1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "Parcel"
18 //#define LOG_NDEBUG 0
19 
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <pthread.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/mman.h>
28 #include <sys/stat.h>
29 #include <sys/types.h>
30 #include <sys/resource.h>
31 #include <unistd.h>
32 
33 #include <binder/Binder.h>
34 #include <binder/BpBinder.h>
35 #include <binder/IPCThreadState.h>
36 #include <binder/Parcel.h>
37 #include <binder/ProcessState.h>
38 #include <binder/Status.h>
39 #include <binder/TextOutput.h>
40 
41 #include <cutils/ashmem.h>
42 #include <utils/Debug.h>
43 #include <utils/Flattenable.h>
44 #include <utils/Log.h>
45 #include <utils/misc.h>
46 #include <utils/String8.h>
47 #include <utils/String16.h>
48 
49 #include <private/binder/binder_module.h>
50 #include <private/binder/Static.h>
51 
52 #ifndef INT32_MAX
53 #define INT32_MAX ((int32_t)(2147483647))
54 #endif
55 
56 #define LOG_REFS(...)
57 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
58 #define LOG_ALLOC(...)
59 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
60 
61 // ---------------------------------------------------------------------------
62 
63 // This macro should never be used at runtime, as a too large value
64 // of s could cause an integer overflow. Instead, you should always
65 // use the wrapper function pad_size()
66 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
67 
pad_size(size_t s)68 static size_t pad_size(size_t s) {
69     if (s > (SIZE_T_MAX - 3)) {
70         abort();
71     }
72     return PAD_SIZE_UNSAFE(s);
73 }
74 
75 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
76 #define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
77 
78 // XXX This can be made public if we want to provide
79 // support for typed data.
80 struct small_flat_data
81 {
82     uint32_t type;
83     uint32_t data;
84 };
85 
86 namespace android {
87 
88 static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
89 static size_t gParcelGlobalAllocSize = 0;
90 static size_t gParcelGlobalAllocCount = 0;
91 
92 static size_t gMaxFds = 0;
93 
94 // Maximum size of a blob to transfer in-place.
95 static const size_t BLOB_INPLACE_LIMIT = 16 * 1024;
96 
97 enum {
98     BLOB_INPLACE = 0,
99     BLOB_ASHMEM_IMMUTABLE = 1,
100     BLOB_ASHMEM_MUTABLE = 2,
101 };
102 
ashmem_rdev()103 static dev_t ashmem_rdev()
104 {
105     static dev_t __ashmem_rdev;
106     static pthread_mutex_t __ashmem_rdev_lock = PTHREAD_MUTEX_INITIALIZER;
107 
108     pthread_mutex_lock(&__ashmem_rdev_lock);
109 
110     dev_t rdev = __ashmem_rdev;
111     if (!rdev) {
112         int fd = TEMP_FAILURE_RETRY(open("/dev/ashmem", O_RDONLY));
113         if (fd >= 0) {
114             struct stat st;
115 
116             int ret = TEMP_FAILURE_RETRY(fstat(fd, &st));
117             close(fd);
118             if ((ret >= 0) && S_ISCHR(st.st_mode)) {
119                 rdev = __ashmem_rdev = st.st_rdev;
120             }
121         }
122     }
123 
124     pthread_mutex_unlock(&__ashmem_rdev_lock);
125 
126     return rdev;
127 }
128 
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)129 void acquire_object(const sp<ProcessState>& proc,
130     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
131 {
132     switch (obj.type) {
133         case BINDER_TYPE_BINDER:
134             if (obj.binder) {
135                 LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
136                 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
137             }
138             return;
139         case BINDER_TYPE_WEAK_BINDER:
140             if (obj.binder)
141                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
142             return;
143         case BINDER_TYPE_HANDLE: {
144             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
145             if (b != NULL) {
146                 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
147                 b->incStrong(who);
148             }
149             return;
150         }
151         case BINDER_TYPE_WEAK_HANDLE: {
152             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
153             if (b != NULL) b.get_refs()->incWeak(who);
154             return;
155         }
156         case BINDER_TYPE_FD: {
157             if ((obj.cookie != 0) && (outAshmemSize != NULL)) {
158                 struct stat st;
159                 int ret = fstat(obj.handle, &st);
160                 if (!ret && S_ISCHR(st.st_mode) && (st.st_rdev == ashmem_rdev())) {
161                     // If we own an ashmem fd, keep track of how much memory it refers to.
162                     int size = ashmem_get_size_region(obj.handle);
163                     if (size > 0) {
164                         *outAshmemSize += size;
165                     }
166                 }
167             }
168             return;
169         }
170     }
171 
172     ALOGD("Invalid object type 0x%08x", obj.type);
173 }
174 
acquire_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)175 void acquire_object(const sp<ProcessState>& proc,
176     const flat_binder_object& obj, const void* who)
177 {
178     acquire_object(proc, obj, who, NULL);
179 }
180 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who,size_t * outAshmemSize)181 static void release_object(const sp<ProcessState>& proc,
182     const flat_binder_object& obj, const void* who, size_t* outAshmemSize)
183 {
184     switch (obj.type) {
185         case BINDER_TYPE_BINDER:
186             if (obj.binder) {
187                 LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
188                 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
189             }
190             return;
191         case BINDER_TYPE_WEAK_BINDER:
192             if (obj.binder)
193                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
194             return;
195         case BINDER_TYPE_HANDLE: {
196             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
197             if (b != NULL) {
198                 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
199                 b->decStrong(who);
200             }
201             return;
202         }
203         case BINDER_TYPE_WEAK_HANDLE: {
204             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
205             if (b != NULL) b.get_refs()->decWeak(who);
206             return;
207         }
208         case BINDER_TYPE_FD: {
209             if (obj.cookie != 0) { // owned
210                 if (outAshmemSize != NULL) {
211                     struct stat st;
212                     int ret = fstat(obj.handle, &st);
213                     if (!ret && S_ISCHR(st.st_mode) && (st.st_rdev == ashmem_rdev())) {
214                         int size = ashmem_get_size_region(obj.handle);
215                         if (size > 0) {
216                             *outAshmemSize -= size;
217                         }
218                     }
219                 }
220 
221                 close(obj.handle);
222             }
223             return;
224         }
225     }
226 
227     ALOGE("Invalid object type 0x%08x", obj.type);
228 }
229 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)230 void release_object(const sp<ProcessState>& proc,
231     const flat_binder_object& obj, const void* who)
232 {
233     release_object(proc, obj, who, NULL);
234 }
235 
finish_flatten_binder(const sp<IBinder> &,const flat_binder_object & flat,Parcel * out)236 inline static status_t finish_flatten_binder(
237     const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
238 {
239     return out->writeObject(flat, false);
240 }
241 
flatten_binder(const sp<ProcessState> &,const sp<IBinder> & binder,Parcel * out)242 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
243     const sp<IBinder>& binder, Parcel* out)
244 {
245     flat_binder_object obj;
246 
247     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
248     if (binder != NULL) {
249         IBinder *local = binder->localBinder();
250         if (!local) {
251             BpBinder *proxy = binder->remoteBinder();
252             if (proxy == NULL) {
253                 ALOGE("null proxy");
254             }
255             const int32_t handle = proxy ? proxy->handle() : 0;
256             obj.type = BINDER_TYPE_HANDLE;
257             obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
258             obj.handle = handle;
259             obj.cookie = 0;
260         } else {
261             obj.type = BINDER_TYPE_BINDER;
262             obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
263             obj.cookie = reinterpret_cast<uintptr_t>(local);
264         }
265     } else {
266         obj.type = BINDER_TYPE_BINDER;
267         obj.binder = 0;
268         obj.cookie = 0;
269     }
270 
271     return finish_flatten_binder(binder, obj, out);
272 }
273 
flatten_binder(const sp<ProcessState> &,const wp<IBinder> & binder,Parcel * out)274 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
275     const wp<IBinder>& binder, Parcel* out)
276 {
277     flat_binder_object obj;
278 
279     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
280     if (binder != NULL) {
281         sp<IBinder> real = binder.promote();
282         if (real != NULL) {
283             IBinder *local = real->localBinder();
284             if (!local) {
285                 BpBinder *proxy = real->remoteBinder();
286                 if (proxy == NULL) {
287                     ALOGE("null proxy");
288                 }
289                 const int32_t handle = proxy ? proxy->handle() : 0;
290                 obj.type = BINDER_TYPE_WEAK_HANDLE;
291                 obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
292                 obj.handle = handle;
293                 obj.cookie = 0;
294             } else {
295                 obj.type = BINDER_TYPE_WEAK_BINDER;
296                 obj.binder = reinterpret_cast<uintptr_t>(binder.get_refs());
297                 obj.cookie = reinterpret_cast<uintptr_t>(binder.unsafe_get());
298             }
299             return finish_flatten_binder(real, obj, out);
300         }
301 
302         // XXX How to deal?  In order to flatten the given binder,
303         // we need to probe it for information, which requires a primary
304         // reference...  but we don't have one.
305         //
306         // The OpenBinder implementation uses a dynamic_cast<> here,
307         // but we can't do that with the different reference counting
308         // implementation we are using.
