1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11
12 #include "vp8/common/header.h"
13 #include "encodemv.h"
14 #include "vp8/common/entropymode.h"
15 #include "vp8/common/findnearmv.h"
16 #include "mcomp.h"
17 #include "vp8/common/systemdependent.h"
18 #include <assert.h>
19 #include <stdio.h>
20 #include <limits.h>
21 #include "vp8/common/pragmas.h"
22 #include "vpx/vpx_encoder.h"
23 #include "vpx_mem/vpx_mem.h"
24 #include "bitstream.h"
25
26 #include "defaultcoefcounts.h"
27 #include "vp8/common/common.h"
28
29 const int vp8cx_base_skip_false_prob[128] =
30 {
31 255, 255, 255, 255, 255, 255, 255, 255,
32 255, 255, 255, 255, 255, 255, 255, 255,
33 255, 255, 255, 255, 255, 255, 255, 255,
34 255, 255, 255, 255, 255, 255, 255, 255,
35 255, 255, 255, 255, 255, 255, 255, 255,
36 255, 255, 255, 255, 255, 255, 255, 255,
37 255, 255, 255, 255, 255, 255, 255, 255,
38 251, 248, 244, 240, 236, 232, 229, 225,
39 221, 217, 213, 208, 204, 199, 194, 190,
40 187, 183, 179, 175, 172, 168, 164, 160,
41 157, 153, 149, 145, 142, 138, 134, 130,
42 127, 124, 120, 117, 114, 110, 107, 104,
43 101, 98, 95, 92, 89, 86, 83, 80,
44 77, 74, 71, 68, 65, 62, 59, 56,
45 53, 50, 47, 44, 41, 38, 35, 32,
46 30, 28, 26, 24, 22, 20, 18, 16,
47 };
48
49 #if defined(SECTIONBITS_OUTPUT)
50 unsigned __int64 Sectionbits[500];
51 #endif
52
53 #ifdef VP8_ENTROPY_STATS
54 int intra_mode_stats[10][10][10];
55 static unsigned int tree_update_hist [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2];
56 extern unsigned int active_section;
57 #endif
58
59 #ifdef MODE_STATS
60 int count_mb_seg[4] = { 0, 0, 0, 0 };
61 #endif
62
63
update_mode(vp8_writer * const w,int n,vp8_token tok[],vp8_tree tree,vp8_prob Pnew[],vp8_prob Pcur[],unsigned int bct[][2],const unsigned int num_events[])64 static void update_mode(
65 vp8_writer *const w,
66 int n,
67 vp8_token tok [/* n */],
68 vp8_tree tree,
69 vp8_prob Pnew [/* n-1 */],
70 vp8_prob Pcur [/* n-1 */],
71 unsigned int bct [/* n-1 */] [2],
72 const unsigned int num_events[/* n */]
73 )
74 {
75 unsigned int new_b = 0, old_b = 0;
76 int i = 0;
77
78 vp8_tree_probs_from_distribution(
79 n--, tok, tree,
80 Pnew, bct, num_events,
81 256, 1
82 );
83
84 do
85 {
86 new_b += vp8_cost_branch(bct[i], Pnew[i]);
87 old_b += vp8_cost_branch(bct[i], Pcur[i]);
88 }
89 while (++i < n);
90
91 if (new_b + (n << 8) < old_b)
92 {
93 int j = 0;
94
95 vp8_write_bit(w, 1);
96
97 do
98 {
99 const vp8_prob p = Pnew[j];
100
101 vp8_write_literal(w, Pcur[j] = p ? p : 1, 8);
102 }
103 while (++j < n);
104 }
105 else
106 vp8_write_bit(w, 0);
107 }
108
update_mbintra_mode_probs(VP8_COMP * cpi)109 static void update_mbintra_mode_probs(VP8_COMP *cpi)
110 {
111 VP8_COMMON *const x = & cpi->common;
112
113 vp8_writer *const w = cpi->bc;
114
115 {
116 vp8_prob Pnew [VP8_YMODES-1];
117 unsigned int bct [VP8_YMODES-1] [2];
118
119 update_mode(
120 w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree,
121 Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->mb.ymode_count
122 );
123 }
124 {
125 vp8_prob Pnew [VP8_UV_MODES-1];
126 unsigned int bct [VP8_UV_MODES-1] [2];
127
128 update_mode(
129 w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree,
130 Pnew, x->fc.uv_mode_prob, bct, (unsigned int *)cpi->mb.uv_mode_count
131 );
132 }
133 }
134
write_ymode(vp8_writer * bc,int m,const vp8_prob * p)135 static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p)
136 {
137 vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m);
138 }
139
kfwrite_ymode(vp8_writer * bc,int m,const vp8_prob * p)140 static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p)
141 {
142 vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m);
143 }
144
write_uv_mode(vp8_writer * bc,int m,const vp8_prob * p)145 static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p)
146 {
147 vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m);
148 }
149
150
write_bmode(vp8_writer * bc,int m,const vp8_prob * p)151 static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p)
152 {
153 vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m);
154 }
155
write_split(vp8_writer * bc,int x)156 static void write_split(vp8_writer *bc, int x)
157 {
158 vp8_write_token(
159 bc, vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + x
160 );
161 }
162
vp8_pack_tokens_c(vp8_writer * w,const TOKENEXTRA * p,int xcount)163 void vp8_pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount)
164 {
165 const TOKENEXTRA *stop = p + xcount;
166 unsigned int split;
167 unsigned int shift;
168 int count = w->count;
169 unsigned int range = w->range;
170 unsigned int lowvalue = w->lowvalue;
171
172 while (p < stop)
173 {
174 const int t = p->Token;
175 vp8_token *a = vp8_coef_encodings + t;
176 const vp8_extra_bit_struct *b = vp8_extra_bits + t;
177 int i = 0;
178 const unsigned char *pp = p->context_tree;
179 int v = a->value;
180 int n = a->Len;
181
182 if (p->skip_eob_node)
183 {
184 n--;
185 i = 2;
186 }
187
188 do
189 {
190 const int bb = (v >> --n) & 1;
191 split = 1 + (((range - 1) * pp[i>>1]) >> 8);
192 i = vp8_coef_tree[i+bb];
193
194 if (bb)
195 {
196 lowvalue += split;
197 range = range - split;
198 }
199 else
200 {
201 range = split;
202 }
203
204 shift = vp8_norm[range];
205 range <<= shift;
206 count += shift;
207
208 if (count >= 0)
209 {
210 int offset = shift - count;
211
212 if ((lowvalue << (offset - 1)) & 0x80000000)
213 {
214 int x = w->pos - 1;
215
216 while (x >= 0 && w->buffer[x] == 0xff)
217 {
218 w->buffer[x] = (unsigned char)0;
219 x--;
220 }
221
222 w->buffer[x] += 1;
223 }
224
