1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 //
12 // On AArch64, stack frames are structured as follows:
13 //
14 // The stack grows downward.
15 //
16 // All of the individual frame areas on the frame below are optional, i.e. it's
17 // possible to create a function so that the particular area isn't present
18 // in the frame.
19 //
20 // At function entry, the "frame" looks as follows:
21 //
22 // |                                   | Higher address
23 // |-----------------------------------|
24 // |                                   |
25 // | arguments passed on the stack     |
26 // |                                   |
27 // |-----------------------------------| <- sp
28 // |                                   | Lower address
29 //
30 //
31 // After the prologue has run, the frame has the following general structure.
32 // Note that this doesn't depict the case where a red-zone is used. Also,
33 // technically the last frame area (VLAs) doesn't get created until in the
34 // main function body, after the prologue is run. However, it's depicted here
35 // for completeness.
36 //
37 // |                                   | Higher address
38 // |-----------------------------------|
39 // |                                   |
40 // | arguments passed on the stack     |
41 // |                                   |
42 // |-----------------------------------|
43 // |                                   |
44 // | prev_fp, prev_lr                  |
45 // | (a.k.a. "frame record")           |
46 // |-----------------------------------| <- fp(=x29)
47 // |                                   |
48 // | other callee-saved registers      |
49 // |                                   |
50 // |-----------------------------------|
51 // |.empty.space.to.make.part.below....|
52 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
53 // |.the.standard.16-byte.alignment....|  compile time; if present)
54 // |-----------------------------------|
55 // |                                   |
56 // | local variables of fixed size     |
57 // | including spill slots             |
58 // |-----------------------------------| <- bp(not defined by ABI,
59 // |.variable-sized.local.variables....|       LLVM chooses X19)
60 // |.(VLAs)............................| (size of this area is unknown at
61 // |...................................|  compile time)
62 // |-----------------------------------| <- sp
63 // |                                   | Lower address
64 //
65 //
66 // To access the data in a frame, at-compile time, a constant offset must be
67 // computable from one of the pointers (fp, bp, sp) to access it. The size
68 // of the areas with a dotted background cannot be computed at compile-time
69 // if they are present, making it required to have all three of fp, bp and
70 // sp to be set up to be able to access all contents in the frame areas,
71 // assuming all of the frame areas are non-empty.
72 //
73 // For most functions, some of the frame areas are empty. For those functions,
74 // it may not be necessary to set up fp or bp:
75 // * A base pointer is definitely needed when there are both VLAs and local
76 //   variables with more-than-default alignment requirements.
77 // * A frame pointer is definitely needed when there are local variables with
78 //   more-than-default alignment requirements.
79 //
80 // In some cases when a base pointer is not strictly needed, it is generated
81 // anyway when offsets from the frame pointer to access local variables become
82 // so large that the offset can't be encoded in the immediate fields of loads
83 // or stores.
84 //
85 // FIXME: also explain the redzone concept.
86 // FIXME: also explain the concept of reserved call frames.
87 //
88 //===----------------------------------------------------------------------===//
89 
90 #include "AArch64FrameLowering.h"
91 #include "AArch64InstrInfo.h"
92 #include "AArch64MachineFunctionInfo.h"
93 #include "AArch64Subtarget.h"
94 #include "AArch64TargetMachine.h"
95 #include "llvm/ADT/Statistic.h"
96 #include "llvm/CodeGen/MachineFrameInfo.h"
97 #include "llvm/CodeGen/MachineFunction.h"
98 #include "llvm/CodeGen/MachineInstrBuilder.h"
99 #include "llvm/CodeGen/MachineModuleInfo.h"
100 #include "llvm/CodeGen/MachineRegisterInfo.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/IR/DataLayout.h"
103 #include "llvm/IR/Function.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/raw_ostream.h"
107 
108 using namespace llvm;
109 
110 #define DEBUG_TYPE "frame-info"
111 
112 static cl::opt<bool> EnableRedZone("aarch64-redzone",
113                                    cl::desc("enable use of redzone on AArch64"),
114                                    cl::init(false), cl::Hidden);
115 
116 STATISTIC(NumRedZoneFunctions, "Number of functions using red zone");
117 
canUseRedZone(const MachineFunction & MF) const118 bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const {
119   if (!EnableRedZone)
120     return false;
121   // Don't use the red zone if the function explicitly asks us not to.