309         ALOGE("Unable to unflatten Binder weak reference!");
310         obj.type = BINDER_TYPE_BINDER;
311         obj.binder = 0;
312         obj.cookie = 0;
313         return finish_flatten_binder(NULL, obj, out);
314 
315     } else {
316         obj.type = BINDER_TYPE_BINDER;
317         obj.binder = 0;
318         obj.cookie = 0;
319         return finish_flatten_binder(NULL, obj, out);
320     }
321 }
322 
finish_unflatten_binder(BpBinder *,const flat_binder_object &,const Parcel &)323 inline static status_t finish_unflatten_binder(
324     BpBinder* /*proxy*/, const flat_binder_object& /*flat*/,
325     const Parcel& /*in*/)
326 {
327     return NO_ERROR;
328 }
329 
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,sp<IBinder> * out)330 status_t unflatten_binder(const sp<ProcessState>& proc,
331     const Parcel& in, sp<IBinder>* out)
332 {
333     const flat_binder_object* flat = in.readObject(false);
334 
335     if (flat) {
336         switch (flat->type) {
337             case BINDER_TYPE_BINDER:
338                 *out = reinterpret_cast<IBinder*>(flat->cookie);
339                 return finish_unflatten_binder(NULL, *flat, in);
340             case BINDER_TYPE_HANDLE:
341                 *out = proc->getStrongProxyForHandle(flat->handle);
342                 return finish_unflatten_binder(
343                     static_cast<BpBinder*>(out->get()), *flat, in);
344         }
345     }
346     return BAD_TYPE;
347 }
348 
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,wp<IBinder> * out)349 status_t unflatten_binder(const sp<ProcessState>& proc,
350     const Parcel& in, wp<IBinder>* out)
351 {
352     const flat_binder_object* flat = in.readObject(false);
353 
354     if (flat) {
355         switch (flat->type) {
356             case BINDER_TYPE_BINDER:
357                 *out = reinterpret_cast<IBinder*>(flat->cookie);
358                 return finish_unflatten_binder(NULL, *flat, in);
359             case BINDER_TYPE_WEAK_BINDER:
360                 if (flat->binder != 0) {
361                     out->set_object_and_refs(
362                         reinterpret_cast<IBinder*>(flat->cookie),
363                         reinterpret_cast<RefBase::weakref_type*>(flat->binder));
364                 } else {
365                     *out = NULL;
366                 }
367                 return finish_unflatten_binder(NULL, *flat, in);
368             case BINDER_TYPE_HANDLE:
369             case BINDER_TYPE_WEAK_HANDLE:
370                 *out = proc->getWeakProxyForHandle(flat->handle);
371                 return finish_unflatten_binder(
372                     static_cast<BpBinder*>(out->unsafe_get()), *flat, in);
373         }
374     }
375     return BAD_TYPE;
376 }
377 
378 // ---------------------------------------------------------------------------
379 
Parcel()380 Parcel::Parcel()
381 {
382     LOG_ALLOC("Parcel %p: constructing", this);
383     initState();
384 }
385 
~Parcel()386 Parcel::~Parcel()
387 {
388     freeDataNoInit();
389     LOG_ALLOC("Parcel %p: destroyed", this);
390 }
391 
getGlobalAllocSize()392 size_t Parcel::getGlobalAllocSize() {
393     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
394     size_t size = gParcelGlobalAllocSize;
395     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
396     return size;
397 }
398 
getGlobalAllocCount()399 size_t Parcel::getGlobalAllocCount() {
400     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
401     size_t count = gParcelGlobalAllocCount;
402     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
403     return count;
404 }
405 
data() const406 const uint8_t* Parcel::data() const
407 {
408     return mData;
409 }
410 
dataSize() const411 size_t Parcel::dataSize() const
412 {
413     return (mDataSize > mDataPos ? mDataSize : mDataPos);
414 }
415 
dataAvail() const416 size_t Parcel::dataAvail() const
417 {
418     size_t result = dataSize() - dataPosition();
419     if (result > INT32_MAX) {
420         abort();
421     }
422     return result;
423 }
424 
dataPosition() const425 size_t Parcel::dataPosition() const
426 {
427     return mDataPos;
428 }
429 
dataCapacity() const430 size_t Parcel::dataCapacity() const
431 {
432     return mDataCapacity;
433 }
434 
setDataSize(size_t size)435 status_t Parcel::setDataSize(size_t size)
436 {
437     if (size > INT32_MAX) {
438         // don't accept size_t values which may have come from an
439         // inadvertent conversion from a negative int.
440         return BAD_VALUE;
441     }
442 
443     status_t err;
444     err = continueWrite(size);
445     if (err == NO_ERROR) {
446         mDataSize = size;
447         ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
448     }
449     return err;
450 }
451 
setDataPosition(size_t pos) const452 void Parcel::setDataPosition(size_t pos) const
453 {
454     if (pos > INT32_MAX) {
455         // don't accept size_t values which may have come from an
456         // inadvertent conversion from a negative int.
457         abort();
458     }
459 
460     mDataPos = pos;
461     mNextObjectHint = 0;
462 }
463 
setDataCapacity(size_t size)464 status_t Parcel::setDataCapacity(size_t size)
465 {
466     if (size > INT32_MAX) {
467         // don't accept size_t values which may have come from an
468         // inadvertent conversion from a negative int.
469         return BAD_VALUE;
470     }
471 
472     if (size > mDataCapacity) return continueWrite(size);
473     return NO_ERROR;
474 }
475 
setData(const uint8_t * buffer,size_t len)476 status_t Parcel::setData(const uint8_t* buffer, size_t len)
477 {
478     if (len > INT32_MAX) {
479         // don't accept size_t values which may have come from an
480         // inadvertent conversion from a negative int.
481         return BAD_VALUE;
482     }
483 
484     status_t err = restartWrite(len);
485     if (err == NO_ERROR) {
486         memcpy(const_cast<uint8_t*>(data()), buffer, len);
487         mDataSize = len;
488         mFdsKnown = false;
489     }
490     return err;
491 }
492 
appendFrom(const Parcel * parcel,size_t offset,size_t len)493 status_t Parcel::appendFrom(const Parcel *parcel, size_t offset, size_t len)
494 {
495     const sp<ProcessState> proc(ProcessState::self());
496     status_t err;
497     const uint8_t *data = parcel->mData;
498     const binder_size_t *objects = parcel->mObjects;
499     size_t size = parcel->mObjectsSize;
500     int startPos = mDataPos;
501     int firstIndex = -1, lastIndex = -2;
502 
503     if (len == 0) {
504         return NO_ERROR;
505     }
506 
507     if (len > INT32_MAX) {
508         // don't accept size_t values which may have come from an
509         // inadvertent conversion from a negative int.
510         return BAD_VALUE;
511     }
512 
513     // range checks against the source parcel size
514     if ((offset > parcel->mDataSize)
515             || (len > parcel->mDataSize)
516             || (offset + len > parcel->mDataSize)) {
517         return BAD_VALUE;
518     }
519 
520     // Count objects in range
521     for (int i = 0; i < (int) size; i++) {
522         size_t off = objects[i];
523         if ((off >= offset) && (off + sizeof(flat_binder_object) <= offset + len)) {
524             if (firstIndex == -1) {
525                 firstIndex = i;
526             }
527             lastIndex = i;
528         }
529     }
530     int numObjects = lastIndex - firstIndex + 1;
531 
532     if ((mDataSize+len) > mDataCapacity) {
533         // grow data
534         err = growData(len);
535         if (err != NO_ERROR) {
536             return err;
537         }
538     }
539 
540     // append data
541     memcpy(mData + mDataPos, data + offset, len);
542     mDataPos += len;
543     mDataSize += len;
544 
545     err = NO_ERROR;
546 
547     if (numObjects > 0) {
548         // grow objects
549         if (mObjectsCapacity < mObjectsSize + numObjects) {
550             size_t newSize = ((mObjectsSize + numObjects)*3)/2;
551             if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
552             binder_size_t *objects =
553                 (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
554             if (objects == (binder_size_t*)0) {
555                 return NO_MEMORY;
556             }
557             mObjects = objects;
558             mObjectsCapacity = newSize;
559         }
560 
561         // append and acquire objects
562         int idx = mObjectsSize;
563         for (int i = firstIndex; i <= lastIndex; i++) {
564             size_t off = objects[i] - offset + startPos;
565             mObjects[idx++] = off;
566             mObjectsSize++;
567 
568             flat_binder_object* flat
569                 = reinterpret_cast<flat_binder_object*>(mData + off);
570             acquire_object(proc, *flat, this, &mOpenAshmemSize);
571 
572             if (flat->type == BINDER_TYPE_FD) {
573                 // If this is a file descriptor, we need to dup it so the
574                 // new Parcel now owns its own fd, and can declare that we
575                 // officially know we have fds.
576                 flat->handle = dup(flat->handle);
577                 flat->cookie = 1;
578                 mHasFds = mFdsKnown = true;
579                 if (!mAllowFds) {
580                     err = FDS_NOT_ALLOWED;
581                 }
582             }
583         }
584     }
585 
586     return err;
587 }
588 
allowFds() const589 bool Parcel::allowFds() const
590 {
591     return mAllowFds;
592 }
593 
pushAllowFds(bool allowFds)594 bool Parcel::pushAllowFds(bool allowFds)
595 {
596     const bool origValue = mAllowFds;
597     if (!allowFds) {
598         mAllowFds = false;
599     }
600     return origValue;
601 }
602 
restoreAllowFds(bool lastValue)603 void Parcel::restoreAllowFds(bool lastValue)
604 {
605     mAllowFds = lastValue;
606 }
607 
hasFileDescriptors() const608 bool Parcel::hasFileDescriptors() const
609 {
610     if (!mFdsKnown) {
611         scanForFds();
612     }
613     return mHasFds;
614 }
615 
616 // Write RPC headers.  (previously just the interface token)
writeInterfaceToken(const String16 & interface)617 status_t Parcel::writeInterfaceToken(const String16& interface)
618 {
619     writeInt32(IPCThreadState::self()->getStrictModePolicy() |
620                STRICT_MODE_PENALTY_GATHER);
621     // currently the interface identification token is just its name as a string
622     return writeString16(interface);
623 }
624 
checkInterface(IBinder * binder) const625 bool Parcel::checkInterface(IBinder* binder) const
626 {
627     return enforceInterface(binder->getInterfaceDescriptor());
628 }
629 
enforceInterface(const String16 & interface,IPCThreadState * threadState) const630 bool Parcel::enforceInterface(const String16& interface,
631                               IPCThreadState* threadState) const
632 {
633     int32_t strictPolicy = readInt32();
634     if (threadState == NULL) {
635         threadState = IPCThreadState::self();
636     }
637     if ((threadState->getLastTransactionBinderFlags() &
638          IBinder::FLAG_ONEWAY) != 0) {
639       // For one-way calls, the callee is running entirely
640       // disconnected from the caller, so disable StrictMode entirely.
641       // Not only does disk/network usage not impact the caller, but
642       // there's no way to commuicate back any violations anyway.
643       threadState->setStrictModePolicy(0);
644     } else {
645       threadState->setStrictModePolicy(strictPolicy);
646     }
647     const String16 str(readString16());
648     if (str == interface) {
649         return true;
650     } else {
651         ALOGW("**** enforceInterface() expected '%s' but read '%s'",
652                 String8(interface).string(), String8(str).string());
653         return false;
654     }
655 }
656 
objects() const657 const binder_size_t* Parcel::objects() const
658 {
659     return mObjects;
660 }
661 
objectsCount() const662 size_t Parcel::objectsCount() const
663 {
664     return mObjectsSize;
665 }
666 
errorCheck() const667 status_t Parcel::errorCheck() const
668 {
669     return mError;
670 }
671 
setError(status_t err)672 void Parcel::setError(status_t err)
673 {
674     mError = err;
675 }
676 
finishWrite(size_t len)677 status_t Parcel::finishWrite(size_t len)
678 {
679     if (len > INT32_MAX) {
680         // don't accept size_t values which may have come from an
681         // inadvertent conversion from a negative int.
682         return BAD_VALUE;
683     }
684 
685     //printf("Finish write of %d\n", len);
686     mDataPos += len;
687     ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
688     if (mDataPos > mDataSize) {
689         mDataSize = mDataPos;
690         ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
691     }
692     //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
693     return NO_ERROR;
694 }
695 
writeUnpadded(const void * data,size_t len)696 status_t Parcel::writeUnpadded(const void* data, size_t len)
697 {
698     if (len > INT32_MAX) {
699         // don't accept size_t values which may have come from an
700         // inadvertent conversion from a negative int.
