1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2
3 // Copyright (C) 2007-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26 #include <utility>
27 #include <vector>
28
29 #include "debug.h"
30 #include "elfcpp_swap.h"
31 #include "dwarf.h"
32 #include "object.h"
33 #include "reloc.h"
34 #include "dwarf_reader.h"
35 #include "int_encoding.h"
36 #include "compressed_output.h"
37
38 namespace gold {
39
40 // Class Sized_elf_reloc_mapper
41
42 // Initialize the relocation tracker for section RELOC_SHNDX.
43
44 template<int size, bool big_endian>
45 bool
do_initialize(unsigned int reloc_shndx,unsigned int reloc_type)46 Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
47 unsigned int reloc_shndx, unsigned int reloc_type)
48 {
49 this->reloc_type_ = reloc_type;
50 return this->track_relocs_.initialize(this->object_, reloc_shndx,
51 reloc_type);
52 }
53
54 // Looks in the symtab to see what section a symbol is in.
55
56 template<int size, bool big_endian>
57 unsigned int
symbol_section(unsigned int symndx,Address * value,bool * is_ordinary)58 Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
59 unsigned int symndx, Address* value, bool* is_ordinary)
60 {
61 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
62 gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
63 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
64 *value = elfsym.get_st_value();
65 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
66 is_ordinary);
67 }
68
69 // Return the section index and offset within the section of
70 // the target of the relocation for RELOC_OFFSET.
71
72 template<int size, bool big_endian>
73 unsigned int
do_get_reloc_target(off_t reloc_offset,off_t * target_offset)74 Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
75 off_t reloc_offset, off_t* target_offset)
76 {
77 this->track_relocs_.advance(reloc_offset);
78 if (reloc_offset != this->track_relocs_.next_offset())
79 return 0;
80 unsigned int symndx = this->track_relocs_.next_symndx();
81 typename elfcpp::Elf_types<size>::Elf_Addr value;
82 bool is_ordinary;
83 unsigned int target_shndx = this->symbol_section(symndx, &value,
84 &is_ordinary);
85 if (!is_ordinary)
86 return 0;
87 if (this->reloc_type_ == elfcpp::SHT_RELA)
88 value += this->track_relocs_.next_addend();
89 *target_offset = value;
90 return target_shndx;
91 }
92
93 static inline Elf_reloc_mapper*
make_elf_reloc_mapper(Relobj * object,const unsigned char * symtab,off_t symtab_size)94 make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
95 off_t symtab_size)
96 {
97 if (object->elfsize() == 32)
98 {
99 if (object->is_big_endian())
100 {
101 #ifdef HAVE_TARGET_32_BIG
102 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
103 symtab_size);
104 #else
105 gold_unreachable();
106 #endif
107 }
108 else
109 {
110 #ifdef HAVE_TARGET_32_LITTLE
111 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
112 symtab_size);
113 #else
114 gold_unreachable();
115 #endif
116 }
117 }
118 else if (object->elfsize() == 64)
119 {
120 if (object->is_big_endian())
121 {
122 #ifdef HAVE_TARGET_64_BIG
123 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
124 symtab_size);
125 #else
126 gold_unreachable();
127 #endif
128 }
129 else
130 {
131 #ifdef HAVE_TARGET_64_LITTLE
132 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
133 symtab_size);
134 #else
135 gold_unreachable();
136 #endif
137 }
138 }
139 else
140 gold_unreachable();
141 }
142
143 // class Dwarf_abbrev_table
144
145 void
clear_abbrev_codes()146 Dwarf_abbrev_table::clear_abbrev_codes()
147 {
148 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
149 {
150 if (this->low_abbrev_codes_[code] != NULL)
151 {
152 delete this->low_abbrev_codes_[code];
153 this->low_abbrev_codes_[code] = NULL;
154 }
155 }
156 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
157 it != this->high_abbrev_codes_.end();
158 ++it)
159 {
160 if (it->second != NULL)
161 delete it->second;
162 }
163 this->high_abbrev_codes_.clear();
164 }
165
166 // Read the abbrev table from an object file.
167
168 bool
do_read_abbrevs(Relobj * object,unsigned int abbrev_shndx,off_t abbrev_offset)169 Dwarf_abbrev_table::do_read_abbrevs(
170 Relobj* object,
171 unsigned int abbrev_shndx,
172 off_t abbrev_offset)
173 {
174 this->clear_abbrev_codes();
175
176 // If we don't have relocations, abbrev_shndx will be 0, and
177 // we'll have to hunt for the .debug_abbrev section.
178 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
179 abbrev_shndx = this->abbrev_shndx_;
180 else if (abbrev_shndx == 0)
181 {
182 for (unsigned int i = 1; i < object->shnum(); ++i)
183 {
184 std::string name = object->section_name(i);
185 if (name == ".debug_abbrev" || name == ".zdebug_abbrev")
186 {
187 abbrev_shndx = i;
188 // Correct the offset. For incremental update links, we have a
189 // relocated offset that is relative to the output section, but
190 // here we need an offset relative to the input section.
191 abbrev_offset -= object->output_section_offset(i);
192 break;
193 }
194 }
195 if (abbrev_shndx == 0)
196 return false;
197 }
198
199 // Get the section contents and decompress if necessary.
200 if (abbrev_shndx != this->abbrev_shndx_)
201 {
202 if (this->owns_buffer_ && this->buffer_ != NULL)
203 {
204 delete[] this->buffer_;
205 this->owns_buffer_ = false;
206 }
207
208 section_size_type buffer_size;
209 this->buffer_ =
210 object->decompressed_section_contents(abbrev_shndx,
211 &buffer_size,
212 &this->owns_buffer_);
213 this->buffer_end_ = this->buffer_ + buffer_size;
214 this->abbrev_shndx_ = abbrev_shndx;
215 }
216
217 this->buffer_pos_ = this->buffer_ + abbrev_offset;
218 return true;
219 }
220
221 // Lookup the abbrev code entry for CODE. This function is called
222 // only when the abbrev code is not in the direct lookup table.
223 // It may be in the hash table, it may not have been read yet,
224 // or it may not exist in the abbrev table.
225
226 const Dwarf_abbrev_table::Abbrev_code*
do_get_abbrev(unsigned int code)227 Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
228 {
229 // See if the abbrev code is already in the hash table.
230 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
231 if (it != this->high_abbrev_codes_.end())
232 return it->second;
233
234 // Read and store abbrev code definitions until we find the
235 // one we're looking for.
236 for (;;)
237 {
238 // Read the abbrev code. A zero here indicates the end of the
239 // abbrev table.
240 size_t len;
241 if (this->buffer_pos_ >= this->buffer_end_)
242 return NULL;
243 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
244 if (nextcode == 0)
245 {
246 this->buffer_pos_ = this->buffer_end_;
247 return NULL;
248 }
249 this->buffer_pos_ += len;
250
251 // Read the tag.
252 if (this->buffer_pos_ >= this->buffer_end_)
253 return NULL;
254 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
255 this->buffer_pos_ += len;
256
257 // Read the has_children flag.
258 if (this->buffer_pos_ >= this->buffer_end_)
259 return NULL;
260 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
261 this->buffer_pos_ += 1;
262
263 // Read the list of (attribute, form) pairs.
264 Abbrev_code* entry = new Abbrev_code(tag, has_children);
265 for (;;)
266 {
267 // Read the attribute.
268 if (this->buffer_pos_ >= this->buffer_end_)
269 return NULL;
270 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
271 this->buffer_pos_ += len;
272
273 // Read the form.
274 if (this->buffer_pos_ >= this->buffer_end_)
275 return NULL;
276 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
277 this->buffer_pos_ += len;
278
279 // A (0,0) pair terminates the list.
280 if (attr == 0 && form == 0)
281 break;
282
283 if (attr == elfcpp::DW_AT_sibling)
284 entry->has_sibling_attribute = true;
285
286 entry->add_attribute(attr, form);
287 }
288
289 this->store_abbrev(nextcode, entry);
290 if (nextcode == code)
291 return entry;
292 }
293
294 return NULL;
295 }
296
297 // class Dwarf_ranges_table
298
299 // Read the ranges table from an object file.
300
301 bool
read_ranges_table(Relobj * object,const unsigned char * symtab,off_t symtab_size,unsigned int ranges_shndx)302 Dwarf_ranges_table::read_ranges_table(
303 Relobj* object,
304 const unsigned char* symtab,
305 off_t symtab_size,
306 unsigned int ranges_shndx)
307 {
308 // If we've already read this abbrev table, return immediately.
309 if (this->ranges_shndx_ > 0
310 && this->ranges_shndx_ == ranges_shndx)
311 return true;
312
313 // If we don't have relocations, ranges_shndx will be 0, and
314 // we'll have to hunt for the .debug_ranges section.
315 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
316 ranges_shndx = this->ranges_shndx_;
317 else if (ranges_shndx == 0)
318 {
319 for (unsigned int i = 1; i < object->shnum(); ++i)
320 {
321 std::string name = object->section_name(i);
322 if (name == ".debug_ranges" || name == ".zdebug_ranges")
323 {
324 ranges_shndx = i;
325 this->output_section_offset_ = object->output_section_offset(i);
326 break;
327 }
328 }
329 if (ranges_shndx == 0)
330 return false;
331 }
332
333 // Get the section contents and decompress if necessary.
334 if (ranges_shndx != this->ranges_shndx_)
335 {
336 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
337 {
338 delete[] this->ranges_buffer_;
339 this->owns_ranges_buffer_ = false;
340 }
341
342 section_size_type buffer_size;
343 this->ranges_buffer_ =
344 object->decompressed_section_contents(ranges_shndx,
345 &buffer_size,
346 &this->owns_ranges_buffer_);
347 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
348 this->ranges_shndx_ = ranges_shndx;
349 }
350
351 if (this->ranges_reloc_mapper_ != NULL)
352 {
353 delete this->ranges_reloc_mapper_;
354 this->ranges_reloc_mapper_ = NULL;
355 }
356
357 // For incremental objects, we have no relocations.
358 if (object->is_incremental())
359 return true;
360
361 // Find the relocation section for ".debug_ranges".
362 unsigned int reloc_shndx = 0;
363 unsigned int reloc_type = 0;
364 for (unsigned int i = 0; i < object->shnum(); ++i)
365 {
366 reloc_type = object->section_type(i);
367 if ((reloc_type == elfcpp::SHT_REL
368 || reloc_type == elfcpp::SHT_RELA)
369 && object->section_info(i) == ranges_shndx)
370 {
371 reloc_shndx = i;
372 break;
373 }
374 }
375
376 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
377 symtab_size);
378 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
379 this->reloc_type_ = reloc_type;
380
381 return true;
382 }
383
384 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
385
386 Dwarf_range_list*
read_range_list(Relobj * object,const unsigned char * symtab,off_t symtab_size,unsigned int addr_size,unsigned int ranges_shndx,off_t offset)387 Dwarf_ranges_table::read_range_list(
388 Relobj* object,
389 const unsigned char* symtab,
390 off_t symtab_size,
391 unsigned int addr_size,
392 unsigned int ranges_shndx,
393 off_t offset)
394 {
395 Dwarf_range_list* ranges;
396
397 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
398 return NULL;
399
400 // Correct the offset. For incremental update links, we have a
401 // relocated offset that is relative to the output section, but
402 // here we need an offset relative to the input section.
