1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <ralloc.h>
74
75 #include "main/imports.h"
76 #include "main/macros.h"
77 #include "main/mtypes.h"
78 #include "register_allocate.h"
79
80 #define NO_REG ~0
81
82 struct ra_reg {
83 GLboolean *conflicts;
84 unsigned int *conflict_list;
85 unsigned int conflict_list_size;
86 unsigned int num_conflicts;
87 };
88
89 struct ra_regs {
90 struct ra_reg *regs;
91 unsigned int count;
92
93 struct ra_class **classes;
94 unsigned int class_count;
95 };
96
97 struct ra_class {
98 GLboolean *regs;
99
100 /**
101 * p(B) in Runeson/Nyström paper.
102 *
103 * This is "how many regs are in the set."
104 */
105 unsigned int p;
106
107 /**
108 * q(B,C) (indexed by C, B is this register class) in
109 * Runeson/Nyström paper. This is "how many registers of B could
110 * the worst choice register from C conflict with".
111 */
112 unsigned int *q;
113 };
114
115 struct ra_node {
116 /** @{
117 *
118 * List of which nodes this node interferes with. This should be
119 * symmetric with the other node.
120 */
121 GLboolean *adjacency;
122 unsigned int *adjacency_list;
123 unsigned int adjacency_count;
124 /** @} */
125
126 unsigned int class;
127
128 /* Register, if assigned, or NO_REG. */
129 unsigned int reg;
130
131 /**
132 * Set when the node is in the trivially colorable stack. When
133 * set, the adjacency to this node is ignored, to implement the
134 * "remove the edge from the graph" in simplification without
135 * having to actually modify the adjacency_list.
136 */
137 GLboolean in_stack;
138
139 /* For an implementation that needs register spilling, this is the
140 * approximate cost of spilling this node.
141 */
142 float spill_cost;
143 };
144
145 struct ra_graph {
146 struct ra_regs *regs;
147 /**
148 * the variables that need register allocation.
149 */
150 struct ra_node *nodes;
151 unsigned int count; /**< count of nodes. */
152
153 unsigned int *stack;
154 unsigned int stack_count;
155 };
156
157 /**
158 * Creates a set of registers for the allocator.
159 *
160 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
161 * using ralloc_free().
162 */
163 struct ra_regs *
ra_alloc_reg_set(void * mem_ctx,unsigned int count)164 ra_alloc_reg_set(void *mem_ctx, unsigned int count)
165 {
166 unsigned int i;
167 struct ra_regs *regs;
168
169 regs = rzalloc(mem_ctx, struct ra_regs);
170 regs->count = count;
171 regs->regs = rzalloc_array(regs, struct ra_reg, count);
172
173 for (i = 0; i < count; i++) {
174 regs->regs[i].conflicts = rzalloc_array(regs->regs, GLboolean, count);
175 regs->regs[i].conflicts[i] = GL_TRUE;
176
177 regs->regs[i].conflict_list = ralloc_array(regs->regs, unsigned int, 4);
178 regs->regs[i].conflict_list_size = 4;
179 regs->regs[i].conflict_list[0] = i;
180 regs->regs[i].num_conflicts = 1;
181 }
182
183 return regs;
184 }
185
186 static void
ra_add_conflict_list(struct ra_regs * regs,unsigned int r1,unsigned int r2)187 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
188 {
189 struct ra_reg *reg1 = ®s->regs[r1];
190
191 if (reg1->conflict_list_size == reg1->num_conflicts) {
192 reg1->conflict_list_size *= 2;
193 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
194 unsigned int, reg1->conflict_list_size);
195 }
196 reg1->conflict_list[reg1->num_conflicts++] = r2;
197 reg1->conflicts[r2] = GL_TRUE;
198 }
199
200 void
ra_add_reg_conflict(struct ra_regs * regs,unsigned int r1,unsigned int r2)201 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
202 {
203 if (!regs->regs[r1].conflicts[r2]) {
204 ra_add_conflict_list(regs, r1, r2);
205 ra_add_conflict_list(regs, r2, r1);
206 }
207 }
208
209 /**
210 * Adds a conflict between base_reg and reg, and also between reg and
211 * anything that base_reg conflicts with.
212 *
213 * This can simplify code for setting up multiple register classes
214 * which are aggregates of some base hardware registers, compared to
215 * explicitly using ra_add_reg_conflict.
216 */
217 void
ra_add_transitive_reg_conflict(struct ra_regs * regs,unsigned int base_reg,unsigned int reg)218 ra_add_transitive_reg_conflict(struct ra_regs *regs,
219 unsigned int base_reg, unsigned int reg)
220 {
221 int i;
222
223 ra_add_reg_conflict(regs, reg, base_reg);
224
225 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
226 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
227 }
228 }
229
230 unsigned int
ra_alloc_reg_class(struct ra_regs * regs)231 ra_alloc_reg_class(struct ra_regs *regs)
232 {
233 struct ra_class *class;
234
235 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
236 regs->class_count + 1);
237
238 class = rzalloc(regs, struct ra_class);
239 regs->classes[regs->class_count] = class;
240
241 class->regs = rzalloc_array(class, GLboolean, regs->count);
242
243 return regs->class_count++;
244 }
245
246 void
ra_class_add_reg(struct ra_regs * regs,unsigned int c,unsigned int r)247 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
248 {
249 struct ra_class *class = regs->classes[c];
250
251 class->regs[r] = GL_TRUE;
252 class->p++;
253 }
254
255 /**
256 * Must be called after all conflicts and register classes have been
257 * set up and before the register set is used for allocation.
