1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
override_version(const char * version)40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
override_visibility(elfcpp::STV visibility)70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
override_base(const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
override(const elfcpp::Sym<size,big_endian> & sym,unsigned st_shndx,bool is_ordinary,Object * object,const char * version)116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
override(Sized_symbol<size> * tosym,const elfcpp::Sym<size,big_endian> & fromsym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
symbol_to_bits(elfcpp::STB binding,bool is_dynamic,unsigned int shndx,bool is_ordinary,elfcpp::STT type)175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
216 if (!is_ordinary)
217 bits |= common_flag;
218 break;
219
220 default:
221 if (type == elfcpp::STT_COMMON)
222 bits |= common_flag;
223 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
224 bits |= common_flag;
225 else
226 bits |= def_flag;
227 break;
228 }
229
230 return bits;
231 }
232
233 // Resolve a symbol. This is called the second and subsequent times
234 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
235 // section index for SYM, possibly adjusted for many sections.
236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237 // than a special code. ORIG_ST_SHNDX is the original section index,
238 // before any munging because of discarded sections, except that all
239 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
240 // the version of SYM.
241
242 template<int size, bool big_endian>
243 void
resolve(Sized_symbol<size> * to,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,unsigned int orig_st_shndx,Object * object,const char * version)244 Symbol_table::resolve(Sized_symbol<size>* to,
245 const elfcpp::Sym<size, big_endian>& sym,
246 unsigned int st_shndx, bool is_ordinary,
247 unsigned int orig_st_shndx,
248 Object* object, const char* version)
249 {
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
255 bool to_is_ordinary;
256 if (to->source() == Symbol::FROM_OBJECT
257 && to->object() == object
258 && is_ordinary
259 && to->is_defined()
260 && to->shndx(&to_is_ordinary) == st_shndx
261 && to_is_ordinary
262 && to->value() == sym.get_st_value())
263 return;
264
265 if (parameters->target().has_resolve())
266 {
267 Sized_target<size, big_endian>* sized_target;
268 sized_target = parameters->sized_target<size, big_endian>();
269 sized_target->resolve(to, sym, object, version);
270 return;
271 }
272
273 if (!object->is_dynamic())
274 {
275 // Record that we've seen this symbol in a regular object.
276 to->set_in_reg();
277 }
278 else if (st_shndx == elfcpp::SHN_UNDEF
279 && (to->visibility() == elfcpp::STV_HIDDEN
280 || to->visibility() == elfcpp::STV_INTERNAL))
281 {
282 // it is good to be helpful, but the warning leads to build error
283 // for some users, so disable it if not really wanted.
284 return;
285 }
286 else
287 {
288 // Record that we've seen this symbol in a dynamic object.
289 to->set_in_dyn();
290 }
291
292 // Record if we've seen this symbol in a real ELF object (i.e., the
293 // symbol is referenced from outside the world known to the plugin).
294 if (object->pluginobj() == NULL && !object->is_dynamic())
295 to->set_in_real_elf();
296
297 // If we're processing replacement files, allow new symbols to override
298 // the placeholders from the plugin objects.
299 // Treat common symbols specially since it is possible that an ELF
300 // file increased the size of the alignment.
301 if (to->source() == Symbol::FROM_OBJECT)
302 {
303 Pluginobj* obj = to->object()->pluginobj();
304 if (obj != NULL
305 && parameters->options().plugins()->in_replacement_phase())
306 {
307 bool adjust_common = false;
308 typename Sized_symbol<size>::Size_type tosize = 0;
309 typename Sized_symbol<size>::Value_type tovalue = 0;
310 if (to->is_common() && !is_ordinary && st_shndx == elfcpp::SHN_COMMON)
311 {
312 adjust_common = true;
313 tosize = to->symsize();
314 tovalue = to->value();
315 }
316 this->override(to, sym, st_shndx, is_ordinary, object, version);
317 if (adjust_common)
318 {
319 if (tosize > to->symsize())
320 to->set_symsize(tosize);
321 if (tovalue > to->value())
322 to->set_value(tovalue);
323 }
324 return;
325 }
326 }
327
328 // A new weak undefined reference, merging with an old weak
329 // reference, could be a One Definition Rule (ODR) violation --
330 // especially if the types or sizes of the references differ. We'll
331 // store such pairs and look them up later to make sure they
332 // actually refer to the same lines of code. We also check
333 // combinations of weak and strong, which might occur if one case is
334 // inline and the other is not. (Note: not all ODR violations can
335 // be found this way, and not everything this finds is an ODR
336 // violation. But it's helpful to warn about.)
