616     for (; EI != EE; ++EI) {
617       Type* fieldTy = static_cast<Type*>(*EI);
618       printType(fieldTy);
619       std::string fieldName(getCppName(fieldTy));
620       Out << typeName << "_fields.push_back(" << fieldName;
621       Out << ");";
622       nl(Out);
623     }
624 
625     if (ST->isLiteral()) {
626       Out << "StructType *" << typeName << " = ";
627       Out << "StructType::get(" << "mod->getContext(), ";
628     } else {
629       Out << "if (" << typeName << "->isOpaque()) {";
630       nl(Out);
631       Out << typeName << "->setBody(";
632     }
633 
634     Out << typeName << "_fields, /*isPacked=*/"
635         << (ST->isPacked() ? "true" : "false") << ");";
636     nl(Out);
637     if (!ST->isLiteral()) {
638       Out << "}";
639       nl(Out);
640     }
641     break;
642   }
643   case Type::ArrayTyID: {
644     ArrayType* AT = cast<ArrayType>(Ty);
645     Type* ET = AT->getElementType();
646     printType(ET);
647     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
648       std::string elemName(getCppName(ET));
649       Out << "ArrayType* " << typeName << " = ArrayType::get("
650           << elemName << ", " << AT->getNumElements() << ");";
651       nl(Out);
652     }
653     break;
654   }
655   case Type::PointerTyID: {
656     PointerType* PT = cast<PointerType>(Ty);
657     Type* ET = PT->getElementType();
658     printType(ET);
659     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
660       std::string elemName(getCppName(ET));
661       Out << "PointerType* " << typeName << " = PointerType::get("
662           << elemName << ", " << PT->getAddressSpace() << ");";
663       nl(Out);
664     }
665     break;
666   }
667   case Type::VectorTyID: {
668     VectorType* PT = cast<VectorType>(Ty);
669     Type* ET = PT->getElementType();
670     printType(ET);
671     if (DefinedTypes.find(Ty) == DefinedTypes.end()) {
672       std::string elemName(getCppName(ET));
673       Out << "VectorType* " << typeName << " = VectorType::get("
674           << elemName << ", " << PT->getNumElements() << ");";
675       nl(Out);
676     }
677     break;
678   }
679   default:
680     error("Invalid TypeID");
681   }
682 
683   // Indicate that this type is now defined.
684   DefinedTypes.insert(Ty);
685 
686   // Finally, separate the type definition from other with a newline.
687   nl(Out);
688 }
689 
printTypes(const Module * M)690 void CppWriter::printTypes(const Module* M) {
691   // Add all of the global variables to the value table.
692   for (Module::const_global_iterator I = TheModule->global_begin(),
693          E = TheModule->global_end(); I != E; ++I) {
694     if (I->hasInitializer())
695       printType(I->getInitializer()->getType());
696     printType(I->getType());
697   }
698 
699   // Add all the functions to the table
700   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
701        FI != FE; ++FI) {
702     printType(FI->getReturnType());
703     printType(FI->getFunctionType());
704     // Add all the function arguments
705     for (Function::const_arg_iterator AI = FI->arg_begin(),
706            AE = FI->arg_end(); AI != AE; ++AI) {
707       printType(AI->getType());
708     }
709 
710     // Add all of the basic blocks and instructions
711     for (Function::const_iterator BB = FI->begin(),
712            E = FI->end(); BB != E; ++BB) {
713       printType(BB->getType());
714       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
715            ++I) {
716         printType(I->getType());
717         for (unsigned i = 0; i < I->getNumOperands(); ++i)
718           printType(I->getOperand(i)->getType());
719       }
720     }
721   }
722 }
723 
724 
725 // printConstant - Print out a constant pool entry...
printConstant(const Constant * CV)726 void CppWriter::printConstant(const Constant *CV) {
727   // First, if the constant is actually a GlobalValue (variable or function)
728   // or its already in the constant list then we've printed it already and we
729   // can just return.
730   if (isa<GlobalValue>(CV) || ValueNames.find(CV) != ValueNames.end())
731     return;
732 
733   std::string constName(getCppName(CV));
734   std::string typeName(getCppName(CV->getType()));
735 
736   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
737     std::string constValue = CI->getValue().toString(10, true);
738     Out << "ConstantInt* " << constName
739         << " = ConstantInt::get(mod->getContext(), APInt("
740         << cast<IntegerType>(CI->getType())->getBitWidth()
741         << ", StringRef(\"" <<  constValue << "\"), 10));";
742   } else if (isa<ConstantAggregateZero>(CV)) {
743     Out << "ConstantAggregateZero* " << constName
744         << " = ConstantAggregateZero::get(" << typeName << ");";
745   } else if (isa<ConstantPointerNull>(CV)) {
746     Out << "ConstantPointerNull* " << constName
747         << " = ConstantPointerNull::get(" << typeName << ");";
748   } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
749     Out << "ConstantFP* " << constName << " = ";
750     printCFP(CFP);
751     Out << ";";
752   } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
753     Out << "std::vector<Constant*> " << constName << "_elems;";
754     nl(Out);
755     unsigned N = CA->getNumOperands();
756     for (unsigned i = 0; i < N; ++i) {
757       printConstant(CA->getOperand(i)); // recurse to print operands
758       Out << constName << "_elems.push_back("
759           << getCppName(CA->getOperand(i)) << ");";
760       nl(Out);
761     }
762     Out << "Constant* " << constName << " = ConstantArray::get("
763         << typeName << ", " << constName << "_elems);";
764   } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
765     Out << "std::vector<Constant*> " << constName << "_fields;";
766     nl(Out);
767     unsigned N = CS->getNumOperands();
768     for (unsigned i = 0; i < N; i++) {
769       printConstant(CS->getOperand(i));
770       Out << constName << "_fields.push_back("
771           << getCppName(CS->getOperand(i)) << ");";
772       nl(Out);
773     }
774     Out << "Constant* " << constName << " = ConstantStruct::get("
775         << typeName << ", " << constName << "_fields);";
776   } else if (const ConstantVector *CVec = dyn_cast<ConstantVector>(CV)) {
777     Out << "std::vector<Constant*> " << constName << "_elems;";
778     nl(Out);
779     unsigned N = CVec->getNumOperands();
780     for (unsigned i = 0; i < N; ++i) {
781       printConstant(CVec->getOperand(i));
782       Out << constName << "_elems.push_back("
783           << getCppName(CVec->getOperand(i)) << ");";
784       nl(Out);
785     }
786     Out << "Constant* " << constName << " = ConstantVector::get("
787         << typeName << ", " << constName << "_elems);";
788   } else if (isa<UndefValue>(CV)) {
789     Out << "UndefValue* " << constName << " = UndefValue::get("
790         << typeName << ");";
791   } else if (const ConstantDataSequential *CDS =
792                dyn_cast<ConstantDataSequential>(CV)) {
793     if (CDS->isString()) {
794       Out << "Constant *" << constName <<
795       " = ConstantDataArray::getString(mod->getContext(), \"";
796       StringRef Str = CDS->getAsString();
797       bool nullTerminate = false;
798       if (Str.back() == 0) {
799         Str = Str.drop_back();
800         nullTerminate = true;
801       }
802       printEscapedString(Str);
803       // Determine if we want null termination or not.
804       if (nullTerminate)
805         Out << "\", true);";
806       else
807         Out << "\", false);";// No null terminator
808     } else {
809       // TODO: Could generate more efficient code generating CDS calls instead.