701         return BAD_VALUE;
702     }
703 
704     size_t end = mDataPos + len;
705     if (end < mDataPos) {
706         // integer overflow
707         return BAD_VALUE;
708     }
709 
710     if (end <= mDataCapacity) {
711 restart_write:
712         memcpy(mData+mDataPos, data, len);
713         return finishWrite(len);
714     }
715 
716     status_t err = growData(len);
717     if (err == NO_ERROR) goto restart_write;
718     return err;
719 }
720 
write(const void * data,size_t len)721 status_t Parcel::write(const void* data, size_t len)
722 {
723     if (len > INT32_MAX) {
724         // don't accept size_t values which may have come from an
725         // inadvertent conversion from a negative int.
726         return BAD_VALUE;
727     }
728 
729     void* const d = writeInplace(len);
730     if (d) {
731         memcpy(d, data, len);
732         return NO_ERROR;
733     }
734     return mError;
735 }
736 
writeInplace(size_t len)737 void* Parcel::writeInplace(size_t len)
738 {
739     if (len > INT32_MAX) {
740         // don't accept size_t values which may have come from an
741         // inadvertent conversion from a negative int.
742         return NULL;
743     }
744 
745     const size_t padded = pad_size(len);
746 
747     // sanity check for integer overflow
748     if (mDataPos+padded < mDataPos) {
749         return NULL;
750     }
751 
752     if ((mDataPos+padded) <= mDataCapacity) {
753 restart_write:
754         //printf("Writing %ld bytes, padded to %ld\n", len, padded);
755         uint8_t* const data = mData+mDataPos;
756 
757         // Need to pad at end?
758         if (padded != len) {
759 #if BYTE_ORDER == BIG_ENDIAN
760             static const uint32_t mask[4] = {
761                 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
762             };
763 #endif
764 #if BYTE_ORDER == LITTLE_ENDIAN
765             static const uint32_t mask[4] = {
766                 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
767             };
768 #endif
769             //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
770             //    *reinterpret_cast<void**>(data+padded-4));
771             *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
772         }
773 
774         finishWrite(padded);
775         return data;
776     }
777 
778     status_t err = growData(padded);
779     if (err == NO_ERROR) goto restart_write;
780     return NULL;
781 }
782 
writeUtf8AsUtf16(const std::string & str)783 status_t Parcel::writeUtf8AsUtf16(const std::string& str) {
784     const uint8_t* strData = (uint8_t*)str.data();
785     const size_t strLen= str.length();
786     const ssize_t utf16Len = utf8_to_utf16_length(strData, strLen);
787     if (utf16Len < 0 || utf16Len> std::numeric_limits<int32_t>::max()) {
788         return BAD_VALUE;
789     }
790 
791     status_t err = writeInt32(utf16Len);
792     if (err) {
793         return err;
794     }
795 
796     // Allocate enough bytes to hold our converted string and its terminating NULL.
797     void* dst = writeInplace((utf16Len + 1) * sizeof(char16_t));
798     if (!dst) {
799         return NO_MEMORY;
800     }
801 
802     utf8_to_utf16(strData, strLen, (char16_t*)dst);
803 
804     return NO_ERROR;
805 }
806 
writeUtf8AsUtf16(const std::unique_ptr<std::string> & str)807 status_t Parcel::writeUtf8AsUtf16(const std::unique_ptr<std::string>& str) {
808   if (!str) {
809     return writeInt32(-1);
810   }
811   return writeUtf8AsUtf16(*str);
812 }
813 
814 namespace {
815 
816 template<typename T>
writeByteVectorInternal(Parcel * parcel,const std::vector<T> & val)817 status_t writeByteVectorInternal(Parcel* parcel, const std::vector<T>& val)
818 {
819     status_t status;
820     if (val.size() > std::numeric_limits<int32_t>::max()) {
821         status = BAD_VALUE;
822         return status;
823     }
824 
825     status = parcel->writeInt32(val.size());
826     if (status != OK) {
827         return status;
828     }
829 
830     void* data = parcel->writeInplace(val.size());
831     if (!data) {
832         status = BAD_VALUE;
833         return status;
834     }
835 
836     memcpy(data, val.data(), val.size());
837     return status;
838 }
839 
840 template<typename T>
writeByteVectorInternalPtr(Parcel * parcel,const std::unique_ptr<std::vector<T>> & val)841 status_t writeByteVectorInternalPtr(Parcel* parcel,
842                                     const std::unique_ptr<std::vector<T>>& val)
843 {
844     if (!val) {
845         return parcel->writeInt32(-1);
846     }
847 
848     return writeByteVectorInternal(parcel, *val);
849 }
850 
851 }  // namespace
852 
writeByteVector(const std::vector<int8_t> & val)853 status_t Parcel::writeByteVector(const std::vector<int8_t>& val) {
854     return writeByteVectorInternal(this, val);
855 }
856 
writeByteVector(const std::unique_ptr<std::vector<int8_t>> & val)857 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<int8_t>>& val)
858 {
859     return writeByteVectorInternalPtr(this, val);
860 }
861 
writeByteVector(const std::vector<uint8_t> & val)862 status_t Parcel::writeByteVector(const std::vector<uint8_t>& val) {
863     return writeByteVectorInternal(this, val);
864 }
865 
writeByteVector(const std::unique_ptr<std::vector<uint8_t>> & val)866 status_t Parcel::writeByteVector(const std::unique_ptr<std::vector<uint8_t>>& val)
867 {
868     return writeByteVectorInternalPtr(this, val);
869 }
870 
writeInt32Vector(const std::vector<int32_t> & val)871 status_t Parcel::writeInt32Vector(const std::vector<int32_t>& val)
872 {
873     return writeTypedVector(val, &Parcel::writeInt32);
874 }
875 
writeInt32Vector(const std::unique_ptr<std::vector<int32_t>> & val)876 status_t Parcel::writeInt32Vector(const std::unique_ptr<std::vector<int32_t>>& val)
877 {
878     return writeNullableTypedVector(val, &Parcel::writeInt32);
879 }
880 
writeInt64Vector(const std::vector<int64_t> & val)881 status_t Parcel::writeInt64Vector(const std::vector<int64_t>& val)
882 {
883     return writeTypedVector(val, &Parcel::writeInt64);
884 }
885 
writeInt64Vector(const std::unique_ptr<std::vector<int64_t>> & val)886 status_t Parcel::writeInt64Vector(const std::unique_ptr<std::vector<int64_t>>& val)
887 {
888     return writeNullableTypedVector(val, &Parcel::writeInt64);
889 }
890 
writeFloatVector(const std::vector<float> & val)891 status_t Parcel::writeFloatVector(const std::vector<float>& val)
892 {
893     return writeTypedVector(val, &Parcel::writeFloat);
894 }
895 
writeFloatVector(const std::unique_ptr<std::vector<float>> & val)896 status_t Parcel::writeFloatVector(const std::unique_ptr<std::vector<float>>& val)
897 {
898     return writeNullableTypedVector(val, &Parcel::writeFloat);
899 }
900 
writeDoubleVector(const std::vector<double> & val)901 status_t Parcel::writeDoubleVector(const std::vector<double>& val)
902 {
903     return writeTypedVector(val, &Parcel::writeDouble);
904 }
905 
writeDoubleVector(const std::unique_ptr<std::vector<double>> & val)906 status_t Parcel::writeDoubleVector(const std::unique_ptr<std::vector<double>>& val)
907 {
908     return writeNullableTypedVector(val, &Parcel::writeDouble);
909 }
910 
writeBoolVector(const std::vector<bool> & val)911 status_t Parcel::writeBoolVector(const std::vector<bool>& val)
912 {
913     return writeTypedVector(val, &Parcel::writeBool);
914 }
915 
writeBoolVector(const std::unique_ptr<std::vector<bool>> & val)916 status_t Parcel::writeBoolVector(const std::unique_ptr<std::vector<bool>>& val)
917 {
918     return writeNullableTypedVector(val, &Parcel::writeBool);
919 }
920 
writeCharVector(const std::vector<char16_t> & val)921 status_t Parcel::writeCharVector(const std::vector<char16_t>& val)
922 {
923     return writeTypedVector(val, &Parcel::writeChar);
924 }
925 
writeCharVector(const std::unique_ptr<std::vector<char16_t>> & val)926 status_t Parcel::writeCharVector(const std::unique_ptr<std::vector<char16_t>>& val)
927 {
928     return writeNullableTypedVector(val, &Parcel::writeChar);
929 }
930 
writeString16Vector(const std::vector<String16> & val)931 status_t Parcel::writeString16Vector(const std::vector<String16>& val)
932 {
933     return writeTypedVector(val, &Parcel::writeString16);
934 }
935 
writeString16Vector(const std::unique_ptr<std::vector<std::unique_ptr<String16>>> & val)936 status_t Parcel::writeString16Vector(
937         const std::unique_ptr<std::vector<std::unique_ptr<String16>>>& val)
938 {
939     return writeNullableTypedVector(val, &Parcel::writeString16);
940 }
941 
writeUtf8VectorAsUtf16Vector(const std::unique_ptr<std::vector<std::unique_ptr<std::string>>> & val)942 status_t Parcel::writeUtf8VectorAsUtf16Vector(
943                         const std::unique_ptr<std::vector<std::unique_ptr<std::string>>>& val) {
944     return writeNullableTypedVector(val, &Parcel::writeUtf8AsUtf16);
945 }
946 
writeUtf8VectorAsUtf16Vector(const std::vector<std::string> & val)947 status_t Parcel::writeUtf8VectorAsUtf16Vector(const std::vector<std::string>& val) {
948     return writeTypedVector(val, &Parcel::writeUtf8AsUtf16);
949 }
950 
writeInt32(int32_t val)951 status_t Parcel::writeInt32(int32_t val)
952 {
953     return writeAligned(val);
954 }
955 
writeUint32(uint32_t val)956 status_t Parcel::writeUint32(uint32_t val)
957 {
958     return writeAligned(val);
959 }
960 
writeInt32Array(size_t len,const int32_t * val)961 status_t Parcel::writeInt32Array(size_t len, const int32_t *val) {
962     if (len > INT32_MAX) {
963         // don't accept size_t values which may have come from an
964         // inadvertent conversion from a negative int.
965         return BAD_VALUE;
966     }
967 
968     if (!val) {
969         return writeInt32(-1);
970     }
971     status_t ret = writeInt32(static_cast<uint32_t>(len));
972     if (ret == NO_ERROR) {
973         ret = write(val, len * sizeof(*val));
974     }
975     return ret;
976 }
writeByteArray(size_t len,const uint8_t * val)977 status_t Parcel::writeByteArray(size_t len, const uint8_t *val) {
978     if (len > INT32_MAX) {
979         // don't accept size_t values which may have come from an
980         // inadvertent conversion from a negative int.