337 if (parameters->options().detect_odr_violations()
338 && (sym.get_st_bind() == elfcpp::STB_WEAK
339 || to->binding() == elfcpp::STB_WEAK)
340 && orig_st_shndx != elfcpp::SHN_UNDEF
341 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
342 && to_is_ordinary
343 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
344 && to->symsize() != 0
345 && (sym.get_st_type() != to->type()
346 || sym.get_st_size() != to->symsize())
347 // C does not have a concept of ODR, so we only need to do this
348 // on C++ symbols. These have (mangled) names starting with _Z.
349 && to->name()[0] == '_' && to->name()[1] == 'Z')
350 {
351 Symbol_location fromloc
352 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
353 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
354 static_cast<off_t>(to->value()) };
355 this->candidate_odr_violations_[to->name()].insert(fromloc);
356 this->candidate_odr_violations_[to->name()].insert(toloc);
357 }
358
359 // Plugins don't provide a symbol type, so adopt the existing type
360 // if the FROM symbol is from a plugin.
361 elfcpp::STT fromtype = (object->pluginobj() != NULL
362 ? to->type()
363 : sym.get_st_type());
364 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
365 object->is_dynamic(),
366 st_shndx, is_ordinary,
367 fromtype);
368
369 bool adjust_common_sizes;
370 bool adjust_dyndef;
371 typename Sized_symbol<size>::Size_type tosize = to->symsize();
372 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
373 object, &adjust_common_sizes,
374 &adjust_dyndef))
375 {
376 elfcpp::STB tobinding = to->binding();
377 typename Sized_symbol<size>::Value_type tovalue = to->value();
378 this->override(to, sym, st_shndx, is_ordinary, object, version);
379 if (adjust_common_sizes)
380 {
381 if (tosize > to->symsize())
382 to->set_symsize(tosize);
383 if (tovalue > to->value())
384 to->set_value(tovalue);
385 }
386 if (adjust_dyndef)
387 {
388 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
389 // Remember which kind of UNDEF it was for future reference.
390 to->set_undef_binding(tobinding);
391 }
392 }
393 else
394 {
395 if (adjust_common_sizes)
396 {
397 if (sym.get_st_size() > tosize)
398 to->set_symsize(sym.get_st_size());
399 if (sym.get_st_value() > to->value())
400 to->set_value(sym.get_st_value());
401 }
402 if (adjust_dyndef)
403 {
404 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
405 // Remember which kind of UNDEF it was.
406 to->set_undef_binding(sym.get_st_bind());
407 }
408 // The ELF ABI says that even for a reference to a symbol we
409 // merge the visibility.
410 to->override_visibility(sym.get_st_visibility());
411 }
412
413 if (adjust_common_sizes && parameters->options().warn_common())
414 {
415 if (tosize > sym.get_st_size())
416 Symbol_table::report_resolve_problem(false,
417 _("common of '%s' overriding "
418 "smaller common"),
419 to, OBJECT, object);
420 else if (tosize < sym.get_st_size())
421 Symbol_table::report_resolve_problem(false,
422 _("common of '%s' overidden by "
423 "larger common"),
424 to, OBJECT, object);
425 else
426 Symbol_table::report_resolve_problem(false,
427 _("multiple common of '%s'"),
428 to, OBJECT, object);
429 }
430 }
431
432 // Handle the core of symbol resolution. This is called with the
433 // existing symbol, TO, and a bitflag describing the new symbol. This
434 // returns true if we should override the existing symbol with the new
435 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
436 // true if we should set the symbol size to the maximum of the TO and
437 // FROM sizes. It handles error conditions.
