1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 /** @file register_allocate.c
29  *
30  * Graph-coloring register allocator.
31  *
32  * The basic idea of graph coloring is to make a node in a graph for
33  * every thing that needs a register (color) number assigned, and make
34  * edges in the graph between nodes that interfere (can't be allocated
35  * to the same register at the same time).
36  *
37  * During the "simplify" process, any any node with fewer edges than
38  * there are registers means that that edge can get assigned a
39  * register regardless of what its neighbors choose, so that node is
40  * pushed on a stack and removed (with its edges) from the graph.
41  * That likely causes other nodes to become trivially colorable as well.
42  *
43  * Then during the "select" process, nodes are popped off of that
44  * stack, their edges restored, and assigned a color different from
45  * their neighbors.  Because they were pushed on the stack only when
46  * they were trivially colorable, any color chosen won't interfere
47  * with the registers to be popped later.
48  *
49  * The downside to most graph coloring is that real hardware often has
50  * limitations, like registers that need to be allocated to a node in
51  * pairs, or aligned on some boundary.  This implementation follows
52  * the paper "Retargetable Graph-Coloring Register Allocation for
53  * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54  *
55  * In this system, there are register classes each containing various
56  * registers, and registers may interfere with other registers.  For
57  * example, one might have a class of base registers, and a class of
58  * aligned register pairs that would each interfere with their pair of
59  * the base registers.  Each node has a register class it needs to be
60  * assigned to.  Define p(B) to be the size of register class B, and
61  * q(B,C) to be the number of registers in B that the worst choice
62  * register in C could conflict with.  Then, this system replaces the
63  * basic graph coloring test of "fewer edges from this node than there
64  * are registers" with "For this node of class B, the sum of q(B,C)
65  * for each neighbor node of class C is less than pB".
66  *
67  * A nice feature of the pq test is that q(B,C) can be computed once
68  * up front and stored in a 2-dimensional array, so that the cost of
69  * coloring a node is constant with the number of registers.  We do
70  * this during ra_set_finalize().
71  */
72 
73 #include <ralloc.h>
74 
75 #include "main/imports.h"
76 #include "main/macros.h"
77 #include "main/mtypes.h"
78 #include "register_allocate.h"
79 
80 #define NO_REG ~0
81 
82 struct ra_reg {
83    GLboolean *conflicts;
84    unsigned int *conflict_list;
85    unsigned int conflict_list_size;
86    unsigned int num_conflicts;
87 };
88 
89 struct ra_regs {
90    struct ra_reg *regs;
91    unsigned int count;
92 
93    struct ra_class **classes;
94    unsigned int class_count;
95 };
96 
97 struct ra_class {
98    GLboolean *regs;
99 
100    /**
101     * p(B) in Runeson/Nyström paper.
102     *
103     * This is "how many regs are in the set."
104     */
105    unsigned int p;
106 
107    /**
108     * q(B,C) (indexed by C, B is this register class) in
109     * Runeson/Nyström paper.  This is "how many registers of B could
110     * the worst choice register from C conflict with".
111     */
112    unsigned int *q;
113 };
114 
115 struct ra_node {
116    /** @{
117     *
118     * List of which nodes this node interferes with.  This should be
119     * symmetric with the other node.
120     */
121    GLboolean *adjacency;
122    unsigned int *adjacency_list;
123    unsigned int adjacency_count;
124    /** @} */
125 
126    unsigned int class;
127 
128    /* Register, if assigned, or NO_REG. */
129    unsigned int reg;
130 
131    /**
132     * Set when the node is in the trivially colorable stack.  When
133     * set, the adjacency to this node is ignored, to implement the
134     * "remove the edge from the graph" in simplification without
135     * having to actually modify the adjacency_list.
136     */
137    GLboolean in_stack;
138 
139    /* For an implementation that needs register spilling, this is the
140     * approximate cost of spilling this node.
141     */
142    float spill_cost;
143 };
144 
145 struct ra_graph {
146    struct ra_regs *regs;
147    /**
148     * the variables that need register allocation.
149     */
150    struct ra_node *nodes;
151    unsigned int count; /**< count of nodes. */
152 
153    unsigned int *stack;
154    unsigned int stack_count;
155 };
156 
157 /**
158  * Creates a set of registers for the allocator.
159  *
160  * mem_ctx is a ralloc context for the allocator.  The reg set may be freed
161  * using ralloc_free().