981         return BAD_VALUE;
982     }
983 
984     if (!val) {
985         return writeInt32(-1);
986     }
987     status_t ret = writeInt32(static_cast<uint32_t>(len));
988     if (ret == NO_ERROR) {
989         ret = write(val, len * sizeof(*val));
990     }
991     return ret;
992 }
993 
writeBool(bool val)994 status_t Parcel::writeBool(bool val)
995 {
996     return writeInt32(int32_t(val));
997 }
998 
writeChar(char16_t val)999 status_t Parcel::writeChar(char16_t val)
1000 {
1001     return writeInt32(int32_t(val));
1002 }
1003 
writeByte(int8_t val)1004 status_t Parcel::writeByte(int8_t val)
1005 {
1006     return writeInt32(int32_t(val));
1007 }
1008 
writeInt64(int64_t val)1009 status_t Parcel::writeInt64(int64_t val)
1010 {
1011     return writeAligned(val);
1012 }
1013 
writeUint64(uint64_t val)1014 status_t Parcel::writeUint64(uint64_t val)
1015 {
1016     return writeAligned(val);
1017 }
1018 
writePointer(uintptr_t val)1019 status_t Parcel::writePointer(uintptr_t val)
1020 {
1021     return writeAligned<binder_uintptr_t>(val);
1022 }
1023 
writeFloat(float val)1024 status_t Parcel::writeFloat(float val)
1025 {
1026     return writeAligned(val);
1027 }
1028 
1029 #if defined(__mips__) && defined(__mips_hard_float)
1030 
writeDouble(double val)1031 status_t Parcel::writeDouble(double val)
1032 {
1033     union {
1034         double d;
1035         unsigned long long ll;
1036     } u;
1037     u.d = val;
1038     return writeAligned(u.ll);
1039 }
1040 
1041 #else
1042 
writeDouble(double val)1043 status_t Parcel::writeDouble(double val)
1044 {
1045     return writeAligned(val);
1046 }
1047 
1048 #endif
1049 
writeCString(const char * str)1050 status_t Parcel::writeCString(const char* str)
1051 {
1052     return write(str, strlen(str)+1);
1053 }
1054 
writeString8(const String8 & str)1055 status_t Parcel::writeString8(const String8& str)
1056 {
1057     status_t err = writeInt32(str.bytes());
1058     // only write string if its length is more than zero characters,
1059     // as readString8 will only read if the length field is non-zero.
1060     // this is slightly different from how writeString16 works.
1061     if (str.bytes() > 0 && err == NO_ERROR) {
1062         err = write(str.string(), str.bytes()+1);
1063     }
1064     return err;
1065 }
1066 
writeString16(const std::unique_ptr<String16> & str)1067 status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
1068 {
1069     if (!str) {
1070         return writeInt32(-1);
1071     }
1072 
1073     return writeString16(*str);
1074 }
1075 
writeString16(const String16 & str)1076 status_t Parcel::writeString16(const String16& str)
1077 {
1078     return writeString16(str.string(), str.size());
1079 }
1080 
writeString16(const char16_t * str,size_t len)1081 status_t Parcel::writeString16(const char16_t* str, size_t len)
1082 {
1083     if (str == NULL) return writeInt32(-1);
1084 
1085     status_t err = writeInt32(len);
1086     if (err == NO_ERROR) {
1087         len *= sizeof(char16_t);
1088         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
1089         if (data) {
1090             memcpy(data, str, len);
1091             *reinterpret_cast<char16_t*>(data+len) = 0;
1092             return NO_ERROR;
1093         }
1094         err = mError;
1095     }
1096     return err;
1097 }
1098 
writeStrongBinder(const sp<IBinder> & val)1099 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
1100 {
1101     return flatten_binder(ProcessState::self(), val, this);
1102 }
1103 
writeStrongBinderVector(const std::vector<sp<IBinder>> & val)1104 status_t Parcel::writeStrongBinderVector(const std::vector<sp<IBinder>>& val)
1105 {
1106     return writeTypedVector(val, &Parcel::writeStrongBinder);
1107 }
1108 
writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>> & val)1109 status_t Parcel::writeStrongBinderVector(const std::unique_ptr<std::vector<sp<IBinder>>>& val)
1110 {
1111     return writeNullableTypedVector(val, &Parcel::writeStrongBinder);
1112 }
1113 
readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>> * val) const1114 status_t Parcel::readStrongBinderVector(std::unique_ptr<std::vector<sp<IBinder>>>* val) const {
1115     return readNullableTypedVector(val, &Parcel::readStrongBinder);
1116 }
1117 
readStrongBinderVector(std::vector<sp<IBinder>> * val) const1118 status_t Parcel::readStrongBinderVector(std::vector<sp<IBinder>>* val) const {
1119     return readTypedVector(val, &Parcel::readStrongBinder);
1120 }
1121 
writeWeakBinder(const wp<IBinder> & val)1122 status_t Parcel::writeWeakBinder(const wp<IBinder>& val)
1123 {
1124     return flatten_binder(ProcessState::self(), val, this);
1125 }
1126 
writeRawNullableParcelable(const Parcelable * parcelable)1127 status_t Parcel::writeRawNullableParcelable(const Parcelable* parcelable) {
1128     if (!parcelable) {
1129         return writeInt32(0);
1130     }
1131 
1132     return writeParcelable(*parcelable);
1133 }
1134 
writeParcelable(const Parcelable & parcelable)1135 status_t Parcel::writeParcelable(const Parcelable& parcelable) {
1136     status_t status = writeInt32(1);  // parcelable is not null.
1137     if (status != OK) {
1138         return status;
1139     }
1140     return parcelable.writeToParcel(this);
1141 }
1142 
writeNativeHandle(const native_handle * handle)1143 status_t Parcel::writeNativeHandle(const native_handle* handle)
1144 {
1145     if (!handle || handle->version != sizeof(native_handle))
1146         return BAD_TYPE;
1147 
1148     status_t err;
1149     err = writeInt32(handle->numFds);
1150     if (err != NO_ERROR) return err;
1151 
1152     err = writeInt32(handle->numInts);
1153     if (err != NO_ERROR) return err;
1154 
1155     for (int i=0 ; err==NO_ERROR && i<handle->numFds ; i++)
1156         err = writeDupFileDescriptor(handle->data[i]);
1157 
1158     if (err != NO_ERROR) {
1159         ALOGD("write native handle, write dup fd failed");
1160         return err;
1161     }
1162     err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts);
1163     return err;
1164 }
1165 
writeFileDescriptor(int fd,bool takeOwnership)1166 status_t Parcel::writeFileDescriptor(int fd, bool takeOwnership)
1167 {
1168     flat_binder_object obj;
1169     obj.type = BINDER_TYPE_FD;
1170     obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
1171     obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
1172     obj.handle = fd;
1173     obj.cookie = takeOwnership ? 1 : 0;
1174     return writeObject(obj, true);
1175 }
1176 
writeDupFileDescriptor(int fd)1177 status_t Parcel::writeDupFileDescriptor(int fd)
1178 {
1179     int dupFd = dup(fd);
1180     if (dupFd < 0) {
1181         return -errno;
1182     }
1183     status_t err = writeFileDescriptor(dupFd, true /*takeOwnership*/);
1184     if (err != OK) {
1185         close(dupFd);
1186     }
1187     return err;
1188 }
1189 
writeUniqueFileDescriptor(const ScopedFd & fd)1190 status_t Parcel::writeUniqueFileDescriptor(const ScopedFd& fd) {
1191     return writeDupFileDescriptor(fd.get());
1192 }
1193 
writeUniqueFileDescriptorVector(const std::vector<ScopedFd> & val)1194 status_t Parcel::writeUniqueFileDescriptorVector(const std::vector<ScopedFd>& val) {
1195     return writeTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1196 }
1197 
writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<ScopedFd>> & val)1198 status_t Parcel::writeUniqueFileDescriptorVector(const std::unique_ptr<std::vector<ScopedFd>>& val) {
1199     return writeNullableTypedVector(val, &Parcel::writeUniqueFileDescriptor);
1200 }
1201 
writeBlob(size_t len,bool mutableCopy,WritableBlob * outBlob)1202 status_t Parcel::writeBlob(size_t len, bool mutableCopy, WritableBlob* outBlob)
1203 {
1204     if (len > INT32_MAX) {
1205         // don't accept size_t values which may have come from an
1206         // inadvertent conversion from a negative int.
1207         return BAD_VALUE;
1208     }
1209 
1210     status_t status;
1211     if (!mAllowFds || len <= BLOB_INPLACE_LIMIT) {
1212         ALOGV("writeBlob: write in place");
1213         status = writeInt32(BLOB_INPLACE);
1214         if (status) return status;
1215 
1216         void* ptr = writeInplace(len);
1217         if (!ptr) return NO_MEMORY;
1218 
1219         outBlob->init(-1, ptr, len, false);
1220         return NO_ERROR;
1221     }
1222 
1223     ALOGV("writeBlob: write to ashmem");
1224     int fd = ashmem_create_region("Parcel Blob", len);
1225     if (fd < 0) return NO_MEMORY;
1226 
1227     int result = ashmem_set_prot_region(fd, PROT_READ | PROT_WRITE);
1228     if (result < 0) {
1229         status = result;
1230     } else {
1231         void* ptr = ::mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1232         if (ptr == MAP_FAILED) {
1233             status = -errno;
1234         } else {
1235             if (!mutableCopy) {
1236                 result = ashmem_set_prot_region(fd, PROT_READ);
1237             }
1238             if (result < 0) {
1239                 status = result;
1240             } else {
1241                 status = writeInt32(mutableCopy ? BLOB_ASHMEM_MUTABLE : BLOB_ASHMEM_IMMUTABLE);
1242                 if (!status) {
1243                     status = writeFileDescriptor(fd, true /*takeOwnership*/);
1244                     if (!status) {
1245                         outBlob->init(fd, ptr, len, mutableCopy);
1246                         return NO_ERROR;
1247                     }
1248                 }
1249             }
1250         }
1251         ::munmap(ptr, len);
1252     }
1253     ::close(fd);
1254     return status;
1255 }
1256 
writeDupImmutableBlobFileDescriptor(int fd)1257 status_t Parcel::writeDupImmutableBlobFileDescriptor(int fd)
1258 {
1259     // Must match up with what's done in writeBlob.
1260     if (!mAllowFds) return FDS_NOT_ALLOWED;
1261     status_t status = writeInt32(BLOB_ASHMEM_IMMUTABLE);
1262     if (status) return status;
1263     return writeDupFileDescriptor(fd);
1264 }
1265 
write(const FlattenableHelperInterface & val)1266 status_t Parcel::write(const FlattenableHelperInterface& val)
1267 {
1268     status_t err;
1269 
1270     // size if needed
1271     const size_t len = val.getFlattenedSize();
1272     const size_t fd_count = val.getFdCount();
1273 
1274     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
1275         // don't accept size_t values which may have come from an
1276         // inadvertent conversion from a negative int.