438
439 bool
should_override(const Symbol * to,unsigned int frombits,elfcpp::STT fromtype,Defined defined,Object * object,bool * adjust_common_sizes,bool * adjust_dyndef)440 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
441 elfcpp::STT fromtype, Defined defined,
442 Object* object, bool* adjust_common_sizes,
443 bool* adjust_dyndef)
444 {
445 *adjust_common_sizes = false;
446 *adjust_dyndef = false;
447
448 unsigned int tobits;
449 if (to->source() == Symbol::IS_UNDEFINED)
450 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
451 to->type());
452 else if (to->source() != Symbol::FROM_OBJECT)
453 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
454 to->type());
455 else
456 {
457 bool is_ordinary;
458 unsigned int shndx = to->shndx(&is_ordinary);
459 tobits = symbol_to_bits(to->binding(),
460 to->object()->is_dynamic(),
461 shndx,
462 is_ordinary,
463 to->type());
464 }
465
466 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
467 && !to->is_placeholder())
468 Symbol_table::report_resolve_problem(true,
469 _("symbol '%s' used as both __thread "
470 "and non-__thread"),
471 to, defined, object);
472
473 // We use a giant switch table for symbol resolution. This code is
474 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
475 // cases; 3) it is easy to change the handling of a particular case.
476 // The alternative would be a series of conditionals, but it is easy
477 // to get the ordering wrong. This could also be done as a table,
478 // but that is no easier to understand than this large switch
479 // statement.
480
481 // These are the values generated by the bit codes.
482 enum
483 {
484 DEF = global_flag | regular_flag | def_flag,
485 WEAK_DEF = weak_flag | regular_flag | def_flag,
486 DYN_DEF = global_flag | dynamic_flag | def_flag,
487 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
488 UNDEF = global_flag | regular_flag | undef_flag,
489 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
490 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
491 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
492 COMMON = global_flag | regular_flag | common_flag,
493 WEAK_COMMON = weak_flag | regular_flag | common_flag,
494 DYN_COMMON = global_flag | dynamic_flag | common_flag,
495 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
496 };
497
498 switch (tobits * 16 + frombits)
499 {
500 case DEF * 16 + DEF:
501 // Two definitions of the same symbol.
502
503 // If either symbol is defined by an object included using
504 // --just-symbols, then don't warn. This is for compatibility
505 // with the GNU linker. FIXME: This is a hack.
506 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
507 || (object != NULL && object->just_symbols()))
508 return false;
509
510 if (!parameters->options().muldefs())
511 Symbol_table::report_resolve_problem(true,
512 _("multiple definition of '%s'"),
513 to, defined, object);
514 return false;
515
516 case WEAK_DEF * 16 + DEF:
517 // We've seen a weak definition, and now we see a strong
518 // definition. In the original SVR4 linker, this was treated as
519 // a multiple definition error. In the Solaris linker and the
520 // GNU linker, a weak definition followed by a regular
521 // definition causes the weak definition to be overridden. We
522 // are currently compatible with the GNU linker. In the future
523 // we should add a target specific option to change this.
524 // FIXME.
525 return true;
526
527 case DYN_DEF * 16 + DEF:
528 case DYN_WEAK_DEF * 16 + DEF:
529 // We've seen a definition in a dynamic object, and now we see a
530 // definition in a regular object. The definition in the
531 // regular object overrides the definition in the dynamic
532 // object.