122   // This is typically used for kernel code.
123   if (MF.getFunction()->hasFnAttribute(Attribute::NoRedZone))
124     return false;
125 
126   const MachineFrameInfo *MFI = MF.getFrameInfo();
127   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
128   unsigned NumBytes = AFI->getLocalStackSize();
129 
130   // Note: currently hasFP() is always true for hasCalls(), but that's an
131   // implementation detail of the current code, not a strict requirement,
132   // so stay safe here and check both.
133   if (MFI->hasCalls() || hasFP(MF) || NumBytes > 128)
134     return false;
135   return true;
136 }
137 
138 /// hasFP - Return true if the specified function should have a dedicated frame
139 /// pointer register.
hasFP(const MachineFunction & MF) const140 bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const {
141   const MachineFrameInfo *MFI = MF.getFrameInfo();
142   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
143   return (MFI->hasCalls() || MFI->hasVarSizedObjects() ||
144           MFI->isFrameAddressTaken() || MFI->hasStackMap() ||
145           MFI->hasPatchPoint() || RegInfo->needsStackRealignment(MF));
146 }
147 
148 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
149 /// not required, we reserve argument space for call sites in the function
150 /// immediately on entry to the current function.  This eliminates the need for
151 /// add/sub sp brackets around call sites.  Returns true if the call frame is
152 /// included as part of the stack frame.
153 bool
hasReservedCallFrame(const MachineFunction & MF) const154 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
155   return !MF.getFrameInfo()->hasVarSizedObjects();
156 }
157 
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const158 void AArch64FrameLowering::eliminateCallFramePseudoInstr(
159     MachineFunction &MF, MachineBasicBlock &MBB,
160     MachineBasicBlock::iterator I) const {
161   const AArch64InstrInfo *TII =
162       static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
163   DebugLoc DL = I->getDebugLoc();
164   unsigned Opc = I->getOpcode();
165   bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
166   uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
167 
168   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
169   if (!TFI->hasReservedCallFrame(MF)) {
170     unsigned Align = getStackAlignment();
171 
172     int64_t Amount = I->getOperand(0).getImm();
173     Amount = RoundUpToAlignment(Amount, Align);
174     if (!IsDestroy)
175       Amount = -Amount;
176 
177     // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
178     // doesn't have to pop anything), then the first operand will be zero too so
179     // this adjustment is a no-op.
180     if (CalleePopAmount == 0) {
181       // FIXME: in-function stack adjustment for calls is limited to 24-bits
182       // because there's no guaranteed temporary register available.
183       //
184       // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
185       // 1) For offset <= 12-bit, we use LSL #0
186       // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
187       // LSL #0, and the other uses LSL #12.
188       //
189       // Mostly call frames will be allocated at the start of a function so
190       // this is OK, but it is a limitation that needs dealing with.
191       assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
192       emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, Amount, TII);
193     }
194   } else if (CalleePopAmount != 0) {
195     // If the calling convention demands that the callee pops arguments from the
196     // stack, we want to add it back if we have a reserved call frame.
197     assert(CalleePopAmount < 0xffffff && "call frame too large");
198     emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, -CalleePopAmount,
199                     TII);
200   }
201   MBB.erase(I);
202 }
203 
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned FramePtr) const204 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
205     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
206     unsigned FramePtr) const {
207   MachineFunction &MF = *MBB.getParent();
208   MachineFrameInfo *MFI = MF.getFrameInfo();
209   MachineModuleInfo &MMI = MF.getMMI();
210   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
211   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
212   DebugLoc DL = MBB.findDebugLoc(MBBI);
213 
214   // Add callee saved registers to move list.