1277         return BAD_VALUE;
1278     }
1279 
1280     err = this->writeInt32(len);
1281     if (err) return err;
1282 
1283     err = this->writeInt32(fd_count);
1284     if (err) return err;
1285 
1286     // payload
1287     void* const buf = this->writeInplace(pad_size(len));
1288     if (buf == NULL)
1289         return BAD_VALUE;
1290 
1291     int* fds = NULL;
1292     if (fd_count) {
1293         fds = new (std::nothrow) int[fd_count];
1294         if (fds == nullptr) {
1295             ALOGE("write: failed to allocate requested %zu fds", fd_count);
1296             return BAD_VALUE;
1297         }
1298     }
1299 
1300     err = val.flatten(buf, len, fds, fd_count);
1301     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
1302         err = this->writeDupFileDescriptor( fds[i] );
1303     }
1304 
1305     if (fd_count) {
1306         delete [] fds;
1307     }
1308 
1309     return err;
1310 }
1311 
writeObject(const flat_binder_object & val,bool nullMetaData)1312 status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
1313 {
1314     const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
1315     const bool enoughObjects = mObjectsSize < mObjectsCapacity;
1316     if (enoughData && enoughObjects) {
1317 restart_write:
1318         *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
1319 
1320         // remember if it's a file descriptor
1321         if (val.type == BINDER_TYPE_FD) {
1322             if (!mAllowFds) {
1323                 // fail before modifying our object index
1324                 return FDS_NOT_ALLOWED;
1325             }
1326             mHasFds = mFdsKnown = true;
1327         }
1328 
1329         // Need to write meta-data?
1330         if (nullMetaData || val.binder != 0) {
1331             mObjects[mObjectsSize] = mDataPos;
1332             acquire_object(ProcessState::self(), val, this, &mOpenAshmemSize);
1333             mObjectsSize++;
1334         }
1335 
1336         return finishWrite(sizeof(flat_binder_object));
1337     }
1338 
1339     if (!enoughData) {
1340         const status_t err = growData(sizeof(val));
1341         if (err != NO_ERROR) return err;
1342     }
1343     if (!enoughObjects) {
1344         size_t newSize = ((mObjectsSize+2)*3)/2;
1345         if (newSize < mObjectsSize) return NO_MEMORY;   // overflow
1346         binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
1347         if (objects == NULL) return NO_MEMORY;
1348         mObjects = objects;
1349         mObjectsCapacity = newSize;
1350     }
1351 
1352     goto restart_write;
1353 }
1354 
writeNoException()1355 status_t Parcel::writeNoException()
1356 {
1357     binder::Status status;
1358     return status.writeToParcel(this);
1359 }
1360 
remove(size_t,size_t)1361 void Parcel::remove(size_t /*start*/, size_t /*amt*/)
1362 {
1363     LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
1364 }
1365 
read(void * outData,size_t len) const1366 status_t Parcel::read(void* outData, size_t len) const
1367 {
1368     if (len > INT32_MAX) {
1369         // don't accept size_t values which may have come from an
1370         // inadvertent conversion from a negative int.
1371         return BAD_VALUE;
1372     }
1373 
1374     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1375             && len <= pad_size(len)) {
1376         memcpy(outData, mData+mDataPos, len);
1377         mDataPos += pad_size(len);
1378         ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
1379         return NO_ERROR;
1380     }
1381     return NOT_ENOUGH_DATA;
1382 }
1383 
readInplace(size_t len) const1384 const void* Parcel::readInplace(size_t len) const
1385 {
1386     if (len > INT32_MAX) {
1387         // don't accept size_t values which may have come from an
1388         // inadvertent conversion from a negative int.
1389         return NULL;
1390     }
1391 
1392     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
1393             && len <= pad_size(len)) {
1394         const void* data = mData+mDataPos;
1395         mDataPos += pad_size(len);
1396         ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
1397         return data;
1398     }
1399     return NULL;
1400 }
1401 
1402 template<class T>
readAligned(T * pArg) const1403 status_t Parcel::readAligned(T *pArg) const {
1404     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1405 
1406     if ((mDataPos+sizeof(T)) <= mDataSize) {
1407         const void* data = mData+mDataPos;
1408         mDataPos += sizeof(T);
1409         *pArg =  *reinterpret_cast<const T*>(data);
1410         return NO_ERROR;
1411     } else {
1412         return NOT_ENOUGH_DATA;
1413     }
1414 }
1415 
1416 template<class T>
readAligned() const1417 T Parcel::readAligned() const {
1418     T result;
1419     if (readAligned(&result) != NO_ERROR) {
1420         result = 0;
1421     }
1422 
1423     return result;
1424 }
1425 
1426 template<class T>
writeAligned(T val)1427 status_t Parcel::writeAligned(T val) {
1428     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
1429 
1430     if ((mDataPos+sizeof(val)) <= mDataCapacity) {
1431 restart_write:
1432         *reinterpret_cast<T*>(mData+mDataPos) = val;
1433         return finishWrite(sizeof(val));
1434     }
1435 
1436     status_t err = growData(sizeof(val));
1437     if (err == NO_ERROR) goto restart_write;
1438     return err;
1439 }
1440 
1441 namespace {
1442 
1443 template<typename T>
readByteVectorInternal(const Parcel * parcel,std::vector<T> * val)1444 status_t readByteVectorInternal(const Parcel* parcel,
1445                                 std::vector<T>* val) {
1446     val->clear();
1447 
1448     int32_t size;
1449     status_t status = parcel->readInt32(&size);
1450 
1451     if (status != OK) {
1452         return status;
1453     }
1454 
1455     if (size < 0) {
1456         status = UNEXPECTED_NULL;
1457         return status;
1458     }
1459     if (size_t(size) > parcel->dataAvail()) {
1460         status = BAD_VALUE;
1461         return status;
1462     }
1463 
1464     const void* data = parcel->readInplace(size);
1465     if (!data) {
1466         status = BAD_VALUE;
1467         return status;
1468     }
1469     val->resize(size);
1470     memcpy(val->data(), data, size);
1471 
1472     return status;
1473 }
1474 
1475 template<typename T>
readByteVectorInternalPtr(const Parcel * parcel,std::unique_ptr<std::vector<T>> * val)1476 status_t readByteVectorInternalPtr(
1477         const Parcel* parcel,
1478         std::unique_ptr<std::vector<T>>* val) {
1479     const int32_t start = parcel->dataPosition();
1480     int32_t size;
1481     status_t status = parcel->readInt32(&size);
1482     val->reset();
1483 
1484     if (status != OK || size < 0) {
1485         return status;
1486     }
1487 
1488     parcel->setDataPosition(start);
1489     val->reset(new (std::nothrow) std::vector<T>());
1490 
1491     status = readByteVectorInternal(parcel, val->get());
1492 
1493     if (status != OK) {
1494         val->reset();
1495     }
1496 
1497     return status;
1498 }
1499 
1500 }  // namespace
1501 
readByteVector(std::vector<int8_t> * val) const1502 status_t Parcel::readByteVector(std::vector<int8_t>* val) const {
1503     return readByteVectorInternal(this, val);
1504 }
1505 
readByteVector(std::vector<uint8_t> * val) const1506 status_t Parcel::readByteVector(std::vector<uint8_t>* val) const {
1507     return readByteVectorInternal(this, val);
1508 }
1509 
readByteVector(std::unique_ptr<std::vector<int8_t>> * val) const1510 status_t Parcel::readByteVector(std::unique_ptr<std::vector<int8_t>>* val) const {
1511     return readByteVectorInternalPtr(this, val);
1512 }
1513 
readByteVector(std::unique_ptr<std::vector<uint8_t>> * val) const1514 status_t Parcel::readByteVector(std::unique_ptr<std::vector<uint8_t>>* val) const {
1515     return readByteVectorInternalPtr(this, val);
1516 }
1517 
readInt32Vector(std::unique_ptr<std::vector<int32_t>> * val) const1518 status_t Parcel::readInt32Vector(std::unique_ptr<std::vector<int32_t>>* val) const {
1519     return readNullableTypedVector(val, &Parcel::readInt32);
1520 }
1521 
readInt32Vector(std::vector<int32_t> * val) const1522 status_t Parcel::readInt32Vector(std::vector<int32_t>* val) const {
1523     return readTypedVector(val, &Parcel::readInt32);
1524 }
1525 
readInt64Vector(std::unique_ptr<std::vector<int64_t>> * val) const1526 status_t Parcel::readInt64Vector(std::unique_ptr<std::vector<int64_t>>* val) const {
1527     return readNullableTypedVector(val, &Parcel::readInt64);
1528 }
1529 
readInt64Vector(std::vector<int64_t> * val) const1530 status_t Parcel::readInt64Vector(std::vector<int64_t>* val) const {
1531     return readTypedVector(val, &Parcel::readInt64);
1532 }
1533 
readFloatVector(std::unique_ptr<std::vector<float>> * val) const1534 status_t Parcel::readFloatVector(std::unique_ptr<std::vector<float>>* val) const {
1535     return readNullableTypedVector(val, &Parcel::readFloat);
1536 }
1537 
readFloatVector(std::vector<float> * val) const1538 status_t Parcel::readFloatVector(std::vector<float>* val) const {
1539     return readTypedVector(val, &Parcel::readFloat);
1540 }
1541 
readDoubleVector(std::unique_ptr<std::vector<double>> * val) const1542 status_t Parcel::readDoubleVector(std::unique_ptr<std::vector<double>>* val) const {
1543     return readNullableTypedVector(val, &Parcel::readDouble);
1544 }
1545 
readDoubleVector(std::vector<double> * val) const1546 status_t Parcel::readDoubleVector(std::vector<double>* val) const {
1547     return readTypedVector(val, &Parcel::readDouble);
1548 }
1549 
readBoolVector(std::unique_ptr<std::vector<bool>> * val) const1550 status_t Parcel::readBoolVector(std::unique_ptr<std::vector<bool>>* val) const {
1551     const int32_t start = dataPosition();
1552     int32_t size;
1553     status_t status = readInt32(&size);
1554     val->reset();
1555 
1556     if (status != OK || size < 0) {
1557         return status;
1558     }
1559 
1560     setDataPosition(start);
1561     val->reset(new (std::nothrow) std::vector<bool>());
1562 
1563     status = readBoolVector(val->get());
1564 
1565     if (status != OK) {
1566         val->reset();
1567     }
1568 
1569     return status;
1570 }
1571 
readBoolVector(std::vector<bool> * val) const1572 status_t Parcel::readBoolVector(std::vector<bool>* val) const {
1573     int32_t size;
1574     status_t status = readInt32(&size);
1575 
1576     if (status != OK) {
1577         return status;
1578     }
1579 
1580     if (size < 0) {
1581         return UNEXPECTED_NULL;
1582     }
1583 
1584     val->resize(size);
1585 
1586     /* C++ bool handling means a vector of bools isn't necessarily addressable
1587      * (we might use individual bits)
1588      */
1589     bool data;
1590     for (int32_t i = 0; i < size; ++i) {
1591         status = readBool(&data);
1592         (*val)[i] = data;
1593 
1594         if (status != OK) {
1595             return status;
1596         }
1597     }
1598 
1599     return OK;
1600 }
1601 
readCharVector(std::unique_ptr<std::vector<char16_t>> * val) const1602 status_t Parcel::readCharVector(std::unique_ptr<std::vector<char16_t>>* val) const {
1603     return readNullableTypedVector(val, &Parcel::readChar);
1604 }
1605 
readCharVector(std::vector<char16_t> * val) const1606 status_t Parcel::readCharVector(std::vector<char16_t>* val) const {
1607     return readTypedVector(val, &Parcel::readChar);
1608 }
1609 
readString16Vector(std::unique_ptr<std::vector<std::unique_ptr<String16>>> * val) const1610 status_t Parcel::readString16Vector(