162  */
163 struct ra_regs *
ra_alloc_reg_set(void * mem_ctx,unsigned int count)164 ra_alloc_reg_set(void *mem_ctx, unsigned int count)
165 {
166    unsigned int i;
167    struct ra_regs *regs;
168 
169    regs = rzalloc(mem_ctx, struct ra_regs);
170    regs->count = count;
171    regs->regs = rzalloc_array(regs, struct ra_reg, count);
172 
173    for (i = 0; i < count; i++) {
174       regs->regs[i].conflicts = rzalloc_array(regs->regs, GLboolean, count);
175       regs->regs[i].conflicts[i] = GL_TRUE;
176 
177       regs->regs[i].conflict_list = ralloc_array(regs->regs, unsigned int, 4);
178       regs->regs[i].conflict_list_size = 4;
179       regs->regs[i].conflict_list[0] = i;
180       regs->regs[i].num_conflicts = 1;
181    }
182 
183    return regs;
184 }
185 
186 static void
ra_add_conflict_list(struct ra_regs * regs,unsigned int r1,unsigned int r2)187 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
188 {
189    struct ra_reg *reg1 = &regs->regs[r1];
190 
191    if (reg1->conflict_list_size == reg1->num_conflicts) {
192       reg1->conflict_list_size *= 2;
193       reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
194 				     unsigned int, reg1->conflict_list_size);
195    }
196    reg1->conflict_list[reg1->num_conflicts++] = r2;
197    reg1->conflicts[r2] = GL_TRUE;
198 }
199 
200 void
ra_add_reg_conflict(struct ra_regs * regs,unsigned int r1,unsigned int r2)201 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
202 {
203    if (!regs->regs[r1].conflicts[r2]) {
204       ra_add_conflict_list(regs, r1, r2);
205       ra_add_conflict_list(regs, r2, r1);
206    }
207 }
208 
209 /**
210  * Adds a conflict between base_reg and reg, and also between reg and
211  * anything that base_reg conflicts with.
212  *
213  * This can simplify code for setting up multiple register classes
214  * which are aggregates of some base hardware registers, compared to
215  * explicitly using ra_add_reg_conflict.
216  */
217 void
ra_add_transitive_reg_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg)218 ra_add_transitive_reg_conflict(struct ra_regs *regs,
219 			       unsigned int base_reg, unsigned int reg)
220 {
221    int i;
222 
223    ra_add_reg_conflict(regs, reg, base_reg);
224 
225    for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
226       ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
227    }
228 }
229 
230 unsigned int
ra_alloc_reg_class(struct ra_regs * regs)231 ra_alloc_reg_class(struct ra_regs *regs)
232 {
233    struct ra_class *class;
234 
235    regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
236 			    regs->class_count + 1);
237 
238    class = rzalloc(regs, struct ra_class);
239    regs->classes[regs->class_count] = class;
240 
241    class->regs = rzalloc_array(class, GLboolean, regs->count);
242 
243    return regs->class_count++;
244 }
245 
246 void
ra_class_add_reg(struct ra_regs * regs,unsigned int c,unsigned int r)247 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
248 {
249    struct ra_class *class = regs->classes[c];
250 
251    class->regs[r] = GL_TRUE;
252    class->p++;
253 }
254 
255 /**
256  * Must be called after all conflicts and register classes have been
257  * set up and before the register set is used for allocation.
258  */
259 void
ra_set_finalize(struct ra_regs * regs)260 ra_set_finalize(struct ra_regs *regs)
261 {
262    unsigned int b, c;
263 
264    for (b = 0; b < regs->class_count; b++) {
265       regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
266    }
267 
268    /* Compute, for each class B and C, how many regs of B an
269     * allocation to C could conflict with.