403 offset -= this->output_section_offset_;
404
405 // Read the range list at OFFSET.
406 ranges = new Dwarf_range_list();
407 off_t base = 0;
408 for (;
409 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
410 offset += 2 * addr_size)
411 {
412 off_t start;
413 off_t end;
414
415 // Read the raw contents of the section.
416 if (addr_size == 4)
417 {
418 start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
419 + offset);
420 end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
421 + offset + 4);
422 }
423 else
424 {
425 start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
426 + offset);
427 end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
428 + offset + 8);
429 }
430
431 // Check for relocations and adjust the values.
432 unsigned int shndx1 = 0;
433 unsigned int shndx2 = 0;
434 if (this->ranges_reloc_mapper_ != NULL)
435 {
436 shndx1 = this->lookup_reloc(offset, &start);
437 shndx2 = this->lookup_reloc(offset + addr_size, &end);
438 }
439
440 // End of list is marked by a pair of zeroes.
441 if (shndx1 == 0 && start == 0 && end == 0)
442 break;
443
444 // A "base address selection entry" is identified by
445 // 0xffffffff for the first value of the pair. The second
446 // value is used as a base for subsequent range list entries.
447 if (shndx1 == 0 && start == -1)
448 base = end;
449 else if (shndx1 == shndx2)
450 {
451 if (shndx1 == 0 || object->is_section_included(shndx1))
452 ranges->add(shndx1, base + start, base + end);
453 }
454 else
455 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
456 "range list entry are in different sections"),
457 object->name().c_str());
458 }
459
460 return ranges;
461 }
462
463 // Look for a relocation at offset OFF in the range table,
464 // and return the section index and offset of the target.
465
466 unsigned int
lookup_reloc(off_t off,off_t * target_off)467 Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
468 {
469 off_t value;
470 unsigned int shndx =
471 this->ranges_reloc_mapper_->get_reloc_target(off, &value);
472 if (shndx == 0)
473 return 0;
474 if (this->reloc_type_ == elfcpp::SHT_REL)
475 *target_off += value;
476 else
477 *target_off = value;
478 return shndx;
479 }
480
481 // class Dwarf_pubnames_table
482
483 // Read the pubnames section from the object file.
484
485 bool
read_section(Relobj * object,const unsigned char * symtab,off_t symtab_size)486 Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
487 off_t symtab_size)
488 {
489 section_size_type buffer_size;
490 unsigned int shndx = 0;
491 const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames";
492 const char* gnu_name = (this->is_pubtypes_
493 ? "gnu_pubtypes"
494 : "gnu_pubnames");
495
496 for (unsigned int i = 1; i < object->shnum(); ++i)
497 {
498 std::string section_name = object->section_name(i);
499 const char* section_name_suffix = section_name.c_str();
500 if (is_prefix_of(".debug_", section_name_suffix))
501 section_name_suffix += 7;
502 else if (is_prefix_of(".zdebug_", section_name_suffix))
503 section_name_suffix += 8;
504 else
505 continue;
506 if (strcmp(section_name_suffix, name) == 0)
507 {
508 shndx = i;
509 break;
510 }
511 else if (strcmp(section_name_suffix, gnu_name) == 0)
512 {
513 shndx = i;
514 this->is_gnu_style_ = true;
515 break;
516 }
517 }
518 if (shndx == 0)
519 return false;
520
521 this->buffer_ = object->decompressed_section_contents(shndx,
522 &buffer_size,
523 &this->owns_buffer_);
524 if (this->buffer_ == NULL)
525 return false;
526 this->buffer_end_ = this->buffer_ + buffer_size;
527
528 // For incremental objects, we have no relocations.
529 if (object->is_incremental())
530 return true;
531
532 // Find the relocation section
533 unsigned int reloc_shndx = 0;
534 unsigned int reloc_type = 0;
535 for (unsigned int i = 0; i < object->shnum(); ++i)
536 {
537 reloc_type = object->section_type(i);
538 if ((reloc_type == elfcpp::SHT_REL
539 || reloc_type == elfcpp::SHT_RELA)
540 && object->section_info(i) == shndx)
541 {
542 reloc_shndx = i;
543 break;
544 }
545 }
546
547 this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
548 this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
549 this->reloc_type_ = reloc_type;
550
551 return true;
552 }
553
554 // Read the header for the set at OFFSET.
555
556 bool
read_header(off_t offset)557 Dwarf_pubnames_table::read_header(off_t offset)
558 {
559 // Make sure we have actually read the section.
560 gold_assert(this->buffer_ != NULL);
561
562 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
563 return false;
564
565 const unsigned char* pinfo = this->buffer_ + offset;
566
567 // Read the unit_length field.
568 uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
569 pinfo += 4;
570 if (unit_length == 0xffffffff)
571 {
572 unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
573 this->unit_length_ = unit_length + 12;
574 pinfo += 8;
575 this->offset_size_ = 8;
576 }
577 else
578 {
579 this->unit_length_ = unit_length + 4;
580 this->offset_size_ = 4;
581 }
582 this->end_of_table_ = pinfo + unit_length;
583
584 // If unit_length is too big, maybe we should reject the whole table,
585 // but in cases we know about, it seems OK to assume that the table
586 // is valid through the actual end of the section.
587 if (this->end_of_table_ > this->buffer_end_)
588 this->end_of_table_ = this->buffer_end_;
589
590 // Check the version.
591 unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
592 pinfo += 2;
593 if (version != 2)
594 return false;
595
596 this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
597 &this->cu_offset_);
598
599 // Skip the debug_info_offset and debug_info_size fields.
600 pinfo += 2 * this->offset_size_;
601
602 if (pinfo >= this->buffer_end_)
603 return false;
604
605 this->pinfo_ = pinfo;
606 return true;
607 }
608
609 // Read the next name from the set.
610
611 const char*
next_name(uint8_t * flag_byte)612 Dwarf_pubnames_table::next_name(uint8_t* flag_byte)
613 {
614 const unsigned char* pinfo = this->pinfo_;
615
616 // Check for end of list. The table should be terminated by an
617 // entry containing nothing but a DIE offset of 0.
618 if (pinfo + this->offset_size_ >= this->end_of_table_)
619 return NULL;
620
621 // Skip the offset within the CU. If this is zero, but we're not
622 // at the end of the table, then we have a real pubnames entry
623 // whose DIE offset is 0 (likely to be a GCC bug). Since we
624 // don't actually use the DIE offset in building .gdb_index,
625 // it's harmless.
626 pinfo += this->offset_size_;
627
628 if (this->is_gnu_style_)
629 *flag_byte = *pinfo++;
630 else
631 *flag_byte = 0;
632
633 // Return a pointer to the string at the current location,
634 // and advance the pointer to the next entry.
635 const char* ret = reinterpret_cast<const char*>(pinfo);
636 while (pinfo < this->buffer_end_ && *pinfo != '\0')
637 ++pinfo;
638 if (pinfo < this->buffer_end_)
639 ++pinfo;
640
641 this->pinfo_ = pinfo;
642 return ret;
643 }
644
645 // class Dwarf_die
646
Dwarf_die(Dwarf_info_reader * dwinfo,off_t die_offset,Dwarf_die * parent)647 Dwarf_die::Dwarf_die(
648 Dwarf_info_reader* dwinfo,
649 off_t die_offset,
650 Dwarf_die* parent)
651 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
652 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
653 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
654 linkage_name_off_(-1), string_shndx_(0), specification_(0),
655 abstract_origin_(0)
656 {
657 size_t len;
658 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
659 if (pdie == NULL)
660 return;
661 unsigned int code = read_unsigned_LEB_128(pdie, &len);
662 if (code == 0)
663 {
664 if (parent != NULL)
665 parent->set_sibling_offset(die_offset + len);
666 return;
667 }
668 this->attr_offset_ = len;
669
670 // Lookup the abbrev code in the abbrev table.
671 this->abbrev_code_ = dwinfo->get_abbrev(code);
672 }
673
674 // Read all the attributes of the DIE.