1611         std::unique_ptr<std::vector<std::unique_ptr<String16>>>* val) const {
1612     return readNullableTypedVector(val, &Parcel::readString16);
1613 }
1614 
readString16Vector(std::vector<String16> * val) const1615 status_t Parcel::readString16Vector(std::vector<String16>* val) const {
1616     return readTypedVector(val, &Parcel::readString16);
1617 }
1618 
readUtf8VectorFromUtf16Vector(std::unique_ptr<std::vector<std::unique_ptr<std::string>>> * val) const1619 status_t Parcel::readUtf8VectorFromUtf16Vector(
1620         std::unique_ptr<std::vector<std::unique_ptr<std::string>>>* val) const {
1621     return readNullableTypedVector(val, &Parcel::readUtf8FromUtf16);
1622 }
1623 
readUtf8VectorFromUtf16Vector(std::vector<std::string> * val) const1624 status_t Parcel::readUtf8VectorFromUtf16Vector(std::vector<std::string>* val) const {
1625     return readTypedVector(val, &Parcel::readUtf8FromUtf16);
1626 }
1627 
readInt32(int32_t * pArg) const1628 status_t Parcel::readInt32(int32_t *pArg) const
1629 {
1630     return readAligned(pArg);
1631 }
1632 
readInt32() const1633 int32_t Parcel::readInt32() const
1634 {
1635     return readAligned<int32_t>();
1636 }
1637 
readUint32(uint32_t * pArg) const1638 status_t Parcel::readUint32(uint32_t *pArg) const
1639 {
1640     return readAligned(pArg);
1641 }
1642 
readUint32() const1643 uint32_t Parcel::readUint32() const
1644 {
1645     return readAligned<uint32_t>();
1646 }
1647 
readInt64(int64_t * pArg) const1648 status_t Parcel::readInt64(int64_t *pArg) const
1649 {
1650     return readAligned(pArg);
1651 }
1652 
1653 
readInt64() const1654 int64_t Parcel::readInt64() const
1655 {
1656     return readAligned<int64_t>();
1657 }
1658 
readUint64(uint64_t * pArg) const1659 status_t Parcel::readUint64(uint64_t *pArg) const
1660 {
1661     return readAligned(pArg);
1662 }
1663 
readUint64() const1664 uint64_t Parcel::readUint64() const
1665 {
1666     return readAligned<uint64_t>();
1667 }
1668 
readPointer(uintptr_t * pArg) const1669 status_t Parcel::readPointer(uintptr_t *pArg) const
1670 {
1671     status_t ret;
1672     binder_uintptr_t ptr;
1673     ret = readAligned(&ptr);
1674     if (!ret)
1675         *pArg = ptr;
1676     return ret;
1677 }
1678 
readPointer() const1679 uintptr_t Parcel::readPointer() const
1680 {
1681     return readAligned<binder_uintptr_t>();
1682 }
1683 
1684 
readFloat(float * pArg) const1685 status_t Parcel::readFloat(float *pArg) const
1686 {
1687     return readAligned(pArg);
1688 }
1689 
1690 
readFloat() const1691 float Parcel::readFloat() const
1692 {
1693     return readAligned<float>();
1694 }
1695 
1696 #if defined(__mips__) && defined(__mips_hard_float)
1697 
readDouble(double * pArg) const1698 status_t Parcel::readDouble(double *pArg) const
1699 {
1700     union {
1701       double d;
1702       unsigned long long ll;
1703     } u;
1704     u.d = 0;
1705     status_t status;
1706     status = readAligned(&u.ll);
1707     *pArg = u.d;
1708     return status;
1709 }
1710 
readDouble() const1711 double Parcel::readDouble() const
1712 {
1713     union {
1714       double d;
1715       unsigned long long ll;
1716     } u;
1717     u.ll = readAligned<unsigned long long>();
1718     return u.d;
1719 }
1720 
1721 #else
1722 
readDouble(double * pArg) const1723 status_t Parcel::readDouble(double *pArg) const
1724 {
1725     return readAligned(pArg);
1726 }
1727 
readDouble() const1728 double Parcel::readDouble() const
1729 {
1730     return readAligned<double>();
1731 }
1732 
1733 #endif
1734 
readIntPtr(intptr_t * pArg) const1735 status_t Parcel::readIntPtr(intptr_t *pArg) const
1736 {
1737     return readAligned(pArg);
1738 }
1739 
1740 
readIntPtr() const1741 intptr_t Parcel::readIntPtr() const
1742 {
1743     return readAligned<intptr_t>();
1744 }
1745 
readBool(bool * pArg) const1746 status_t Parcel::readBool(bool *pArg) const
1747 {
1748     int32_t tmp;
1749     status_t ret = readInt32(&tmp);
1750     *pArg = (tmp != 0);
1751     return ret;
1752 }
1753 
readBool() const1754 bool Parcel::readBool() const
1755 {
1756     return readInt32() != 0;
1757 }
1758 
readChar(char16_t * pArg) const1759 status_t Parcel::readChar(char16_t *pArg) const
1760 {
1761     int32_t tmp;
1762     status_t ret = readInt32(&tmp);
1763     *pArg = char16_t(tmp);
1764     return ret;
1765 }
1766 
readChar() const1767 char16_t Parcel::readChar() const
1768 {
1769     return char16_t(readInt32());
1770 }
1771 
readByte(int8_t * pArg) const1772 status_t Parcel::readByte(int8_t *pArg) const
1773 {
1774     int32_t tmp;
1775     status_t ret = readInt32(&tmp);
1776     *pArg = int8_t(tmp);
1777     return ret;
1778 }
1779 
readByte() const1780 int8_t Parcel::readByte() const
1781 {
1782     return int8_t(readInt32());
1783 }
1784 
readUtf8FromUtf16(std::string * str) const1785 status_t Parcel::readUtf8FromUtf16(std::string* str) const {
1786     size_t utf16Size = 0;
1787     const char16_t* src = readString16Inplace(&utf16Size);
1788     if (!src) {
1789         return UNEXPECTED_NULL;
1790     }
1791 
1792     // Save ourselves the trouble, we're done.
1793     if (utf16Size == 0u) {
1794         str->clear();
1795        return NO_ERROR;
1796     }
1797 
1798     ssize_t utf8Size = utf16_to_utf8_length(src, utf16Size);
1799     if (utf8Size < 0) {
1800         return BAD_VALUE;
1801     }
1802     // Note that while it is probably safe to assume string::resize keeps a
1803     // spare byte around for the trailing null, we're going to be explicit.
1804     str->resize(utf8Size + 1);
1805     utf16_to_utf8(src, utf16Size, &((*str)[0]));
1806     str->resize(utf8Size);
1807     return NO_ERROR;
1808 }
1809 
readUtf8FromUtf16(std::unique_ptr<std::string> * str) const1810 status_t Parcel::readUtf8FromUtf16(std::unique_ptr<std::string>* str) const {
1811     const int32_t start = dataPosition();
1812     int32_t size;
1813     status_t status = readInt32(&size);
1814     str->reset();
1815 
1816     if (status != OK || size < 0) {
1817         return status;
1818     }
1819 
1820     setDataPosition(start);
1821     str->reset(new (std::nothrow) std::string());
1822     return readUtf8FromUtf16(str->get());
1823 }
1824 
readCString() const1825 const char* Parcel::readCString() const
1826 {
1827     const size_t avail = mDataSize-mDataPos;
1828     if (avail > 0) {
1829         const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1830         // is the string's trailing NUL within the parcel's valid bounds?
1831         const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1832         if (eos) {
1833             const size_t len = eos - str;
1834             mDataPos += pad_size(len+1);
1835             ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1836             return str;
1837         }
1838     }
1839     return NULL;
1840 }
1841 
readString8() const1842 String8 Parcel::readString8() const
1843 {
1844     int32_t size = readInt32();
1845     // watch for potential int overflow adding 1 for trailing NUL
1846     if (size > 0 && size < INT32_MAX) {
1847         const char* str = (const char*)readInplace(size+1);
1848         if (str) return String8(str, size);
1849     }
1850     return String8();
1851 }
1852 
readString16() const1853 String16 Parcel::readString16() const
1854 {
1855     size_t len;
1856     const char16_t* str = readString16Inplace(&len);
1857     if (str) return String16(str, len);
1858     ALOGE("Reading a NULL string not supported here.");
1859     return String16();
1860 }
1861 
readString16(std::unique_ptr<String16> * pArg) const1862 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1863 {
1864     const int32_t start = dataPosition();
1865     int32_t size;
1866     status_t status = readInt32(&size);
1867     pArg->reset();
1868 
1869     if (status != OK || size < 0) {
1870         return status;
1871     }
1872 
1873     setDataPosition(start);
1874     pArg->reset(new (std::nothrow) String16());
1875 
1876     status = readString16(pArg->get());
1877 
1878     if (status != OK) {
1879         pArg->reset();
1880     }
1881 
1882     return status;
1883 }
1884 
readString16(String16 * pArg) const1885 status_t Parcel::readString16(String16* pArg) const
1886 {
1887     size_t len;
1888     const char16_t* str = readString16Inplace(&len);
1889     if (str) {
1890         pArg->setTo(str, len);
1891         return 0;
1892     } else {
1893         *pArg = String16();
1894         return UNEXPECTED_NULL;
1895     }
1896 }
1897 
readString16Inplace(size_t * outLen) const1898 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1899 {
1900     int32_t size = readInt32();
1901     // watch for potential int overflow from size+1
1902     if (size >= 0 && size < INT32_MAX) {
1903         *outLen = size;
1904         const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1905         if (str != NULL) {
1906             return str;
1907         }
1908     }
1909     *outLen = 0;
1910     return NULL;
1911 }
1912 
readStrongBinder(sp<IBinder> * val) const1913 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1914 {
1915     return unflatten_binder(ProcessState::self(), *this, val);
1916 }
1917 
readStrongBinder() const1918 sp<IBinder> Parcel::readStrongBinder() const
1919 {
1920     sp<IBinder> val;
1921     readStrongBinder(&val);
1922     return val;
1923 }
1924 
readWeakBinder() const1925 wp<IBinder> Parcel::readWeakBinder() const
1926 {
1927     wp<IBinder> val;
1928     unflatten_binder(ProcessState::self(), *this, &val);
1929     return val;
1930 }
1931 
readParcelable(Parcelable * parcelable) const1932 status_t Parcel::readParcelable(Parcelable* parcelable) const {
1933     int32_t have_parcelable = 0;
1934     status_t status = readInt32(&have_parcelable);
1935     if (status != OK) {
1936         return status;
1937     }
1938     if (!have_parcelable) {
1939         return UNEXPECTED_NULL;
1940     }
1941     return parcelable->readFromParcel(this);
1942 }
1943 
readExceptionCode() const1944 int32_t Parcel::readExceptionCode() const
1945 {
1946     binder::Status status;
1947     status.readFromParcel(*this);
1948     return status.exceptionCode();
1949 }
1950 
readNativeHandle() const1951 native_handle* Parcel::readNativeHandle() const
1952 {
1953     int numFds, numInts;
1954     status_t err;
1955     err = readInt32(&numFds);
1956     if (err != NO_ERROR) return 0;
1957     err = readInt32(&numInts);
1958     if (err != NO_ERROR) return 0;
1959 
1960     native_handle* h = native_handle_create(numFds, numInts);
1961     if (!h) {
1962         return 0;
1963     }
1964 
1965     for (int i=0 ; err==NO_ERROR && i<numFds ; i++) {
1966         h->data[i] = dup(readFileDescriptor());
1967         if (h->data[i] < 0) {
1968             for (int j = 0; j < i; j++) {
1969                 close(h->data[j]);
1970             }
1971             native_handle_delete(h);
1972             return 0;
1973         }
1974     }
1975     err = read(h->data + numFds, sizeof(int)*numInts);
1976     if (err != NO_ERROR) {
1977         native_handle_close(h);
1978         native_handle_delete(h);
1979         h = 0;
1980     }
1981     return h;
1982 }
1983 
1984 
readFileDescriptor() const1985 int Parcel::readFileDescriptor() const
1986 {
1987     const flat_binder_object* flat = readObject(true);
1988 
1989     if (flat && flat->type == BINDER_TYPE_FD) {
1990         return flat->handle;
1991     }
1992 
1993     return BAD_TYPE;
1994 }
1995 
readUniqueFileDescriptor(ScopedFd * val) const1996 status_t Parcel::readUniqueFileDescriptor(ScopedFd* val) const
1997 {