215   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
216   if (CSI.empty())
217     return;
218 
219   const DataLayout &TD = MF.getDataLayout();
220   bool HasFP = hasFP(MF);
221 
222   // Calculate amount of bytes used for return address storing.
223   int stackGrowth = -TD.getPointerSize(0);
224 
225   // Calculate offsets.
226   int64_t saveAreaOffset = (HasFP ? 2 : 1) * stackGrowth;
227   unsigned TotalSkipped = 0;
228   for (const auto &Info : CSI) {
229     unsigned Reg = Info.getReg();
230     int64_t Offset = MFI->getObjectOffset(Info.getFrameIdx()) -
231                      getOffsetOfLocalArea() + saveAreaOffset;
232 
233     // Don't output a new CFI directive if we're re-saving the frame pointer or
234     // link register. This happens when the PrologEpilogInserter has inserted an
235     // extra "STP" of the frame pointer and link register -- the "emitPrologue"
236     // method automatically generates the directives when frame pointers are
237     // used. If we generate CFI directives for the extra "STP"s, the linker will
238     // lose track of the correct values for the frame pointer and link register.
239     if (HasFP && (FramePtr == Reg || Reg == AArch64::LR)) {
240       TotalSkipped += stackGrowth;
241       continue;
242     }
243 
244     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
245     unsigned CFIIndex = MMI.addFrameInst(MCCFIInstruction::createOffset(
246         nullptr, DwarfReg, Offset - TotalSkipped));
247     BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
248         .addCFIIndex(CFIIndex)
249         .setMIFlags(MachineInstr::FrameSetup);
250   }
251 }
252 
253 /// Get FPOffset by analyzing the first instruction.
getFPOffsetInPrologue(MachineInstr * MBBI)254 static int getFPOffsetInPrologue(MachineInstr *MBBI) {
255   // First instruction must a) allocate the stack  and b) have an immediate
256   // that is a multiple of -2.
257   assert(((MBBI->getOpcode() == AArch64::STPXpre ||
258            MBBI->getOpcode() == AArch64::STPDpre) &&
259           MBBI->getOperand(3).getReg() == AArch64::SP &&
260           MBBI->getOperand(4).getImm() < 0 &&
261           (MBBI->getOperand(4).getImm() & 1) == 0));
262 
263   // Frame pointer is fp = sp - 16. Since the  STPXpre subtracts the space
264   // required for the callee saved register area we get the frame pointer
265   // by addding that offset - 16 = -getImm()*8 - 2*8 = -(getImm() + 2) * 8.
266   int FPOffset = -(MBBI->getOperand(4).getImm() + 2) * 8;
267   assert(FPOffset >= 0 && "Bad Framepointer Offset");
268   return FPOffset;
269 }
270 
isCSSave(MachineInstr * MBBI)271 static bool isCSSave(MachineInstr *MBBI) {
272   return MBBI->getOpcode() == AArch64::STPXi ||
273          MBBI->getOpcode() == AArch64::STPDi ||
274          MBBI->getOpcode() == AArch64::STPXpre ||
275          MBBI->getOpcode() == AArch64::STPDpre;
276 }
277 
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const278 void AArch64FrameLowering::emitPrologue(MachineFunction &MF,
279                                         MachineBasicBlock &MBB) const {
280   MachineBasicBlock::iterator MBBI = MBB.begin();
281   const MachineFrameInfo *MFI = MF.getFrameInfo();
282   const Function *Fn = MF.getFunction();
283   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
284   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
285   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
286   MachineModuleInfo &MMI = MF.getMMI();
287   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
288   bool needsFrameMoves = MMI.hasDebugInfo() || Fn->needsUnwindTableEntry();
289   bool HasFP = hasFP(MF);
290 
291   // Debug location must be unknown since the first debug location is used
292   // to determine the end of the prologue.