675
676 bool
read_attributes()677 Dwarf_die::read_attributes()
678 {
679 if (this->attributes_read_)
680 return true;
681
682 gold_assert(this->abbrev_code_ != NULL);
683
684 const unsigned char* pdie =
685 this->dwinfo_->buffer_at_offset(this->die_offset_);
686 if (pdie == NULL)
687 return false;
688 const unsigned char* pattr = pdie + this->attr_offset_;
689
690 unsigned int nattr = this->abbrev_code_->attributes.size();
691 this->attributes_.reserve(nattr);
692 for (unsigned int i = 0; i < nattr; ++i)
693 {
694 size_t len;
695 unsigned int attr = this->abbrev_code_->attributes[i].attr;
696 unsigned int form = this->abbrev_code_->attributes[i].form;
697 if (form == elfcpp::DW_FORM_indirect)
698 {
699 form = read_unsigned_LEB_128(pattr, &len);
700 pattr += len;
701 }
702 off_t attr_off = this->die_offset_ + (pattr - pdie);
703 bool ref_form = false;
704 Attribute_value attr_value;
705 attr_value.attr = attr;
706 attr_value.form = form;
707 attr_value.aux.shndx = 0;
708 switch(form)
709 {
710 case elfcpp::DW_FORM_flag_present:
711 attr_value.val.intval = 1;
712 break;
713 case elfcpp::DW_FORM_strp:
714 {
715 off_t str_off;
716 if (this->dwinfo_->offset_size() == 4)
717 str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
718 else
719 str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
720 unsigned int shndx =
721 this->dwinfo_->lookup_reloc(attr_off, &str_off);
722 attr_value.aux.shndx = shndx;
723 attr_value.val.refval = str_off;
724 break;
725 }
726 case elfcpp::DW_FORM_sec_offset:
727 {
728 off_t sec_off;
729 if (this->dwinfo_->offset_size() == 4)
730 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
731 else
732 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
733 unsigned int shndx =
734 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
735 attr_value.aux.shndx = shndx;
736 attr_value.val.refval = sec_off;
737 ref_form = true;
738 break;
739 }
740 case elfcpp::DW_FORM_addr:
741 case elfcpp::DW_FORM_ref_addr:
742 {
743 off_t sec_off;
744 if (this->dwinfo_->address_size() == 4)
745 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
746 else
747 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
748 unsigned int shndx =
749 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
750 attr_value.aux.shndx = shndx;
751 attr_value.val.refval = sec_off;
752 ref_form = true;
753 break;
754 }
755 case elfcpp::DW_FORM_block1:
756 attr_value.aux.blocklen = *pattr++;
757 attr_value.val.blockval = pattr;
758 pattr += attr_value.aux.blocklen;
759 break;
760 case elfcpp::DW_FORM_block2:
761 attr_value.aux.blocklen =
762 this->dwinfo_->read_from_pointer<16>(&pattr);
763 attr_value.val.blockval = pattr;
764 pattr += attr_value.aux.blocklen;
765 break;
766 case elfcpp::DW_FORM_block4:
767 attr_value.aux.blocklen =
768 this->dwinfo_->read_from_pointer<32>(&pattr);
769 attr_value.val.blockval = pattr;
770 pattr += attr_value.aux.blocklen;
771 break;
772 case elfcpp::DW_FORM_block:
773 case elfcpp::DW_FORM_exprloc:
774 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
775 attr_value.val.blockval = pattr + len;
776 pattr += len + attr_value.aux.blocklen;
777 break;
778 case elfcpp::DW_FORM_data1:
779 case elfcpp::DW_FORM_flag:
780 attr_value.val.intval = *pattr++;
781 break;
782 case elfcpp::DW_FORM_ref1:
783 attr_value.val.refval = *pattr++;
784 ref_form = true;
785 break;
786 case elfcpp::DW_FORM_data2:
787 attr_value.val.intval =
788 this->dwinfo_->read_from_pointer<16>(&pattr);
789 break;
790 case elfcpp::DW_FORM_ref2:
791 attr_value.val.refval =
792 this->dwinfo_->read_from_pointer<16>(&pattr);
793 ref_form = true;
794 break;
795 case elfcpp::DW_FORM_data4:
796 {
797 off_t sec_off;
798 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
799 unsigned int shndx =
800 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
801 attr_value.aux.shndx = shndx;
802 attr_value.val.intval = sec_off;
803 break;
804 }
805 case elfcpp::DW_FORM_ref4:
806 {
807 off_t sec_off;
808 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
809 unsigned int shndx =
810 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
811 attr_value.aux.shndx = shndx;
812 attr_value.val.refval = sec_off;
813 ref_form = true;
814 break;
815 }
816 case elfcpp::DW_FORM_data8:
817 {
818 off_t sec_off;
819 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
820 unsigned int shndx =
821 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
822 attr_value.aux.shndx = shndx;
823 attr_value.val.intval = sec_off;
824 break;
825 }
826 case elfcpp::DW_FORM_ref_sig8:
827 attr_value.val.uintval =
828 this->dwinfo_->read_from_pointer<64>(&pattr);
829 break;
830 case elfcpp::DW_FORM_ref8:
831 {
832 off_t sec_off;
833 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
834 unsigned int shndx =
835 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
836 attr_value.aux.shndx = shndx;
837 attr_value.val.refval = sec_off;
838 ref_form = true;
839 break;
840 }
841 case elfcpp::DW_FORM_ref_udata:
842 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
843 ref_form = true;
844 pattr += len;
845 break;
846 case elfcpp::DW_FORM_udata:
847 case elfcpp::DW_FORM_GNU_addr_index:
848 case elfcpp::DW_FORM_GNU_str_index:
849 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
850 pattr += len;
851 break;
852 case elfcpp::DW_FORM_sdata:
853 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
854 pattr += len;
855 break;
856 case elfcpp::DW_FORM_string:
857 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
858 len = strlen(attr_value.val.stringval);
859 pattr += len + 1;
860 break;
861 default:
862 return false;
863 }
864
865 // Cache the most frequently-requested attributes.
866 switch (attr)
867 {
868 case elfcpp::DW_AT_name:
869 if (form == elfcpp::DW_FORM_string)
870 this->name_ = attr_value.val.stringval;
871 else if (form == elfcpp::DW_FORM_strp)
872 {
873 // All indirect strings should refer to the same
874 // string section, so we just save the last one seen.
875 this->string_shndx_ = attr_value.aux.shndx;
876 this->name_off_ = attr_value.val.refval;
877 }
878 break;
879 case elfcpp::DW_AT_linkage_name:
880 case elfcpp::DW_AT_MIPS_linkage_name:
881 if (form == elfcpp::DW_FORM_string)
882 this->linkage_name_ = attr_value.val.stringval;
883 else if (form == elfcpp::DW_FORM_strp)
884 {
885 // All indirect strings should refer to the same
886 // string section, so we just save the last one seen.
887 this->string_shndx_ = attr_value.aux.shndx;
888 this->linkage_name_off_ = attr_value.val.refval;
889 }
890 break;
891 case elfcpp::DW_AT_specification:
892 if (ref_form)
893 this->specification_ = attr_value.val.refval;
894 break;
895 case elfcpp::DW_AT_abstract_origin:
896 if (ref_form)
897 this->abstract_origin_ = attr_value.val.refval;
898 break;
899 case elfcpp::DW_AT_sibling:
900 if (ref_form && attr_value.aux.shndx == 0)
901 this->sibling_offset_ = attr_value.val.refval;
902 default:
903 break;
904 }
905
906 this->attributes_.push_back(attr_value);
907 }
908
909 // Now that we know where the next DIE begins, record the offset
910 // to avoid later recalculation.
911 if (this->has_children())
912 this->child_offset_ = this->die_offset_ + (pattr - pdie);
913 else
914 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
915
916 this->attributes_read_ = true;
917 return true;
918 }
919
920 // Skip all the attributes of the DIE and return the offset of the next DIE.
921
922 off_t
skip_attributes()923 Dwarf_die::skip_attributes()
924 {
925 gold_assert(this->abbrev_code_ != NULL);
926
927 const unsigned char* pdie =
928 this->dwinfo_->buffer_at_offset(this->die_offset_);
929 if (pdie == NULL)
930 return 0;
931 const unsigned char* pattr = pdie + this->attr_offset_;
932
933 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
934 {
935 size_t len;
936 unsigned int form = this->abbrev_code_->attributes[i].form;
937 if (form == elfcpp::DW_FORM_indirect)
938 {
939 form = read_unsigned_LEB_128(pattr, &len);
940 pattr += len;
941 }
942 switch(form)
943 {
944 case elfcpp::DW_FORM_flag_present:
945 break;
946 case elfcpp::DW_FORM_strp:
947 case elfcpp::DW_FORM_sec_offset:
948 pattr += this->dwinfo_->offset_size();
949 break;
950 case elfcpp::DW_FORM_addr:
951 case elfcpp::DW_FORM_ref_addr:
952 pattr += this->dwinfo_->address_size();
953 break;
954 case elfcpp::DW_FORM_block1:
955 pattr += 1 + *pattr;
956 break;
957 case elfcpp::DW_FORM_block2:
958 {
959 uint16_t block_size;
960 block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
961 pattr += block_size;
962 break;
963 }
964 case elfcpp::DW_FORM_block4:
965 {
966 uint32_t block_size;
967 block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
968 pattr += block_size;
969 break;
970 }
971 case elfcpp::DW_FORM_block:
972 case elfcpp::DW_FORM_exprloc:
973 {
974 uint64_t block_size;
975 block_size = read_unsigned_LEB_128(pattr, &len);
976 pattr += len + block_size;
977 break;
978 }
979 case elfcpp::DW_FORM_data1:
980 case elfcpp::DW_FORM_ref1:
981 case elfcpp::DW_FORM_flag:
982 pattr += 1;
983 break;
984 case elfcpp::DW_FORM_data2:
985 case elfcpp::DW_FORM_ref2:
986 pattr += 2;
987 break;
988 case elfcpp::DW_FORM_data4:
989 case elfcpp::DW_FORM_ref4:
990 pattr += 4;
991 break;
992 case elfcpp::DW_FORM_data8:
993 case elfcpp::DW_FORM_ref8:
994 case elfcpp::DW_FORM_ref_sig8:
995 pattr += 8;
996 break;
997 case elfcpp::DW_FORM_ref_udata:
998 case elfcpp::DW_FORM_udata:
999 case elfcpp::DW_FORM_GNU_addr_index:
1000 case elfcpp::DW_FORM_GNU_str_index:
1001 read_unsigned_LEB_128(pattr, &len);
1002 pattr += len;
1003 break;
1004 case elfcpp::DW_FORM_sdata:
1005 read_signed_LEB_128(pattr, &len);
1006 pattr += len;
1007 break;
1008 case elfcpp::DW_FORM_string:
1009 len = strlen(reinterpret_cast<const char*>(pattr));
1010 pattr += len + 1;
1011 break;
1012 default:
1013 return 0;
1014 }
1015 }
1016
1017 return this->die_offset_ + (pattr - pdie);
1018 }
1019
1020 // Get the name of the DIE and cache it.
1021
1022 void
set_name()1023 Dwarf_die::set_name()
1024 {
1025 if (this->name_ != NULL || !this->read_attributes())
1026 return;
1027 if (this->name_off_ != -1)
1028 this->name_ = this->dwinfo_->get_string(this->name_off_,
1029 this->string_shndx_);
1030 }
1031
1032 // Get the linkage name of the DIE and cache it.
1033
1034 void
set_linkage_name()1035 Dwarf_die::set_linkage_name()
1036 {
1037 if (this->linkage_name_ != NULL || !this->read_attributes())
1038 return;
1039 if (this->linkage_name_off_ != -1)
1040 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
1041 this->string_shndx_);
1042 }
1043
1044 // Return the value of attribute ATTR.