1998     int got = readFileDescriptor();
1999 
2000     if (got == BAD_TYPE) {
2001         return BAD_TYPE;
2002     }
2003 
2004     val->reset(dup(got));
2005 
2006     if (val->get() < 0) {
2007         return BAD_VALUE;
2008     }
2009 
2010     return OK;
2011 }
2012 
2013 
readUniqueFileDescriptorVector(std::unique_ptr<std::vector<ScopedFd>> * val) const2014 status_t Parcel::readUniqueFileDescriptorVector(std::unique_ptr<std::vector<ScopedFd>>* val) const {
2015     return readNullableTypedVector(val, &Parcel::readUniqueFileDescriptor);
2016 }
2017 
readUniqueFileDescriptorVector(std::vector<ScopedFd> * val) const2018 status_t Parcel::readUniqueFileDescriptorVector(std::vector<ScopedFd>* val) const {
2019     return readTypedVector(val, &Parcel::readUniqueFileDescriptor);
2020 }
2021 
readBlob(size_t len,ReadableBlob * outBlob) const2022 status_t Parcel::readBlob(size_t len, ReadableBlob* outBlob) const
2023 {
2024     int32_t blobType;
2025     status_t status = readInt32(&blobType);
2026     if (status) return status;
2027 
2028     if (blobType == BLOB_INPLACE) {
2029         ALOGV("readBlob: read in place");
2030         const void* ptr = readInplace(len);
2031         if (!ptr) return BAD_VALUE;
2032 
2033         outBlob->init(-1, const_cast<void*>(ptr), len, false);
2034         return NO_ERROR;
2035     }
2036 
2037     ALOGV("readBlob: read from ashmem");
2038     bool isMutable = (blobType == BLOB_ASHMEM_MUTABLE);
2039     int fd = readFileDescriptor();
2040     if (fd == int(BAD_TYPE)) return BAD_VALUE;
2041 
2042     void* ptr = ::mmap(NULL, len, isMutable ? PROT_READ | PROT_WRITE : PROT_READ,
2043             MAP_SHARED, fd, 0);
2044     if (ptr == MAP_FAILED) return NO_MEMORY;
2045 
2046     outBlob->init(fd, ptr, len, isMutable);
2047     return NO_ERROR;
2048 }
2049 
read(FlattenableHelperInterface & val) const2050 status_t Parcel::read(FlattenableHelperInterface& val) const
2051 {
2052     // size
2053     const size_t len = this->readInt32();
2054     const size_t fd_count = this->readInt32();
2055 
2056     if ((len > INT32_MAX) || (fd_count >= gMaxFds)) {
2057         // don't accept size_t values which may have come from an
2058         // inadvertent conversion from a negative int.
2059         return BAD_VALUE;
2060     }
2061 
2062     // payload
2063     void const* const buf = this->readInplace(pad_size(len));
2064     if (buf == NULL)
2065         return BAD_VALUE;
2066 
2067     int* fds = NULL;
2068     if (fd_count) {
2069         fds = new (std::nothrow) int[fd_count];
2070         if (fds == nullptr) {
2071             ALOGE("read: failed to allocate requested %zu fds", fd_count);
2072             return BAD_VALUE;
2073         }
2074     }
2075 
2076     status_t err = NO_ERROR;
2077     for (size_t i=0 ; i<fd_count && err==NO_ERROR ; i++) {
2078         fds[i] = dup(this->readFileDescriptor());
2079         if (fds[i] < 0) {
2080             err = BAD_VALUE;
2081             ALOGE("dup() failed in Parcel::read, i is %zu, fds[i] is %d, fd_count is %zu, error: %s",
2082                 i, fds[i], fd_count, strerror(errno));
2083         }
2084     }
2085 
2086     if (err == NO_ERROR) {
2087         err = val.unflatten(buf, len, fds, fd_count);
2088     }
2089 
2090     if (fd_count) {
2091         delete [] fds;
2092     }
2093 
2094     return err;
2095 }
readObject(bool nullMetaData) const2096 const flat_binder_object* Parcel::readObject(bool nullMetaData) const
2097 {
2098     const size_t DPOS = mDataPos;
2099     if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) {
2100         const flat_binder_object* obj
2101                 = reinterpret_cast<const flat_binder_object*>(mData+DPOS);
2102         mDataPos = DPOS + sizeof(flat_binder_object);
2103         if (!nullMetaData && (obj->cookie == 0 && obj->binder == 0)) {
2104             // When transferring a NULL object, we don't write it into
2105             // the object list, so we don't want to check for it when
2106             // reading.
2107             ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2108             return obj;
2109         }
2110 
2111         // Ensure that this object is valid...
2112         binder_size_t* const OBJS = mObjects;
2113         const size_t N = mObjectsSize;
2114         size_t opos = mNextObjectHint;
2115 
2116         if (N > 0) {
2117             ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
2118                  this, DPOS, opos);
2119 
2120             // Start at the current hint position, looking for an object at
2121             // the current data position.
2122             if (opos < N) {
2123                 while (opos < (N-1) && OBJS[opos] < DPOS) {
2124                     opos++;
2125                 }
2126             } else {
2127                 opos = N-1;
2128             }
2129             if (OBJS[opos] == DPOS) {
2130                 // Found it!
2131                 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
2132                      this, DPOS, opos);
2133                 mNextObjectHint = opos+1;
2134                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2135                 return obj;
2136             }
2137 
2138             // Look backwards for it...
2139             while (opos > 0 && OBJS[opos] > DPOS) {
2140                 opos--;
2141             }
2142             if (OBJS[opos] == DPOS) {
2143                 // Found it!
2144                 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
2145                      this, DPOS, opos);
2146                 mNextObjectHint = opos+1;
2147                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
2148                 return obj;
2149             }
2150         }
2151         ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
2152              this, DPOS);
2153     }
2154     return NULL;
2155 }
2156 
closeFileDescriptors()2157 void Parcel::closeFileDescriptors()
2158 {
2159     size_t i = mObjectsSize;
2160     if (i > 0) {
2161         //ALOGI("Closing file descriptors for %zu objects...", i);
2162     }
2163     while (i > 0) {
2164         i--;
2165         const flat_binder_object* flat
2166             = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2167         if (flat->type == BINDER_TYPE_FD) {
2168             //ALOGI("Closing fd: %ld", flat->handle);
2169             close(flat->handle);
2170         }
2171     }
2172 }
2173 
ipcData() const2174 uintptr_t Parcel::ipcData() const
2175 {
2176     return reinterpret_cast<uintptr_t>(mData);
2177 }
2178 
ipcDataSize() const2179 size_t Parcel::ipcDataSize() const
2180 {
2181     return (mDataSize > mDataPos ? mDataSize : mDataPos);
2182 }
2183 
ipcObjects() const2184 uintptr_t Parcel::ipcObjects() const
2185 {
2186     return reinterpret_cast<uintptr_t>(mObjects);
2187 }
2188 
ipcObjectsCount() const2189 size_t Parcel::ipcObjectsCount() const
2190 {
2191     return mObjectsSize;
2192 }
2193 
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc,void * relCookie)2194 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
2195     const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
2196 {
2197     binder_size_t minOffset = 0;
2198     freeDataNoInit();
2199     mError = NO_ERROR;
2200     mData = const_cast<uint8_t*>(data);
2201     mDataSize = mDataCapacity = dataSize;
2202     //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
2203     mDataPos = 0;
2204     ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
2205     mObjects = const_cast<binder_size_t*>(objects);
2206     mObjectsSize = mObjectsCapacity = objectsCount;
2207     mNextObjectHint = 0;
2208     mOwner = relFunc;
2209     mOwnerCookie = relCookie;
2210     for (size_t i = 0; i < mObjectsSize; i++) {
2211         binder_size_t offset = mObjects[i];
2212         if (offset < minOffset) {
2213             ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
2214                   __func__, (uint64_t)offset, (uint64_t)minOffset);
2215             mObjectsSize = 0;
2216             break;
2217         }
2218         minOffset = offset + sizeof(flat_binder_object);
2219     }
2220     scanForFds();
2221 }
2222 
print(TextOutput & to,uint32_t) const2223 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
2224 {
2225     to << "Parcel(";
2226 
2227     if (errorCheck() != NO_ERROR) {
2228         const status_t err = errorCheck();
2229         to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
2230     } else if (dataSize() > 0) {
2231         const uint8_t* DATA = data();
2232         to << indent << HexDump(DATA, dataSize()) << dedent;
2233         const binder_size_t* OBJS = objects();
2234         const size_t N = objectsCount();
2235         for (size_t i=0; i<N; i++) {
2236             const flat_binder_object* flat
2237                 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
2238             to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
2239                 << TypeCode(flat->type & 0x7f7f7f00)
2240                 << " = " << flat->binder;
2241         }
2242     } else {
2243         to << "NULL";
2244     }
2245 
2246     to << ")";
2247 }
2248 
releaseObjects()2249 void Parcel::releaseObjects()
2250 {
2251     const sp<ProcessState> proc(ProcessState::self());
2252     size_t i = mObjectsSize;
2253     uint8_t* const data = mData;
2254     binder_size_t* const objects = mObjects;
2255     while (i > 0) {
2256         i--;
2257         const flat_binder_object* flat
2258             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2259         release_object(proc, *flat, this, &mOpenAshmemSize);
2260     }
2261 }
2262 
acquireObjects()2263 void Parcel::acquireObjects()
2264 {
2265     const sp<ProcessState> proc(ProcessState::self());
2266     size_t i = mObjectsSize;
2267     uint8_t* const data = mData;
2268     binder_size_t* const objects = mObjects;
2269     while (i > 0) {
2270         i--;
2271         const flat_binder_object* flat
2272             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
2273         acquire_object(proc, *flat, this, &mOpenAshmemSize);
2274     }
2275 }
2276 
freeData()2277 void Parcel::freeData()
2278 {
2279     freeDataNoInit();
2280     initState();
2281 }
2282 
freeDataNoInit()2283 void Parcel::freeDataNoInit()
2284 {
2285     if (mOwner) {
2286         LOG_ALLOC("Parcel %p: freeing other owner data", this);
2287         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2288         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2289     } else {
2290         LOG_ALLOC("Parcel %p: freeing allocated data", this);
2291         releaseObjects();
2292         if (mData) {
2293             LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
2294             pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2295             if (mDataCapacity <= gParcelGlobalAllocSize) {
2296               gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
2297             } else {
2298               gParcelGlobalAllocSize = 0;
2299             }
2300             if (gParcelGlobalAllocCount > 0) {
2301               gParcelGlobalAllocCount--;
2302             }
2303             pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2304             free(mData);
2305         }
2306         if (mObjects) free(mObjects);
2307     }
2308 }
2309 
growData(size_t len)2310 status_t Parcel::growData(size_t len)
2311 {
2312     if (len > INT32_MAX) {
2313         // don't accept size_t values which may have come from an
2314         // inadvertent conversion from a negative int.