533 return true;
534
535 case UNDEF * 16 + DEF:
536 case WEAK_UNDEF * 16 + DEF:
537 case DYN_UNDEF * 16 + DEF:
538 case DYN_WEAK_UNDEF * 16 + DEF:
539 // We've seen an undefined reference, and now we see a
540 // definition. We use the definition.
541 return true;
542
543 case COMMON * 16 + DEF:
544 case WEAK_COMMON * 16 + DEF:
545 case DYN_COMMON * 16 + DEF:
546 case DYN_WEAK_COMMON * 16 + DEF:
547 // We've seen a common symbol and now we see a definition. The
548 // definition overrides.
549 if (parameters->options().warn_common())
550 Symbol_table::report_resolve_problem(false,
551 _("definition of '%s' overriding "
552 "common"),
553 to, defined, object);
554 return true;
555
556 case DEF * 16 + WEAK_DEF:
557 case WEAK_DEF * 16 + WEAK_DEF:
558 // We've seen a definition and now we see a weak definition. We
559 // ignore the new weak definition.
560 return false;
561
562 case DYN_DEF * 16 + WEAK_DEF:
563 case DYN_WEAK_DEF * 16 + WEAK_DEF:
564 // We've seen a dynamic definition and now we see a regular weak
565 // definition. The regular weak definition overrides.
566 return true;
567
568 case UNDEF * 16 + WEAK_DEF:
569 case WEAK_UNDEF * 16 + WEAK_DEF:
570 case DYN_UNDEF * 16 + WEAK_DEF:
571 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
572 // A weak definition of a currently undefined symbol.
573 return true;
574
575 case COMMON * 16 + WEAK_DEF:
576 case WEAK_COMMON * 16 + WEAK_DEF:
577 // A weak definition does not override a common definition.
578 return false;
579
580 case DYN_COMMON * 16 + WEAK_DEF:
581 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
582 // A weak definition does override a definition in a dynamic
583 // object.
584 if (parameters->options().warn_common())
585 Symbol_table::report_resolve_problem(false,
586 _("definition of '%s' overriding "
587 "dynamic common definition"),
588 to, defined, object);
589 return true;
590
591 case DEF * 16 + DYN_DEF:
592 case WEAK_DEF * 16 + DYN_DEF:
593 case DYN_DEF * 16 + DYN_DEF:
594 case DYN_WEAK_DEF * 16 + DYN_DEF:
595 // Ignore a dynamic definition if we already have a definition.
596 return false;
597
598 case UNDEF * 16 + DYN_DEF:
599 case DYN_UNDEF * 16 + DYN_DEF:
600 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
601 // Use a dynamic definition if we have a reference.
602 return true;
603
604 case WEAK_UNDEF * 16 + DYN_DEF:
605 // When overriding a weak undef by a dynamic definition,
606 // we need to remember that the original undef was weak.
607 *adjust_dyndef = true;
608 return true;
609
610 case COMMON * 16 + DYN_DEF:
611 case WEAK_COMMON * 16 + DYN_DEF:
612 case DYN_COMMON * 16 + DYN_DEF:
613 case DYN_WEAK_COMMON * 16 + DYN_DEF:
614 // Ignore a dynamic definition if we already have a common
615 // definition.
616 return false;
617
618 case DEF * 16 + DYN_WEAK_DEF:
619 case WEAK_DEF * 16 + DYN_WEAK_DEF:
620 case DYN_DEF * 16 + DYN_WEAK_DEF:
621 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
622 // Ignore a weak dynamic definition if we already have a
623 // definition.
624 return false;
625
626 case UNDEF * 16 + DYN_WEAK_DEF:
627 // When overriding an undef by a dynamic weak definition,
628 // we need to remember that the original undef was not weak.
629 *adjust_dyndef = true;
630 return true;
631
632 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
633 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
634 // Use a weak dynamic definition if we have a reference.
635 return true;
636
637 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
638 // When overriding a weak undef by a dynamic definition,
639 // we need to remember that the original undef was weak.