1045
1046 const Dwarf_die::Attribute_value*
attribute(unsigned int attr)1047 Dwarf_die::attribute(unsigned int attr)
1048 {
1049 if (!this->read_attributes())
1050 return NULL;
1051 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
1052 {
1053 if (this->attributes_[i].attr == attr)
1054 return &this->attributes_[i];
1055 }
1056 return NULL;
1057 }
1058
1059 const char*
string_attribute(unsigned int attr)1060 Dwarf_die::string_attribute(unsigned int attr)
1061 {
1062 const Attribute_value* attr_val = this->attribute(attr);
1063 if (attr_val == NULL)
1064 return NULL;
1065 switch (attr_val->form)
1066 {
1067 case elfcpp::DW_FORM_string:
1068 return attr_val->val.stringval;
1069 case elfcpp::DW_FORM_strp:
1070 return this->dwinfo_->get_string(attr_val->val.refval,
1071 attr_val->aux.shndx);
1072 default:
1073 return NULL;
1074 }
1075 }
1076
1077 int64_t
int_attribute(unsigned int attr)1078 Dwarf_die::int_attribute(unsigned int attr)
1079 {
1080 const Attribute_value* attr_val = this->attribute(attr);
1081 if (attr_val == NULL)
1082 return 0;
1083 switch (attr_val->form)
1084 {
1085 case elfcpp::DW_FORM_flag_present:
1086 case elfcpp::DW_FORM_data1:
1087 case elfcpp::DW_FORM_flag:
1088 case elfcpp::DW_FORM_data2:
1089 case elfcpp::DW_FORM_data4:
1090 case elfcpp::DW_FORM_data8:
1091 case elfcpp::DW_FORM_sdata:
1092 return attr_val->val.intval;
1093 default:
1094 return 0;
1095 }
1096 }
1097
1098 uint64_t
uint_attribute(unsigned int attr)1099 Dwarf_die::uint_attribute(unsigned int attr)
1100 {
1101 const Attribute_value* attr_val = this->attribute(attr);
1102 if (attr_val == NULL)
1103 return 0;
1104 switch (attr_val->form)
1105 {
1106 case elfcpp::DW_FORM_flag_present:
1107 case elfcpp::DW_FORM_data1:
1108 case elfcpp::DW_FORM_flag:
1109 case elfcpp::DW_FORM_data4:
1110 case elfcpp::DW_FORM_data8:
1111 case elfcpp::DW_FORM_ref_sig8:
1112 case elfcpp::DW_FORM_udata:
1113 return attr_val->val.uintval;
1114 default:
1115 return 0;
1116 }
1117 }
1118
1119 off_t
ref_attribute(unsigned int attr,unsigned int * shndx)1120 Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1121 {
1122 const Attribute_value* attr_val = this->attribute(attr);
1123 if (attr_val == NULL)
1124 return -1;
1125 switch (attr_val->form)
1126 {
1127 case elfcpp::DW_FORM_sec_offset:
1128 case elfcpp::DW_FORM_addr:
1129 case elfcpp::DW_FORM_ref_addr:
1130 case elfcpp::DW_FORM_ref1:
1131 case elfcpp::DW_FORM_ref2:
1132 case elfcpp::DW_FORM_ref4:
1133 case elfcpp::DW_FORM_ref8:
1134 case elfcpp::DW_FORM_ref_udata:
1135 *shndx = attr_val->aux.shndx;
1136 return attr_val->val.refval;
1137 case elfcpp::DW_FORM_ref_sig8:
1138 *shndx = attr_val->aux.shndx;
1139 return attr_val->val.uintval;
1140 case elfcpp::DW_FORM_data4:
1141 case elfcpp::DW_FORM_data8:
1142 *shndx = attr_val->aux.shndx;
1143 return attr_val->val.intval;
1144 default:
1145 return -1;
1146 }
1147 }
1148
1149 off_t
address_attribute(unsigned int attr,unsigned int * shndx)1150 Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1151 {
1152 const Attribute_value* attr_val = this->attribute(attr);
1153 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1154 return -1;
1155
1156 *shndx = attr_val->aux.shndx;
1157 return attr_val->val.refval;
1158 }
1159
1160 // Return the offset of this DIE's first child.
1161
1162 off_t
child_offset()1163 Dwarf_die::child_offset()
1164 {
1165 gold_assert(this->abbrev_code_ != NULL);
1166 if (!this->has_children())
1167 return 0;
1168 if (this->child_offset_ == 0)
1169 this->child_offset_ = this->skip_attributes();
1170 return this->child_offset_;
1171 }
1172
1173 // Return the offset of this DIE's next sibling.
1174
1175 off_t
sibling_offset()1176 Dwarf_die::sibling_offset()
1177 {
1178 gold_assert(this->abbrev_code_ != NULL);
1179
1180 if (this->sibling_offset_ != 0)
1181 return this->sibling_offset_;
1182
1183 if (!this->has_children())
1184 {
1185 this->sibling_offset_ = this->skip_attributes();
1186 return this->sibling_offset_;
1187 }
1188
1189 if (this->has_sibling_attribute())
1190 {
1191 if (!this->read_attributes())
1192 return 0;
1193 if (this->sibling_offset_ != 0)
1194 return this->sibling_offset_;
1195 }
1196
1197 // Skip over the children.
1198 off_t child_offset = this->child_offset();
1199 while (child_offset > 0)
1200 {
1201 Dwarf_die die(this->dwinfo_, child_offset, this);
1202 // The Dwarf_die ctor will set this DIE's sibling offset
1203 // when it reads a zero abbrev code.
1204 if (die.tag() == 0)
1205 break;
1206 child_offset = die.sibling_offset();
1207 }
1208
1209 // This should be set by now. If not, there was a problem reading
1210 // the DWARF info, and we return 0.
1211 return this->sibling_offset_;
1212 }
1213
1214 // class Dwarf_info_reader
1215
1216 // Begin parsing the debug info. This calls visit_compilation_unit()
1217 // or visit_type_unit() for each compilation or type unit found in the
1218 // section, and visit_die() for each top-level DIE.
1219
1220 void
parse()1221 Dwarf_info_reader::parse()
1222 {
1223 if (this->object_->is_big_endian())
1224 {
1225 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1226 this->do_parse<true>();
1227 #else
1228 gold_unreachable();
1229 #endif
1230 }
1231 else
1232 {
1233 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1234 this->do_parse<false>();
1235 #else
1236 gold_unreachable();
1237 #endif
1238 }
1239 }
1240
1241 template<bool big_endian>
1242 void
do_parse()1243 Dwarf_info_reader::do_parse()
1244 {
1245 // Get the section contents and decompress if necessary.
1246 section_size_type buffer_size;
1247 bool buffer_is_new;
1248 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1249 &buffer_size,
1250 &buffer_is_new);
1251 if (this->buffer_ == NULL || buffer_size == 0)
1252 return;
1253 this->buffer_end_ = this->buffer_ + buffer_size;
1254
1255 // The offset of this input section in the output section.
1256 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1257
1258 // Start tracking relocations for this section.
1259 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1260 this->symtab_size_);
1261 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1262
1263 // Loop over compilation units (or type units).
1264 unsigned int abbrev_shndx = this->abbrev_shndx_;
1265 off_t abbrev_offset = 0;
1266 const unsigned char* pinfo = this->buffer_;
1267 while (pinfo < this->buffer_end_)
1268 {
1269 // Read the compilation (or type) unit header.
1270 const unsigned char* cu_start = pinfo;
1271 this->cu_offset_ = cu_start - this->buffer_;
1272 this->cu_length_ = this->buffer_end_ - cu_start;
1273
1274 // Read unit_length (4 or 12 bytes).
1275 if (!this->check_buffer(pinfo + 4))
1276 break;
1277 uint32_t unit_length =
1278 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1279 pinfo += 4;
1280 if (unit_length == 0xffffffff)
1281 {
1282 if (!this->check_buffer(pinfo + 8))
1283 break;
1284 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1285 pinfo += 8;
1286 this->offset_size_ = 8;
1287 }
1288 else
1289 this->offset_size_ = 4;
1290 if (!this->check_buffer(pinfo + unit_length))
1291 break;
1292 const unsigned char* cu_end = pinfo + unit_length;
1293 this->cu_length_ = cu_end - cu_start;
1294 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1295 break;
1296
1297 // Read version (2 bytes).
1298 this->cu_version_ =
1299 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1300 pinfo += 2;
1301
1302 // Read debug_abbrev_offset (4 or 8 bytes).
1303 if (this->offset_size_ == 4)
1304 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1305 else
1306 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1307 if (this->reloc_shndx_ > 0)
1308 {
1309 off_t reloc_offset = pinfo - this->buffer_;
1310 off_t value;
1311 abbrev_shndx =
1312 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1313 if (abbrev_shndx == 0)
1314 return;
1315 if (this->reloc_type_ == elfcpp::SHT_REL)
1316 abbrev_offset += value;
1317 else
1318 abbrev_offset = value;
1319 }
1320 pinfo += this->offset_size_;
1321
1322 // Read address_size (1 byte).
1323 this->address_size_ = *pinfo++;
1324
1325 // For type units, read the two extra fields.
1326 uint64_t signature = 0;
1327 off_t type_offset = 0;
1328 if (this->is_type_unit_)
1329 {
1330 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1331 break;
1332
1333 // Read type_signature (8 bytes).
1334 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1335 pinfo += 8;
1336
1337 // Read type_offset (4 or 8 bytes).
1338 if (this->offset_size_ == 4)
1339 type_offset =
1340 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1341 else
1342 type_offset =
1343 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1344 pinfo += this->offset_size_;
1345 }
1346
1347 // Read the .debug_abbrev table.
1348 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1349 abbrev_offset);
1350
1351 // Visit the root DIE.
1352 Dwarf_die root_die(this,
1353 pinfo - (this->buffer_ + this->cu_offset_),
1354 NULL);
1355 if (root_die.tag() != 0)
1356 {
1357 // Visit the CU or TU.
1358 if (this->is_type_unit_)
1359 this->visit_type_unit(section_offset + this->cu_offset_,
1360 cu_end - cu_start, type_offset, signature,
1361 &root_die);
1362 else
1363 this->visit_compilation_unit(section_offset + this->cu_offset_,
1364 cu_end - cu_start, &root_die);
1365 }
1366
1367 // Advance to the next CU.
1368 pinfo = cu_end;
1369 }
1370
1371 if (buffer_is_new)
1372 {
1373 delete[] this->buffer_;
1374 this->buffer_ = NULL;
1375 }
1376 }
1377
1378 // Read the DWARF string table.
1379
1380 bool
do_read_string_table(unsigned int string_shndx)1381 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1382 {
1383 Relobj* object = this->object_;
1384
1385 // If we don't have relocations, string_shndx will be 0, and
1386 // we'll have to hunt for the .debug_str section.
1387 if (string_shndx == 0)
1388 {
1389 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1390 {
1391 std::string name = object->section_name(i);
1392 if (name == ".debug_str" || name == ".zdebug_str")
1393 {
1394 string_shndx = i;
1395 this->string_output_section_offset_ =
1396 object->output_section_offset(i);
1397 break;
1398 }
1399 }
1400 if (string_shndx == 0)
1401 return false;
1402 }
1403
1404 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1405 {
1406 delete[] this->string_buffer_;
1407 this->owns_string_buffer_ = false;
1408 }
1409
1410 // Get the secton contents and decompress if necessary.
1411 section_size_type buffer_size;
1412 const unsigned char* buffer =
1413 object->decompressed_section_contents(string_shndx,
1414 &buffer_size,
1415 &this->owns_string_buffer_);
1416 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1417 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1418 this->string_shndx_ = string_shndx;
1419 return true;
1420 }
1421
1422 // Read a possibly unaligned integer of SIZE.
1423 template <int valsize>
1424 inline typename elfcpp::Valtype_base<valsize>::Valtype
read_from_pointer(const unsigned char * source)1425 Dwarf_info_reader::read_from_pointer(const unsigned char* source)
1426 {
1427 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1428 if (this->object_->is_big_endian())
1429 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
1430 else
1431 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
1432 return return_value;
1433 }
1434
1435 // Read a possibly unaligned integer of SIZE. Update SOURCE after read.
1436 template <int valsize>
1437 inline typename elfcpp::Valtype_base<valsize>::Valtype
read_from_pointer(const unsigned char ** source)1438 Dwarf_info_reader::read_from_pointer(const unsigned char** source)
1439 {
1440 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1441 if (this->object_->is_big_endian())
1442 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
1443 else
1444 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
1445 *source += valsize / 8;
1446 return return_value;
1447 }
1448
1449 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1450 // and return the section index and offset of the target.
1451
1452 unsigned int
lookup_reloc(off_t attr_off,off_t * target_off)1453 Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1454 {
1455 off_t value;
1456 attr_off += this->cu_offset_;
1457 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1458 if (shndx == 0)
1459 return 0;
1460 if (this->reloc_type_ == elfcpp::SHT_REL)
1461 *target_off += value;
1462 else
1463 *target_off = value;
1464 return shndx;
1465 }
1466
1467 // Return a string from the DWARF string table.