225 validate_buffer(w->buffer + w->pos,
226 1,
227 w->buffer_end,
228 w->error);
229
230 w->buffer[w->pos++] = (lowvalue >> (24 - offset));
231 lowvalue <<= offset;
232 shift = count;
233 lowvalue &= 0xffffff;
234 count -= 8 ;
235 }
236
237 lowvalue <<= shift;
238 }
239 while (n);
240
241
242 if (b->base_val)
243 {
244 const int e = p->Extra, L = b->Len;
245
246 if (L)
247 {
248 const unsigned char *proba = b->prob;
249 const int v2 = e >> 1;
250 int n2 = L; /* number of bits in v2, assumed nonzero */
251 i = 0;
252
253 do
254 {
255 const int bb = (v2 >> --n2) & 1;
256 split = 1 + (((range - 1) * proba[i>>1]) >> 8);
257 i = b->tree[i+bb];
258
259 if (bb)
260 {
261 lowvalue += split;
262 range = range - split;
263 }
264 else
265 {
266 range = split;
267 }
268
269 shift = vp8_norm[range];
270 range <<= shift;
271 count += shift;
272
273 if (count >= 0)
274 {
275 int offset = shift - count;
276
277 if ((lowvalue << (offset - 1)) & 0x80000000)
278 {
279 int x = w->pos - 1;
280
281 while (x >= 0 && w->buffer[x] == 0xff)
282 {
283 w->buffer[x] = (unsigned char)0;
284 x--;
285 }
286
287 w->buffer[x] += 1;
288 }
289
290 validate_buffer(w->buffer + w->pos,
291 1,
292 w->buffer_end,
293 w->error);
294
295 w->buffer[w->pos++] = (lowvalue >> (24 - offset));
296 lowvalue <<= offset;
297 shift = count;
298 lowvalue &= 0xffffff;
299 count -= 8 ;
300 }
301
302 lowvalue <<= shift;
303 }
304 while (n2);
305 }
306
307
308 {
309
310 split = (range + 1) >> 1;
311
312 if (e & 1)
313 {
314 lowvalue += split;
315 range = range - split;
316 }
317 else
318 {
319 range = split;
320 }
321
322 range <<= 1;
323
324 if ((lowvalue & 0x80000000))
325 {
326 int x = w->pos - 1;
327
328 while (x >= 0 && w->buffer[x] == 0xff)
329 {
330 w->buffer[x] = (unsigned char)0;
331 x--;
332 }
333
334 w->buffer[x] += 1;
335
336 }
337
338 lowvalue <<= 1;
339
340 if (!++count)
341 {
342 count = -8;
343
344 validate_buffer(w->buffer + w->pos,
345 1,
346 w->buffer_end,
347 w->error);
348
349 w->buffer[w->pos++] = (lowvalue >> 24);
350 lowvalue &= 0xffffff;
351 }
352 }
353
354 }
355
356 ++p;
357 }
358
359 w->count = count;
360 w->lowvalue = lowvalue;
361 w->range = range;
362
363 }
364
write_partition_size(unsigned char * cx_data,int size)365 static void write_partition_size(unsigned char *cx_data, int size)
366 {
367 signed char csize;
368
369 csize = size & 0xff;
370 *cx_data = csize;
371 csize = (size >> 8) & 0xff;
372 *(cx_data + 1) = csize;
373 csize = (size >> 16) & 0xff;
374 *(cx_data + 2) = csize;
375
376 }
377
pack_tokens_into_partitions_c(VP8_COMP * cpi,unsigned char * cx_data,unsigned char * cx_data_end,int num_part)378 static void pack_tokens_into_partitions_c(VP8_COMP *cpi, unsigned char *cx_data,
379 unsigned char * cx_data_end,
380 int num_part)
381 {
382
383 int i;
384 unsigned char *ptr = cx_data;
385 unsigned char *ptr_end = cx_data_end;
386 vp8_writer * w;
387
388 for (i = 0; i < num_part; i++)
389 {
390 int mb_row;
391
392 w = cpi->bc + i + 1;
393
394 vp8_start_encode(w, ptr, ptr_end);
395
396 for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part)
397 {
398 const TOKENEXTRA *p = cpi->tplist[mb_row].start;
399 const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
400 int tokens = (int)(stop - p);
401
402 vp8_pack_tokens_c(w, p, tokens);
403 }
404
405 vp8_stop_encode(w);
406 ptr += w->pos;
407 }
408 }
409
410
pack_mb_row_tokens_c(VP8_COMP * cpi,vp8_writer * w)411 static void pack_mb_row_tokens_c(VP8_COMP *cpi, vp8_writer *w)
412 {
413 int mb_row;
414
415 for (mb_row = 0; mb_row < cpi->common.mb_rows; mb_row++)
416 {
417 const TOKENEXTRA *p = cpi->tplist[mb_row].start;
418 const TOKENEXTRA *stop = cpi->tplist[mb_row].stop;
419 int tokens = (int)(stop - p);
420
421 vp8_pack_tokens_c(w, p, tokens);
422 }
423
424 }
425
write_mv_ref(vp8_writer * w,MB_PREDICTION_MODE m,const vp8_prob * p)426 static void write_mv_ref
427 (
428 vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p
429 )
430 {
431 #if CONFIG_DEBUG
432 assert(NEARESTMV <= m && m <= SPLITMV);
433 #endif
434 vp8_write_token(w, vp8_mv_ref_tree, p,
435 vp8_mv_ref_encoding_array + (m - NEARESTMV));
436 }
437
write_sub_mv_ref(vp8_writer * w,B_PREDICTION_MODE m,const vp8_prob * p)438 static void write_sub_mv_ref
439 (
440 vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p
441 )
442 {
443 #if CONFIG_DEBUG
444 assert(LEFT4X4 <= m && m <= NEW4X4);
445 #endif
446 vp8_write_token(w, vp8_sub_mv_ref_tree, p,
447 vp8_sub_mv_ref_encoding_array + (m - LEFT4X4));
448 }
449
write_mv(vp8_writer * w,const MV * mv,const int_mv * ref,const MV_CONTEXT * mvc)450 static void write_mv
451 (
452 vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc
453 )
454 {
455 MV e;
456 e.row = mv->row - ref->as_mv.row;
457 e.col = mv->col - ref->as_mv.col;
458
459 vp8_encode_motion_vector(w, &e, mvc);
460 }
461
write_mb_features(vp8_writer * w,const MB_MODE_INFO * mi,const MACROBLOCKD * x)462 static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi, const MACROBLOCKD *x)
463 {
464 /* Encode the MB segment id. */
465 if (x->segmentation_enabled && x->update_mb_segmentation_map)
466 {
467 switch (mi->segment_id)
468 {
469 case 0:
470 vp8_write(w, 0, x->mb_segment_tree_probs[0]);
471 vp8_write(w, 0, x->mb_segment_tree_probs[1]);
472 break;
473 case 1:
474 vp8_write(w, 0, x->mb_segment_tree_probs[0]);
475 vp8_write(w, 1, x->mb_segment_tree_probs[1]);
476 break;
477 case 2:
478 vp8_write(w, 1, x->mb_segment_tree_probs[0]);
479 vp8_write(w, 0, x->mb_segment_tree_probs[2]);
480 break;
481 case 3:
482 vp8_write(w, 1, x->mb_segment_tree_probs[0]);