810       Out << "std::vector<Constant*> " << constName << "_elems;";
811       nl(Out);
812       for (unsigned i = 0; i != CDS->getNumElements(); ++i) {
813         Constant *Elt = CDS->getElementAsConstant(i);
814         printConstant(Elt);
815         Out << constName << "_elems.push_back(" << getCppName(Elt) << ");";
816         nl(Out);
817       }
818       Out << "Constant* " << constName;
819 
820       if (isa<ArrayType>(CDS->getType()))
821         Out << " = ConstantArray::get(";
822       else
823         Out << " = ConstantVector::get(";
824       Out << typeName << ", " << constName << "_elems);";
825     }
826   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
827     if (CE->getOpcode() == Instruction::GetElementPtr) {
828       Out << "std::vector<Constant*> " << constName << "_indices;";
829       nl(Out);
830       printConstant(CE->getOperand(0));
831       for (unsigned i = 1; i < CE->getNumOperands(); ++i ) {
832         printConstant(CE->getOperand(i));
833         Out << constName << "_indices.push_back("
834             << getCppName(CE->getOperand(i)) << ");";
835         nl(Out);
836       }
837       Out << "Constant* " << constName
838           << " = ConstantExpr::getGetElementPtr("
839           << getCppName(CE->getOperand(0)) << ", "
840           << constName << "_indices);";
841     } else if (CE->isCast()) {
842       printConstant(CE->getOperand(0));
843       Out << "Constant* " << constName << " = ConstantExpr::getCast(";
844       switch (CE->getOpcode()) {
845       default: llvm_unreachable("Invalid cast opcode");
846       case Instruction::Trunc: Out << "Instruction::Trunc"; break;
847       case Instruction::ZExt:  Out << "Instruction::ZExt"; break;
848       case Instruction::SExt:  Out << "Instruction::SExt"; break;
849       case Instruction::FPTrunc:  Out << "Instruction::FPTrunc"; break;
850       case Instruction::FPExt:  Out << "Instruction::FPExt"; break;
851       case Instruction::FPToUI:  Out << "Instruction::FPToUI"; break;
852       case Instruction::FPToSI:  Out << "Instruction::FPToSI"; break;
853       case Instruction::UIToFP:  Out << "Instruction::UIToFP"; break;
854       case Instruction::SIToFP:  Out << "Instruction::SIToFP"; break;
855       case Instruction::PtrToInt:  Out << "Instruction::PtrToInt"; break;
856       case Instruction::IntToPtr:  Out << "Instruction::IntToPtr"; break;
857       case Instruction::BitCast:  Out << "Instruction::BitCast"; break;
858       }
859       Out << ", " << getCppName(CE->getOperand(0)) << ", "
860           << getCppName(CE->getType()) << ");";
861     } else {
862       unsigned N = CE->getNumOperands();
863       for (unsigned i = 0; i < N; ++i ) {
864         printConstant(CE->getOperand(i));
865       }
866       Out << "Constant* " << constName << " = ConstantExpr::";
867       switch (CE->getOpcode()) {
868       case Instruction::Add:    Out << "getAdd(";  break;
869       case Instruction::FAdd:   Out << "getFAdd(";  break;
870       case Instruction::Sub:    Out << "getSub("; break;
871       case Instruction::FSub:   Out << "getFSub("; break;
872       case Instruction::Mul:    Out << "getMul("; break;
873       case Instruction::FMul:   Out << "getFMul("; break;
874       case Instruction::UDiv:   Out << "getUDiv("; break;
875       case Instruction::SDiv:   Out << "getSDiv("; break;
876       case Instruction::FDiv:   Out << "getFDiv("; break;
877       case Instruction::URem:   Out << "getURem("; break;
878       case Instruction::SRem:   Out << "getSRem("; break;
879       case Instruction::FRem:   Out << "getFRem("; break;
880       case Instruction::And:    Out << "getAnd("; break;
881       case Instruction::Or:     Out << "getOr("; break;
882       case Instruction::Xor:    Out << "getXor("; break;
883       case Instruction::ICmp:
884         Out << "getICmp(ICmpInst::ICMP_";
885         switch (CE->getPredicate()) {
886         case ICmpInst::ICMP_EQ:  Out << "EQ"; break;
887         case ICmpInst::ICMP_NE:  Out << "NE"; break;
888         case ICmpInst::ICMP_SLT: Out << "SLT"; break;
889         case ICmpInst::ICMP_ULT: Out << "ULT"; break;
890         case ICmpInst::ICMP_SGT: Out << "SGT"; break;
891         case ICmpInst::ICMP_UGT: Out << "UGT"; break;
892         case ICmpInst::ICMP_SLE: Out << "SLE"; break;
893         case ICmpInst::ICMP_ULE: Out << "ULE"; break;
894         case ICmpInst::ICMP_SGE: Out << "SGE"; break;
895         case ICmpInst::ICMP_UGE: Out << "UGE"; break;
896         default: error("Invalid ICmp Predicate");
897         }
898         break;
899       case Instruction::FCmp:
900         Out << "getFCmp(FCmpInst::FCMP_";
901         switch (CE->getPredicate()) {
902         case FCmpInst::FCMP_FALSE: Out << "FALSE"; break;
903         case FCmpInst::FCMP_ORD:   Out << "ORD"; break;
904         case FCmpInst::FCMP_UNO:   Out << "UNO"; break;
905         case FCmpInst::FCMP_OEQ:   Out << "OEQ"; break;
906         case FCmpInst::FCMP_UEQ:   Out << "UEQ"; break;
907         case FCmpInst::FCMP_ONE:   Out << "ONE"; break;
908         case FCmpInst::FCMP_UNE:   Out << "UNE"; break;
909         case FCmpInst::FCMP_OLT:   Out << "OLT"; break;
910         case FCmpInst::FCMP_ULT:   Out << "ULT"; break;
911         case FCmpInst::FCMP_OGT:   Out << "OGT"; break;
912         case FCmpInst::FCMP_UGT:   Out << "UGT"; break;
913         case FCmpInst::FCMP_OLE:   Out << "OLE"; break;
914         case FCmpInst::FCMP_ULE:   Out << "ULE"; break;
915         case FCmpInst::FCMP_OGE:   Out << "OGE"; break;
916         case FCmpInst::FCMP_UGE:   Out << "UGE"; break;
917         case FCmpInst::FCMP_TRUE:  Out << "TRUE"; break;
918         default: error("Invalid FCmp Predicate");
919         }
920         break;
921       case Instruction::Shl:     Out << "getShl("; break;
922       case Instruction::LShr:    Out << "getLShr("; break;
923       case Instruction::AShr:    Out << "getAShr("; break;
924       case Instruction::Select:  Out << "getSelect("; break;
925       case Instruction::ExtractElement: Out << "getExtractElement("; break;
926       case Instruction::InsertElement:  Out << "getInsertElement("; break;
927       case Instruction::ShuffleVector:  Out << "getShuffleVector("; break;
928       default:
929         error("Invalid constant expression");
930         break;
931       }
932       Out << getCppName(CE->getOperand(0));
933       for (unsigned i = 1; i < CE->getNumOperands(); ++i)
934         Out << ", " << getCppName(CE->getOperand(i));
935       Out << ");";
936     }
937   } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
938     Out << "Constant* " << constName << " = ";
939     Out << "BlockAddress::get(" << getOpName(BA->getBasicBlock()) << ");";
940   } else {
941     error("Bad Constant");
942     Out << "Constant* " << constName << " = 0; ";
943   }
944   nl(Out);
945 }
946 
printConstants(const Module * M)947 void CppWriter::printConstants(const Module* M) {
948   // Traverse all the global variables looking for constant initializers
949   for (Module::const_global_iterator I = TheModule->global_begin(),
950          E = TheModule->global_end(); I != E; ++I)
951     if (I->hasInitializer())
952       printConstant(I->getInitializer());
953 
954   // Traverse the LLVM functions looking for constants
955   for (Module::const_iterator FI = TheModule->begin(), FE = TheModule->end();
956        FI != FE; ++FI) {
957     // Add all of the basic blocks and instructions
958     for (Function::const_iterator BB = FI->begin(),
959            E = FI->end(); BB != E; ++BB) {
960       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;
961            ++I) {
962         for (unsigned i = 0; i < I->getNumOperands(); ++i) {
963           if (Constant* C = dyn_cast<Constant>(I->getOperand(i))) {
964             printConstant(C);
965           }
966         }
967       }
968     }
969   }
970 }
971 
printVariableUses(const GlobalVariable * GV)972 void CppWriter::printVariableUses(const GlobalVariable *GV) {
973   nl(Out) << "// Type Definitions";
974   nl(Out);
975   printType(GV->getType());
976   if (GV->hasInitializer()) {
977     const Constant *Init = GV->getInitializer();
978     printType(Init->getType());
979     if (const Function *F = dyn_cast<Function>(Init)) {
