1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <errno.h>
30 #include <pthread.h>
31 #include <stdatomic.h>
32 
33 #include "private/bionic_tls.h"
34 #include "pthread_internal.h"
35 
36 typedef void (*key_destructor_t)(void*);
37 
38 #define SEQ_KEY_IN_USE_BIT     0
39 
40 #define SEQ_INCREMENT_STEP  (1 << SEQ_KEY_IN_USE_BIT)
41 
42 // pthread_key_internal_t records the use of each pthread key slot:
43 //   seq records the state of the slot.
44 //      bit 0 is 1 when the key is in use, 0 when it is unused. Each time we create or delete the
45 //      pthread key in the slot, we increse the seq by 1 (which inverts bit 0). The reason to use
46 //      a sequence number instead of a boolean value here is that when the key slot is deleted and
47 //      reused for a new key, pthread_getspecific will not return stale data.
48 //   key_destructor records the destructor called at thread exit.
49 struct pthread_key_internal_t {
50   atomic_uintptr_t seq;
51   atomic_uintptr_t key_destructor;
52 };
53 
54 static pthread_key_internal_t key_map[BIONIC_PTHREAD_KEY_COUNT];
55 
SeqOfKeyInUse(uintptr_t seq)56 static inline bool SeqOfKeyInUse(uintptr_t seq) {
57   return seq & (1 << SEQ_KEY_IN_USE_BIT);
58 }
59 
60 #define KEY_VALID_FLAG (1 << 31)
61 
62 static_assert(sizeof(pthread_key_t) == sizeof(int) && static_cast<pthread_key_t>(-1) < 0,
63               "pthread_key_t should be typedef to int");
64 
KeyInValidRange(pthread_key_t key)65 static inline bool KeyInValidRange(pthread_key_t key) {
66   // key < 0 means bit 31 is set.
67   // Then key < (2^31 | BIONIC_PTHREAD_KEY_COUNT) means the index part of key < BIONIC_PTHREAD_KEY_COUNT.
68   return (key < (KEY_VALID_FLAG | BIONIC_PTHREAD_KEY_COUNT));
69 }
70 
71 // Called from pthread_exit() to remove all pthread keys. This must call the destructor of
72 // all keys that have a non-NULL data value and a non-NULL destructor.
pthread_key_clean_all()73 __LIBC_HIDDEN__ void pthread_key_clean_all() {
74   // Because destructors can do funky things like deleting/creating other keys,
75   // we need to implement this in a loop.
76   pthread_key_data_t* key_data = __get_thread()->key_data;
77   for (size_t rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; --rounds) {
78     size_t called_destructor_count = 0;
79     for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
80       uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
81       if (SeqOfKeyInUse(seq) && seq == key_data[i].seq && key_data[i].data != NULL) {
82         // Other threads may be calling pthread_key_delete/pthread_key_create while current thread
83         // is exiting. So we need to ensure we read the right key_destructor.
84         // We can rely on a user-established happens-before relationship between the creation and
85         // use of pthread key to ensure that we're not getting an earlier key_destructor.
86         // To avoid using the key_destructor of the newly created key in the same slot, we need to
87         // recheck the sequence number after reading key_destructor. As a result, we either see the
88         // right key_destructor, or the sequence number must have changed when we reread it below.
89         key_destructor_t key_destructor = reinterpret_cast<key_destructor_t>(
90           atomic_load_explicit(&key_map[i].key_destructor, memory_order_relaxed));
91         if (key_destructor == NULL) {
92           continue;
93         }
94         atomic_thread_fence(memory_order_acquire);
95         if (atomic_load_explicit(&key_map[i].seq, memory_order_relaxed) != seq) {
96            continue;
97         }
98 
99         // We need to clear the key data now, this will prevent the destructor (or a later one)
100         // from seeing the old value if it calls pthread_getspecific().
101         // We don't do this if 'key_destructor == NULL' just in case another destructor
102         // function is responsible for manually releasing the corresponding data.
103         void* data = key_data[i].data;
104         key_data[i].data = NULL;
105 
106         (*key_destructor)(data);
107         ++called_destructor_count;
108       }
109     }
110 
111     // If we didn't call any destructors, there is no need to check the pthread keys again.
112     if (called_destructor_count == 0) {
113       break;
114     }
115   }
116 }
117 
pthread_key_create(pthread_key_t * key,void (* key_destructor)(void *))118 int pthread_key_create(pthread_key_t* key, void (*key_destructor)(void*)) {
119   for (size_t i = 0; i < BIONIC_PTHREAD_KEY_COUNT; ++i) {
120     uintptr_t seq = atomic_load_explicit(&key_map[i].seq, memory_order_relaxed);
121     while (!SeqOfKeyInUse(seq)) {
122       if (atomic_compare_exchange_weak(&key_map[i].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
123         atomic_store(&key_map[i].key_destructor, reinterpret_cast<uintptr_t>(key_destructor));
124         *key = i | KEY_VALID_FLAG;
125         return 0;
126       }
127     }
128   }
129   return EAGAIN;
130 }
131 
132 // Deletes a pthread_key_t. note that the standard mandates that this does
133 // not call the destructors for non-NULL key values. Instead, it is the
134 // responsibility of the caller to properly dispose of the corresponding data
135 // and resources, using any means it finds suitable.
pthread_key_delete(pthread_key_t key)136 int pthread_key_delete(pthread_key_t key) {
137   if (__predict_false(!KeyInValidRange(key))) {
138     return EINVAL;
139   }
140   key &= ~KEY_VALID_FLAG;
141   // Increase seq to invalidate values in all threads.
142   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
143   if (SeqOfKeyInUse(seq)) {
144     if (atomic_compare_exchange_strong(&key_map[key].seq, &seq, seq + SEQ_INCREMENT_STEP)) {
145       return 0;
146     }
147   }
148   return EINVAL;
149 }
150 
pthread_getspecific(pthread_key_t key)151 void* pthread_getspecific(pthread_key_t key) {
152   if (__predict_false(!KeyInValidRange(key))) {
153     return NULL;
154   }
155   key &= ~KEY_VALID_FLAG;
156   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
157   pthread_key_data_t* data = &(__get_thread()->key_data[key]);
158   // It is user's responsibility to synchornize between the creation and use of pthread keys,
159   // so we use memory_order_relaxed when checking the sequence number.
160   if (__predict_true(SeqOfKeyInUse(seq) && data->seq == seq)) {
161     return data->data;
162   }
163   // We arrive here when current thread holds the seq of an deleted pthread key. So the
164   // data is for the deleted pthread key, and should be cleared.
165   data->data = NULL;
166   return NULL;
167 }
168 
pthread_setspecific(pthread_key_t key,const void * ptr)169 int pthread_setspecific(pthread_key_t key, const void* ptr) {
170   if (__predict_false(!KeyInValidRange(key))) {
171     return EINVAL;
172   }
173   key &= ~KEY_VALID_FLAG;
174   uintptr_t seq = atomic_load_explicit(&key_map[key].seq, memory_order_relaxed);
175   if (__predict_true(SeqOfKeyInUse(seq))) {
176     pthread_key_data_t* data = &(__get_thread()->key_data[key]);
177     data->seq = seq;
178     data->data = const_cast<void*>(ptr);
179     return 0;
180   }
181   return EINVAL;
182 }
183