1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <pthread.h>
30 
31 #include <errno.h>
32 #include <limits.h>
33 #include <stdatomic.h>
34 #include <sys/mman.h>
35 #include <time.h>
36 #include <unistd.h>
37 
38 #include "pthread_internal.h"
39 
40 #include "private/bionic_futex.h"
41 #include "private/bionic_time_conversions.h"
42 #include "private/bionic_tls.h"
43 
44 // XXX *technically* there is a race condition that could allow
45 // XXX a signal to be missed.  If thread A is preempted in _wait()
46 // XXX after unlocking the mutex and before waiting, and if other
47 // XXX threads call signal or broadcast UINT_MAX/2 times (exactly),
48 // XXX before thread A is scheduled again and calls futex_wait(),
49 // XXX then the signal will be lost.
50 
51 // We use one bit in pthread_condattr_t (long) values as the 'shared' flag
52 // and one bit for the clock type (CLOCK_REALTIME is ((clockid_t) 1), and
53 // CLOCK_MONOTONIC is ((clockid_t) 0).). The rest of the bits are a counter.
54 //
55 // The 'value' field pthread_cond_t has the same layout.
56 
57 #define COND_SHARED_MASK 0x0001
58 #define COND_CLOCK_MASK 0x0002
59 #define COND_COUNTER_STEP 0x0004
60 #define COND_FLAGS_MASK (COND_SHARED_MASK | COND_CLOCK_MASK)
61 #define COND_COUNTER_MASK (~COND_FLAGS_MASK)
62 
63 #define COND_IS_SHARED(c) (((c) & COND_SHARED_MASK) != 0)
64 #define COND_GET_CLOCK(c) (((c) & COND_CLOCK_MASK) >> 1)
65 #define COND_SET_CLOCK(attr, c) ((attr) | (c << 1))
66 
pthread_condattr_init(pthread_condattr_t * attr)67 int pthread_condattr_init(pthread_condattr_t* attr) {
68   *attr = 0;
69   *attr |= PTHREAD_PROCESS_PRIVATE;
70   *attr |= (CLOCK_REALTIME << 1);
71   return 0;
72 }
73 
pthread_condattr_getpshared(const pthread_condattr_t * attr,int * pshared)74 int pthread_condattr_getpshared(const pthread_condattr_t* attr, int* pshared) {
75   *pshared = static_cast<int>(COND_IS_SHARED(*attr));
76   return 0;
77 }
78 
pthread_condattr_setpshared(pthread_condattr_t * attr,int pshared)79 int pthread_condattr_setpshared(pthread_condattr_t* attr, int pshared) {
80   if (pshared != PTHREAD_PROCESS_SHARED && pshared != PTHREAD_PROCESS_PRIVATE) {
81     return EINVAL;
82   }
83 
84   *attr |= pshared;
85   return 0;
86 }
87 
pthread_condattr_getclock(const pthread_condattr_t * attr,clockid_t * clock)88 int pthread_condattr_getclock(const pthread_condattr_t* attr, clockid_t* clock) {
89   *clock = COND_GET_CLOCK(*attr);
90   return 0;
91 }
92 
pthread_condattr_setclock(pthread_condattr_t * attr,clockid_t clock)93 int pthread_condattr_setclock(pthread_condattr_t* attr, clockid_t clock) {
94   if (clock != CLOCK_MONOTONIC && clock != CLOCK_REALTIME) {
95     return EINVAL;
96   }
97 
98   *attr = COND_SET_CLOCK(*attr, clock);
99   return 0;
100 }
101 
pthread_condattr_destroy(pthread_condattr_t * attr)102 int pthread_condattr_destroy(pthread_condattr_t* attr) {
103   *attr = 0xdeada11d;
104   return 0;
105 }
106 
107 struct pthread_cond_internal_t {
108   atomic_uint state;
109 
process_sharedpthread_cond_internal_t110   bool process_shared() {
111     return COND_IS_SHARED(atomic_load_explicit(&state, memory_order_relaxed));
112   }
113 
use_realtime_clockpthread_cond_internal_t114   bool use_realtime_clock() {
115     return COND_GET_CLOCK(atomic_load_explicit(&state, memory_order_relaxed)) == CLOCK_REALTIME;
116   }
117 
118 #if defined(__LP64__)
119   char __reserved[44];
120 #endif
121 };
122 
123 static_assert(sizeof(pthread_cond_t) == sizeof(pthread_cond_internal_t),
124               "pthread_cond_t should actually be pthread_cond_internal_t in implementation.");
125 
126 // For binary compatibility with old version of pthread_cond_t, we can't use more strict alignment
127 // than 4-byte alignment.
128 static_assert(alignof(pthread_cond_t) == 4,
129               "pthread_cond_t should fulfill the alignment requirement of pthread_cond_internal_t.");
130 
__get_internal_cond(pthread_cond_t * cond_interface)131 static pthread_cond_internal_t* __get_internal_cond(pthread_cond_t* cond_interface) {
132   return reinterpret_cast<pthread_cond_internal_t*>(cond_interface);
133 }
134 
pthread_cond_init(pthread_cond_t * cond_interface,const pthread_condattr_t * attr)135 int pthread_cond_init(pthread_cond_t* cond_interface, const pthread_condattr_t* attr) {
136   pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
137 
138   unsigned int init_state = 0;
139   if (attr != NULL) {
140     init_state = (*attr & COND_FLAGS_MASK);
141   }
142   atomic_init(&cond->state, init_state);
143 
144   return 0;
145 }
146 
pthread_cond_destroy(pthread_cond_t * cond_interface)147 int pthread_cond_destroy(pthread_cond_t* cond_interface) {
148   pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
149   atomic_store_explicit(&cond->state, 0xdeadc04d, memory_order_relaxed);
150   return 0;
151 }
152 
153 // This function is used by pthread_cond_broadcast and
154 // pthread_cond_signal to atomically decrement the counter
155 // then wake up thread_count threads.