640 *adjust_dyndef = true;
641 return true;
642
643 case COMMON * 16 + DYN_WEAK_DEF:
644 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
645 case DYN_COMMON * 16 + DYN_WEAK_DEF:
646 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
647 // Ignore a weak dynamic definition if we already have a common
648 // definition.
649 return false;
650
651 case DEF * 16 + UNDEF:
652 case WEAK_DEF * 16 + UNDEF:
653 case UNDEF * 16 + UNDEF:
654 // A new undefined reference tells us nothing.
655 return false;
656
657 case DYN_DEF * 16 + UNDEF:
658 case DYN_WEAK_DEF * 16 + UNDEF:
659 // For a dynamic def, we need to remember which kind of undef we see.
660 *adjust_dyndef = true;
661 return false;
662
663 case WEAK_UNDEF * 16 + UNDEF:
664 case DYN_UNDEF * 16 + UNDEF:
665 case DYN_WEAK_UNDEF * 16 + UNDEF:
666 // A strong undef overrides a dynamic or weak undef.
667 return true;
668
669 case COMMON * 16 + UNDEF:
670 case WEAK_COMMON * 16 + UNDEF:
671 case DYN_COMMON * 16 + UNDEF:
672 case DYN_WEAK_COMMON * 16 + UNDEF:
673 // A new undefined reference tells us nothing.
674 return false;
675
676 case DEF * 16 + WEAK_UNDEF:
677 case WEAK_DEF * 16 + WEAK_UNDEF:
678 case UNDEF * 16 + WEAK_UNDEF:
679 case WEAK_UNDEF * 16 + WEAK_UNDEF:
680 case DYN_UNDEF * 16 + WEAK_UNDEF:
681 case COMMON * 16 + WEAK_UNDEF:
682 case WEAK_COMMON * 16 + WEAK_UNDEF:
683 case DYN_COMMON * 16 + WEAK_UNDEF:
684 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
685 // A new weak undefined reference tells us nothing unless the
686 // exisiting symbol is a dynamic weak reference.
687 return false;
688
689 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
690 // A new weak reference overrides an existing dynamic weak reference.
691 // This is necessary because a dynamic weak reference remembers
692 // the old binding, which may not be weak. If we keeps the existing
693 // dynamic weak reference, the weakness may be dropped in the output.
694 return true;
695
696 case DYN_DEF * 16 + WEAK_UNDEF:
697 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
698 // For a dynamic def, we need to remember which kind of undef we see.
699 *adjust_dyndef = true;
700 return false;
701
702 case DEF * 16 + DYN_UNDEF:
703 case WEAK_DEF * 16 + DYN_UNDEF:
704 case DYN_DEF * 16 + DYN_UNDEF:
705 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
706 case UNDEF * 16 + DYN_UNDEF:
707 case WEAK_UNDEF * 16 + DYN_UNDEF:
708 case DYN_UNDEF * 16 + DYN_UNDEF:
709 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
710 case COMMON * 16 + DYN_UNDEF:
711 case WEAK_COMMON * 16 + DYN_UNDEF:
712 case DYN_COMMON * 16 + DYN_UNDEF:
713 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
714 // A new dynamic undefined reference tells us nothing.
715 return false;
716
717 case DEF * 16 + DYN_WEAK_UNDEF:
718 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
719 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
720 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
721 case UNDEF * 16 + DYN_WEAK_UNDEF:
722 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
723 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
724 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
725 case COMMON * 16 + DYN_WEAK_UNDEF:
726 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
727 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
728 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
729 // A new weak dynamic undefined reference tells us nothing.
730 return false;
731
732 case DEF * 16 + COMMON:
733 // A common symbol does not override a definition.
734 if (parameters->options().warn_common())
735 Symbol_table::report_resolve_problem(false,
736 _("common '%s' overridden by "
737 "previous definition"),
738 to, defined, object);
739 return false;
740
741 case WEAK_DEF * 16 + COMMON:
742 case DYN_DEF * 16 + COMMON:
743 case DYN_WEAK_DEF * 16 + COMMON:
744 // A common symbol does override a weak definition or a dynamic
745 // definition.