293   DebugLoc DL;
294 
295   // All calls are tail calls in GHC calling conv, and functions have no
296   // prologue/epilogue.
297   if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
298     return;
299 
300   int NumBytes = (int)MFI->getStackSize();
301   if (!AFI->hasStackFrame()) {
302     assert(!HasFP && "unexpected function without stack frame but with FP");
303 
304     // All of the stack allocation is for locals.
305     AFI->setLocalStackSize(NumBytes);
306 
307     // Label used to tie together the PROLOG_LABEL and the MachineMoves.
308     MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
309 
310     // REDZONE: If the stack size is less than 128 bytes, we don't need
311     // to actually allocate.
312     if (NumBytes && !canUseRedZone(MF)) {
313       emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, -NumBytes, TII,
314                       MachineInstr::FrameSetup);
315 
316       // Encode the stack size of the leaf function.
317       unsigned CFIIndex = MMI.addFrameInst(
318           MCCFIInstruction::createDefCfaOffset(FrameLabel, -NumBytes));
319       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
320           .addCFIIndex(CFIIndex)
321           .setMIFlags(MachineInstr::FrameSetup);
322     } else if (NumBytes) {
323       ++NumRedZoneFunctions;
324     }
325 
326     return;
327   }
328 
329   // Only set up FP if we actually need to.
330   int FPOffset = 0;
331   if (HasFP)
332     FPOffset = getFPOffsetInPrologue(MBBI);
333 
334   // Move past the saves of the callee-saved registers.
335   while (isCSSave(MBBI)) {
336     ++MBBI;
337     NumBytes -= 16;
338   }
339   assert(NumBytes >= 0 && "Negative stack allocation size!?");
340   if (HasFP) {
341     // Issue    sub fp, sp, FPOffset or
342     //          mov fp,sp          when FPOffset is zero.
343     // Note: All stores of callee-saved registers are marked as "FrameSetup".
344     // This code marks the instruction(s) that set the FP also.
345     emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, FPOffset, TII,
346                     MachineInstr::FrameSetup);
347   }
348 
349   // All of the remaining stack allocations are for locals.
350   AFI->setLocalStackSize(NumBytes);
351 
352   // Allocate space for the rest of the frame.
353 
354   const unsigned Alignment = MFI->getMaxAlignment();
355   const bool NeedsRealignment = RegInfo->needsStackRealignment(MF);
356   unsigned scratchSPReg = AArch64::SP;
357   if (NumBytes && NeedsRealignment) {
358     // Use the first callee-saved register as a scratch register.
359     scratchSPReg = AArch64::X9;
360   }
361 
362   // If we're a leaf function, try using the red zone.
363   if (NumBytes && !canUseRedZone(MF))
364     // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
365     // the correct value here, as NumBytes also includes padding bytes,
366     // which shouldn't be counted here.
367     emitFrameOffset(MBB, MBBI, DL, scratchSPReg, AArch64::SP, -NumBytes, TII,
368                     MachineInstr::FrameSetup);
369 
370   if (NumBytes && NeedsRealignment) {
371     const unsigned NrBitsToZero = countTrailingZeros(Alignment);
372     assert(NrBitsToZero > 1);
373     assert(scratchSPReg != AArch64::SP);
374 
375     // SUB X9, SP, NumBytes
376     //   -- X9 is temporary register, so shouldn't contain any live data here,
377     //   -- free to use. This is already produced by emitFrameOffset above.
378     // AND SP, X9, 0b11111...0000
379     // The logical immediates have a non-trivial encoding. The following
380     // formula computes the encoded immediate with all ones but
381     // NrBitsToZero zero bits as least significant bits.