1468
1469 const char*
get_string(off_t str_off,unsigned int string_shndx)1470 Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1471 {
1472 if (!this->read_string_table(string_shndx))
1473 return NULL;
1474
1475 // Correct the offset. For incremental update links, we have a
1476 // relocated offset that is relative to the output section, but
1477 // here we need an offset relative to the input section.
1478 str_off -= this->string_output_section_offset_;
1479
1480 const char* p = this->string_buffer_ + str_off;
1481
1482 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1483 return NULL;
1484
1485 return p;
1486 }
1487
1488 // The following are default, do-nothing, implementations of the
1489 // hook methods normally provided by a derived class. We provide
1490 // default implementations rather than no implementation so that
1491 // a derived class needs to implement only the hooks that it needs
1492 // to use.
1493
1494 // Process a compilation unit and parse its child DIE.
1495
1496 void
visit_compilation_unit(off_t,off_t,Dwarf_die *)1497 Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1498 {
1499 }
1500
1501 // Process a type unit and parse its child DIE.
1502
1503 void
visit_type_unit(off_t,off_t,off_t,uint64_t,Dwarf_die *)1504 Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
1505 {
1506 }
1507
1508 // Print a warning about a corrupt debug section.
1509
1510 void
warn_corrupt_debug_section() const1511 Dwarf_info_reader::warn_corrupt_debug_section() const
1512 {
1513 gold_warning(_("%s: corrupt debug info in %s"),
1514 this->object_->name().c_str(),
1515 this->object_->section_name(this->shndx_).c_str());
1516 }
1517
1518 // class Sized_dwarf_line_info
1519
1520 struct LineStateMachine
1521 {
1522 int file_num;
1523 uint64_t address;
1524 int line_num;
1525 int column_num;
1526 unsigned int shndx; // the section address refers to
1527 bool is_stmt; // stmt means statement.
1528 bool basic_block;
1529 bool end_sequence;
1530 unsigned int context;
1531 };
1532
1533 static void
ResetLineStateMachine(struct LineStateMachine * lsm,bool default_is_stmt)1534 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1535 {
1536 lsm->file_num = 1;
1537 lsm->address = 0;
1538 lsm->line_num = 1;
1539 lsm->column_num = 0;
1540 lsm->shndx = -1U;
1541 lsm->is_stmt = default_is_stmt;
1542 lsm->basic_block = false;
1543 lsm->end_sequence = false;
1544 lsm->context = 0;
1545 }
1546
1547 template<int size, bool big_endian>
Sized_dwarf_line_info(Object * object,unsigned int read_shndx)1548 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1549 Object* object,
1550 unsigned int read_shndx)
1551 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1552 str_buffer_(NULL), str_buffer_start_(NULL),
1553 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1554 current_header_index_(-1), reloc_map_(), line_number_map_()
1555 {
1556 unsigned int debug_line_shndx = 0;
1557 unsigned int debug_line_str_shndx = 0;
1558
1559 for (unsigned int i = 1; i < object->shnum(); ++i)
1560 {
1561 section_size_type buffer_size;
1562 bool is_new = false;
1563
1564 // FIXME: do this more efficiently: section_name() isn't super-fast
1565 std::string name = object->section_name(i);
1566 if (name == ".debug_line" || name == ".zdebug_line")
1567 {
1568 this->buffer_ =
1569 object->decompressed_section_contents(i, &buffer_size, &is_new);
1570 if (is_new)
1571 this->buffer_start_ = this->buffer_;
1572 this->buffer_end_ = this->buffer_ + buffer_size;
1573 debug_line_shndx = i;
1574 }
1575 else if (name == ".debug_line_str" || name == ".zdebug_line_str")
1576 {
1577 this->str_buffer_ =
1578 object->decompressed_section_contents(i, &buffer_size, &is_new);
1579 if (is_new)
1580 this->str_buffer_start_ = this->str_buffer_;
1581 this->str_buffer_end_ = this->str_buffer_ + buffer_size;
1582 debug_line_str_shndx = i;
1583 }
1584 if (debug_line_shndx > 0 && debug_line_str_shndx > 0)
1585 break;
1586 }
1587 if (this->buffer_ == NULL)
1588 return;
1589
1590 // Find the relocation section for ".debug_line".
1591 // We expect these for relobjs (.o's) but not dynobjs (.so's).
1592 unsigned int reloc_shndx = 0;
1593 for (unsigned int i = 0; i < object->shnum(); ++i)
1594 {
1595 unsigned int reloc_sh_type = object->section_type(i);
1596 if ((reloc_sh_type == elfcpp::SHT_REL
1597 || reloc_sh_type == elfcpp::SHT_RELA)
1598 && object->section_info(i) == debug_line_shndx)
1599 {
1600 reloc_shndx = i;
1601 this->track_relocs_type_ = reloc_sh_type;
1602 break;
1603 }
1604 }
1605
1606 // Finally, we need the symtab section to interpret the relocs.
1607 if (reloc_shndx != 0)
1608 {
1609 unsigned int symtab_shndx;
1610 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1611 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1612 {
1613 this->symtab_buffer_ = object->section_contents(
1614 symtab_shndx, &this->symtab_buffer_size_, false);
1615 break;
1616 }
1617 if (this->symtab_buffer_ == NULL)
1618 return;
1619 }
1620
1621 this->reloc_mapper_ =
1622 new Sized_elf_reloc_mapper<size, big_endian>(object,
1623 this->symtab_buffer_,
1624 this->symtab_buffer_size_);
1625 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1626 return;
1627
1628 // Now that we have successfully read all the data, parse the debug
1629 // info.
1630 this->data_valid_ = true;
1631 gold_debug(DEBUG_LOCATION, "read_line_mappings: %s shndx %u",
1632 object->name().c_str(), read_shndx);
1633 this->read_line_mappings(read_shndx);
1634 }
1635
1636 // Read the DWARF header.
1637
1638 template<int size, bool big_endian>
1639 const unsigned char*
read_header_prolog(const unsigned char * lineptr)1640 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1641 const unsigned char* lineptr)
1642 {
1643 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1644 lineptr += 4;
1645
1646 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1647 // size is 8 and we need to read the next 8 bytes for the real length.
1648 if (initial_length == 0xffffffff)
1649 {
1650 header_.offset_size = 8;
1651 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1652 lineptr += 8;
1653 }
1654 else
1655 header_.offset_size = 4;
1656
1657 header_.total_length = initial_length;
1658
1659 this->end_of_unit_ = lineptr + initial_length;
1660 gold_assert(this->end_of_unit_ <= buffer_end_);
1661
1662 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1663 lineptr += 2;
1664
1665 // We can only read versions 2 and 3 of the DWARF line number table.
1666 // For other versions, just skip the entire line number table.
1667 if ((header_.version < 2 || header_.version > 4)
1668 && header_.version != DWARF5_EXPERIMENTAL_LINE_TABLE)
1669 return this->end_of_unit_;
1670
1671 if (header_.offset_size == 4)
1672 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1673 else
1674 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1675 lineptr += header_.offset_size;
1676
1677 this->end_of_header_length_ = lineptr;
1678
1679 // If this is a two-level line table, we'll adjust these below.
1680 this->logicals_start_ = lineptr + header_.prologue_length;
1681 this->actuals_start_ = NULL;
1682
1683 header_.min_insn_length = *lineptr;
1684 lineptr += 1;
1685
1686 if (header_.version >= 4)
1687 {
1688 header_.max_ops_per_insn = *lineptr;
1689 lineptr += 1;
1690 }
1691
1692 header_.default_is_stmt = *lineptr;
1693 lineptr += 1;
1694
1695 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1696 lineptr += 1;
1697
1698 header_.line_range = *lineptr;
1699 lineptr += 1;
1700
1701 header_.opcode_base = *lineptr;
1702 lineptr += 1;
1703
1704 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1705 header_.std_opcode_lengths[0] = 0;
1706 for (int i = 1; i < header_.opcode_base; i++)
1707 {
1708 header_.std_opcode_lengths[i] = *lineptr;
1709 lineptr += 1;
1710 }
1711
1712 if (header_.version == DWARF5_EXPERIMENTAL_LINE_TABLE)
1713 {
1714 // Skip over fake empty directory and filename tables,
1715 // and fake extended opcode that hides the rest of the
1716 // section from old consumers.
1717 lineptr += 7;
1718
1719 // Offsets to logicals and actuals tables.
1720 off_t logicals_offset;
1721 off_t actuals_offset;
1722 if (header_.offset_size == 4)
1723 logicals_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1724 else
1725 logicals_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1726 lineptr += header_.offset_size;
1727 if (header_.offset_size == 4)
1728 actuals_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1729 else
1730 actuals_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1731 lineptr += header_.offset_size;
1732
1733 this->logicals_start_ = this->end_of_header_length_ + logicals_offset;
1734 if (actuals_offset > 0)
1735 this->actuals_start_ = this->end_of_header_length_ + actuals_offset;
1736 }
1737
1738 return lineptr;
1739 }
1740
1741 // The header for a debug_line section is mildly complicated, because
1742 // the line info is very tightly encoded.
1743
1744 template<int size, bool big_endian>
1745 const unsigned char*
read_header_tables(const unsigned char * lineptr)1746 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1747 const unsigned char* lineptr)
1748 {
1749 ++this->current_header_index_;
1750
1751 // Create a new directories_ entry and a new files_ entry for our new
1752 // header. We initialize each with a single empty element, because
1753 // dwarf indexes directory and filenames starting at 1.
1754 gold_assert(static_cast<int>(this->directories_.size())
1755 == this->current_header_index_);
1756 gold_assert(static_cast<int>(this->files_.size())
1757 == this->current_header_index_);
1758 this->directories_.push_back(std::vector<std::string>(1));
1759 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1760
1761 // It is legal for the directory entry table to be empty.
1762 if (*lineptr)
1763 {
1764 int dirindex = 1;
1765 while (*lineptr)
1766 {
1767 const char* dirname = reinterpret_cast<const char*>(lineptr);
1768 gold_assert(dirindex
1769 == static_cast<int>(this->directories_.back().size()));
1770 this->directories_.back().push_back(dirname);
1771 lineptr += this->directories_.back().back().size() + 1;
1772 dirindex++;
1773 }
1774 }
1775 lineptr++;
1776
1777 // It is also legal for the file entry table to be empty.