746 return true;
747
748 case UNDEF * 16 + COMMON:
749 case WEAK_UNDEF * 16 + COMMON:
750 case DYN_UNDEF * 16 + COMMON:
751 case DYN_WEAK_UNDEF * 16 + COMMON:
752 // A common symbol is a definition for a reference.
753 return true;
754
755 case COMMON * 16 + COMMON:
756 // Set the size to the maximum.
757 *adjust_common_sizes = true;
758 return false;
759
760 case WEAK_COMMON * 16 + COMMON:
761 // I'm not sure just what a weak common symbol means, but
762 // presumably it can be overridden by a regular common symbol.
763 return true;
764
765 case DYN_COMMON * 16 + COMMON:
766 case DYN_WEAK_COMMON * 16 + COMMON:
767 // Use the real common symbol, but adjust the size if necessary.
768 *adjust_common_sizes = true;
769 return true;
770
771 case DEF * 16 + WEAK_COMMON:
772 case WEAK_DEF * 16 + WEAK_COMMON:
773 case DYN_DEF * 16 + WEAK_COMMON:
774 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
775 // Whatever a weak common symbol is, it won't override a
776 // definition.
777 return false;
778
779 case UNDEF * 16 + WEAK_COMMON:
780 case WEAK_UNDEF * 16 + WEAK_COMMON:
781 case DYN_UNDEF * 16 + WEAK_COMMON:
782 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
783 // A weak common symbol is better than an undefined symbol.
784 return true;
785
786 case COMMON * 16 + WEAK_COMMON:
787 case WEAK_COMMON * 16 + WEAK_COMMON:
788 case DYN_COMMON * 16 + WEAK_COMMON:
789 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
790 // Ignore a weak common symbol in the presence of a real common
791 // symbol.
792 return false;
793
794 case DEF * 16 + DYN_COMMON:
795 case WEAK_DEF * 16 + DYN_COMMON:
796 case DYN_DEF * 16 + DYN_COMMON:
797 case DYN_WEAK_DEF * 16 + DYN_COMMON:
798 // Ignore a dynamic common symbol in the presence of a
799 // definition.
800 return false;
801
802 case UNDEF * 16 + DYN_COMMON:
803 case WEAK_UNDEF * 16 + DYN_COMMON:
804 case DYN_UNDEF * 16 + DYN_COMMON:
805 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
806 // A dynamic common symbol is a definition of sorts.
807 return true;
808
809 case COMMON * 16 + DYN_COMMON:
810 case WEAK_COMMON * 16 + DYN_COMMON:
811 case DYN_COMMON * 16 + DYN_COMMON:
812 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
813 // Set the size to the maximum.
814 *adjust_common_sizes = true;
815 return false;
816
817 case DEF * 16 + DYN_WEAK_COMMON:
818 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
819 case DYN_DEF * 16 + DYN_WEAK_COMMON:
820 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
821 // A common symbol is ignored in the face of a definition.
822 return false;
823
824 case UNDEF * 16 + DYN_WEAK_COMMON:
825 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
826 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
827 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
828 // I guess a weak common symbol is better than a definition.
829 return true;
830
831 case COMMON * 16 + DYN_WEAK_COMMON:
832 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
833 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
834 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
835 // Set the size to the maximum.
836 *adjust_common_sizes = true;
837 return false;
838
839 default:
840 gold_unreachable();
841 }
842 }
843
844 // Issue an error or warning due to symbol resolution. IS_ERROR
845 // indicates an error rather than a warning. MSG is the error
846 // message; it is expected to have a %s for the symbol name. TO is
847 // the existing symbol. DEFINED/OBJECT is where the new symbol was
848 // found.