382     uint32_t andMaskEncoded =
383         (1                   <<12) // = N
384       | ((64-NrBitsToZero)   << 6) // immr
385       | ((64-NrBitsToZero-1) << 0) // imms
386       ;
387     BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP)
388       .addReg(scratchSPReg, RegState::Kill)
389       .addImm(andMaskEncoded);
390   }
391 
392   // If we need a base pointer, set it up here. It's whatever the value of the
393   // stack pointer is at this point. Any variable size objects will be allocated
394   // after this, so we can still use the base pointer to reference locals.
395   //
396   // FIXME: Clarify FrameSetup flags here.
397   // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
398   // needed.
399   if (RegInfo->hasBasePointer(MF)) {
400     TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP,
401                      false);
402   }
403 
404   if (needsFrameMoves) {
405     const DataLayout &TD = MF.getDataLayout();
406     const int StackGrowth = -TD.getPointerSize(0);
407     unsigned FramePtr = RegInfo->getFrameRegister(MF);
408     // An example of the prologue:
409     //
410     //     .globl __foo
411     //     .align 2
412     //  __foo:
413     // Ltmp0:
414     //     .cfi_startproc
415     //     .cfi_personality 155, ___gxx_personality_v0
416     // Leh_func_begin:
417     //     .cfi_lsda 16, Lexception33
418     //
419     //     stp  xa,bx, [sp, -#offset]!
420     //     ...
421     //     stp  x28, x27, [sp, #offset-32]
422     //     stp  fp, lr, [sp, #offset-16]
423     //     add  fp, sp, #offset - 16
424     //     sub  sp, sp, #1360
425     //
426     // The Stack:
427     //       +-------------------------------------------+
428     // 10000 | ........ | ........ | ........ | ........ |
429     // 10004 | ........ | ........ | ........ | ........ |
430     //       +-------------------------------------------+
431     // 10008 | ........ | ........ | ........ | ........ |
432     // 1000c | ........ | ........ | ........ | ........ |
433     //       +===========================================+
434     // 10010 |                X28 Register               |
435     // 10014 |                X28 Register               |
436     //       +-------------------------------------------+
437     // 10018 |                X27 Register               |
438     // 1001c |                X27 Register               |
439     //       +===========================================+
440     // 10020 |                Frame Pointer              |
441     // 10024 |                Frame Pointer              |
442     //       +-------------------------------------------+
443     // 10028 |                Link Register              |
444     // 1002c |                Link Register              |
445     //       +===========================================+
446     // 10030 | ........ | ........ | ........ | ........ |
447     // 10034 | ........ | ........ | ........ | ........ |
448     //       +-------------------------------------------+
449     // 10038 | ........ | ........ | ........ | ........ |
450     // 1003c | ........ | ........ | ........ | ........ |
451     //       +-------------------------------------------+
452     //
453     //     [sp] = 10030        ::    >>initial value<<
454     //     sp = 10020          ::  stp fp, lr, [sp, #-16]!
455     //     fp = sp == 10020    ::  mov fp, sp
456     //     [sp] == 10020       ::  stp x28, x27, [sp, #-16]!
457     //     sp == 10010         ::    >>final value<<
458     //
459     // The frame pointer (w29) points to address 10020. If we use an offset of
460     // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
461     // for w27, and -32 for w28:
462     //
463     //  Ltmp1:
464     //     .cfi_def_cfa w29, 16
465     //  Ltmp2:
466     //     .cfi_offset w30, -8
467     //  Ltmp3:
468     //     .cfi_offset w29, -16
469     //  Ltmp4:
470     //     .cfi_offset w27, -24
471     //  Ltmp5:
472     //     .cfi_offset w28, -32
473 
474     if (HasFP) {
475       // Define the current CFA rule to use the provided FP.