980       nl(Out)<< "/ Function Declarations"; nl(Out);
981       printFunctionHead(F);
982     } else if (const GlobalVariable* gv = dyn_cast<GlobalVariable>(Init)) {
983       nl(Out) << "// Global Variable Declarations"; nl(Out);
984       printVariableHead(gv);
985 
986       nl(Out) << "// Global Variable Definitions"; nl(Out);
987       printVariableBody(gv);
988     } else  {
989       nl(Out) << "// Constant Definitions"; nl(Out);
990       printConstant(Init);
991     }
992   }
993 }
994 
printVariableHead(const GlobalVariable * GV)995 void CppWriter::printVariableHead(const GlobalVariable *GV) {
996   nl(Out) << "GlobalVariable* " << getCppName(GV);
997   if (is_inline) {
998     Out << " = mod->getGlobalVariable(mod->getContext(), ";
999     printEscapedString(GV->getName());
1000     Out << ", " << getCppName(GV->getType()->getElementType()) << ",true)";
1001     nl(Out) << "if (!" << getCppName(GV) << ") {";
1002     in(); nl(Out) << getCppName(GV);
1003   }
1004   Out << " = new GlobalVariable(/*Module=*/*mod, ";
1005   nl(Out) << "/*Type=*/";
1006   printCppName(GV->getType()->getElementType());
1007   Out << ",";
1008   nl(Out) << "/*isConstant=*/" << (GV->isConstant()?"true":"false");
1009   Out << ",";
1010   nl(Out) << "/*Linkage=*/";
1011   printLinkageType(GV->getLinkage());
1012   Out << ",";
1013   nl(Out) << "/*Initializer=*/0, ";
1014   if (GV->hasInitializer()) {
1015     Out << "// has initializer, specified below";
1016   }
1017   nl(Out) << "/*Name=*/\"";
1018   printEscapedString(GV->getName());
1019   Out << "\");";
1020   nl(Out);
1021 
1022   if (GV->hasSection()) {
1023     printCppName(GV);
1024     Out << "->setSection(\"";
1025     printEscapedString(GV->getSection());
1026     Out << "\");";
1027     nl(Out);
1028   }
1029   if (GV->getAlignment()) {
1030     printCppName(GV);
1031     Out << "->setAlignment(" << GV->getAlignment() << ");";
1032     nl(Out);
1033   }
1034   if (GV->getVisibility() != GlobalValue::DefaultVisibility) {
1035     printCppName(GV);
1036     Out << "->setVisibility(";
1037     printVisibilityType(GV->getVisibility());
1038     Out << ");";
1039     nl(Out);
1040   }
1041   if (GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1042     printCppName(GV);
1043     Out << "->setDLLStorageClass(";
1044     printDLLStorageClassType(GV->getDLLStorageClass());
1045     Out << ");";
1046     nl(Out);
1047   }
1048   if (GV->isThreadLocal()) {
1049     printCppName(GV);
1050     Out << "->setThreadLocalMode(";
1051     printThreadLocalMode(GV->getThreadLocalMode());
1052     Out << ");";
1053     nl(Out);
1054   }
1055   if (is_inline) {
1056     out(); Out << "}"; nl(Out);
1057   }
1058 }
1059 
printVariableBody(const GlobalVariable * GV)1060 void CppWriter::printVariableBody(const GlobalVariable *GV) {
1061   if (GV->hasInitializer()) {
1062     printCppName(GV);
1063     Out << "->setInitializer(";
1064     Out << getCppName(GV->getInitializer()) << ");";
1065     nl(Out);
1066   }
1067 }
1068 
getOpName(const Value * V)1069 std::string CppWriter::getOpName(const Value* V) {
1070   if (!isa<Instruction>(V) || DefinedValues.find(V) != DefinedValues.end())
1071     return getCppName(V);
1072 
1073   // See if its alread in the map of forward references, if so just return the
1074   // name we already set up for it
1075   ForwardRefMap::const_iterator I = ForwardRefs.find(V);
1076   if (I != ForwardRefs.end())
1077     return I->second;
1078 
1079   // This is a new forward reference. Generate a unique name for it
1080   std::string result(std::string("fwdref_") + utostr(uniqueNum++));
1081 
1082   // Yes, this is a hack. An Argument is the smallest instantiable value that
1083   // we can make as a placeholder for the real value. We'll replace these
1084   // Argument instances later.
1085   Out << "Argument* " << result << " = new Argument("
1086       << getCppName(V->getType()) << ");";
1087   nl(Out);
1088   ForwardRefs[V] = result;
1089   return result;
1090 }
1091 
ConvertAtomicOrdering(AtomicOrdering Ordering)1092 static StringRef ConvertAtomicOrdering(AtomicOrdering Ordering) {
1093   switch (Ordering) {
1094     case NotAtomic: return "NotAtomic";
1095     case Unordered: return "Unordered";
1096     case Monotonic: return "Monotonic";
1097     case Acquire: return "Acquire";
1098     case Release: return "Release";
1099     case AcquireRelease: return "AcquireRelease";
1100     case SequentiallyConsistent: return "SequentiallyConsistent";
1101   }
1102   llvm_unreachable("Unknown ordering");
1103 }
1104 
ConvertAtomicSynchScope(SynchronizationScope SynchScope)1105 static StringRef ConvertAtomicSynchScope(SynchronizationScope SynchScope) {
1106   switch (SynchScope) {
1107     case SingleThread: return "SingleThread";
1108     case CrossThread: return "CrossThread";
1109   }
1110   llvm_unreachable("Unknown synch scope");
1111 }
1112 
1113 // printInstruction - This member is called for each Instruction in a function.
printInstruction(const Instruction * I,const std::string & bbname)1114 void CppWriter::printInstruction(const Instruction *I,
1115                                  const std::string& bbname) {
1116   std::string iName(getCppName(I));
1117 
1118   // Before we emit this instruction, we need to take care of generating any
1119   // forward references. So, we get the names of all the operands in advance
1120   const unsigned Ops(I->getNumOperands());
1121   std::string* opNames = new std::string[Ops];
1122   for (unsigned i = 0; i < Ops; i++)
1123     opNames[i] = getOpName(I->getOperand(i));
1124 
1125   switch (I->getOpcode()) {
1126   default:
1127     error("Invalid instruction");
1128     break;
1129 
1130   case Instruction::Ret: {
1131     const ReturnInst* ret =  cast<ReturnInst>(I);
1132     Out << "ReturnInst::Create(mod->getContext(), "
1133         << (ret->getReturnValue() ? opNames[0] + ", " : "") << bbname << ");";
1134     break;
1135   }
1136   case Instruction::Br: {
1137     const BranchInst* br = cast<BranchInst>(I);
1138     Out << "BranchInst::Create(" ;
1139     if (br->getNumOperands() == 3) {
1140       Out << opNames[2] << ", "
1141           << opNames[1] << ", "
1142           << opNames[0] << ", ";
1143 
1144     } else if (br->getNumOperands() == 1) {
1145       Out << opNames[0] << ", ";
1146     } else {
1147       error("Branch with 2 operands?");
1148     }
1149     Out << bbname << ");";
1150     break;
1151   }
1152   case Instruction::Switch: {
1153     const SwitchInst *SI = cast<SwitchInst>(I);
1154     Out << "SwitchInst* " << iName << " = SwitchInst::Create("
1155         << getOpName(SI->getCondition()) << ", "
1156         << getOpName(SI->getDefaultDest()) << ", "
1157         << SI->getNumCases() << ", " << bbname << ");";
1158     nl(Out);
1159     for (SwitchInst::ConstCaseIt i = SI->case_begin(), e = SI->case_end();
1160          i != e; ++i) {
1161       const ConstantInt* CaseVal = i.getCaseValue();
1162       const BasicBlock *BB = i.getCaseSuccessor();
1163       Out << iName << "->addCase("
1164           << getOpName(CaseVal) << ", "
1165           << getOpName(BB) << ");";
1166       nl(Out);
1167     }
1168     break;
1169   }
1170   case Instruction::IndirectBr: {
1171     const IndirectBrInst *IBI = cast<IndirectBrInst>(I);
1172     Out << "IndirectBrInst *" << iName << " = IndirectBrInst::Create("
1173         << opNames[0] << ", " << IBI->getNumDestinations() << ");";
1174     nl(Out);
1175     for (unsigned i = 1; i != IBI->getNumOperands(); ++i) {
1176       Out << iName << "->addDestination(" << opNames[i] << ");";
1177       nl(Out);
1178     }
1179     break;
1180   }
1181   case Instruction::Resume: {
1182     Out << "ResumeInst::Create(" << opNames[0] << ", " << bbname << ");";
1183     break;
1184   }
1185   case Instruction::Invoke: {
1186     const InvokeInst* inv = cast<InvokeInst>(I);
1187     Out << "std::vector<Value*> " << iName << "_params;";
1188     nl(Out);
1189     for (unsigned i = 0; i < inv->getNumArgOperands(); ++i) {
1190       Out << iName << "_params.push_back("
1191           << getOpName(inv->getArgOperand(i)) << ");";
1192       nl(Out);
1193     }
1194     // FIXME: This shouldn't use magic numbers -3, -2, and -1.