849
850 // FIXME: We should have better location information here. When the
851 // symbol is defined, we should be able to pull the location from the
852 // debug info if there is any.
853
854 void
report_resolve_problem(bool is_error,const char * msg,const Symbol * to,Defined defined,Object * object)855 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
856 const Symbol* to, Defined defined,
857 Object* object)
858 {
859 std::string demangled(to->demangled_name());
860 size_t len = strlen(msg) + demangled.length() + 10;
861 char* buf = new char[len];
862 snprintf(buf, len, msg, demangled.c_str());
863
864 const char* objname;
865 switch (defined)
866 {
867 case OBJECT:
868 objname = object->name().c_str();
869 break;
870 case COPY:
871 objname = _("COPY reloc");
872 break;
873 case DEFSYM:
874 case UNDEFINED:
875 objname = _("command line");
876 break;
877 case SCRIPT:
878 objname = _("linker script");
879 break;
880 case PREDEFINED:
881 case INCREMENTAL_BASE:
882 objname = _("linker defined");
883 break;
884 default:
885 gold_unreachable();
886 }
887
888 if (is_error)
889 gold_error("%s: %s", objname, buf);
890 else
891 gold_warning("%s: %s", objname, buf);
892
893 delete[] buf;
894
895 if (to->source() == Symbol::FROM_OBJECT)
896 objname = to->object()->name().c_str();
897 else
898 objname = _("command line");
899 gold_info("%s: %s: previous definition here", program_name, objname);
900 }
901
902 // A special case of should_override which is only called for a strong
903 // defined symbol from a regular object file. This is used when
904 // defining special symbols.
905
906 bool
should_override_with_special(const Symbol * to,elfcpp::STT fromtype,Defined defined)907 Symbol_table::should_override_with_special(const Symbol* to,
908 elfcpp::STT fromtype,
909 Defined defined)
910 {
911 bool adjust_common_sizes;
912 bool adjust_dyn_def;
913 unsigned int frombits = global_flag | regular_flag | def_flag;
914 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
915 NULL, &adjust_common_sizes,
916 &adjust_dyn_def);
917 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
918 return ret;
919 }
920
921 // Override symbol base with a special symbol.
922
923 void
override_base_with_special(const Symbol * from)924 Symbol::override_base_with_special(const Symbol* from)
925 {
926 bool same_name = this->name_ == from->name_;
927 gold_assert(same_name || this->has_alias());
928
929 // If we are overriding an undef, remember the original binding.
930 if (this->is_undefined())
931 this->set_undef_binding(this->binding_);
932
933 this->source_ = from->source_;
934 switch (from->source_)
935 {
936 case FROM_OBJECT:
937 this->u_.from_object = from->u_.from_object;
938 break;
939 case IN_OUTPUT_DATA:
940 this->u_.in_output_data = from->u_.in_output_data;
941 break;
942 case IN_OUTPUT_SEGMENT:
943 this->u_.in_output_segment = from->u_.in_output_segment;
944 break;
945 case IS_CONSTANT:
946 case IS_UNDEFINED:
947 break;
948 default:
949 gold_unreachable();
950 break;
951 }
952
953 if (same_name)
954 {
955 // When overriding a versioned symbol with a special symbol, we
956 // may be changing the version. This will happen if we see a
957 // special symbol such as "_end" defined in a shared object with
958 // one version (from a version script), but we want to define it
959 // here with a different version (from a different version
960 // script).
961 this->version_ = from->version_;
962 }
963 this->type_ = from->type_;
964 this->binding_ = from->binding_;
965 this->override_visibility(from->visibility_);
966 this->nonvis_ = from->nonvis_;
967
968 // Special symbols are always considered to be regular symbols.
969 this->in_reg_ = true;
970
971 if (from->needs_dynsym_entry_)
972 this->needs_dynsym_entry_ = true;
973 if (from->needs_dynsym_value_)
974 this->needs_dynsym_value_ = true;
975
976 this->is_predefined_ = from->is_predefined_;
977
978 // We shouldn't see these flags. If we do, we need to handle them
979 // somehow.