476       unsigned Reg = RegInfo->getDwarfRegNum(FramePtr, true);
477       unsigned CFIIndex = MMI.addFrameInst(
478           MCCFIInstruction::createDefCfa(nullptr, Reg, 2 * StackGrowth));
479       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
480           .addCFIIndex(CFIIndex)
481           .setMIFlags(MachineInstr::FrameSetup);
482 
483       // Record the location of the stored LR
484       unsigned LR = RegInfo->getDwarfRegNum(AArch64::LR, true);
485       CFIIndex = MMI.addFrameInst(
486           MCCFIInstruction::createOffset(nullptr, LR, StackGrowth));
487       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
488           .addCFIIndex(CFIIndex)
489           .setMIFlags(MachineInstr::FrameSetup);
490 
491       // Record the location of the stored FP
492       CFIIndex = MMI.addFrameInst(
493           MCCFIInstruction::createOffset(nullptr, Reg, 2 * StackGrowth));
494       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
495           .addCFIIndex(CFIIndex)
496           .setMIFlags(MachineInstr::FrameSetup);
497     } else {
498       // Encode the stack size of the leaf function.
499       unsigned CFIIndex = MMI.addFrameInst(
500           MCCFIInstruction::createDefCfaOffset(nullptr, -MFI->getStackSize()));
501       BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION))
502           .addCFIIndex(CFIIndex)
503           .setMIFlags(MachineInstr::FrameSetup);
504     }
505 
506     // Now emit the moves for whatever callee saved regs we have.
507     emitCalleeSavedFrameMoves(MBB, MBBI, FramePtr);
508   }
509 }
510 
isCalleeSavedRegister(unsigned Reg,const MCPhysReg * CSRegs)511 static bool isCalleeSavedRegister(unsigned Reg, const MCPhysReg *CSRegs) {
512   for (unsigned i = 0; CSRegs[i]; ++i)
513     if (Reg == CSRegs[i])
514       return true;
515   return false;
516 }
517 
518 /// Checks whether the given instruction restores callee save registers
519 /// and if so returns how many.
getNumCSRestores(MachineInstr & MI,const MCPhysReg * CSRegs)520 static unsigned getNumCSRestores(MachineInstr &MI, const MCPhysReg *CSRegs) {
521   unsigned RtIdx = 0;
522   switch (MI.getOpcode()) {
523   case AArch64::LDPXpost:
524   case AArch64::LDPDpost:
525     RtIdx = 1;
526     // FALLTHROUGH
527   case AArch64::LDPXi:
528   case AArch64::LDPDi:
529     if (!isCalleeSavedRegister(MI.getOperand(RtIdx).getReg(), CSRegs) ||
530         !isCalleeSavedRegister(MI.getOperand(RtIdx + 1).getReg(), CSRegs) ||
531         MI.getOperand(RtIdx + 2).getReg() != AArch64::SP)
532       return 0;
533     return 2;
534   }
535   return 0;
536 }
537 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const538 void AArch64FrameLowering::emitEpilogue(MachineFunction &MF,
539                                         MachineBasicBlock &MBB) const {
540   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
541   MachineFrameInfo *MFI = MF.getFrameInfo();
542   const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
543   const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
544   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
545   DebugLoc DL;
546   bool IsTailCallReturn = false;
547   if (MBB.end() != MBBI) {
548     DL = MBBI->getDebugLoc();
549     unsigned RetOpcode = MBBI->getOpcode();
550     IsTailCallReturn = RetOpcode == AArch64::TCRETURNdi ||
551       RetOpcode == AArch64::TCRETURNri;
552   }
553   int NumBytes = MFI->getStackSize();
554   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
555 
556   // All calls are tail calls in GHC calling conv, and functions have no
557   // prologue/epilogue.
558   if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
559     return;
560 
561   // Initial and residual are named for consistency with the prologue. Note that
562   // in the epilogue, the residual adjustment is executed first.
563   uint64_t ArgumentPopSize = 0;
564   if (IsTailCallReturn) {
565     MachineOperand &StackAdjust = MBBI->getOperand(1);
566 
567     // For a tail-call in a callee-pops-arguments environment, some or all of
568     // the stack may actually be in use for the call's arguments, this is
569     // calculated during LowerCall and consumed here...