__pthread_cond_pulse(pthread_cond_internal_t * cond,int thread_count)156 static int __pthread_cond_pulse(pthread_cond_internal_t* cond, int thread_count) {
157   // We don't use a release/seq_cst fence here. Because pthread_cond_wait/signal can't be
158   // used as a method for memory synchronization by itself. It should always be used with
159   // pthread mutexes. Note that Spurious wakeups from pthread_cond_wait/timedwait may occur,
160   // so when using condition variables there is always a boolean predicate involving shared
161   // variables associated with each condition wait that is true if the thread should proceed.
162   // If the predicate is seen true before a condition wait, pthread_cond_wait/timedwait will
163   // not be called. That's why pthread_wait/signal pair can't be used as a method for memory
164   // synchronization. And it doesn't help even if we use any fence here.
165 
166   // The increase of value should leave flags alone, even if the value can overflows.
167   atomic_fetch_add_explicit(&cond->state, COND_COUNTER_STEP, memory_order_relaxed);
168 
169   __futex_wake_ex(&cond->state, cond->process_shared(), thread_count);
170   return 0;
171 }
172 
__pthread_cond_timedwait(pthread_cond_internal_t * cond,pthread_mutex_t * mutex,bool use_realtime_clock,const timespec * abs_timeout_or_null)173 static int __pthread_cond_timedwait(pthread_cond_internal_t* cond, pthread_mutex_t* mutex,
174                                     bool use_realtime_clock, const timespec* abs_timeout_or_null) {
175   int result = check_timespec(abs_timeout_or_null, true);
176   if (result != 0) {
177     return result;
178   }
179 
180   unsigned int old_state = atomic_load_explicit(&cond->state, memory_order_relaxed);
181   pthread_mutex_unlock(mutex);
182   int status = __futex_wait_ex(&cond->state, cond->process_shared(), old_state,
183                                use_realtime_clock, abs_timeout_or_null);
184   pthread_mutex_lock(mutex);
185 
186   if (status == -ETIMEDOUT) {
187     return ETIMEDOUT;
188   }
189   return 0;
190 }
191 
pthread_cond_broadcast(pthread_cond_t * cond_interface)192 int pthread_cond_broadcast(pthread_cond_t* cond_interface) {
193   return __pthread_cond_pulse(__get_internal_cond(cond_interface), INT_MAX);
194 }
195 
pthread_cond_signal(pthread_cond_t * cond_interface)196 int pthread_cond_signal(pthread_cond_t* cond_interface) {
197   return __pthread_cond_pulse(__get_internal_cond(cond_interface), 1);
198 }
199 
pthread_cond_wait(pthread_cond_t * cond_interface,pthread_mutex_t * mutex)200 int pthread_cond_wait(pthread_cond_t* cond_interface, pthread_mutex_t* mutex) {
201   pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
202   return __pthread_cond_timedwait(cond, mutex, false, nullptr);
203 }
204 
pthread_cond_timedwait(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * abstime)205 int pthread_cond_timedwait(pthread_cond_t *cond_interface, pthread_mutex_t * mutex,
206                            const timespec *abstime) {
207 
208   pthread_cond_internal_t* cond = __get_internal_cond(cond_interface);
209   return __pthread_cond_timedwait(cond, mutex, cond->use_realtime_clock(), abstime);
210 }
211 
212 #if !defined(__LP64__)
213 // TODO: this exists only for backward binary compatibility on 32 bit platforms.
pthread_cond_timedwait_monotonic(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * abs_timeout)214 extern "C" int pthread_cond_timedwait_monotonic(pthread_cond_t* cond_interface,
215                                                 pthread_mutex_t* mutex,
216                                                 const timespec* abs_timeout) {
217 
218   return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, false, abs_timeout);
219 }
220 
pthread_cond_timedwait_monotonic_np(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * abs_timeout)221 extern "C" int pthread_cond_timedwait_monotonic_np(pthread_cond_t* cond_interface,
222                                                    pthread_mutex_t* mutex,
223                                                    const timespec* abs_timeout) {
224   return pthread_cond_timedwait_monotonic(cond_interface, mutex, abs_timeout);
225 }
226 
pthread_cond_timedwait_relative_np(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,const timespec * rel_timeout)227 extern "C" int pthread_cond_timedwait_relative_np(pthread_cond_t* cond_interface,
228                                                   pthread_mutex_t* mutex,
229                                                   const timespec* rel_timeout) {
230   timespec ts;
231   timespec* abs_timeout = nullptr;
232   if (rel_timeout != nullptr) {
233     absolute_timespec_from_timespec(ts, *rel_timeout, CLOCK_REALTIME);
234     abs_timeout = &ts;
235   }
236   return __pthread_cond_timedwait(__get_internal_cond(cond_interface), mutex, true, abs_timeout);
237 }
238 
pthread_cond_timeout_np(pthread_cond_t * cond_interface,pthread_mutex_t * mutex,unsigned ms)239 extern "C" int pthread_cond_timeout_np(pthread_cond_t* cond_interface,
240                                        pthread_mutex_t* mutex, unsigned ms) {
241   timespec ts;
242   timespec_from_ms(ts, ms);
243   return pthread_cond_timedwait_relative_np(cond_interface, mutex, &ts);
244 }
245 #endif // !defined(__LP64__)
246