258 */
259 void
ra_set_finalize(struct ra_regs * regs)260 ra_set_finalize(struct ra_regs *regs)
261 {
262 unsigned int b, c;
263
264 for (b = 0; b < regs->class_count; b++) {
265 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
266 }
267
268 /* Compute, for each class B and C, how many regs of B an
269 * allocation to C could conflict with.
270 */
271 for (b = 0; b < regs->class_count; b++) {
272 for (c = 0; c < regs->class_count; c++) {
273 unsigned int rc;
274 int max_conflicts = 0;
275
276 for (rc = 0; rc < regs->count; rc++) {
277 int conflicts = 0;
278 int i;
279
280 if (!regs->classes[c]->regs[rc])
281 continue;
282
283 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
284 unsigned int rb = regs->regs[rc].conflict_list[i];
285 if (regs->classes[b]->regs[rb])
286 conflicts++;
287 }
288 max_conflicts = MAX2(max_conflicts, conflicts);
289 }
290 regs->classes[b]->q[c] = max_conflicts;
291 }
292 }
293 }
294
295 static void
ra_add_node_adjacency(struct ra_graph * g,unsigned int n1,unsigned int n2)296 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
297 {
298 g->nodes[n1].adjacency[n2] = GL_TRUE;
299 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
300 g->nodes[n1].adjacency_count++;
301 }
302
303 struct ra_graph *
ra_alloc_interference_graph(struct ra_regs * regs,unsigned int count)304 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
305 {
306 struct ra_graph *g;
307 unsigned int i;
308
309 g = rzalloc(regs, struct ra_graph);
310 g->regs = regs;
311 g->nodes = rzalloc_array(g, struct ra_node, count);
312 g->count = count;
313
314 g->stack = rzalloc_array(g, unsigned int, count);
315
316 for (i = 0; i < count; i++) {
317 g->nodes[i].adjacency = rzalloc_array(g, GLboolean, count);
318 g->nodes[i].adjacency_list = ralloc_array(g, unsigned int, count);
319 g->nodes[i].adjacency_count = 0;
320 ra_add_node_adjacency(g, i, i);
321 g->nodes[i].reg = NO_REG;
322 }
323
324 return g;
325 }
326
327 void
ra_set_node_class(struct ra_graph * g,unsigned int n,unsigned int class)328 ra_set_node_class(struct ra_graph *g,
329 unsigned int n, unsigned int class)
330 {
331 g->nodes[n].class = class;
332 }
333
334 void
ra_add_node_interference(struct ra_graph * g,unsigned int n1,unsigned int n2)335 ra_add_node_interference(struct ra_graph *g,
336 unsigned int n1, unsigned int n2)
337 {
338 if (!g->nodes[n1].adjacency[n2]) {
339 ra_add_node_adjacency(g, n1, n2);
340 ra_add_node_adjacency(g, n2, n1);
341 }
342 }
343
pq_test(struct ra_graph * g,unsigned int n)344 static GLboolean pq_test(struct ra_graph *g, unsigned int n)
345 {
346 unsigned int j;
347 unsigned int q = 0;
348 int n_class = g->nodes[n].class;
349
350 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
351 unsigned int n2 = g->nodes[n].adjacency_list[j];
352 unsigned int n2_class = g->nodes[n2].class;
353
354 if (n != n2 && !g->nodes[n2].in_stack) {
355 q += g->regs->classes[n_class]->q[n2_class];
356 }
357 }
358
359 return q < g->regs->classes[n_class]->p;
360 }
361
362 /**
363 * Simplifies the interference graph by pushing all
364 * trivially-colorable nodes into a stack of nodes to be colored,
365 * removing them from the graph, and rinsing and repeating.
366 *
367 * Returns GL_TRUE if all nodes were removed from the graph. GL_FALSE
368 * means that either spilling will be required, or optimistic coloring
369 * should be applied.
370 */
371 GLboolean
ra_simplify(struct ra_graph * g)372 ra_simplify(struct ra_graph *g)
373 {
374 GLboolean progress = GL_TRUE;
375 int i;
376
377 while (progress) {
378 progress = GL_FALSE;
379
380 for (i = g->count - 1; i >= 0; i--) {
381 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
382 continue;
383
384 if (pq_test(g, i)) {
385 g->stack[g->stack_count] = i;
386 g->stack_count++;
387 g->nodes[i].in_stack = GL_TRUE;
388 progress = GL_TRUE;
389 }
390 }
391 }
392
393 for (i = 0; i < g->count; i++) {
394 if (!g->nodes[i].in_stack)
395 return GL_FALSE;
396 }
397
398 return GL_TRUE;
399 }
400
401 /**
402 * Pops nodes from the stack back into the graph, coloring them with
403 * registers as they go.