270     */
271    for (b = 0; b < regs->class_count; b++) {
272       for (c = 0; c < regs->class_count; c++) {
273 	 unsigned int rc;
274 	 int max_conflicts = 0;
275 
276 	 for (rc = 0; rc < regs->count; rc++) {
277 	    int conflicts = 0;
278 	    int i;
279 
280 	    if (!regs->classes[c]->regs[rc])
281 	       continue;
282 
283 	    for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
284 	       unsigned int rb = regs->regs[rc].conflict_list[i];
285 	       if (regs->classes[b]->regs[rb])
286 		  conflicts++;
287 	    }
288 	    max_conflicts = MAX2(max_conflicts, conflicts);
289 	 }
290 	 regs->classes[b]->q[c] = max_conflicts;
291       }
292    }
293 }
294 
295 static void
ra_add_node_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)296 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
297 {
298    g->nodes[n1].adjacency[n2] = GL_TRUE;
299    g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
300    g->nodes[n1].adjacency_count++;
301 }
302 
303 struct ra_graph *
ra_alloc_interference_graph(struct ra_regs * regs,unsigned int count)304 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
305 {
306    struct ra_graph *g;
307    unsigned int i;
308 
309    g = rzalloc(regs, struct ra_graph);
310    g->regs = regs;
311    g->nodes = rzalloc_array(g, struct ra_node, count);
312    g->count = count;
313 
314    g->stack = rzalloc_array(g, unsigned int, count);
315 
316    for (i = 0; i < count; i++) {
317       g->nodes[i].adjacency = rzalloc_array(g, GLboolean, count);
318       g->nodes[i].adjacency_list = ralloc_array(g, unsigned int, count);
319       g->nodes[i].adjacency_count = 0;
320       ra_add_node_adjacency(g, i, i);
321       g->nodes[i].reg = NO_REG;
322    }
323 
324    return g;
325 }
326 
327 void
ra_set_node_class(struct ra_graph * g,unsigned int n,unsigned int class)328 ra_set_node_class(struct ra_graph *g,
329 		  unsigned int n, unsigned int class)
330 {
331    g->nodes[n].class = class;
332 }
333 
334 void
ra_add_node_interference(struct ra_graph * g,unsigned int n1,unsigned int n2)335 ra_add_node_interference(struct ra_graph *g,
336 			 unsigned int n1, unsigned int n2)
337 {
338    if (!g->nodes[n1].adjacency[n2]) {
339       ra_add_node_adjacency(g, n1, n2);
340       ra_add_node_adjacency(g, n2, n1);
341    }
342 }
343 
pq_test(struct ra_graph * g,unsigned int n)344 static GLboolean pq_test(struct ra_graph *g, unsigned int n)
345 {
346    unsigned int j;
347    unsigned int q = 0;
348    int n_class = g->nodes[n].class;
349 
350    for (j = 0; j < g->nodes[n].adjacency_count; j++) {
351       unsigned int n2 = g->nodes[n].adjacency_list[j];
352       unsigned int n2_class = g->nodes[n2].class;
353 
354       if (n != n2 && !g->nodes[n2].in_stack) {
355 	 q += g->regs->classes[n_class]->q[n2_class];
356       }
357    }
358 
359    return q < g->regs->classes[n_class]->p;
360 }
361 
362 /**
363  * Simplifies the interference graph by pushing all
364  * trivially-colorable nodes into a stack of nodes to be colored,
365  * removing them from the graph, and rinsing and repeating.
366  *
367  * Returns GL_TRUE if all nodes were removed from the graph.  GL_FALSE
368  * means that either spilling will be required, or optimistic coloring
369  * should be applied.
370  */
371 GLboolean
ra_simplify(struct ra_graph * g)372 ra_simplify(struct ra_graph *g)
373 {
374    GLboolean progress = GL_TRUE;
375    int i;
376 
377    while (progress) {
378       progress = GL_FALSE;
379 
380       for (i = g->count - 1; i >= 0; i--) {
381 	 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
382 	    continue;
383 
384 	 if (pq_test(g, i)) {
385 	    g->stack[g->stack_count] = i;
386 	    g->stack_count++;
387 	    g->nodes[i].in_stack = GL_TRUE;
388 	    progress = GL_TRUE;
389 	 }
390       }
391    }
392 
393    for (i = 0; i < g->count; i++) {
394       if (!g->nodes[i].in_stack)
395 	 return GL_FALSE;
396    }
397 
398    return GL_TRUE;
399 }
400 
401 /**
402  * Pops nodes from the stack back into the graph, coloring them with
403  * registers as they go.
404  *
405  * If all nodes were trivially colorable, then this must succeed.  If
406  * not (optimistic coloring), then it may return GL_FALSE;
407  */
408 GLboolean
ra_select(struct ra_graph * g)409 ra_select(struct ra_graph *g)
410 {
411    int i;
412 
413    while (g->stack_count != 0) {
414       unsigned int r;
415       int n = g->stack[g->stack_count - 1];
416       struct ra_class *c = g->regs->classes[g->nodes[n].class];
417 
418       /* Find the lowest-numbered reg which is not used by a member
419        * of the graph adjacent to us.