483 vp8_write(w, 1, x->mb_segment_tree_probs[2]);
484 break;
485
486 /* TRAP.. This should not happen */
487 default:
488 vp8_write(w, 0, x->mb_segment_tree_probs[0]);
489 vp8_write(w, 0, x->mb_segment_tree_probs[1]);
490 break;
491 }
492 }
493 }
vp8_convert_rfct_to_prob(VP8_COMP * const cpi)494 void vp8_convert_rfct_to_prob(VP8_COMP *const cpi)
495 {
496 const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
497 const int rf_intra = rfct[INTRA_FRAME];
498 const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
499
500 /* Calculate the probabilities used to code the ref frame based on usage */
501 if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter)))
502 cpi->prob_intra_coded = 1;
503
504 cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
505
506 if (!cpi->prob_last_coded)
507 cpi->prob_last_coded = 1;
508
509 cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
510 ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
511
512 if (!cpi->prob_gf_coded)
513 cpi->prob_gf_coded = 1;
514
515 }
516
pack_inter_mode_mvs(VP8_COMP * const cpi)517 static void pack_inter_mode_mvs(VP8_COMP *const cpi)
518 {
519 VP8_COMMON *const pc = & cpi->common;
520 vp8_writer *const w = cpi->bc;
521 const MV_CONTEXT *mvc = pc->fc.mvc;
522
523
524 MODE_INFO *m = pc->mi;
525 const int mis = pc->mode_info_stride;
526 int mb_row = -1;
527
528 int prob_skip_false = 0;
529
530 cpi->mb.partition_info = cpi->mb.pi;
531
532 vp8_convert_rfct_to_prob(cpi);
533
534 #ifdef VP8_ENTROPY_STATS
535 active_section = 1;
536 #endif
537
538 if (pc->mb_no_coeff_skip)
539 {
540 int total_mbs = pc->mb_rows * pc->mb_cols;
541
542 prob_skip_false = (total_mbs - cpi->mb.skip_true_count ) * 256 / total_mbs;
543
544 if (prob_skip_false <= 1)
545 prob_skip_false = 1;
546
547 if (prob_skip_false > 255)
548 prob_skip_false = 255;
549
550 cpi->prob_skip_false = prob_skip_false;
551 vp8_write_literal(w, prob_skip_false, 8);
552 }
553
554 vp8_write_literal(w, cpi->prob_intra_coded, 8);
555 vp8_write_literal(w, cpi->prob_last_coded, 8);
556 vp8_write_literal(w, cpi->prob_gf_coded, 8);
557
558 update_mbintra_mode_probs(cpi);
559
560 vp8_write_mvprobs(cpi);
561
562 while (++mb_row < pc->mb_rows)
563 {
564 int mb_col = -1;
565
566 while (++mb_col < pc->mb_cols)
567 {
568 const MB_MODE_INFO *const mi = & m->mbmi;
569 const MV_REFERENCE_FRAME rf = mi->ref_frame;
570 const MB_PREDICTION_MODE mode = mi->mode;
571
572 MACROBLOCKD *xd = &cpi->mb.e_mbd;
573
574 /* Distance of Mb to the various image edges.
575 * These specified to 8th pel as they are always compared to MV
576 * values that are in 1/8th pel units
577 */
578 xd->mb_to_left_edge = -((mb_col * 16) << 3);
579 xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
580 xd->mb_to_top_edge = -((mb_row * 16) << 3);
581 xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
582
583 #ifdef VP8_ENTROPY_STATS
584 active_section = 9;
585 #endif
586
587 if (cpi->mb.e_mbd.update_mb_segmentation_map)
588 write_mb_features(w, mi, &cpi->mb.e_mbd);
589
590 if (pc->mb_no_coeff_skip)
591 vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false);
592
593 if (rf == INTRA_FRAME)
594 {
595 vp8_write(w, 0, cpi->prob_intra_coded);
596 #ifdef VP8_ENTROPY_STATS
597 active_section = 6;
598 #endif
599 write_ymode(w, mode, pc->fc.ymode_prob);
600
601 if (mode == B_PRED)
602 {
603 int j = 0;
604
605 do
606 write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob);
607 while (++j < 16);
608 }
609
610 write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob);
611 }
612 else /* inter coded */
613 {
614 int_mv best_mv;
615 vp8_prob mv_ref_p [VP8_MVREFS-1];
616
617 vp8_write(w, 1, cpi->prob_intra_coded);
618
619 if (rf == LAST_FRAME)
620 vp8_write(w, 0, cpi->prob_last_coded);
621 else
622 {
623 vp8_write(w, 1, cpi->prob_last_coded);
624 vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, cpi->prob_gf_coded);
625 }
626
627 {
628 int_mv n1, n2;
629 int ct[4];
630
631 vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf, cpi->common.ref_frame_sign_bias);
632 vp8_clamp_mv2(&best_mv, xd);
633
634 vp8_mv_ref_probs(mv_ref_p, ct);
635
636 #ifdef VP8_ENTROPY_STATS
637 accum_mv_refs(mode, ct);
638 #endif
639
640 }
641
642 #ifdef VP8_ENTROPY_STATS
643 active_section = 3;
644 #endif
645
646 write_mv_ref(w, mode, mv_ref_p);
647
648 switch (mode) /* new, split require MVs */
649 {
650 case NEWMV:
651
652 #ifdef VP8_ENTROPY_STATS
653 active_section = 5;
654 #endif
655
656 write_mv(w, &mi->mv.as_mv, &best_mv, mvc);
657 break;
658
659 case SPLITMV:
660 {
661 int j = 0;
662
663 #ifdef MODE_STATS
664 ++count_mb_seg [mi->partitioning];
665 #endif
666
667 write_split(w, mi->partitioning);
668
669 do
670 {
671 B_PREDICTION_MODE blockmode;
672 int_mv blockmv;
673 const int *const L = vp8_mbsplits [mi->partitioning];
674 int k = -1; /* first block in subset j */
675 int mv_contz;
676 int_mv leftmv, abovemv;
677
678 blockmode = cpi->mb.partition_info->bmi[j].mode;
679 blockmv = cpi->mb.partition_info->bmi[j].mv;
680 #if CONFIG_DEBUG
681 while (j != L[++k])
682 if (k >= 16)
683 assert(0);
684 #else
685 while (j != L[++k]);
686 #endif
687 leftmv.as_int = left_block_mv(m, k);
688 abovemv.as_int = above_block_mv(m, k, mis);
689 mv_contz = vp8_mv_cont(&leftmv, &abovemv);
690
691 write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2 [mv_contz]);
692
693 if (blockmode == NEW4X4)
694 {
695 #ifdef VP8_ENTROPY_STATS
696 active_section = 11;
697 #endif
698 write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *) mvc);
699 }
700 }
701 while (++j < cpi->mb.partition_info->count);
702 }
703 break;