980 gold_assert(!from->is_forwarder_);
981 gold_assert(!from->has_plt_offset());
982 gold_assert(!from->has_warning_);
983 gold_assert(!from->is_copied_from_dynobj_);
984 gold_assert(!from->is_forced_local_);
985 }
986
987 // Override a symbol with a special symbol.
988
989 template<int size>
990 void
override_with_special(const Sized_symbol<size> * from)991 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
992 {
993 this->override_base_with_special(from);
994 this->value_ = from->value_;
995 this->symsize_ = from->symsize_;
996 }
997
998 // Override TOSYM with the special symbol FROMSYM. This handles all
999 // aliases of TOSYM.
1000
1001 template<int size>
1002 void
override_with_special(Sized_symbol<size> * tosym,const Sized_symbol<size> * fromsym)1003 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1004 const Sized_symbol<size>* fromsym)
1005 {
1006 tosym->override_with_special(fromsym);
1007 if (tosym->has_alias())
1008 {
1009 Symbol* sym = this->weak_aliases_[tosym];
1010 gold_assert(sym != NULL);
1011 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1012 do
1013 {
1014 ssym->override_with_special(fromsym);
1015 sym = this->weak_aliases_[ssym];
1016 gold_assert(sym != NULL);
1017 ssym = this->get_sized_symbol<size>(sym);
1018 }
1019 while (ssym != tosym);
1020 }
1021 if (tosym->binding() == elfcpp::STB_LOCAL
1022 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1023 || tosym->visibility() == elfcpp::STV_INTERNAL)
1024 && (tosym->binding() == elfcpp::STB_GLOBAL
1025 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1026 || tosym->binding() == elfcpp::STB_WEAK)
1027 && !parameters->options().relocatable()))
1028 this->force_local(tosym);
1029 }
1030
1031 // Instantiate the templates we need. We could use the configure
1032 // script to restrict this to only the ones needed for implemented
1033 // targets.
1034
1035 // We have to instantiate both big and little endian versions because
1036 // these are used by other templates that depends on size only.
1037
1038 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1039 template
1040 void
1041 Symbol_table::resolve<32, false>(
1042 Sized_symbol<32>* to,
1043 const elfcpp::Sym<32, false>& sym,
1044 unsigned int st_shndx,
1045 bool is_ordinary,
1046 unsigned int orig_st_shndx,
1047 Object* object,
1048 const char* version);
1049
1050 template
1051 void
1052 Symbol_table::resolve<32, true>(
1053 Sized_symbol<32>* to,
1054 const elfcpp::Sym<32, true>& sym,
1055 unsigned int st_shndx,
1056 bool is_ordinary,
1057 unsigned int orig_st_shndx,
1058 Object* object,
1059 const char* version);
1060 #endif
1061
1062 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1063 template
1064 void
1065 Symbol_table::resolve<64, false>(
1066 Sized_symbol<64>* to,
1067 const elfcpp::Sym<64, false>& sym,
1068 unsigned int st_shndx,
1069 bool is_ordinary,
1070 unsigned int orig_st_shndx,
1071 Object* object,
1072 const char* version);
1073
1074 template
1075 void
1076 Symbol_table::resolve<64, true>(
1077 Sized_symbol<64>* to,
1078 const elfcpp::Sym<64, true>& sym,
1079 unsigned int st_shndx,
1080 bool is_ordinary,
1081 unsigned int orig_st_shndx,
1082 Object* object,
1083 const char* version);
1084 #endif
1085
1086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1087 template
1088 void
1089 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1090 const Sized_symbol<32>*);
1091 #endif
1092
1093 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1094 template
1095 void
1096 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1097 const Sized_symbol<64>*);
1098 #endif
1099
1100 } // End namespace gold.
1101