1195     Out << "InvokeInst *" << iName << " = InvokeInst::Create("
1196         << getOpName(inv->getCalledValue()) << ", "
1197         << getOpName(inv->getNormalDest()) << ", "
1198         << getOpName(inv->getUnwindDest()) << ", "
1199         << iName << "_params, \"";
1200     printEscapedString(inv->getName());
1201     Out << "\", " << bbname << ");";
1202     nl(Out) << iName << "->setCallingConv(";
1203     printCallingConv(inv->getCallingConv());
1204     Out << ");";
1205     printAttributes(inv->getAttributes(), iName);
1206     Out << iName << "->setAttributes(" << iName << "_PAL);";
1207     nl(Out);
1208     break;
1209   }
1210   case Instruction::Unreachable: {
1211     Out << "new UnreachableInst("
1212         << "mod->getContext(), "
1213         << bbname << ");";
1214     break;
1215   }
1216   case Instruction::Add:
1217   case Instruction::FAdd:
1218   case Instruction::Sub:
1219   case Instruction::FSub:
1220   case Instruction::Mul:
1221   case Instruction::FMul:
1222   case Instruction::UDiv:
1223   case Instruction::SDiv:
1224   case Instruction::FDiv:
1225   case Instruction::URem:
1226   case Instruction::SRem:
1227   case Instruction::FRem:
1228   case Instruction::And:
1229   case Instruction::Or:
1230   case Instruction::Xor:
1231   case Instruction::Shl:
1232   case Instruction::LShr:
1233   case Instruction::AShr:{
1234     Out << "BinaryOperator* " << iName << " = BinaryOperator::Create(";
1235     switch (I->getOpcode()) {
1236     case Instruction::Add: Out << "Instruction::Add"; break;
1237     case Instruction::FAdd: Out << "Instruction::FAdd"; break;
1238     case Instruction::Sub: Out << "Instruction::Sub"; break;
1239     case Instruction::FSub: Out << "Instruction::FSub"; break;
1240     case Instruction::Mul: Out << "Instruction::Mul"; break;
1241     case Instruction::FMul: Out << "Instruction::FMul"; break;
1242     case Instruction::UDiv:Out << "Instruction::UDiv"; break;
1243     case Instruction::SDiv:Out << "Instruction::SDiv"; break;
1244     case Instruction::FDiv:Out << "Instruction::FDiv"; break;
1245     case Instruction::URem:Out << "Instruction::URem"; break;
1246     case Instruction::SRem:Out << "Instruction::SRem"; break;
1247     case Instruction::FRem:Out << "Instruction::FRem"; break;
1248     case Instruction::And: Out << "Instruction::And"; break;
1249     case Instruction::Or:  Out << "Instruction::Or";  break;
1250     case Instruction::Xor: Out << "Instruction::Xor"; break;
1251     case Instruction::Shl: Out << "Instruction::Shl"; break;
1252     case Instruction::LShr:Out << "Instruction::LShr"; break;
1253     case Instruction::AShr:Out << "Instruction::AShr"; break;
1254     default: Out << "Instruction::BadOpCode"; break;
1255     }
1256     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1257     printEscapedString(I->getName());
1258     Out << "\", " << bbname << ");";
1259     break;
1260   }
1261   case Instruction::FCmp: {
1262     Out << "FCmpInst* " << iName << " = new FCmpInst(*" << bbname << ", ";
1263     switch (cast<FCmpInst>(I)->getPredicate()) {
1264     case FCmpInst::FCMP_FALSE: Out << "FCmpInst::FCMP_FALSE"; break;
1265     case FCmpInst::FCMP_OEQ  : Out << "FCmpInst::FCMP_OEQ"; break;
1266     case FCmpInst::FCMP_OGT  : Out << "FCmpInst::FCMP_OGT"; break;
1267     case FCmpInst::FCMP_OGE  : Out << "FCmpInst::FCMP_OGE"; break;
1268     case FCmpInst::FCMP_OLT  : Out << "FCmpInst::FCMP_OLT"; break;
1269     case FCmpInst::FCMP_OLE  : Out << "FCmpInst::FCMP_OLE"; break;
1270     case FCmpInst::FCMP_ONE  : Out << "FCmpInst::FCMP_ONE"; break;
1271     case FCmpInst::FCMP_ORD  : Out << "FCmpInst::FCMP_ORD"; break;
1272     case FCmpInst::FCMP_UNO  : Out << "FCmpInst::FCMP_UNO"; break;
1273     case FCmpInst::FCMP_UEQ  : Out << "FCmpInst::FCMP_UEQ"; break;
1274     case FCmpInst::FCMP_UGT  : Out << "FCmpInst::FCMP_UGT"; break;
1275     case FCmpInst::FCMP_UGE  : Out << "FCmpInst::FCMP_UGE"; break;
1276     case FCmpInst::FCMP_ULT  : Out << "FCmpInst::FCMP_ULT"; break;
1277     case FCmpInst::FCMP_ULE  : Out << "FCmpInst::FCMP_ULE"; break;
1278     case FCmpInst::FCMP_UNE  : Out << "FCmpInst::FCMP_UNE"; break;
1279     case FCmpInst::FCMP_TRUE : Out << "FCmpInst::FCMP_TRUE"; break;
1280     default: Out << "FCmpInst::BAD_ICMP_PREDICATE"; break;
1281     }
1282     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1283     printEscapedString(I->getName());
1284     Out << "\");";
1285     break;
1286   }
1287   case Instruction::ICmp: {
1288     Out << "ICmpInst* " << iName << " = new ICmpInst(*" << bbname << ", ";
1289     switch (cast<ICmpInst>(I)->getPredicate()) {
1290     case ICmpInst::ICMP_EQ:  Out << "ICmpInst::ICMP_EQ";  break;
1291     case ICmpInst::ICMP_NE:  Out << "ICmpInst::ICMP_NE";  break;
1292     case ICmpInst::ICMP_ULE: Out << "ICmpInst::ICMP_ULE"; break;
1293     case ICmpInst::ICMP_SLE: Out << "ICmpInst::ICMP_SLE"; break;
1294     case ICmpInst::ICMP_UGE: Out << "ICmpInst::ICMP_UGE"; break;
1295     case ICmpInst::ICMP_SGE: Out << "ICmpInst::ICMP_SGE"; break;
1296     case ICmpInst::ICMP_ULT: Out << "ICmpInst::ICMP_ULT"; break;
1297     case ICmpInst::ICMP_SLT: Out << "ICmpInst::ICMP_SLT"; break;
1298     case ICmpInst::ICMP_UGT: Out << "ICmpInst::ICMP_UGT"; break;
1299     case ICmpInst::ICMP_SGT: Out << "ICmpInst::ICMP_SGT"; break;
1300     default: Out << "ICmpInst::BAD_ICMP_PREDICATE"; break;
1301     }
1302     Out << ", " << opNames[0] << ", " << opNames[1] << ", \"";
1303     printEscapedString(I->getName());
1304     Out << "\");";
1305     break;
1306   }
1307   case Instruction::Alloca: {
1308     const AllocaInst* allocaI = cast<AllocaInst>(I);
1309     Out << "AllocaInst* " << iName << " = new AllocaInst("
1310         << getCppName(allocaI->getAllocatedType()) << ", ";
1311     if (allocaI->isArrayAllocation())
1312       Out << opNames[0] << ", ";
1313     Out << "\"";
1314     printEscapedString(allocaI->getName());
1315     Out << "\", " << bbname << ");";
1316     if (allocaI->getAlignment())
1317       nl(Out) << iName << "->setAlignment("
1318           << allocaI->getAlignment() << ");";
1319     break;
1320   }
1321   case Instruction::Load: {
1322     const LoadInst* load = cast<LoadInst>(I);
1323     Out << "LoadInst* " << iName << " = new LoadInst("
1324         << opNames[0] << ", \"";
1325     printEscapedString(load->getName());
1326     Out << "\", " << (load->isVolatile() ? "true" : "false" )
1327         << ", " << bbname << ");";
1328     if (load->getAlignment())
1329       nl(Out) << iName << "->setAlignment("
1330               << load->getAlignment() << ");";
1331     if (load->isAtomic()) {
1332       StringRef Ordering = ConvertAtomicOrdering(load->getOrdering());
1333       StringRef CrossThread = ConvertAtomicSynchScope(load->getSynchScope());
1334       nl(Out) << iName << "->setAtomic("
1335               << Ordering << ", " << CrossThread << ");";
1336     }
1337     break;
1338   }
1339   case Instruction::Store: {
1340     const StoreInst* store = cast<StoreInst>(I);
1341     Out << "StoreInst* " << iName << " = new StoreInst("
1342         << opNames[0] << ", "
1343         << opNames[1] << ", "
1344         << (store->isVolatile() ? "true" : "false")
1345         << ", " << bbname << ");";
1346     if (store->getAlignment())
1347       nl(Out) << iName << "->setAlignment("
1348               << store->getAlignment() << ");";
1349     if (store->isAtomic()) {
1350       StringRef Ordering = ConvertAtomicOrdering(store->getOrdering());
1351       StringRef CrossThread = ConvertAtomicSynchScope(store->getSynchScope());
1352       nl(Out) << iName << "->setAtomic("
1353               << Ordering << ", " << CrossThread << ");";
1354     }
1355     break;
1356   }
1357   case Instruction::GetElementPtr: {
1358     const GetElementPtrInst* gep = cast<GetElementPtrInst>(I);