704 default:
705 break;
706 }
707 }
708
709 ++m;
710 cpi->mb.partition_info++;
711 }
712
713 ++m; /* skip L prediction border */
714 cpi->mb.partition_info++;
715 }
716 }
717
718
write_kfmodes(VP8_COMP * cpi)719 static void write_kfmodes(VP8_COMP *cpi)
720 {
721 vp8_writer *const bc = cpi->bc;
722 const VP8_COMMON *const c = & cpi->common;
723 /* const */
724 MODE_INFO *m = c->mi;
725
726 int mb_row = -1;
727 int prob_skip_false = 0;
728
729 if (c->mb_no_coeff_skip)
730 {
731 int total_mbs = c->mb_rows * c->mb_cols;
732
733 prob_skip_false = (total_mbs - cpi->mb.skip_true_count ) * 256 / total_mbs;
734
735 if (prob_skip_false <= 1)
736 prob_skip_false = 1;
737
738 if (prob_skip_false >= 255)
739 prob_skip_false = 255;
740
741 cpi->prob_skip_false = prob_skip_false;
742 vp8_write_literal(bc, prob_skip_false, 8);
743 }
744
745 while (++mb_row < c->mb_rows)
746 {
747 int mb_col = -1;
748
749 while (++mb_col < c->mb_cols)
750 {
751 const int ym = m->mbmi.mode;
752
753 if (cpi->mb.e_mbd.update_mb_segmentation_map)
754 write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd);
755
756 if (c->mb_no_coeff_skip)
757 vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false);
758
759 kfwrite_ymode(bc, ym, vp8_kf_ymode_prob);
760
761 if (ym == B_PRED)
762 {
763 const int mis = c->mode_info_stride;
764 int i = 0;
765
766 do
767 {
768 const B_PREDICTION_MODE A = above_block_mode(m, i, mis);
769 const B_PREDICTION_MODE L = left_block_mode(m, i);
770 const int bm = m->bmi[i].as_mode;
771
772 #ifdef VP8_ENTROPY_STATS
773 ++intra_mode_stats [A] [L] [bm];
774 #endif
775
776 write_bmode(bc, bm, vp8_kf_bmode_prob [A] [L]);
777 }
778 while (++i < 16);
779 }
780
781 write_uv_mode(bc, (m++)->mbmi.uv_mode, vp8_kf_uv_mode_prob);
782 }
783
784 m++; /* skip L prediction border */
785 }
786 }
787
788 #if 0
789 /* This function is used for debugging probability trees. */
790 static void print_prob_tree(vp8_prob
791 coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES])
792 {
793 /* print coef probability tree */
794 int i,j,k,l;
795 FILE* f = fopen("enc_tree_probs.txt", "a");
796 fprintf(f, "{\n");
797 for (i = 0; i < BLOCK_TYPES; i++)
798 {
799 fprintf(f, " {\n");
800 for (j = 0; j < COEF_BANDS; j++)
801 {
802 fprintf(f, " {\n");
803 for (k = 0; k < PREV_COEF_CONTEXTS; k++)
804 {
805 fprintf(f, " {");
806 for (l = 0; l < ENTROPY_NODES; l++)
807 {
808 fprintf(f, "%3u, ",
809 (unsigned int)(coef_probs [i][j][k][l]));
810 }
811 fprintf(f, " }\n");
812 }
813 fprintf(f, " }\n");
814 }
815 fprintf(f, " }\n");
816 }
817 fprintf(f, "}\n");
818 fclose(f);
819 }
820 #endif
821
sum_probs_over_prev_coef_context(const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],unsigned int * out)822 static void sum_probs_over_prev_coef_context(
823 const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS],
824 unsigned int* out)
825 {
826 int i, j;
827 for (i=0; i < MAX_ENTROPY_TOKENS; ++i)
828 {
829 for (j=0; j < PREV_COEF_CONTEXTS; ++j)
830 {
831 const unsigned int tmp = out[i];
832 out[i] += probs[j][i];
833 /* check for wrap */
834 if (out[i] < tmp)
835 out[i] = UINT_MAX;
836 }
837 }
838 }
839
prob_update_savings(const unsigned int * ct,const vp8_prob oldp,const vp8_prob newp,const vp8_prob upd)840 static int prob_update_savings(const unsigned int *ct,
841 const vp8_prob oldp, const vp8_prob newp,
842 const vp8_prob upd)
843 {
844 const int old_b = vp8_cost_branch(ct, oldp);
845 const int new_b = vp8_cost_branch(ct, newp);
846 const int update_b = 8 +
847 ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8);
848
849 return old_b - new_b - update_b;
850 }
851
independent_coef_context_savings(VP8_COMP * cpi)852 static int independent_coef_context_savings(VP8_COMP *cpi)
853 {
854 MACROBLOCK *const x = & cpi->mb;
855 int savings = 0;
856 int i = 0;
857 do
858 {
859 int j = 0;
860 do
861 {
862 int k = 0;
863 unsigned int prev_coef_count_sum[MAX_ENTROPY_TOKENS] = {0};
864 int prev_coef_savings[MAX_ENTROPY_TOKENS] = {0};
865 const unsigned int (*probs)[MAX_ENTROPY_TOKENS];
866 /* Calculate new probabilities given the constraint that
867 * they must be equal over the prev coef contexts
868 */
869
870 probs = (const unsigned int (*)[MAX_ENTROPY_TOKENS])
871 x->coef_counts[i][j];
872
873 /* Reset to default probabilities at key frames */
874 if (cpi->common.frame_type == KEY_FRAME)
875 probs = default_coef_counts[i][j];
876
877 sum_probs_over_prev_coef_context(probs, prev_coef_count_sum);
878
879 do
880 {
881 /* at every context */
882
883 /* calc probs and branch cts for this frame only */
884 int t = 0; /* token/prob index */
885
886 vp8_tree_probs_from_distribution(
887 MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
888 cpi->frame_coef_probs[i][j][k],
889 cpi->frame_branch_ct [i][j][k],
890 prev_coef_count_sum,
891 256, 1);
892
893 do
894 {
895 const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
896 const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
897 const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
898 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
899 const int s = prob_update_savings(ct, oldp, newp, upd);
900
901 if (cpi->common.frame_type != KEY_FRAME ||
902 (cpi->common.frame_type == KEY_FRAME && newp != oldp))
903 prev_coef_savings[t] += s;
904 }
905 while (++t < ENTROPY_NODES);
906 }
907 while (++k < PREV_COEF_CONTEXTS);
908 k = 0;
909 do
910 {
911 /* We only update probabilities if we can save bits, except
912 * for key frames where we have to update all probabilities
913 * to get the equal probabilities across the prev coef
914 * contexts.