1778 if (*lineptr)
1779 {
1780 int fileindex = 1;
1781 size_t len;
1782 while (*lineptr)
1783 {
1784 const char* filename = reinterpret_cast<const char*>(lineptr);
1785 lineptr += strlen(filename) + 1;
1786
1787 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1788 lineptr += len;
1789
1790 if (dirindex >= this->directories_.back().size())
1791 dirindex = 0;
1792 int dirindexi = static_cast<int>(dirindex);
1793
1794 read_unsigned_LEB_128(lineptr, &len); // mod_time
1795 lineptr += len;
1796
1797 read_unsigned_LEB_128(lineptr, &len); // filelength
1798 lineptr += len;
1799
1800 gold_assert(fileindex
1801 == static_cast<int>(this->files_.back().size()));
1802 this->files_.back().push_back(std::make_pair(dirindexi, filename));
1803 fileindex++;
1804 }
1805 }
1806 lineptr++;
1807
1808 return lineptr;
1809 }
1810
1811 template<int size, bool big_endian>
1812 const unsigned char*
read_header_tables_v5(const unsigned char * lineptr)1813 Sized_dwarf_line_info<size, big_endian>::read_header_tables_v5(
1814 const unsigned char* lineptr)
1815 {
1816 size_t len;
1817
1818 ++this->current_header_index_;
1819
1820 // Create a new directories_ entry and a new files_ entry for our new
1821 // header. We initialize each with a single empty element, because
1822 // dwarf indexes directory and filenames starting at 1.
1823 gold_assert(static_cast<int>(this->directories_.size())
1824 == this->current_header_index_);
1825 gold_assert(static_cast<int>(this->files_.size())
1826 == this->current_header_index_);
1827
1828 // Read the directory list.
1829 uint64_t format_count = read_unsigned_LEB_128(lineptr, &len);
1830 lineptr += len;
1831
1832 unsigned int *types = new unsigned int[format_count];
1833 unsigned int *forms = new unsigned int[format_count];
1834
1835 for (unsigned int i = 0; i < format_count; i++)
1836 {
1837 types[i] = read_unsigned_LEB_128(lineptr, &len);
1838 lineptr += len;
1839 forms[i] = read_unsigned_LEB_128(lineptr, &len);
1840 lineptr += len;
1841 }
1842
1843 uint64_t entry_count = read_unsigned_LEB_128(lineptr, &len);
1844 lineptr += len;
1845 this->directories_.push_back(std::vector<std::string>(1));
1846 std::vector<std::string>& dir_list = this->directories_.back();
1847
1848 for (unsigned int j = 0; j < entry_count; j++)
1849 {
1850 std::string dirname;
1851
1852 for (unsigned int i = 0; i < format_count; i++)
1853 {
1854 if (types[i] == elfcpp::DW_LNCT_path)
1855 {
1856 if (forms[i] == elfcpp::DW_FORM_string)
1857 {
1858 dirname = reinterpret_cast<const char*>(lineptr);
1859 lineptr += dirname.size() + 1;
1860 }
1861 else if (forms[i] == elfcpp::DW_FORM_line_strp)
1862 {
1863 uint64_t offset;
1864 if (header_.offset_size == 4)
1865 offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1866 else
1867 offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1868 typename Reloc_map::const_iterator it
1869 = this->reloc_map_.find(lineptr - this->buffer_);
1870 if (it != reloc_map_.end())
1871 {
1872 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1873 offset = 0;
1874 offset += it->second.second;
1875 }
1876 lineptr += header_.offset_size;
1877 dirname = reinterpret_cast<const char*>(this->str_buffer_
1878 + offset);
1879 }
1880 else
1881 return lineptr;
1882 }
1883 else
1884 return lineptr;
1885 }
1886 dir_list.push_back(dirname);
1887 }
1888
1889 delete[] types;
1890 delete[] forms;
1891
1892 // Read the filenames list.
1893 format_count = read_unsigned_LEB_128(lineptr, &len);
1894 lineptr += len;
1895
1896 types = new unsigned int[format_count];
1897 forms = new unsigned int[format_count];
1898
1899 for (unsigned int i = 0; i < format_count; i++)
1900 {
1901 types[i] = read_unsigned_LEB_128(lineptr, &len);
1902 lineptr += len;
1903 forms[i] = read_unsigned_LEB_128(lineptr, &len);
1904 lineptr += len;
1905 }
1906
1907 entry_count = read_unsigned_LEB_128(lineptr, &len);
1908 lineptr += len;
1909 this->files_.push_back(
1910 std::vector<std::pair<int, std::string> >(1));
1911 std::vector<std::pair<int, std::string> >& file_list = this->files_.back();
1912
1913 for (unsigned int j = 0; j < entry_count; j++)
1914 {
1915 const char* path = NULL;
1916 int dirindex = 0;
1917
1918 for (unsigned int i = 0; i < format_count; i++)
1919 {
1920 if (types[i] == elfcpp::DW_LNCT_path)
1921 {
1922 if (forms[i] == elfcpp::DW_FORM_string)
1923 {
1924 path = reinterpret_cast<const char*>(lineptr);
1925 lineptr += strlen(path) + 1;
1926 }
1927 else if (forms[i] == elfcpp::DW_FORM_line_strp)
1928 {
1929 uint64_t offset;
1930 if (header_.offset_size == 4)
1931 offset = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1932 else
1933 offset = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1934 typename Reloc_map::const_iterator it
1935 = this->reloc_map_.find(lineptr - this->buffer_);
1936 if (it != reloc_map_.end())
1937 {
1938 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1939 offset = 0;
1940 offset += it->second.second;
1941 }
1942 lineptr += header_.offset_size;
1943 path = reinterpret_cast<const char*>(this->str_buffer_
1944 + offset);
1945 }
1946 else
1947 return lineptr;
1948 }
1949 else if (types[i] == elfcpp::DW_LNCT_directory_index)
1950 {
1951 if (forms[i] == elfcpp::DW_FORM_udata)
1952 {
1953 dirindex = read_unsigned_LEB_128(lineptr, &len);
1954 lineptr += len;
1955 }
1956 else
1957 return lineptr;
1958 }
1959 else
1960 return lineptr;
1961 }
1962 gold_debug(DEBUG_LOCATION, "File %3d: %s",
1963 static_cast<int>(file_list.size()), path);
1964 file_list.push_back(std::make_pair<int, std::string>(dirindex, path));
1965 }
1966
1967 delete[] types;
1968 delete[] forms;
1969
1970 // Ignore the subprograms table; we don't need it for now.
1971 // Because it's the last thing in the header, we don't need
1972 // to figure out how long it is to skip over it.
1973
1974 return lineptr;
1975 }
1976
1977 // Process a single opcode in the .debug.line structure.
1978
1979 template<int size, bool big_endian>
1980 bool
process_one_opcode(const unsigned char * start,struct LineStateMachine * lsm,size_t * len,std::vector<LineStateMachine> * logicals,bool is_logicals_table,bool is_actuals_table)1981 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1982 const unsigned char* start, struct LineStateMachine* lsm, size_t* len,
1983 std::vector<LineStateMachine>* logicals,
1984 bool is_logicals_table, bool is_actuals_table)
1985 {
1986 size_t oplen = 0;
1987 size_t templen;
1988 unsigned char opcode = *start;
1989 oplen++;
1990 start++;
1991
1992 // If the opcode is great than the opcode_base, it is a special
1993 // opcode. Most line programs consist mainly of special opcodes.
1994 if (opcode >= header_.opcode_base)
1995 {
1996 opcode -= header_.opcode_base;
1997 const int advance_address = ((opcode / header_.line_range)
1998 * header_.min_insn_length);
1999 lsm->address += advance_address;
2000
2001 const int advance_line = ((opcode % header_.line_range)
2002 + header_.line_base);
2003 lsm->line_num += advance_line;
2004 lsm->basic_block = true;
2005 *len = oplen;
2006 return true;
2007 }
2008
2009 // Otherwise, we have the regular opcodes
2010 switch (opcode)
2011 {
2012 case elfcpp::DW_LNS_copy:
2013 lsm->basic_block = false;
2014 *len = oplen;
2015 return true;
2016
2017 case elfcpp::DW_LNS_advance_pc:
2018 {
2019 const uint64_t advance_address
2020 = read_unsigned_LEB_128(start, &templen);
2021 oplen += templen;
2022 lsm->address += header_.min_insn_length * advance_address;
2023 }
2024 break;
2025
2026 case elfcpp::DW_LNS_advance_line:
2027 {
2028 const int64_t advance_line = read_signed_LEB_128(start, &templen);
2029 oplen += templen;
2030 lsm->line_num += advance_line;
2031 }
2032 break;
2033
2034 case elfcpp::DW_LNS_set_file:
2035 {
2036 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
2037 oplen += templen;
2038 lsm->file_num = fileno;
2039 }
2040 break;
2041
2042 case elfcpp::DW_LNS_set_column:
2043 {
2044 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
2045 oplen += templen;
2046 lsm->column_num = colno;
2047 }
2048 break;
2049
2050 case elfcpp::DW_LNS_negate_stmt:
2051 lsm->is_stmt = !lsm->is_stmt;
2052 break;
2053
2054 case elfcpp::DW_LNS_set_basic_block:
2055 lsm->basic_block = true;
2056 break;
2057
2058 case elfcpp::DW_LNS_fixed_advance_pc:
2059 {
2060 int advance_address;
2061 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
2062 oplen += 2;
2063 lsm->address += advance_address;
2064 }
2065 break;
2066
2067 case elfcpp::DW_LNS_const_add_pc:
2068 {
2069 const int advance_address = (header_.min_insn_length
2070 * ((255 - header_.opcode_base)
2071 / header_.line_range));
2072 lsm->address += advance_address;
2073 }
2074 break;
2075
2076 case elfcpp::DW_LNS_set_subprogram:
2077 // aliased with elfcpp::DW_LNS_set_address_from_logical
2078 if (is_actuals_table)
2079 {
2080 // elfcpp::DW_LNS_set_address_from_logical
2081 const int64_t advance_line = read_signed_LEB_128(start, &templen);
2082 oplen += templen;
2083 lsm->line_num += advance_line;
2084 if (lsm->line_num >= 1
2085 && lsm->line_num <= static_cast<int64_t>(logicals->size()))
2086 {
2087 const LineStateMachine& logical = (*logicals)[lsm->line_num - 1];
2088 lsm->address = logical.address;
2089 lsm->shndx = logical.shndx;
2090 }
2091 }
2092 else if (is_logicals_table)
2093 {
2094 // elfcpp::DW_LNS_set_subprogram
2095 // Ignore the subprogram number for now.
2096 read_unsigned_LEB_128(start, &templen);
2097 oplen += templen;
2098 lsm->context = 0;
2099 }
2100 break;
2101
2102 case elfcpp::DW_LNS_inlined_call:
2103 if (is_logicals_table)
2104 {
2105 const int64_t advance_line = read_signed_LEB_128(start, &templen);
2106 oplen += templen;
2107 start += templen;
2108 // Ignore the subprogram number for now.
2109 read_unsigned_LEB_128(start, &templen);
2110 oplen += templen;
2111 lsm->context = logicals->size() + advance_line;
2112 }
2113 break;
2114
2115 case elfcpp::DW_LNS_pop_context:
2116 if (is_logicals_table)
2117 {
2118 const unsigned int context = lsm->context;
2119 if (context >= 1 && context <= logicals->size())
2120 {
2121 const LineStateMachine& logical = (*logicals)[context - 1];
2122 lsm->file_num = logical.file_num;
2123 lsm->line_num = logical.line_num;
2124 lsm->column_num = logical.column_num;
2125 lsm->is_stmt = logical.is_stmt;
2126 lsm->context = logical.context;
2127 }
2128 }
2129 break;
2130
2131 case elfcpp::DW_LNS_extended_op:
2132 {
2133 const uint64_t extended_op_len
2134 = read_unsigned_LEB_128(start, &templen);
2135 start += templen;
2136 oplen += templen + extended_op_len;
2137
2138 const unsigned char extended_op = *start;
2139 start++;
2140
2141 switch (extended_op)
2142 {
2143 case elfcpp::DW_LNE_end_sequence:
2144 // This means that the current byte is the one immediately
2145 // after a set of instructions. Record the current line
2146 // for up to one less than the current address.