1359     Out << "GetElementPtrInst* " << iName << " = GetElementPtrInst::Create("
1360         << getCppName(gep->getSourceElementType()) << ", " << opNames[0] << ", {";
1361     in();
1362     for (unsigned i = 1; i < gep->getNumOperands(); ++i ) {
1363       if (i != 1) {
1364         Out << ", ";
1365       }
1366       nl(Out);
1367       Out << opNames[i];
1368     }
1369     out();
1370     nl(Out) << "}, \"";
1371     printEscapedString(gep->getName());
1372     Out << "\", " << bbname << ");";
1373     break;
1374   }
1375   case Instruction::PHI: {
1376     const PHINode* phi = cast<PHINode>(I);
1377 
1378     Out << "PHINode* " << iName << " = PHINode::Create("
1379         << getCppName(phi->getType()) << ", "
1380         << phi->getNumIncomingValues() << ", \"";
1381     printEscapedString(phi->getName());
1382     Out << "\", " << bbname << ");";
1383     nl(Out);
1384     for (unsigned i = 0; i < phi->getNumIncomingValues(); ++i) {
1385       Out << iName << "->addIncoming("
1386           << opNames[PHINode::getOperandNumForIncomingValue(i)] << ", "
1387           << getOpName(phi->getIncomingBlock(i)) << ");";
1388       nl(Out);
1389     }
1390     break;
1391   }
1392   case Instruction::Trunc:
1393   case Instruction::ZExt:
1394   case Instruction::SExt:
1395   case Instruction::FPTrunc:
1396   case Instruction::FPExt:
1397   case Instruction::FPToUI:
1398   case Instruction::FPToSI:
1399   case Instruction::UIToFP:
1400   case Instruction::SIToFP:
1401   case Instruction::PtrToInt:
1402   case Instruction::IntToPtr:
1403   case Instruction::BitCast: {
1404     const CastInst* cst = cast<CastInst>(I);
1405     Out << "CastInst* " << iName << " = new ";
1406     switch (I->getOpcode()) {
1407     case Instruction::Trunc:    Out << "TruncInst"; break;
1408     case Instruction::ZExt:     Out << "ZExtInst"; break;
1409     case Instruction::SExt:     Out << "SExtInst"; break;
1410     case Instruction::FPTrunc:  Out << "FPTruncInst"; break;
1411     case Instruction::FPExt:    Out << "FPExtInst"; break;
1412     case Instruction::FPToUI:   Out << "FPToUIInst"; break;
1413     case Instruction::FPToSI:   Out << "FPToSIInst"; break;
1414     case Instruction::UIToFP:   Out << "UIToFPInst"; break;
1415     case Instruction::SIToFP:   Out << "SIToFPInst"; break;
1416     case Instruction::PtrToInt: Out << "PtrToIntInst"; break;
1417     case Instruction::IntToPtr: Out << "IntToPtrInst"; break;
1418     case Instruction::BitCast:  Out << "BitCastInst"; break;
1419     default: llvm_unreachable("Unreachable");
1420     }
1421     Out << "(" << opNames[0] << ", "
1422         << getCppName(cst->getType()) << ", \"";
1423     printEscapedString(cst->getName());
1424     Out << "\", " << bbname << ");";
1425     break;
1426   }
1427   case Instruction::Call: {
1428     const CallInst* call = cast<CallInst>(I);
1429     if (const InlineAsm* ila = dyn_cast<InlineAsm>(call->getCalledValue())) {
1430       Out << "InlineAsm* " << getCppName(ila) << " = InlineAsm::get("
1431           << getCppName(ila->getFunctionType()) << ", \""
1432           << ila->getAsmString() << "\", \""
1433           << ila->getConstraintString() << "\","
1434           << (ila->hasSideEffects() ? "true" : "false") << ");";
1435       nl(Out);
1436     }
1437     if (call->getNumArgOperands() > 1) {
1438       Out << "std::vector<Value*> " << iName << "_params;";
1439       nl(Out);
1440       for (unsigned i = 0; i < call->getNumArgOperands(); ++i) {
1441         Out << iName << "_params.push_back(" << opNames[i] << ");";
1442         nl(Out);
1443       }
1444       Out << "CallInst* " << iName << " = CallInst::Create("
1445           << opNames[call->getNumArgOperands()] << ", "
1446           << iName << "_params, \"";
1447     } else if (call->getNumArgOperands() == 1) {
1448       Out << "CallInst* " << iName << " = CallInst::Create("
1449           << opNames[call->getNumArgOperands()] << ", " << opNames[0] << ", \"";
1450     } else {
1451       Out << "CallInst* " << iName << " = CallInst::Create("
1452           << opNames[call->getNumArgOperands()] << ", \"";
1453     }
1454     printEscapedString(call->getName());
1455     Out << "\", " << bbname << ");";
1456     nl(Out) << iName << "->setCallingConv(";
1457     printCallingConv(call->getCallingConv());
1458     Out << ");";
1459     nl(Out) << iName << "->setTailCall("
1460         << (call->isTailCall() ? "true" : "false");
1461     Out << ");";
1462     nl(Out);
1463     printAttributes(call->getAttributes(), iName);
1464     Out << iName << "->setAttributes(" << iName << "_PAL);";
1465     nl(Out);
1466     break;
1467   }
1468   case Instruction::Select: {
1469     const SelectInst* sel = cast<SelectInst>(I);
1470     Out << "SelectInst* " << getCppName(sel) << " = SelectInst::Create(";
1471     Out << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1472     printEscapedString(sel->getName());
1473     Out << "\", " << bbname << ");";
1474     break;
1475   }
1476   case Instruction::UserOp1:
1477     /// FALL THROUGH
1478   case Instruction::UserOp2: {
1479     /// FIXME: What should be done here?
1480     break;
1481   }
1482   case Instruction::VAArg: {
1483     const VAArgInst* va = cast<VAArgInst>(I);
1484     Out << "VAArgInst* " << getCppName(va) << " = new VAArgInst("
1485         << opNames[0] << ", " << getCppName(va->getType()) << ", \"";
1486     printEscapedString(va->getName());
1487     Out << "\", " << bbname << ");";
1488     break;
1489   }
1490   case Instruction::ExtractElement: {
1491     const ExtractElementInst* eei = cast<ExtractElementInst>(I);
1492     Out << "ExtractElementInst* " << getCppName(eei)
1493         << " = new ExtractElementInst(" << opNames[0]
1494         << ", " << opNames[1] << ", \"";
1495     printEscapedString(eei->getName());
1496     Out << "\", " << bbname << ");";
1497     break;
1498   }
1499   case Instruction::InsertElement: {
1500     const InsertElementInst* iei = cast<InsertElementInst>(I);
1501     Out << "InsertElementInst* " << getCppName(iei)
1502         << " = InsertElementInst::Create(" << opNames[0]
1503         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1504     printEscapedString(iei->getName());
1505     Out << "\", " << bbname << ");";
1506     break;
1507   }
1508   case Instruction::ShuffleVector: {
1509     const ShuffleVectorInst* svi = cast<ShuffleVectorInst>(I);
1510     Out << "ShuffleVectorInst* " << getCppName(svi)
1511         << " = new ShuffleVectorInst(" << opNames[0]
1512         << ", " << opNames[1] << ", " << opNames[2] << ", \"";
1513     printEscapedString(svi->getName());
1514     Out << "\", " << bbname << ");";
1515     break;
1516   }
1517   case Instruction::ExtractValue: {
1518     const ExtractValueInst *evi = cast<ExtractValueInst>(I);
1519     Out << "std::vector<unsigned> " << iName << "_indices;";
1520     nl(Out);
1521     for (unsigned i = 0; i < evi->getNumIndices(); ++i) {
1522       Out << iName << "_indices.push_back("
1523           << evi->idx_begin()[i] << ");";
1524       nl(Out);
1525     }
1526     Out << "ExtractValueInst* " << getCppName(evi)
1527         << " = ExtractValueInst::Create(" << opNames[0]
1528         << ", "
1529         << iName << "_indices, \"";
1530     printEscapedString(evi->getName());
1531     Out << "\", " << bbname << ");";
1532     break;
1533   }
1534   case Instruction::InsertValue: {
1535     const InsertValueInst *ivi = cast<InsertValueInst>(I);
1536     Out << "std::vector<unsigned> " << iName << "_indices;";
1537     nl(Out);
1538     for (unsigned i = 0; i < ivi->getNumIndices(); ++i) {
1539       Out << iName << "_indices.push_back("
1540           << ivi->idx_begin()[i] << ");";
1541       nl(Out);
1542     }
1543     Out << "InsertValueInst* " << getCppName(ivi)