915 */
916 if (prev_coef_savings[k] > 0 ||
917 cpi->common.frame_type == KEY_FRAME)
918 savings += prev_coef_savings[k];
919 }
920 while (++k < ENTROPY_NODES);
921 }
922 while (++j < COEF_BANDS);
923 }
924 while (++i < BLOCK_TYPES);
925 return savings;
926 }
927
default_coef_context_savings(VP8_COMP * cpi)928 static int default_coef_context_savings(VP8_COMP *cpi)
929 {
930 MACROBLOCK *const x = & cpi->mb;
931 int savings = 0;
932 int i = 0;
933 do
934 {
935 int j = 0;
936 do
937 {
938 int k = 0;
939 do
940 {
941 /* at every context */
942
943 /* calc probs and branch cts for this frame only */
944 int t = 0; /* token/prob index */
945
946 vp8_tree_probs_from_distribution(
947 MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree,
948 cpi->frame_coef_probs [i][j][k],
949 cpi->frame_branch_ct [i][j][k],
950 x->coef_counts [i][j][k],
951 256, 1
952 );
953
954 do
955 {
956 const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t];
957 const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
958 const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t];
959 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
960 const int s = prob_update_savings(ct, oldp, newp, upd);
961
962 if (s > 0)
963 {
964 savings += s;
965 }
966 }
967 while (++t < ENTROPY_NODES);
968 }
969 while (++k < PREV_COEF_CONTEXTS);
970 }
971 while (++j < COEF_BANDS);
972 }
973 while (++i < BLOCK_TYPES);
974 return savings;
975 }
976
vp8_calc_ref_frame_costs(int * ref_frame_cost,int prob_intra,int prob_last,int prob_garf)977 void vp8_calc_ref_frame_costs(int *ref_frame_cost,
978 int prob_intra,
979 int prob_last,
980 int prob_garf
981 )
982 {
983 assert(prob_intra >= 0);
984 assert(prob_intra <= 255);
985 assert(prob_last >= 0);
986 assert(prob_last <= 255);
987 assert(prob_garf >= 0);
988 assert(prob_garf <= 255);
989 ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(prob_intra);
990 ref_frame_cost[LAST_FRAME] = vp8_cost_one(prob_intra)
991 + vp8_cost_zero(prob_last);
992 ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(prob_intra)
993 + vp8_cost_one(prob_last)
994 + vp8_cost_zero(prob_garf);
995 ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(prob_intra)
996 + vp8_cost_one(prob_last)
997 + vp8_cost_one(prob_garf);
998
999 }
1000
vp8_estimate_entropy_savings(VP8_COMP * cpi)1001 int vp8_estimate_entropy_savings(VP8_COMP *cpi)
1002 {
1003 int savings = 0;
1004
1005 const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
1006 const int rf_intra = rfct[INTRA_FRAME];
1007 const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
1008 int new_intra, new_last, new_garf, oldtotal, newtotal;
1009 int ref_frame_cost[MAX_REF_FRAMES];
1010
1011 vp8_clear_system_state();
1012
1013 if (cpi->common.frame_type != KEY_FRAME)
1014 {
1015 if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter)))
1016 new_intra = 1;
1017
1018 new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128;
1019
1020 new_garf = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME])
1021 ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128;
1022
1023
1024 vp8_calc_ref_frame_costs(ref_frame_cost,new_intra,new_last,new_garf);
1025
1026 newtotal =
1027 rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
1028 rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
1029 rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
1030 rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
1031
1032
1033 /* old costs */
1034 vp8_calc_ref_frame_costs(ref_frame_cost,cpi->prob_intra_coded,
1035 cpi->prob_last_coded,cpi->prob_gf_coded);
1036
1037 oldtotal =
1038 rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] +
1039 rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] +
1040 rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] +
1041 rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME];
1042
1043 savings += (oldtotal - newtotal) / 256;
1044 }
1045
1046
1047 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1048 savings += independent_coef_context_savings(cpi);
1049 else
1050 savings += default_coef_context_savings(cpi);
1051
1052
1053 return savings;
1054 }
1055
1056 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
vp8_update_coef_context(VP8_COMP * cpi)1057 int vp8_update_coef_context(VP8_COMP *cpi)
1058 {
1059 int savings = 0;
1060
1061
1062 if (cpi->common.frame_type == KEY_FRAME)
1063 {
1064 /* Reset to default counts/probabilities at key frames */
1065 vp8_copy(cpi->mb.coef_counts, default_coef_counts);
1066 }
1067
1068 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1069 savings += independent_coef_context_savings(cpi);
1070 else
1071 savings += default_coef_context_savings(cpi);
1072
1073 return savings;
1074 }
1075 #endif
1076
vp8_update_coef_probs(VP8_COMP * cpi)1077 void vp8_update_coef_probs(VP8_COMP *cpi)
1078 {
1079 int i = 0;
1080 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
1081 vp8_writer *const w = cpi->bc;
1082 #endif
1083 int savings = 0;
1084
1085 vp8_clear_system_state();
1086
1087 do
1088 {
1089 int j = 0;
1090
1091 do
1092 {
1093 int k = 0;
1094 int prev_coef_savings[ENTROPY_NODES] = {0};
1095 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1096 {
1097 for (k = 0; k < PREV_COEF_CONTEXTS; ++k)
1098 {
1099 int t; /* token/prob index */
1100 for (t = 0; t < ENTROPY_NODES; ++t)
1101 {
1102 const unsigned int *ct = cpi->frame_branch_ct [i][j]
1103 [k][t];
1104 const vp8_prob newp = cpi->frame_coef_probs[i][j][k][t];
1105 const vp8_prob oldp = cpi->common.fc.coef_probs[i][j]
1106 [k][t];
1107 const vp8_prob upd = vp8_coef_update_probs[i][j][k][t];
1108
1109 prev_coef_savings[t] +=
1110 prob_update_savings(ct, oldp, newp, upd);
1111 }
1112 }
1113 k = 0;
1114 }
1115 do
1116 {
1117 /* note: use result from vp8_estimate_entropy_savings, so no
1118 * need to call vp8_tree_probs_from_distribution here.