2315         return BAD_VALUE;
2316     }
2317 
2318     size_t newSize = ((mDataSize+len)*3)/2;
2319     return (newSize <= mDataSize)
2320             ? (status_t) NO_MEMORY
2321             : continueWrite(newSize);
2322 }
2323 
restartWrite(size_t desired)2324 status_t Parcel::restartWrite(size_t desired)
2325 {
2326     if (desired > INT32_MAX) {
2327         // don't accept size_t values which may have come from an
2328         // inadvertent conversion from a negative int.
2329         return BAD_VALUE;
2330     }
2331 
2332     if (mOwner) {
2333         freeData();
2334         return continueWrite(desired);
2335     }
2336 
2337     uint8_t* data = (uint8_t*)realloc(mData, desired);
2338     if (!data && desired > mDataCapacity) {
2339         mError = NO_MEMORY;
2340         return NO_MEMORY;
2341     }
2342 
2343     releaseObjects();
2344 
2345     if (data) {
2346         LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
2347         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2348         gParcelGlobalAllocSize += desired;
2349         gParcelGlobalAllocSize -= mDataCapacity;
2350         if (!mData) {
2351             gParcelGlobalAllocCount++;
2352         }
2353         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2354         mData = data;
2355         mDataCapacity = desired;
2356     }
2357 
2358     mDataSize = mDataPos = 0;
2359     ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
2360     ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
2361 
2362     free(mObjects);
2363     mObjects = NULL;
2364     mObjectsSize = mObjectsCapacity = 0;
2365     mNextObjectHint = 0;
2366     mHasFds = false;
2367     mFdsKnown = true;
2368     mAllowFds = true;
2369 
2370     return NO_ERROR;
2371 }
2372 
continueWrite(size_t desired)2373 status_t Parcel::continueWrite(size_t desired)
2374 {
2375     if (desired > INT32_MAX) {
2376         // don't accept size_t values which may have come from an
2377         // inadvertent conversion from a negative int.
2378         return BAD_VALUE;
2379     }
2380 
2381     // If shrinking, first adjust for any objects that appear
2382     // after the new data size.
2383     size_t objectsSize = mObjectsSize;
2384     if (desired < mDataSize) {
2385         if (desired == 0) {
2386             objectsSize = 0;
2387         } else {
2388             while (objectsSize > 0) {
2389                 if (mObjects[objectsSize-1] < desired)
2390                     break;
2391                 objectsSize--;
2392             }
2393         }
2394     }
2395 
2396     if (mOwner) {
2397         // If the size is going to zero, just release the owner's data.
2398         if (desired == 0) {
2399             freeData();
2400             return NO_ERROR;
2401         }
2402 
2403         // If there is a different owner, we need to take
2404         // posession.
2405         uint8_t* data = (uint8_t*)malloc(desired);
2406         if (!data) {
2407             mError = NO_MEMORY;
2408             return NO_MEMORY;
2409         }
2410         binder_size_t* objects = NULL;
2411 
2412         if (objectsSize) {
2413             objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
2414             if (!objects) {
2415                 free(data);
2416 
2417                 mError = NO_MEMORY;
2418                 return NO_MEMORY;
2419             }
2420 
2421             // Little hack to only acquire references on objects
2422             // we will be keeping.
2423             size_t oldObjectsSize = mObjectsSize;
2424             mObjectsSize = objectsSize;
2425             acquireObjects();
2426             mObjectsSize = oldObjectsSize;
2427         }
2428 
2429         if (mData) {
2430             memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
2431         }
2432         if (objects && mObjects) {
2433             memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
2434         }
2435         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
2436         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
2437         mOwner = NULL;
2438 
2439         LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
2440         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2441         gParcelGlobalAllocSize += desired;
2442         gParcelGlobalAllocCount++;
2443         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2444 
2445         mData = data;
2446         mObjects = objects;
2447         mDataSize = (mDataSize < desired) ? mDataSize : desired;
2448         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2449         mDataCapacity = desired;
2450         mObjectsSize = mObjectsCapacity = objectsSize;
2451         mNextObjectHint = 0;
2452 
2453     } else if (mData) {
2454         if (objectsSize < mObjectsSize) {
2455             // Need to release refs on any objects we are dropping.
2456             const sp<ProcessState> proc(ProcessState::self());
2457             for (size_t i=objectsSize; i<mObjectsSize; i++) {
2458                 const flat_binder_object* flat
2459                     = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
2460                 if (flat->type == BINDER_TYPE_FD) {
2461                     // will need to rescan because we may have lopped off the only FDs
2462                     mFdsKnown = false;
2463                 }
2464                 release_object(proc, *flat, this, &mOpenAshmemSize);
2465             }
2466             binder_size_t* objects =
2467                 (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
2468             if (objects) {
2469                 mObjects = objects;
2470             }
2471             mObjectsSize = objectsSize;
2472             mNextObjectHint = 0;
2473         }
2474 
2475         // We own the data, so we can just do a realloc().
2476         if (desired > mDataCapacity) {
2477             uint8_t* data = (uint8_t*)realloc(mData, desired);
2478             if (data) {
2479                 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
2480                         desired);
2481                 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2482                 gParcelGlobalAllocSize += desired;
2483                 gParcelGlobalAllocSize -= mDataCapacity;
2484                 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2485                 mData = data;
2486                 mDataCapacity = desired;
2487             } else if (desired > mDataCapacity) {
2488                 mError = NO_MEMORY;
2489                 return NO_MEMORY;
2490             }
2491         } else {
2492             if (mDataSize > desired) {
2493                 mDataSize = desired;
2494                 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2495             }
2496             if (mDataPos > desired) {
2497                 mDataPos = desired;
2498                 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2499             }
2500         }
2501 
2502     } else {
2503         // This is the first data.  Easy!
2504         uint8_t* data = (uint8_t*)malloc(desired);
2505         if (!data) {
2506             mError = NO_MEMORY;
2507             return NO_MEMORY;
2508         }
2509 
2510         if(!(mDataCapacity == 0 && mObjects == NULL
2511              && mObjectsCapacity == 0)) {
2512             ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
2513         }
2514 
2515         LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
2516         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
2517         gParcelGlobalAllocSize += desired;
2518         gParcelGlobalAllocCount++;
2519         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
2520 
2521         mData = data;
2522         mDataSize = mDataPos = 0;
2523         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
2524         ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
2525         mDataCapacity = desired;
2526     }
2527 
2528     return NO_ERROR;
2529 }
2530 
initState()2531 void Parcel::initState()
2532 {
2533     LOG_ALLOC("Parcel %p: initState", this);
2534     mError = NO_ERROR;
2535     mData = 0;
2536     mDataSize = 0;
2537     mDataCapacity = 0;
2538     mDataPos = 0;
2539     ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
2540     ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
2541     mObjects = NULL;
2542     mObjectsSize = 0;
2543     mObjectsCapacity = 0;
2544     mNextObjectHint = 0;
2545     mHasFds = false;
2546     mFdsKnown = true;
2547     mAllowFds = true;
2548     mOwner = NULL;
2549     mOpenAshmemSize = 0;
2550 
2551     // racing multiple init leads only to multiple identical write
2552     if (gMaxFds == 0) {
2553         struct rlimit result;
2554         if (!getrlimit(RLIMIT_NOFILE, &result)) {
2555             gMaxFds = (size_t)result.rlim_cur;
2556             //ALOGI("parcel fd limit set to %zu", gMaxFds);
2557         } else {
2558             ALOGW("Unable to getrlimit: %s", strerror(errno));
2559             gMaxFds = 1024;
2560         }
2561     }
2562 }
2563 
scanForFds() const2564 void Parcel::scanForFds() const
2565 {
2566     bool hasFds = false;
2567     for (size_t i=0; i<mObjectsSize; i++) {
2568         const flat_binder_object* flat
2569             = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2570         if (flat->type == BINDER_TYPE_FD) {
2571             hasFds = true;
2572             break;
2573         }
2574     }
2575     mHasFds = hasFds;
2576     mFdsKnown = true;
2577 }
2578 
getBlobAshmemSize() const2579 size_t Parcel::getBlobAshmemSize() const
2580 {
2581     // This used to return the size of all blobs that were written to ashmem, now we're returning
2582     // the ashmem currently referenced by this Parcel, which should be equivalent.
2583     // TODO: Remove method once ABI can be changed.
2584     return mOpenAshmemSize;
2585 }
2586 
getOpenAshmemSize() const2587 size_t Parcel::getOpenAshmemSize() const
2588 {
2589     return mOpenAshmemSize;
2590 }
2591 
2592 // --- Parcel::Blob ---
2593 
Blob()2594 Parcel::Blob::Blob() :
2595         mFd(-1), mData(NULL), mSize(0), mMutable(false) {
2596 }
2597 
~Blob()2598 Parcel::Blob::~Blob() {
2599     release();
2600 }
2601 
release()2602 void Parcel::Blob::release() {
2603     if (mFd != -1 && mData) {
2604         ::munmap(mData, mSize);
2605     }
2606     clear();
2607 }
2608 
init(int fd,void * data,size_t size,bool isMutable)2609 void Parcel::Blob::init(int fd, void* data, size_t size, bool isMutable) {
2610     mFd = fd;
2611     mData = data;
2612     mSize = size;
2613     mMutable = isMutable;
2614 }
2615 
clear()2616 void Parcel::Blob::clear() {
2617     mFd = -1;
2618     mData = NULL;
2619     mSize = 0;
2620     mMutable = false;
2621 }
2622 
2623 }; // namespace android
2624