420        */
421       for (r = 0; r < g->regs->count; r++) {
422 	 if (!c->regs[r])
423 	    continue;
424 
425 	 /* Check if any of our neighbors conflict with this register choice. */
426 	 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
427 	    unsigned int n2 = g->nodes[n].adjacency_list[i];
428 
429 	    if (!g->nodes[n2].in_stack &&
430 		g->regs->regs[r].conflicts[g->nodes[n2].reg]) {
431 	       break;
432 	    }
433 	 }
434 	 if (i == g->nodes[n].adjacency_count)
435 	    break;
436       }
437       if (r == g->regs->count)
438 	 return GL_FALSE;
439 
440       g->nodes[n].reg = r;
441       g->nodes[n].in_stack = GL_FALSE;
442       g->stack_count--;
443    }
444 
445    return GL_TRUE;
446 }
447 
448 /**
449  * Optimistic register coloring: Just push the remaining nodes
450  * on the stack.  They'll be colored first in ra_select(), and
451  * if they succeed then the locally-colorable nodes are still
452  * locally-colorable and the rest of the register allocation
453  * will succeed.
454  */
455 void
ra_optimistic_color(struct ra_graph * g)456 ra_optimistic_color(struct ra_graph *g)
457 {
458    unsigned int i;
459 
460    for (i = 0; i < g->count; i++) {
461       if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
462 	 continue;
463 
464       g->stack[g->stack_count] = i;
465       g->stack_count++;
466       g->nodes[i].in_stack = GL_TRUE;
467    }
468 }
469 
470 GLboolean
ra_allocate_no_spills(struct ra_graph * g)471 ra_allocate_no_spills(struct ra_graph *g)
472 {
473    if (!ra_simplify(g)) {
474       ra_optimistic_color(g);
475    }
476    return ra_select(g);
477 }
478 
479 unsigned int
ra_get_node_reg(struct ra_graph * g,unsigned int n)480 ra_get_node_reg(struct ra_graph *g, unsigned int n)
481 {
482    return g->nodes[n].reg;
483 }
484 
485 /**
486  * Forces a node to a specific register.  This can be used to avoid
487  * creating a register class containing one node when handling data
488  * that must live in a fixed location and is known to not conflict
489  * with other forced register assignment (as is common with shader
490  * input data).  These nodes do not end up in the stack during
491  * ra_simplify(), and thus at ra_select() time it is as if they were
492  * the first popped off the stack and assigned their fixed locations.
493  *
494  * Must be called before ra_simplify().
495  */
496 void
ra_set_node_reg(struct ra_graph * g,unsigned int n,unsigned int reg)497 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
498 {
499    g->nodes[n].reg = reg;
500    g->nodes[n].in_stack = GL_FALSE;
501 }
502 
503 static float
ra_get_spill_benefit(struct ra_graph * g,unsigned int n)504 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
505 {
506    int j;
507    float benefit = 0;
508    int n_class = g->nodes[n].class;
509 
510    /* Define the benefit of eliminating an interference between n, n2
511     * through spilling as q(C, B) / p(C).  This is similar to the
512     * "count number of edges" approach of traditional graph coloring,
513     * but takes classes into account.
514     */
515    for (j = 0; j < g->nodes[n].adjacency_count; j++) {
516       unsigned int n2 = g->nodes[n].adjacency_list[j];
517       if (n != n2) {
518 	 unsigned int n2_class = g->nodes[n2].class;
519 	 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
520 		     g->regs->classes[n_class]->p);
521       }
522    }
523 
524    return benefit;
525 }
526 
527 /**
528  * Returns a node number to be spilled according to the cost/benefit using
529  * the pq test, or -1 if there are no spillable nodes.
530  */
531 int
ra_get_best_spill_node(struct ra_graph * g)532 ra_get_best_spill_node(struct ra_graph *g)
533 {
534    unsigned int best_node = -1;
535    unsigned int best_benefit = 0.0;
536    unsigned int n;
537 
538    for (n = 0; n < g->count; n++) {
539       float cost = g->nodes[n].spill_cost;
540       float benefit;
541 
542       if (cost <= 0.0)
543 	 continue;
544 
545       benefit = ra_get_spill_benefit(g, n);
546 
547       if (benefit / cost > best_benefit) {
548 	 best_benefit = benefit / cost;
549 	 best_node = n;
550       }
551    }
552 
553    return best_node;
554 }
555 
556 /**
557  * Only nodes with a spill cost set (cost != 0.0) will be considered
558  * for register spilling.
559  */
560 void
ra_set_node_spill_cost(struct ra_graph * g,unsigned int n,float cost)561 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
562 {
563    g->nodes[n].spill_cost = cost;
564 }
565