1119 */
1120
1121 /* at every context */
1122
1123 /* calc probs and branch cts for this frame only */
1124 int t = 0; /* token/prob index */
1125
1126 do
1127 {
1128 const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t];
1129
1130 vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t;
1131 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
1132
1133 int s = prev_coef_savings[t];
1134 int u = 0;
1135
1136 if (!(cpi->oxcf.error_resilient_mode &
1137 VPX_ERROR_RESILIENT_PARTITIONS))
1138 {
1139 s = prob_update_savings(
1140 cpi->frame_branch_ct [i][j][k][t],
1141 *Pold, newp, upd);
1142 }
1143
1144 if (s > 0)
1145 u = 1;
1146
1147 /* Force updates on key frames if the new is different,
1148 * so that we can be sure we end up with equal probabilities
1149 * over the prev coef contexts.
1150 */
1151 if ((cpi->oxcf.error_resilient_mode &
1152 VPX_ERROR_RESILIENT_PARTITIONS) &&
1153 cpi->common.frame_type == KEY_FRAME && newp != *Pold)
1154 u = 1;
1155
1156 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
1157 cpi->update_probs[i][j][k][t] = u;
1158 #else
1159 vp8_write(w, u, upd);
1160 #endif
1161
1162
1163 #ifdef VP8_ENTROPY_STATS
1164 ++ tree_update_hist [i][j][k][t] [u];
1165 #endif
1166
1167 if (u)
1168 {
1169 /* send/use new probability */
1170
1171 *Pold = newp;
1172 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
1173 vp8_write_literal(w, newp, 8);
1174 #endif
1175
1176 savings += s;
1177
1178 }
1179
1180 }
1181 while (++t < ENTROPY_NODES);
1182
1183 /* Accum token counts for generation of default statistics */
1184 #ifdef VP8_ENTROPY_STATS
1185 t = 0;
1186
1187 do
1188 {
1189 context_counters [i][j][k][t] += cpi->coef_counts [i][j][k][t];
1190 }
1191 while (++t < MAX_ENTROPY_TOKENS);
1192
1193 #endif
1194
1195 }
1196 while (++k < PREV_COEF_CONTEXTS);
1197 }
1198 while (++j < COEF_BANDS);
1199 }
1200 while (++i < BLOCK_TYPES);
1201
1202 }
1203
1204 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
pack_coef_probs(VP8_COMP * cpi)1205 static void pack_coef_probs(VP8_COMP *cpi)
1206 {
1207 int i = 0;
1208 vp8_writer *const w = cpi->bc;
1209
1210 do
1211 {
1212 int j = 0;
1213
1214 do
1215 {
1216 int k = 0;
1217
1218 do
1219 {
1220 int t = 0; /* token/prob index */
1221
1222 do
1223 {
1224 const vp8_prob newp = cpi->common.fc.coef_probs [i][j][k][t];
1225 const vp8_prob upd = vp8_coef_update_probs [i][j][k][t];
1226
1227 const char u = cpi->update_probs[i][j][k][t] ;
1228
1229 vp8_write(w, u, upd);
1230
1231 if (u)
1232 {
1233 /* send/use new probability */
1234 vp8_write_literal(w, newp, 8);
1235 }
1236 }
1237 while (++t < ENTROPY_NODES);
1238 }
1239 while (++k < PREV_COEF_CONTEXTS);
1240 }
1241 while (++j < COEF_BANDS);
1242 }
1243 while (++i < BLOCK_TYPES);
1244 }
1245 #endif
1246
1247 #ifdef PACKET_TESTING
1248 FILE *vpxlogc = 0;
1249 #endif
1250
put_delta_q(vp8_writer * bc,int delta_q)1251 static void put_delta_q(vp8_writer *bc, int delta_q)
1252 {
1253 if (delta_q != 0)
1254 {
1255 vp8_write_bit(bc, 1);
1256 vp8_write_literal(bc, abs(delta_q), 4);
1257
1258 if (delta_q < 0)
1259 vp8_write_bit(bc, 1);
1260 else
1261 vp8_write_bit(bc, 0);
1262 }
1263 else
1264 vp8_write_bit(bc, 0);
1265 }
1266
vp8_pack_bitstream(VP8_COMP * cpi,unsigned char * dest,unsigned char * dest_end,unsigned long * size)1267 void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned char * dest_end, unsigned long *size)
1268 {
1269 int i, j;
1270 VP8_HEADER oh;
1271 VP8_COMMON *const pc = & cpi->common;
1272 vp8_writer *const bc = cpi->bc;
1273 MACROBLOCKD *const xd = & cpi->mb.e_mbd;
1274 int extra_bytes_packed = 0;
1275
1276 unsigned char *cx_data = dest;
1277 unsigned char *cx_data_end = dest_end;
1278 const int *mb_feature_data_bits;
1279
1280 oh.show_frame = (int) pc->show_frame;
1281 oh.type = (int)pc->frame_type;
1282 oh.version = pc->version;
1283 oh.first_partition_length_in_bytes = 0;
1284
1285 mb_feature_data_bits = vp8_mb_feature_data_bits;
1286
1287 bc[0].error = &pc->error;
1288
1289 validate_buffer(cx_data, 3, cx_data_end, &cpi->common.error);
1290 cx_data += 3;
1291
1292 #if defined(SECTIONBITS_OUTPUT)
1293 Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256;
1294 #endif
1295
1296 /* every keyframe send startcode, width, height, scale factor, clamp
1297 * and color type
1298 */
1299 if (oh.type == KEY_FRAME)
1300 {
1301 int v;
1302
1303 validate_buffer(cx_data, 7, cx_data_end, &cpi->common.error);
1304
1305 /* Start / synch code */
1306 cx_data[0] = 0x9D;
1307 cx_data[1] = 0x01;
1308 cx_data[2] = 0x2a;
1309
1310 v = (pc->horiz_scale << 14) | pc->Width;
1311 cx_data[3] = v;
1312 cx_data[4] = v >> 8;
1313
1314 v = (pc->vert_scale << 14) | pc->Height;
1315 cx_data[5] = v;
1316 cx_data[6] = v >> 8;
1317
1318
1319 extra_bytes_packed = 7;
1320 cx_data += extra_bytes_packed ;
1321
1322 vp8_start_encode(bc, cx_data, cx_data_end);
1323
1324 /* signal clr type */
1325 vp8_write_bit(bc, 0);
1326 vp8_write_bit(bc, pc->clamp_type);
1327
1328 }
1329 else
1330 vp8_start_encode(bc, cx_data, cx_data_end);
1331
1332
1333 /* Signal whether or not Segmentation is enabled */