2147 lsm->line_num = -1;
2148 lsm->end_sequence = true;
2149 *len = oplen;
2150 return true;
2151
2152 case elfcpp::DW_LNE_set_address:
2153 {
2154 lsm->address =
2155 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
2156 typename Reloc_map::const_iterator it
2157 = this->reloc_map_.find(start - this->buffer_);
2158 if (it != reloc_map_.end())
2159 {
2160 // If this is a SHT_RELA section, then ignore the
2161 // section contents. This assumes that this is a
2162 // straight reloc which just uses the reloc addend.
2163 // The reloc addend has already been included in the
2164 // symbol value.
2165 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
2166 lsm->address = 0;
2167 // Add in the symbol value.
2168 lsm->address += it->second.second;
2169 lsm->shndx = it->second.first;
2170 }
2171 else
2172 {
2173 // If we're a normal .o file, with relocs, every
2174 // set_address should have an associated relocation.
2175 if (this->input_is_relobj())
2176 this->data_valid_ = false;
2177 }
2178 break;
2179 }
2180 case elfcpp::DW_LNE_define_file:
2181 {
2182 const char* filename = reinterpret_cast<const char*>(start);
2183 templen = strlen(filename) + 1;
2184 start += templen;
2185
2186 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
2187
2188 if (dirindex >= this->directories_.back().size())
2189 dirindex = 0;
2190 int dirindexi = static_cast<int>(dirindex);
2191
2192 // This opcode takes two additional ULEB128 parameters
2193 // (mod_time and filelength), but we don't use those
2194 // values. Because OPLEN already tells us how far to
2195 // skip to the next opcode, we don't need to read
2196 // them at all.
2197
2198 this->files_.back().push_back(std::make_pair(dirindexi,
2199 filename));
2200 }
2201 break;
2202 }
2203 }
2204 break;
2205
2206 default:
2207 {
2208 // Ignore unknown opcode silently
2209 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
2210 {
2211 size_t templen;
2212 read_unsigned_LEB_128(start, &templen);
2213 start += templen;
2214 oplen += templen;
2215 }
2216 }
2217 break;
2218 }
2219 *len = oplen;
2220 return false;
2221 }
2222
2223 // Read the debug information at LINEPTR and store it in the line
2224 // number map.
2225
2226 template<int size, bool big_endian>
2227 unsigned const char*
read_lines(unsigned const char * lineptr,unsigned const char * endptr,std::vector<LineStateMachine> * logicals,bool is_logicals_table,bool is_actuals_table,unsigned int shndx)2228 Sized_dwarf_line_info<size, big_endian>::read_lines(
2229 unsigned const char* lineptr,
2230 unsigned const char* endptr,
2231 std::vector<LineStateMachine>* logicals,
2232 bool is_logicals_table,
2233 bool is_actuals_table,
2234 unsigned int shndx)
2235 {
2236 struct LineStateMachine lsm;
2237
2238 while (lineptr < endptr)
2239 {
2240 ResetLineStateMachine(&lsm, header_.default_is_stmt);
2241 while (!lsm.end_sequence)
2242 {
2243 size_t oplength;
2244 if (lineptr >= endptr)
2245 break;
2246
2247 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength,
2248 logicals,
2249 is_logicals_table,
2250 is_actuals_table);
2251 lineptr += oplength;
2252
2253 if (add_line)
2254 {
2255 if (is_logicals_table)
2256 {
2257 logicals->push_back(lsm);
2258 gold_debug(DEBUG_LOCATION, "Logical %d [%3u:%08x]: "
2259 "file %d line %d context %u",
2260 static_cast<int>(logicals->size()),
2261 lsm.shndx, static_cast<int>(lsm.address),
2262 lsm.file_num, lsm.line_num, lsm.context);
2263 }
2264 else if (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx)
2265 {
2266 Offset_to_lineno_entry entry;
2267
2268 if (is_actuals_table && lsm.line_num != -1)
2269 {
2270 if (lsm.line_num < 1
2271 || lsm.line_num > static_cast<int64_t>(logicals->size()))
2272 continue;
2273 const LineStateMachine& logical =
2274 (*logicals)[lsm.line_num - 1];
2275 gold_debug(DEBUG_LOCATION, "Actual [%3u:%08x]: "
2276 "logical %u file %d line %d context %u",
2277 lsm.shndx, static_cast<int>(lsm.address),
2278 lsm.line_num, logical.file_num,
2279 logical.line_num, lsm.context);
2280 entry.offset = static_cast<off_t>(lsm.address);
2281 entry.header_num = this->current_header_index_;
2282 entry.file_num =
2283 static_cast<unsigned int>(logical.file_num);
2284 entry.last_line_for_offset = true;
2285 entry.line_num = logical.line_num;
2286 }
2287 else
2288 {
2289 entry.offset = static_cast<off_t>(lsm.address);
2290 entry.header_num = this->current_header_index_;
2291 entry.file_num = static_cast<unsigned int>(lsm.file_num);
2292 entry.last_line_for_offset = true;
2293 entry.line_num = lsm.line_num;
2294 }
2295
2296 std::vector<Offset_to_lineno_entry>&
2297 map(this->line_number_map_[lsm.shndx]);
2298 // If we see two consecutive entries with the same
2299 // offset and a real line number, then mark the first
2300 // one as non-canonical.
2301 if (!map.empty()
2302 && (map.back().offset == static_cast<off_t>(lsm.address))
2303 && lsm.line_num != -1
2304 && map.back().line_num != -1)
2305 map.back().last_line_for_offset = false;
2306 map.push_back(entry);
2307 }
2308 }
2309
2310 }
2311 }
2312
2313 return endptr;
2314 }
2315
2316 // Read the relocations into a Reloc_map.
2317
2318 template<int size, bool big_endian>
2319 void
read_relocs()2320 Sized_dwarf_line_info<size, big_endian>::read_relocs()
2321 {
2322 if (this->symtab_buffer_ == NULL)
2323 return;
2324
2325 off_t value;
2326 off_t reloc_offset;
2327 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
2328 {
2329 const unsigned int shndx =
2330 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
2331
2332 // There is no reason to record non-ordinary section indexes, or
2333 // SHN_UNDEF, because they will never match the real section.
2334 if (shndx != 0)
2335 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
2336
2337 this->reloc_mapper_->advance(reloc_offset + 1);
2338 }
2339 }
2340
2341 // Read the line number info.
2342
2343 template<int size, bool big_endian>
2344 void
read_line_mappings(unsigned int shndx)2345 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
2346 {
2347 gold_assert(this->data_valid_ == true);
2348
2349 this->read_relocs();
2350 while (this->buffer_ < this->buffer_end_)
2351 {
2352 const unsigned char* lineptr = this->buffer_;
2353 std::vector<LineStateMachine> logicals;
2354
2355 lineptr = this->read_header_prolog(lineptr);
2356 if (header_.version >= 2 && header_.version <= 4)
2357 {
2358 lineptr = this->read_header_tables(lineptr);
2359 lineptr = this->read_lines(this->logicals_start_,
2360 this->end_of_unit_,
2361 NULL,
2362 false,
2363 false,
2364 shndx);
2365 }
2366 else if (header_.version == DWARF5_EXPERIMENTAL_LINE_TABLE)
2367 {
2368 lineptr = this->read_header_tables_v5(lineptr);
2369 if (this->actuals_start_ != NULL)
2370 {
2371 lineptr = this->read_lines(this->logicals_start_,
2372 this->actuals_start_,
2373 &logicals,
2374 true,
2375 false,
2376 shndx);
2377 lineptr = this->read_lines(this->actuals_start_,
2378 this->end_of_unit_,
2379 &logicals,
2380 false,
2381 true,
2382 shndx);
2383 }
2384 else
2385 {
2386 lineptr = this->read_lines(this->logicals_start_,
2387 this->end_of_unit_,
2388 NULL,
2389 false,
2390 false,
2391 shndx);
2392 }
2393 }
2394 this->buffer_ = this->end_of_unit_;
2395 }
2396
2397 // Sort the lines numbers, so addr2line can use binary search.
2398 for (typename Lineno_map::iterator it = line_number_map_.begin();
2399 it != line_number_map_.end();
2400 ++it)
2401 // Each vector needs to be sorted by offset.
2402 std::sort(it->second.begin(), it->second.end());
2403 }
2404
2405 // Some processing depends on whether the input is a .o file or not.
2406 // For instance, .o files have relocs, and have .debug_lines
2407 // information on a per section basis. .so files, on the other hand,
2408 // lack relocs, and offsets are unique, so we can ignore the section
2409 // information.
2410
2411 template<int size, bool big_endian>
2412 bool
input_is_relobj()2413 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
2414 {
2415 // Only .o files have relocs and the symtab buffer that goes with them.
2416 return this->symtab_buffer_ != NULL;
2417 }
2418
2419 // Given an Offset_to_lineno_entry vector, and an offset, figure out
2420 // if the offset points into a function according to the vector (see
2421 // comments below for the algorithm). If it does, return an iterator
2422 // into the vector that points to the line-number that contains that
2423 // offset. If not, it returns vector::end().
2424
2425 static std::vector<Offset_to_lineno_entry>::const_iterator
offset_to_iterator(const std::vector<Offset_to_lineno_entry> * offsets,off_t offset)2426 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
2427 off_t offset)
2428 {
2429 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
2430
2431 // lower_bound() returns the smallest offset which is >= lookup_key.
2432 // If no offset in offsets is >= lookup_key, returns end().
2433 std::vector<Offset_to_lineno_entry>::const_iterator it
2434 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
2435
2436 // This code is easiest to understand with a concrete example.
2437 // Here's a possible offsets array:
2438 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
2439 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
2440 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
2441 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
2442 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
2443 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
2444 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
2445 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
2446 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
2447 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
2448 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
2449 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
2450 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
2451 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
2452 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
2453 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
2454 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
2455 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
2456 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
2457 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
2458 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
2459 // The entries with line_num == -1 mark the end of a function: the
2460 // associated offset is one past the last instruction in the
2461 // function. This can correspond to the beginning of the next
2462 // function (as is true for offset 3232); alternately, there can be
2463 // a gap between the end of one function and the start of the next
2464 // (as is true for some others, most obviously from 3236->5764).
2465 //
2466 // Case 1: lookup_key has offset == 10. lower_bound returns
2467 // offsets[0]. Since it's not an exact match and we're
2468 // at the beginning of offsets, we return end() (invalid).
2469 // Case 2: lookup_key has offset 10000. lower_bound returns
2470 // offset[21] (end()). We return end() (invalid).