404 *
405 * If all nodes were trivially colorable, then this must succeed. If
406 * not (optimistic coloring), then it may return GL_FALSE;
407 */
408 GLboolean
ra_select(struct ra_graph * g)409 ra_select(struct ra_graph *g)
410 {
411 int i;
412
413 while (g->stack_count != 0) {
414 unsigned int r;
415 int n = g->stack[g->stack_count - 1];
416 struct ra_class *c = g->regs->classes[g->nodes[n].class];
417
418 /* Find the lowest-numbered reg which is not used by a member
419 * of the graph adjacent to us.
420 */
421 for (r = 0; r < g->regs->count; r++) {
422 if (!c->regs[r])
423 continue;
424
425 /* Check if any of our neighbors conflict with this register choice. */
426 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
427 unsigned int n2 = g->nodes[n].adjacency_list[i];
428
429 if (!g->nodes[n2].in_stack &&
430 g->regs->regs[r].conflicts[g->nodes[n2].reg]) {
431 break;
432 }
433 }
434 if (i == g->nodes[n].adjacency_count)
435 break;
436 }
437 if (r == g->regs->count)
438 return GL_FALSE;
439
440 g->nodes[n].reg = r;
441 g->nodes[n].in_stack = GL_FALSE;
442 g->stack_count--;
443 }
444
445 return GL_TRUE;
446 }
447
448 /**
449 * Optimistic register coloring: Just push the remaining nodes
450 * on the stack. They'll be colored first in ra_select(), and
451 * if they succeed then the locally-colorable nodes are still
452 * locally-colorable and the rest of the register allocation
453 * will succeed.
454 */
455 void
ra_optimistic_color(struct ra_graph * g)456 ra_optimistic_color(struct ra_graph *g)
457 {
458 unsigned int i;
459
460 for (i = 0; i < g->count; i++) {
461 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
462 continue;
463
464 g->stack[g->stack_count] = i;
465 g->stack_count++;
466 g->nodes[i].in_stack = GL_TRUE;
467 }
468 }
469
470 GLboolean
ra_allocate_no_spills(struct ra_graph * g)471 ra_allocate_no_spills(struct ra_graph *g)
472 {
473 if (!ra_simplify(g)) {
474 ra_optimistic_color(g);
475 }
476 return ra_select(g);
477 }
478
479 unsigned int
ra_get_node_reg(struct ra_graph * g,unsigned int n)480 ra_get_node_reg(struct ra_graph *g, unsigned int n)
481 {
482 return g->nodes[n].reg;
483 }
484
485 /**
486 * Forces a node to a specific register. This can be used to avoid
487 * creating a register class containing one node when handling data
488 * that must live in a fixed location and is known to not conflict
489 * with other forced register assignment (as is common with shader
490 * input data). These nodes do not end up in the stack during
491 * ra_simplify(), and thus at ra_select() time it is as if they were
492 * the first popped off the stack and assigned their fixed locations.
493 *
494 * Must be called before ra_simplify().
495 */
496 void
ra_set_node_reg(struct ra_graph * g,unsigned int n,unsigned int reg)497 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
498 {
499 g->nodes[n].reg = reg;
500 g->nodes[n].in_stack = GL_FALSE;
501 }
502
503 static float
ra_get_spill_benefit(struct ra_graph * g,unsigned int n)504 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
505 {
506 int j;
507 float benefit = 0;
508 int n_class = g->nodes[n].class;
509
510 /* Define the benefit of eliminating an interference between n, n2
511 * through spilling as q(C, B) / p(C). This is similar to the
512 * "count number of edges" approach of traditional graph coloring,
513 * but takes classes into account.
514 */
515 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
516 unsigned int n2 = g->nodes[n].adjacency_list[j];
517 if (n != n2) {
518 unsigned int n2_class = g->nodes[n2].class;
519 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
520 g->regs->classes[n_class]->p);
521 }
522 }
523
524 return benefit;
525 }
526
527 /**
528 * Returns a node number to be spilled according to the cost/benefit using
529 * the pq test, or -1 if there are no spillable nodes.
530 */
531 int
ra_get_best_spill_node(struct ra_graph * g)532 ra_get_best_spill_node(struct ra_graph *g)
533 {
534 unsigned int best_node = -1;
535 unsigned int best_benefit = 0.0;
536 unsigned int n;
537
538 for (n = 0; n < g->count; n++) {
539 float cost = g->nodes[n].spill_cost;
540 float benefit;
541
542 if (cost <= 0.0)
543 continue;
544
545 benefit = ra_get_spill_benefit(g, n);
546
547 if (benefit / cost > best_benefit) {
548 best_benefit = benefit / cost;
549 best_node = n;
550 }
551 }
552
553 return best_node;
554 }
555
556 /**
557 * Only nodes with a spill cost set (cost != 0.0) will be considered
558 * for register spilling.
559 */
560 void
ra_set_node_spill_cost(struct ra_graph * g,unsigned int n,float cost)561 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
562 {
563 g->nodes[n].spill_cost = cost;
564 }
565