1334 vp8_write_bit(bc, xd->segmentation_enabled);
1335
1336 /* Indicate which features are enabled */
1337 if (xd->segmentation_enabled)
1338 {
1339 /* Signal whether or not the segmentation map is being updated. */
1340 vp8_write_bit(bc, xd->update_mb_segmentation_map);
1341 vp8_write_bit(bc, xd->update_mb_segmentation_data);
1342
1343 if (xd->update_mb_segmentation_data)
1344 {
1345 signed char Data;
1346
1347 vp8_write_bit(bc, xd->mb_segement_abs_delta);
1348
1349 /* For each segmentation feature (Quant and loop filter level) */
1350 for (i = 0; i < MB_LVL_MAX; i++)
1351 {
1352 /* For each of the segments */
1353 for (j = 0; j < MAX_MB_SEGMENTS; j++)
1354 {
1355 Data = xd->segment_feature_data[i][j];
1356
1357 /* Frame level data */
1358 if (Data)
1359 {
1360 vp8_write_bit(bc, 1);
1361
1362 if (Data < 0)
1363 {
1364 Data = - Data;
1365 vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
1366 vp8_write_bit(bc, 1);
1367 }
1368 else
1369 {
1370 vp8_write_literal(bc, Data, mb_feature_data_bits[i]);
1371 vp8_write_bit(bc, 0);
1372 }
1373 }
1374 else
1375 vp8_write_bit(bc, 0);
1376 }
1377 }
1378 }
1379
1380 if (xd->update_mb_segmentation_map)
1381 {
1382 /* Write the probs used to decode the segment id for each mb */
1383 for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
1384 {
1385 int Data = xd->mb_segment_tree_probs[i];
1386
1387 if (Data != 255)
1388 {
1389 vp8_write_bit(bc, 1);
1390 vp8_write_literal(bc, Data, 8);
1391 }
1392 else
1393 vp8_write_bit(bc, 0);
1394 }
1395 }
1396 }
1397
1398 vp8_write_bit(bc, pc->filter_type);
1399 vp8_write_literal(bc, pc->filter_level, 6);
1400 vp8_write_literal(bc, pc->sharpness_level, 3);
1401
1402 /* Write out loop filter deltas applied at the MB level based on mode
1403 * or ref frame (if they are enabled).
1404 */
1405 vp8_write_bit(bc, xd->mode_ref_lf_delta_enabled);
1406
1407 if (xd->mode_ref_lf_delta_enabled)
1408 {
1409 /* Do the deltas need to be updated */
1410 int send_update = xd->mode_ref_lf_delta_update
1411 || cpi->oxcf.error_resilient_mode;
1412
1413 vp8_write_bit(bc, send_update);
1414 if (send_update)
1415 {
1416 int Data;
1417
1418 /* Send update */
1419 for (i = 0; i < MAX_REF_LF_DELTAS; i++)
1420 {
1421 Data = xd->ref_lf_deltas[i];
1422
1423 /* Frame level data */
1424 if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]
1425 || cpi->oxcf.error_resilient_mode)
1426 {
1427 xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i];
1428 vp8_write_bit(bc, 1);
1429
1430 if (Data > 0)
1431 {
1432 vp8_write_literal(bc, (Data & 0x3F), 6);
1433 vp8_write_bit(bc, 0); /* sign */
1434 }
1435 else
1436 {
1437 Data = -Data;
1438 vp8_write_literal(bc, (Data & 0x3F), 6);
1439 vp8_write_bit(bc, 1); /* sign */
1440 }
1441 }
1442 else
1443 vp8_write_bit(bc, 0);
1444 }
1445
1446 /* Send update */
1447 for (i = 0; i < MAX_MODE_LF_DELTAS; i++)
1448 {
1449 Data = xd->mode_lf_deltas[i];
1450
1451 if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]
1452 || cpi->oxcf.error_resilient_mode)
1453 {
1454 xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i];
1455 vp8_write_bit(bc, 1);
1456
1457 if (Data > 0)
1458 {
1459 vp8_write_literal(bc, (Data & 0x3F), 6);
1460 vp8_write_bit(bc, 0); /* sign */
1461 }
1462 else
1463 {
1464 Data = -Data;
1465 vp8_write_literal(bc, (Data & 0x3F), 6);
1466 vp8_write_bit(bc, 1); /* sign */
1467 }
1468 }
1469 else
1470 vp8_write_bit(bc, 0);
1471 }
1472 }
1473 }
1474
1475 /* signal here is multi token partition is enabled */
1476 vp8_write_literal(bc, pc->multi_token_partition, 2);
1477
1478 /* Frame Qbaseline quantizer index */
1479 vp8_write_literal(bc, pc->base_qindex, 7);
1480
1481 /* Transmit Dc, Second order and Uv quantizer delta information */
1482 put_delta_q(bc, pc->y1dc_delta_q);
1483 put_delta_q(bc, pc->y2dc_delta_q);
1484 put_delta_q(bc, pc->y2ac_delta_q);
1485 put_delta_q(bc, pc->uvdc_delta_q);
1486 put_delta_q(bc, pc->uvac_delta_q);
1487
1488 /* When there is a key frame all reference buffers are updated using
1489 * the new key frame
1490 */
1491 if (pc->frame_type != KEY_FRAME)
1492 {
1493 /* Should the GF or ARF be updated using the transmitted frame
1494 * or buffer
1495 */
1496 vp8_write_bit(bc, pc->refresh_golden_frame);
1497 vp8_write_bit(bc, pc->refresh_alt_ref_frame);
1498
1499 /* If not being updated from current frame should either GF or ARF
1500 * be updated from another buffer
1501 */
1502 if (!pc->refresh_golden_frame)
1503 vp8_write_literal(bc, pc->copy_buffer_to_gf, 2);
1504
1505 if (!pc->refresh_alt_ref_frame)
1506 vp8_write_literal(bc, pc->copy_buffer_to_arf, 2);
1507
1508 /* Indicate reference frame sign bias for Golden and ARF frames
1509 * (always 0 for last frame buffer)
1510 */
1511 vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]);
1512 vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]);
1513 }
1514
1515 #if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
1516 if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS)
1517 {
1518 if (pc->frame_type == KEY_FRAME)
1519 pc->refresh_entropy_probs = 1;
1520 else
1521 pc->refresh_entropy_probs = 0;
1522 }