2471 // Case 3: lookup_key has offset == 3211. lower_bound matches
2472 // offsets[0] exactly, and that's the entry we return.
2473 // Case 4: lookup_key has offset == 3232. lower_bound returns
2474 // offsets[4]. That's an exact match, but indicates
2475 // end-of-function. We check if offsets[5] is also an
2476 // exact match but not end-of-function. It is, so we
2477 // return offsets[5].
2478 // Case 5: lookup_key has offset == 3214. lower_bound returns
2479 // offsets[1]. Since it's not an exact match, we back
2480 // up to the offset that's < lookup_key, offsets[0].
2481 // We note offsets[0] is a valid entry (not end-of-function),
2482 // so that's the entry we return.
2483 // Case 6: lookup_key has offset == 4000. lower_bound returns
2484 // offsets[8]. Since it's not an exact match, we back
2485 // up to offsets[7]. Since offsets[7] indicates
2486 // end-of-function, we know lookup_key is between
2487 // functions, so we return end() (not a valid offset).
2488 // Case 7: lookup_key has offset == 5794. lower_bound returns
2489 // offsets[19]. Since it's not an exact match, we back
2490 // up to offsets[16]. Note we back up to the *first*
2491 // entry with offset 5793, not just offsets[19-1].
2492 // We note offsets[16] is a valid entry, so we return it.
2493 // If offsets[16] had had line_num == -1, we would have
2494 // checked offsets[17]. The reason for this is that
2495 // 16 and 17 can be in an arbitrary order, since we sort
2496 // only by offset and last_line_for_offset. (Note it
2497 // doesn't help to use line_number as a tertiary sort key,
2498 // since sometimes we want the -1 to be first and sometimes
2499 // we want it to be last.)
2500
2501 // This deals with cases (1) and (2).
2502 if ((it == offsets->begin() && offset < it->offset)
2503 || it == offsets->end())
2504 return offsets->end();
2505
2506 // This deals with cases (3) and (4).
2507 if (offset == it->offset)
2508 {
2509 while (it != offsets->end()
2510 && it->offset == offset
2511 && it->line_num == -1)
2512 ++it;
2513 if (it == offsets->end() || it->offset != offset)
2514 return offsets->end();
2515 else
2516 return it;
2517 }
2518
2519 // This handles the first part of case (7) -- we back up to the
2520 // *first* entry that has the offset that's behind us.
2521 gold_assert(it != offsets->begin());
2522 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2523 --it;
2524 const off_t range_value = it->offset;
2525 while (it != offsets->begin() && (it-1)->offset == range_value)
2526 --it;
2527
2528 // This handles cases (5), (6), and (7): if any entry in the
2529 // equal_range [it, range_end) has a line_num != -1, it's a valid
2530 // match. If not, we're not in a function. The line number we saw
2531 // last for an offset will be sorted first, so it'll get returned if
2532 // it's present.
2533 for (; it != range_end; ++it)
2534 if (it->line_num != -1)
2535 return it;
2536 return offsets->end();
2537 }
2538
2539 // Returns the canonical filename:lineno for the address passed in.
2540 // If other_lines is not NULL, appends the non-canonical lines
2541 // assigned to the same address.
2542
2543 template<int size, bool big_endian>
2544 std::string
do_addr2line(unsigned int shndx,off_t offset,std::vector<std::string> * other_lines)2545 Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2546 unsigned int shndx,
2547 off_t offset,
2548 std::vector<std::string>* other_lines)
2549 {
2550 gold_debug(DEBUG_LOCATION, "do_addr2line: shndx %u offset %08x",
2551 shndx, static_cast<int>(offset));
2552
2553 if (this->data_valid_ == false)
2554 return "";
2555
2556 const std::vector<Offset_to_lineno_entry>* offsets;
2557 // If we do not have reloc information, then our input is a .so or
2558 // some similar data structure where all the information is held in
2559 // the offset. In that case, we ignore the input shndx.
2560 if (this->input_is_relobj())
2561 offsets = &this->line_number_map_[shndx];
2562 else
2563 offsets = &this->line_number_map_[-1U];
2564 if (offsets->empty())
2565 return "";
2566
2567 typename std::vector<Offset_to_lineno_entry>::const_iterator it
2568 = offset_to_iterator(offsets, offset);
2569 if (it == offsets->end())
2570 return "";
2571
2572 std::string result = this->format_file_lineno(*it);
2573 gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s",
2574 result.c_str());
2575 if (other_lines != NULL)
2576 {
2577 unsigned int last_file_num = it->file_num;
2578 int last_line_num = it->line_num;
2579 // Return up to 4 more locations from the beginning of the function
2580 // for fuzzy matching.
2581 for (++it; it != offsets->end(); ++it)
2582 {
2583 if (it->offset == offset && it->line_num == -1)
2584 continue; // The end of a previous function.
2585 if (it->line_num == -1)
2586 break; // The end of the current function.
2587 if (it->file_num != last_file_num || it->line_num != last_line_num)
2588 {
2589 other_lines->push_back(this->format_file_lineno(*it));
2590 gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s",
2591 other_lines->back().c_str());
2592 last_file_num = it->file_num;
2593 last_line_num = it->line_num;
2594 }
2595 if (it->offset > offset && other_lines->size() >= 4)
2596 break;
2597 }
2598 }
2599
2600 return result;
2601 }
2602
2603 // Convert the file_num + line_num into a string.
2604
2605 template<int size, bool big_endian>
2606 std::string
format_file_lineno(const Offset_to_lineno_entry & loc) const2607 Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2608 const Offset_to_lineno_entry& loc) const
2609 {
2610 std::string ret;
2611
2612 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2613 gold_assert(loc.file_num
2614 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2615 const std::pair<int, std::string>& filename_pair
2616 = this->files_[loc.header_num][loc.file_num];
2617 const std::string& filename = filename_pair.second;
2618
2619 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2620 gold_assert(filename_pair.first
2621 < static_cast<int>(this->directories_[loc.header_num].size()));
2622 const std::string& dirname
2623 = this->directories_[loc.header_num][filename_pair.first];
2624
2625 if (!dirname.empty())
2626 {
2627 ret += dirname;
2628 ret += "/";
2629 }
2630 ret += filename;
2631 if (ret.empty())
2632 ret = "(unknown)";
2633
2634 char buffer[64]; // enough to hold a line number
2635 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2636 ret += ":";
2637 ret += buffer;
2638
2639 return ret;
2640 }
2641
2642 // Dwarf_line_info routines.
2643
2644 static unsigned int next_generation_count = 0;
2645
2646 struct Addr2line_cache_entry
2647 {
2648 Object* object;
2649 unsigned int shndx;
2650 Dwarf_line_info* dwarf_line_info;
2651 unsigned int generation_count;
2652 unsigned int access_count;
2653
Addr2line_cache_entrygold::Addr2line_cache_entry2654 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2655 : object(o), shndx(s), dwarf_line_info(d),
2656 generation_count(next_generation_count), access_count(0)
2657 {
2658 if (next_generation_count < (1U << 31))
2659 ++next_generation_count;
2660 }
2661 };
2662 // We expect this cache to be small, so don't bother with a hashtable
2663 // or priority queue or anything: just use a simple vector.
2664 static std::vector<Addr2line_cache_entry> addr2line_cache;
2665
2666 std::string
one_addr2line(Object * object,unsigned int shndx,off_t offset,size_t cache_size,std::vector<std::string> * other_lines)2667 Dwarf_line_info::one_addr2line(Object* object,
2668 unsigned int shndx, off_t offset,
2669 size_t cache_size,
2670 std::vector<std::string>* other_lines)
2671 {
2672 Dwarf_line_info* lineinfo = NULL;
2673 std::vector<Addr2line_cache_entry>::iterator it;
2674
2675 // First, check the cache. If we hit, update the counts.
2676 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2677 {
2678 if (it->object == object && it->shndx == shndx)
2679 {
2680 lineinfo = it->dwarf_line_info;
2681 it->generation_count = next_generation_count;
2682 // We cap generation_count at 2^31 -1 to avoid overflow.
2683 if (next_generation_count < (1U << 31))
2684 ++next_generation_count;
2685 // We cap access_count at 31 so 2^access_count doesn't overflow
2686 if (it->access_count < 31)
2687 ++it->access_count;
2688 break;
2689 }
2690 }
2691
2692 // If we don't hit the cache, create a new object and insert into the
2693 // cache.
2694 if (lineinfo == NULL)
2695 {
2696 switch (parameters->size_and_endianness())
2697 {
2698 #ifdef HAVE_TARGET_32_LITTLE
2699 case Parameters::TARGET_32_LITTLE:
2700 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2701 #endif
2702 #ifdef HAVE_TARGET_32_BIG
2703 case Parameters::TARGET_32_BIG:
2704 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2705 #endif
2706 #ifdef HAVE_TARGET_64_LITTLE
2707 case Parameters::TARGET_64_LITTLE:
2708 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2709 #endif
2710 #ifdef HAVE_TARGET_64_BIG
2711 case Parameters::TARGET_64_BIG:
2712 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2713 #endif
2714 default:
2715 gold_unreachable();
2716 }
2717 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2718 }
2719
2720 // Now that we have our object, figure out the answer
2721 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2722
2723 // Finally, if our cache has grown too big, delete old objects. We
2724 // assume the common (probably only) case is deleting only one object.
2725 // We use a pretty simple scheme to evict: function of LRU and MFU.
2726 while (addr2line_cache.size() > cache_size)
2727 {
2728 unsigned int lowest_score = ~0U;
2729 std::vector<Addr2line_cache_entry>::iterator lowest
2730 = addr2line_cache.end();
2731 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2732 {
2733 const unsigned int score = (it->generation_count
2734 + (1U << it->access_count));
2735 if (score < lowest_score)
2736 {
2737 lowest_score = score;
2738 lowest = it;
2739 }
2740 }
2741 if (lowest != addr2line_cache.end())
2742 {
2743 delete lowest->dwarf_line_info;
2744 addr2line_cache.erase(lowest);
2745 }
2746 }
2747
2748 return retval;
2749 }
2750
2751 void
clear_addr2line_cache()2752 Dwarf_line_info::clear_addr2line_cache()
2753 {
2754 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2755 it != addr2line_cache.end();
2756 ++it)
2757 delete it->dwarf_line_info;
2758 addr2line_cache.clear();
2759 }
2760
2761 #ifdef HAVE_TARGET_32_LITTLE
2762 template
2763 class Sized_dwarf_line_info<32, false>;
2764 #endif
2765
2766 #ifdef HAVE_TARGET_32_BIG
2767 template
2768 class Sized_dwarf_line_info<32, true>;
2769 #endif
2770
2771 #ifdef HAVE_TARGET_64_LITTLE
2772 template
2773 class Sized_dwarf_line_info<64, false>;
2774 #endif
2775
2776 #ifdef HAVE_TARGET_64_BIG
2777 template
2778 class Sized_dwarf_line_info<64, true>;
2779 #endif
2780
2781 } // End namespace gold.
2782