1544         << " = InsertValueInst::Create(" << opNames[0]
1545         << ", " << opNames[1] << ", "
1546         << iName << "_indices, \"";
1547     printEscapedString(ivi->getName());
1548     Out << "\", " << bbname << ");";
1549     break;
1550   }
1551   case Instruction::Fence: {
1552     const FenceInst *fi = cast<FenceInst>(I);
1553     StringRef Ordering = ConvertAtomicOrdering(fi->getOrdering());
1554     StringRef CrossThread = ConvertAtomicSynchScope(fi->getSynchScope());
1555     Out << "FenceInst* " << iName
1556         << " = new FenceInst(mod->getContext(), "
1557         << Ordering << ", " << CrossThread << ", " << bbname
1558         << ");";
1559     break;
1560   }
1561   case Instruction::AtomicCmpXchg: {
1562     const AtomicCmpXchgInst *cxi = cast<AtomicCmpXchgInst>(I);
1563     StringRef SuccessOrdering =
1564         ConvertAtomicOrdering(cxi->getSuccessOrdering());
1565     StringRef FailureOrdering =
1566         ConvertAtomicOrdering(cxi->getFailureOrdering());
1567     StringRef CrossThread = ConvertAtomicSynchScope(cxi->getSynchScope());
1568     Out << "AtomicCmpXchgInst* " << iName
1569         << " = new AtomicCmpXchgInst("
1570         << opNames[0] << ", " << opNames[1] << ", " << opNames[2] << ", "
1571         << SuccessOrdering << ", " << FailureOrdering << ", "
1572         << CrossThread << ", " << bbname
1573         << ");";
1574     nl(Out) << iName << "->setName(\"";
1575     printEscapedString(cxi->getName());
1576     Out << "\");";
1577     nl(Out) << iName << "->setVolatile("
1578             << (cxi->isVolatile() ? "true" : "false") << ");";
1579     nl(Out) << iName << "->setWeak("
1580             << (cxi->isWeak() ? "true" : "false") << ");";
1581     break;
1582   }
1583   case Instruction::AtomicRMW: {
1584     const AtomicRMWInst *rmwi = cast<AtomicRMWInst>(I);
1585     StringRef Ordering = ConvertAtomicOrdering(rmwi->getOrdering());
1586     StringRef CrossThread = ConvertAtomicSynchScope(rmwi->getSynchScope());
1587     StringRef Operation;
1588     switch (rmwi->getOperation()) {
1589       case AtomicRMWInst::Xchg: Operation = "AtomicRMWInst::Xchg"; break;
1590       case AtomicRMWInst::Add:  Operation = "AtomicRMWInst::Add"; break;
1591       case AtomicRMWInst::Sub:  Operation = "AtomicRMWInst::Sub"; break;
1592       case AtomicRMWInst::And:  Operation = "AtomicRMWInst::And"; break;
1593       case AtomicRMWInst::Nand: Operation = "AtomicRMWInst::Nand"; break;
1594       case AtomicRMWInst::Or:   Operation = "AtomicRMWInst::Or"; break;
1595       case AtomicRMWInst::Xor:  Operation = "AtomicRMWInst::Xor"; break;
1596       case AtomicRMWInst::Max:  Operation = "AtomicRMWInst::Max"; break;
1597       case AtomicRMWInst::Min:  Operation = "AtomicRMWInst::Min"; break;
1598       case AtomicRMWInst::UMax: Operation = "AtomicRMWInst::UMax"; break;
1599       case AtomicRMWInst::UMin: Operation = "AtomicRMWInst::UMin"; break;
1600       case AtomicRMWInst::BAD_BINOP: llvm_unreachable("Bad atomic operation");
1601     }
1602     Out << "AtomicRMWInst* " << iName
1603         << " = new AtomicRMWInst("
1604         << Operation << ", "
1605         << opNames[0] << ", " << opNames[1] << ", "
1606         << Ordering << ", " << CrossThread << ", " << bbname
1607         << ");";
1608     nl(Out) << iName << "->setName(\"";
1609     printEscapedString(rmwi->getName());
1610     Out << "\");";
1611     nl(Out) << iName << "->setVolatile("
1612             << (rmwi->isVolatile() ? "true" : "false") << ");";
1613     break;
1614   }
1615   case Instruction::LandingPad: {
1616     const LandingPadInst *lpi = cast<LandingPadInst>(I);
1617     Out << "LandingPadInst* " << iName << " = LandingPadInst::Create(";
1618     printCppName(lpi->getType());
1619     Out << ", " << opNames[0] << ", " << lpi->getNumClauses() << ", \"";
1620     printEscapedString(lpi->getName());
1621     Out << "\", " << bbname << ");";
1622     nl(Out) << iName << "->setCleanup("
1623             << (lpi->isCleanup() ? "true" : "false")
1624             << ");";
1625     for (unsigned i = 0, e = lpi->getNumClauses(); i != e; ++i)
1626       nl(Out) << iName << "->addClause(" << opNames[i+1] << ");";
1627     break;
1628   }
1629   }
1630   DefinedValues.insert(I);
1631   nl(Out);
1632   delete [] opNames;
1633 }
1634 
1635 // Print out the types, constants and declarations needed by one function
printFunctionUses(const Function * F)1636 void CppWriter::printFunctionUses(const Function* F) {
1637   nl(Out) << "// Type Definitions"; nl(Out);
1638   if (!is_inline) {
1639     // Print the function's return type
1640     printType(F->getReturnType());
1641 
1642     // Print the function's function type
1643     printType(F->getFunctionType());
1644 
1645     // Print the types of each of the function's arguments
1646     for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1647          AI != AE; ++AI) {
1648       printType(AI->getType());
1649     }
1650   }
1651 
1652   // Print type definitions for every type referenced by an instruction and
1653   // make a note of any global values or constants that are referenced
1654   SmallPtrSet<GlobalValue*,64> gvs;
1655   SmallPtrSet<Constant*,64> consts;
1656   for (Function::const_iterator BB = F->begin(), BE = F->end();
1657        BB != BE; ++BB){
1658     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1659          I != E; ++I) {
1660       // Print the type of the instruction itself
1661       printType(I->getType());
1662 
1663       // Print the type of each of the instruction's operands
1664       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
1665         Value* operand = I->getOperand(i);
1666         printType(operand->getType());
1667 
1668         // If the operand references a GVal or Constant, make a note of it
1669         if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1670           gvs.insert(GV);
1671           if (GenerationType != GenFunction)
1672             if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1673               if (GVar->hasInitializer())
1674                 consts.insert(GVar->getInitializer());
1675         } else if (Constant* C = dyn_cast<Constant>(operand)) {
1676           consts.insert(C);
1677           for (Value* operand : C->operands()) {
1678             // If the operand references a GVal or Constant, make a note of it
1679             printType(operand->getType());
1680             if (GlobalValue* GV = dyn_cast<GlobalValue>(operand)) {
1681               gvs.insert(GV);
1682               if (GenerationType != GenFunction)
1683                 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1684                   if (GVar->hasInitializer())
1685                     consts.insert(GVar->getInitializer());
1686             }
1687           }
1688         }
1689       }
1690     }
1691   }
1692 
1693   // Print the function declarations for any functions encountered
1694   nl(Out) << "// Function Declarations"; nl(Out);
1695   for (auto *GV : gvs) {
1696     if (Function *Fun = dyn_cast<Function>(GV)) {
1697       if (!is_inline || Fun != F)
1698         printFunctionHead(Fun);
1699     }
1700   }
1701 
1702   // Print the global variable declarations for any variables encountered
1703   nl(Out) << "// Global Variable Declarations"; nl(Out);
1704   for (auto *GV : gvs) {
1705     if (GlobalVariable *F = dyn_cast<GlobalVariable>(GV))
1706       printVariableHead(F);
1707   }
1708 
1709   // Print the constants found
1710   nl(Out) << "// Constant Definitions"; nl(Out);
1711   for (const auto *C : consts) {
1712     printConstant(C);
1713   }
1714 
1715   // Process the global variables definitions now that all the constants have
1716   // been emitted. These definitions just couple the gvars with their constant
1717   // initializers.