1523 #endif
1524
1525 vp8_write_bit(bc, pc->refresh_entropy_probs);
1526
1527 if (pc->frame_type != KEY_FRAME)
1528 vp8_write_bit(bc, pc->refresh_last_frame);
1529
1530 #ifdef VP8_ENTROPY_STATS
1531
1532 if (pc->frame_type == INTER_FRAME)
1533 active_section = 0;
1534 else
1535 active_section = 7;
1536
1537 #endif
1538
1539 vp8_clear_system_state();
1540
1541 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
1542 pack_coef_probs(cpi);
1543 #else
1544 if (pc->refresh_entropy_probs == 0)
1545 {
1546 /* save a copy for later refresh */
1547 vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc));
1548 }
1549
1550 vp8_update_coef_probs(cpi);
1551 #endif
1552
1553 #ifdef VP8_ENTROPY_STATS
1554 active_section = 2;
1555 #endif
1556
1557 /* Write out the mb_no_coeff_skip flag */
1558 vp8_write_bit(bc, pc->mb_no_coeff_skip);
1559
1560 if (pc->frame_type == KEY_FRAME)
1561 {
1562 write_kfmodes(cpi);
1563
1564 #ifdef VP8_ENTROPY_STATS
1565 active_section = 8;
1566 #endif
1567 }
1568 else
1569 {
1570 pack_inter_mode_mvs(cpi);
1571
1572 #ifdef VP8_ENTROPY_STATS
1573 active_section = 1;
1574 #endif
1575 }
1576
1577 vp8_stop_encode(bc);
1578
1579 cx_data += bc->pos;
1580
1581 oh.first_partition_length_in_bytes = cpi->bc->pos;
1582
1583 /* update frame tag */
1584 {
1585 int v = (oh.first_partition_length_in_bytes << 5) |
1586 (oh.show_frame << 4) |
1587 (oh.version << 1) |
1588 oh.type;
1589
1590 dest[0] = v;
1591 dest[1] = v >> 8;
1592 dest[2] = v >> 16;
1593 }
1594
1595 *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc->pos;
1596
1597 cpi->partition_sz[0] = *size;
1598
1599 #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
1600 {
1601 const int num_part = (1 << pc->multi_token_partition);
1602 unsigned char * dp = cpi->partition_d[0] + cpi->partition_sz[0];
1603
1604 if (num_part > 1)
1605 {
1606 /* write token part sizes (all but last) if more than 1 */
1607 validate_buffer(dp, 3 * (num_part - 1), cpi->partition_d_end[0],
1608 &pc->error);
1609
1610 cpi->partition_sz[0] += 3*(num_part-1);
1611
1612 for(i = 1; i < num_part; i++)
1613 {
1614 write_partition_size(dp, cpi->partition_sz[i]);
1615 dp += 3;
1616 }
1617 }
1618
1619 if (!cpi->output_partition)
1620 {
1621 /* concatenate partition buffers */
1622 for(i = 0; i < num_part; i++)
1623 {
1624 vpx_memmove(dp, cpi->partition_d[i+1], cpi->partition_sz[i+1]);
1625 cpi->partition_d[i+1] = dp;
1626 dp += cpi->partition_sz[i+1];
1627 }
1628 }
1629
1630 /* update total size */
1631 *size = 0;
1632 for(i = 0; i < num_part+1; i++)
1633 {
1634 *size += cpi->partition_sz[i];
1635 }
1636 }
1637 #else
1638 if (pc->multi_token_partition != ONE_PARTITION)
1639 {
1640 int num_part = 1 << pc->multi_token_partition;
1641
1642 /* partition size table at the end of first partition */
1643 cpi->partition_sz[0] += 3 * (num_part - 1);
1644 *size += 3 * (num_part - 1);
1645
1646 validate_buffer(cx_data, 3 * (num_part - 1), cx_data_end,
1647 &pc->error);
1648
1649 for(i = 1; i < num_part + 1; i++)
1650 {
1651 cpi->bc[i].error = &pc->error;
1652 }
1653
1654 pack_tokens_into_partitions(cpi, cx_data + 3 * (num_part - 1),
1655 cx_data_end, num_part);
1656
1657 for(i = 1; i < num_part; i++)
1658 {
1659 cpi->partition_sz[i] = cpi->bc[i].pos;
1660 write_partition_size(cx_data, cpi->partition_sz[i]);
1661 cx_data += 3;
1662 *size += cpi->partition_sz[i]; /* add to total */
1663 }
1664
1665 /* add last partition to total size */
1666 cpi->partition_sz[i] = cpi->bc[i].pos;
1667 *size += cpi->partition_sz[i];
1668 }
1669 else
1670 {
1671 bc[1].error = &pc->error;
1672
1673 vp8_start_encode(&cpi->bc[1], cx_data, cx_data_end);
1674
1675 #if CONFIG_MULTITHREAD
1676 if (cpi->b_multi_threaded)
1677 pack_mb_row_tokens(cpi, &cpi->bc[1]);
1678 else
1679 #endif
1680 pack_tokens(&cpi->bc[1], cpi->tok, cpi->tok_count);
1681
1682 vp8_stop_encode(&cpi->bc[1]);
1683
1684 *size += cpi->bc[1].pos;
1685 cpi->partition_sz[1] = cpi->bc[1].pos;
1686 }
1687 #endif
1688 }
1689
1690 #ifdef VP8_ENTROPY_STATS
print_tree_update_probs()1691 void print_tree_update_probs()
1692 {
1693 int i, j, k, l;
1694 FILE *f = fopen("context.c", "a");
1695 int Sum;
1696 fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n");
1697 fprintf(f, "const vp8_prob tree_update_probs[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n");
1698
1699 for (i = 0; i < BLOCK_TYPES; i++)
1700 {
1701 fprintf(f, " { \n");
1702
1703 for (j = 0; j < COEF_BANDS; j++)
1704 {
1705 fprintf(f, " {\n");
1706
1707 for (k = 0; k < PREV_COEF_CONTEXTS; k++)
1708 {
1709 fprintf(f, " {");
1710
1711 for (l = 0; l < ENTROPY_NODES; l++)
1712 {
1713 Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1];
1714
1715 if (Sum > 0)
1716 {
1717 if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0)
1718 fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum);
1719 else
1720 fprintf(f, "%3ld, ", 1);
1721 }
1722 else
1723 fprintf(f, "%3ld, ", 128);
1724 }
1725
1726 fprintf(f, "},\n");
1727 }
1728
1729 fprintf(f, " },\n");
1730 }
1731
1732 fprintf(f, " },\n");
1733 }
1734
1735 fprintf(f, "};\n");
1736 fclose(f);
1737 }
1738 #endif
1739