1718   if (GenerationType != GenFunction) {
1719     nl(Out) << "// Global Variable Definitions"; nl(Out);
1720     for (auto *GV : gvs) {
1721       if (GlobalVariable *Var = dyn_cast<GlobalVariable>(GV))
1722         printVariableBody(Var);
1723     }
1724   }
1725 }
1726 
printFunctionHead(const Function * F)1727 void CppWriter::printFunctionHead(const Function* F) {
1728   nl(Out) << "Function* " << getCppName(F);
1729   Out << " = mod->getFunction(\"";
1730   printEscapedString(F->getName());
1731   Out << "\");";
1732   nl(Out) << "if (!" << getCppName(F) << ") {";
1733   nl(Out) << getCppName(F);
1734 
1735   Out<< " = Function::Create(";
1736   nl(Out,1) << "/*Type=*/" << getCppName(F->getFunctionType()) << ",";
1737   nl(Out) << "/*Linkage=*/";
1738   printLinkageType(F->getLinkage());
1739   Out << ",";
1740   nl(Out) << "/*Name=*/\"";
1741   printEscapedString(F->getName());
1742   Out << "\", mod); " << (F->isDeclaration()? "// (external, no body)" : "");
1743   nl(Out,-1);
1744   printCppName(F);
1745   Out << "->setCallingConv(";
1746   printCallingConv(F->getCallingConv());
1747   Out << ");";
1748   nl(Out);
1749   if (F->hasSection()) {
1750     printCppName(F);
1751     Out << "->setSection(\"" << F->getSection() << "\");";
1752     nl(Out);
1753   }
1754   if (F->getAlignment()) {
1755     printCppName(F);
1756     Out << "->setAlignment(" << F->getAlignment() << ");";
1757     nl(Out);
1758   }
1759   if (F->getVisibility() != GlobalValue::DefaultVisibility) {
1760     printCppName(F);
1761     Out << "->setVisibility(";
1762     printVisibilityType(F->getVisibility());
1763     Out << ");";
1764     nl(Out);
1765   }
1766   if (F->getDLLStorageClass() != GlobalValue::DefaultStorageClass) {
1767     printCppName(F);
1768     Out << "->setDLLStorageClass(";
1769     printDLLStorageClassType(F->getDLLStorageClass());
1770     Out << ");";
1771     nl(Out);
1772   }
1773   if (F->hasGC()) {
1774     printCppName(F);
1775     Out << "->setGC(\"" << F->getGC() << "\");";
1776     nl(Out);
1777   }
1778   Out << "}";
1779   nl(Out);
1780   printAttributes(F->getAttributes(), getCppName(F));
1781   printCppName(F);
1782   Out << "->setAttributes(" << getCppName(F) << "_PAL);";
1783   nl(Out);
1784 }
1785 
printFunctionBody(const Function * F)1786 void CppWriter::printFunctionBody(const Function *F) {
1787   if (F->isDeclaration())
1788     return; // external functions have no bodies.
1789 
1790   // Clear the DefinedValues and ForwardRefs maps because we can't have
1791   // cross-function forward refs
1792   ForwardRefs.clear();
1793   DefinedValues.clear();
1794 
1795   // Create all the argument values
1796   if (!is_inline) {
1797     if (!F->arg_empty()) {
1798       Out << "Function::arg_iterator args = " << getCppName(F)
1799           << "->arg_begin();";
1800       nl(Out);
1801     }
1802     for (const Argument &AI : F->args()) {
1803       Out << "Value* " << getCppName(&AI) << " = args++;";
1804       nl(Out);
1805       if (AI.hasName()) {
1806         Out << getCppName(&AI) << "->setName(\"";
1807         printEscapedString(AI.getName());
1808         Out << "\");";
1809         nl(Out);
1810       }
1811     }
1812   }
1813 
1814   // Create all the basic blocks
1815   nl(Out);
1816   for (const BasicBlock &BI : *F) {
1817     std::string bbname(getCppName(&BI));
1818     Out << "BasicBlock* " << bbname <<
1819            " = BasicBlock::Create(mod->getContext(), \"";
1820     if (BI.hasName())
1821       printEscapedString(BI.getName());
1822     Out << "\"," << getCppName(BI.getParent()) << ",0);";
1823     nl(Out);
1824   }
1825 
1826   // Output all of its basic blocks... for the function
1827   for (const BasicBlock &BI : *F) {
1828     std::string bbname(getCppName(&BI));
1829     nl(Out) << "// Block " << BI.getName() << " (" << bbname << ")";
1830     nl(Out);
1831 
1832     // Output all of the instructions in the basic block...
1833     for (const Instruction &I : BI)
1834       printInstruction(&I, bbname);
1835   }
1836 
1837   // Loop over the ForwardRefs and resolve them now that all instructions
1838   // are generated.
1839   if (!ForwardRefs.empty()) {
1840     nl(Out) << "// Resolve Forward References";
1841     nl(Out);
1842   }
1843 
1844   while (!ForwardRefs.empty()) {
1845     ForwardRefMap::iterator I = ForwardRefs.begin();
1846     Out << I->second << "->replaceAllUsesWith("
1847         << getCppName(I->first) << "); delete " << I->second << ";";
1848     nl(Out);
1849     ForwardRefs.erase(I);
1850   }
1851 }
1852 
printInline(const std::string & fname,const std::string & func)1853 void CppWriter::printInline(const std::string& fname,
1854                             const std::string& func) {
1855   const Function* F = TheModule->getFunction(func);
1856   if (!F) {
1857     error(std::string("Function '") + func + "' not found in input module");
1858     return;
1859   }
1860   if (F->isDeclaration()) {
1861     error(std::string("Function '") + func + "' is external!");
1862     return;
1863   }
1864   nl(Out) << "BasicBlock* " << fname << "(Module* mod, Function *"
1865           << getCppName(F);
1866   unsigned arg_count = 1;
1867   for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
1868        AI != AE; ++AI) {
1869     Out << ", Value* arg_" << arg_count++;
1870   }
1871   Out << ") {";
1872   nl(Out);
1873   is_inline = true;
1874   printFunctionUses(F);
1875   printFunctionBody(F);
1876   is_inline = false;
1877   Out << "return " << getCppName(&F->front()) << ";";
1878   nl(Out) << "}";
1879   nl(Out);
1880 }
1881 
printModuleBody()1882 void CppWriter::printModuleBody() {
1883   // Print out all the type definitions
1884   nl(Out) << "// Type Definitions"; nl(Out);
1885   printTypes(TheModule);
1886 
1887   // Functions can call each other and global variables can reference them so
1888   // define all the functions first before emitting their function bodies.
1889   nl(Out) << "// Function Declarations"; nl(Out);
1890   for (const Function &I : *TheModule)
1891     printFunctionHead(&I);
1892 
1893   // Process the global variables declarations. We can't initialze them until
1894   // after the constants are printed so just print a header for each global
1895   nl(Out) << "// Global Variable Declarations\n"; nl(Out);
1896   for (const GlobalVariable &I : TheModule->globals())
1897     printVariableHead(&I);
1898 
1899   // Print out all the constants definitions. Constants don't recurse except
1900   // through GlobalValues. All GlobalValues have been declared at this point
1901   // so we can proceed to generate the constants.
1902   nl(Out) << "// Constant Definitions"; nl(Out);
1903   printConstants(TheModule);
1904 
1905   // Process the global variables definitions now that all the constants have
1906   // been emitted. These definitions just couple the gvars with their constant
1907   // initializers.
1908   nl(Out) << "// Global Variable Definitions"; nl(Out);
1909   for (const GlobalVariable &I : TheModule->globals())
1910     printVariableBody(&I);
1911 
1912   // Finally, we can safely put out all of the function bodies.
1913   nl(Out) << "// Function Definitions"; nl(Out);
1914   for (const Function &I : *TheModule) {
1915     if (!I.isDeclaration()) {
1916       nl(Out) << "// Function: " << I.getName() << " (" << getCppName(&I)
1917               << ")";
1918       nl(Out) << "{";
1919       nl(Out,1);
1920       printFunctionBody(&I);
1921       nl(Out,-1) << "}";
1922       nl(Out);
1923     }
1924   }
1925 }
1926 
printProgram(const std::string & fname,const std::string & mName)1927 void CppWriter::printProgram(const std::string& fname,
1928                              const std::string& mName) {
1929   Out << "#include <llvm/Pass.h>\n";
1930 
1931   Out << "#include <llvm/ADT/SmallVector.h>\n";
1932   Out << "#include <llvm/Analysis/Verifier.h>\n";
1933   Out << "#include <llvm/IR/BasicBlock.h>\n";
1934   Out << "#include <llvm/IR/CallingConv.h>\n";
1935   Out << "#include <llvm/IR/Constants.h>\n";
1936   Out << "#include <llvm/IR/DerivedTypes.h>\n";
1937   Out << "#include <llvm/IR/Function.h>\n";
1938   Out << "#include <llvm/IR/GlobalVariable.h>\n";
1939   Out << "#include <llvm/IR/IRPrintingPasses.h>\n";
1940   Out << "#include <llvm/IR/InlineAsm.h>\n";
1941   Out << "#include <llvm/IR/Instructions.h>\n";
1942   Out << "#include <llvm/IR/LLVMContext.h>\n";
1943   Out << "#include <llvm/IR/LegacyPassManager.h>\n";
1944   Out << "#include <llvm/IR/Module.h>\n";
1945   Out << "#include <llvm/Support/FormattedStream.h>\n";
1946   Out << "#include <llvm/Support/MathExtras.h>\n";
1947   Out << "#include <algorithm>\n";
1948   Out << "using namespace llvm;\n\n";
1949   Out << "Module* " << fname << "();\n\n";
1950   Out << "int main(int argc, char**argv) {\n";
1951   Out << "  Module* Mod = " << fname << "();\n";
1952   Out << "  verifyModule(*Mod, PrintMessageAction);\n";
1953   Out << "  PassManager PM;\n";
1954   Out << "  PM.add(createPrintModulePass(&outs()));\n";
1955   Out << "  PM.run(*Mod);\n";
1956   Out << "  return 0;\n";
1957   Out << "}\n\n";
1958   printModule(fname,mName);
1959 }
1960 
printModule(const std::string & fname,const std::string & mName)1961 void CppWriter::printModule(const std::string& fname,
1962                             const std::string& mName) {
1963   nl(Out) << "Module* " << fname << "() {";
1964   nl(Out,1) << "// Module Construction";
1965   nl(Out) << "Module* mod = new Module(\"";
1966   printEscapedString(mName);
1967   Out << "\", getGlobalContext());";
1968   if (!TheModule->getTargetTriple().empty()) {
1969     nl(Out) << "mod->setDataLayout(\"" << TheModule->getDataLayoutStr()
1970             << "\");";
1971   }
1972   if (!TheModule->getTargetTriple().empty()) {
1973     nl(Out) << "mod->setTargetTriple(\"" << TheModule->getTargetTriple()
1974             << "\");";
1975   }
1976 
1977   if (!TheModule->getModuleInlineAsm().empty()) {
1978     nl(Out) << "mod->setModuleInlineAsm(\"";
1979     printEscapedString(TheModule->getModuleInlineAsm());
1980     Out << "\");";
1981   }
1982   nl(Out);
1983 
1984   printModuleBody();
1985   nl(Out) << "return mod;";
1986   nl(Out,-1) << "}";
1987   nl(Out);
1988 }
1989 
printContents(const std::string & fname,const std::string & mName)1990 void CppWriter::printContents(const std::string& fname,
1991                               const std::string& mName) {
1992   Out << "\nModule* " << fname << "(Module *mod) {\n";
1993   Out << "\nmod->setModuleIdentifier(\"";
1994   printEscapedString(mName);
1995   Out << "\");\n";
1996   printModuleBody();
1997   Out << "\nreturn mod;\n";
1998   Out << "\n}\n";
1999 }
2000 
printFunction(const std::string & fname,const std::string & funcName)2001 void CppWriter::printFunction(const std::string& fname,
2002                               const std::string& funcName) {
2003   const Function* F = TheModule->getFunction(funcName);
2004   if (!F) {
2005     error(std::string("Function '") + funcName + "' not found in input module");
2006     return;
2007   }
2008   Out << "\nFunction* " << fname << "(Module *mod) {\n";
2009   printFunctionUses(F);
2010   printFunctionHead(F);
2011   printFunctionBody(F);
2012   Out << "return " << getCppName(F) << ";\n";
2013   Out << "}\n";
2014 }
2015 
printFunctions()2016 void CppWriter::printFunctions() {
2017   const Module::FunctionListType &funcs = TheModule->getFunctionList();
2018   Module::const_iterator I  = funcs.begin();
2019   Module::const_iterator IE = funcs.end();
2020 
2021   for (; I != IE; ++I) {
2022     const Function &func = *I;
2023     if (!func.isDeclaration()) {
2024       std::string name("define_");
2025       name += func.getName();
2026       printFunction(name, func.getName());
2027     }
2028   }
2029 }
2030 
printVariable(const std::string & fname,const std::string & varName)2031 void CppWriter::printVariable(const std::string& fname,
2032                               const std::string& varName) {
2033   const GlobalVariable* GV = TheModule->getNamedGlobal(varName);
2034 
2035   if (!GV) {
2036     error(std::string("Variable '") + varName + "' not found in input module");
2037     return;
2038   }
2039   Out << "\nGlobalVariable* " << fname << "(Module *mod) {\n";
2040   printVariableUses(GV);
2041   printVariableHead(GV);
2042   printVariableBody(GV);
2043   Out << "return " << getCppName(GV) << ";\n";
2044   Out << "}\n";
2045 }
2046 
printType(const std::string & fname,const std::string & typeName)2047 void CppWriter::printType(const std::string &fname,
2048                           const std::string &typeName) {
2049   Type* Ty = TheModule->getTypeByName(typeName);
2050   if (!Ty) {
2051     error(std::string("Type '") + typeName + "' not found in input module");
2052     return;
2053   }
2054   Out << "\nType* " << fname << "(Module *mod) {\n";
2055   printType(Ty);
2056   Out << "return " << getCppName(Ty) << ";\n";
2057   Out << "}\n";
2058 }
2059 
runOnModule(Module & M)2060 bool CppWriter::runOnModule(Module &M) {
2061   TheModule = &M;
2062 
2063   // Emit a header
2064   Out << "// Generated by llvm2cpp - DO NOT MODIFY!\n\n";
2065 
2066   // Get the name of the function we're supposed to generate
2067   std::string fname = FuncName.getValue();
2068 
2069   // Get the name of the thing we are to generate
2070   std::string tgtname = NameToGenerate.getValue();
2071   if (GenerationType == GenModule ||
2072       GenerationType == GenContents ||
2073       GenerationType == GenProgram ||
2074       GenerationType == GenFunctions) {
2075     if (tgtname == "!bad!") {
2076       if (M.getModuleIdentifier() == "-")
2077         tgtname = "<stdin>";
2078       else
2079         tgtname = M.getModuleIdentifier();
2080     }
2081   } else if (tgtname == "!bad!")
2082     error("You must use the -for option with -gen-{function,variable,type}");
2083 
2084   switch (WhatToGenerate(GenerationType)) {
2085    case GenProgram:
2086     if (fname.empty())
2087       fname = "makeLLVMModule";
2088     printProgram(fname,tgtname);
2089     break;
2090    case GenModule:
2091     if (fname.empty())
2092       fname = "makeLLVMModule";
2093     printModule(fname,tgtname);
2094     break;
2095    case GenContents:
2096     if (fname.empty())
2097       fname = "makeLLVMModuleContents";
2098     printContents(fname,tgtname);
2099     break;
2100    case GenFunction:
2101     if (fname.empty())
2102       fname = "makeLLVMFunction";
2103     printFunction(fname,tgtname);
2104     break;
2105    case GenFunctions:
2106     printFunctions();
2107     break;
2108    case GenInline:
2109     if (fname.empty())
2110       fname = "makeLLVMInline";
2111     printInline(fname,tgtname);
2112     break;
2113    case GenVariable:
2114     if (fname.empty())
2115       fname = "makeLLVMVariable";
2116     printVariable(fname,tgtname);
2117     break;
2118    case GenType:
2119     if (fname.empty())
2120       fname = "makeLLVMType";
2121     printType(fname,tgtname);
2122     break;
2123   }
2124 
2125   return false;
2126 }
2127 
2128 char CppWriter::ID = 0;
2129 
2130 //===----------------------------------------------------------------------===//
2131 //                       External Interface declaration
2132 //===----------------------------------------------------------------------===//
2133 
addPassesToEmitFile(PassManagerBase & PM,raw_pwrite_stream & o,CodeGenFileType FileType,bool DisableVerify,AnalysisID StartBefore,AnalysisID StartAfter,AnalysisID StopAfter,MachineFunctionInitializer * MFInitializer)2134 bool CPPTargetMachine::addPassesToEmitFile(
2135     PassManagerBase &PM, raw_pwrite_stream &o, CodeGenFileType FileType,
2136     bool DisableVerify, AnalysisID StartBefore, AnalysisID StartAfter,
2137     AnalysisID StopAfter, MachineFunctionInitializer *MFInitializer) {
2138   if (FileType != TargetMachine::CGFT_AssemblyFile)
2139     return true;
2140   auto FOut = llvm::make_unique<formatted_raw_ostream>(o);
2141   PM.add(new CppWriter(std::move(FOut)));
2142   return false;
2143 }
2144