570     ArgumentPopSize = StackAdjust.getImm();
571   } else {
572     // ... otherwise the amount to pop is *all* of the argument space,
573     // conveniently stored in the MachineFunctionInfo by
574     // LowerFormalArguments. This will, of course, be zero for the C calling
575     // convention.
576     ArgumentPopSize = AFI->getArgumentStackToRestore();
577   }
578 
579   // The stack frame should be like below,
580   //
581   //      ----------------------                     ---
582   //      |                    |                      |
583   //      | BytesInStackArgArea|              CalleeArgStackSize
584   //      | (NumReusableBytes) |                (of tail call)
585   //      |                    |                     ---
586   //      |                    |                      |
587   //      ---------------------|        ---           |
588   //      |                    |         |            |
589   //      |   CalleeSavedReg   |         |            |
590   //      | (NumRestores * 8)  |         |            |
591   //      |                    |         |            |
592   //      ---------------------|         |         NumBytes
593   //      |                    |     StackSize  (StackAdjustUp)
594   //      |   LocalStackSize   |         |            |
595   //      | (covering callee   |         |            |
596   //      |       args)        |         |            |
597   //      |                    |         |            |
598   //      ----------------------        ---          ---
599   //
600   // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
601   //             = StackSize + ArgumentPopSize
602   //
603   // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
604   // it as the 2nd argument of AArch64ISD::TC_RETURN.
605   NumBytes += ArgumentPopSize;
606 
607   unsigned NumRestores = 0;
608   // Move past the restores of the callee-saved registers.
609   MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator();
610   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
611   MachineBasicBlock::iterator Begin = MBB.begin();
612   while (LastPopI != Begin) {
613     --LastPopI;
614     unsigned Restores = getNumCSRestores(*LastPopI, CSRegs);
615     NumRestores += Restores;
616     if (Restores == 0) {
617       ++LastPopI;
618       break;
619     }
620   }
621   NumBytes -= NumRestores * 8;
622   assert(NumBytes >= 0 && "Negative stack allocation size!?");
623 
624   if (!hasFP(MF)) {
625     // If this was a redzone leaf function, we don't need to restore the
626     // stack pointer.
627     if (!canUseRedZone(MF))
628       emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, NumBytes,
629                       TII);
630     return;
631   }
632 
633   // Restore the original stack pointer.
634   // FIXME: Rather than doing the math here, we should instead just use
635   // non-post-indexed loads for the restores if we aren't actually going to
636   // be able to save any instructions.
637   if (NumBytes || MFI->hasVarSizedObjects())
638     emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::FP,
639                     -(NumRestores - 2) * 8, TII, MachineInstr::NoFlags);
640 }
641 
642 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
643 /// debug info.  It's the same as what we use for resolving the code-gen
644 /// references for now.  FIXME: This can go wrong when references are
645 /// SP-relative and simple call frames aren't used.
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const646 int AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF,
647                                                  int FI,
648                                                  unsigned &FrameReg) const {
649   return resolveFrameIndexReference(MF, FI, FrameReg);
650 }
651 
resolveFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg,bool PreferFP) const652 int AArch64FrameLowering::resolveFrameIndexReference(const MachineFunction &MF,
653                                                      int FI, unsigned &FrameReg,
654                                                      bool PreferFP) const {
655   const MachineFrameInfo *MFI = MF.getFrameInfo();
656   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
657       MF.getSubtarget().getRegisterInfo());
658   const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
659   int FPOffset = MFI->getObjectOffset(FI) + 16;
660   int Offset = MFI->getObjectOffset(FI) + MFI->getStackSize();
661   bool isFixed = MFI->isFixedObjectIndex(FI);
662 
663   // Use frame pointer to reference fixed objects. Use it for locals if
664   // there are VLAs or a dynamically realigned SP (and thus the SP isn't
665   // reliable as a base). Make sure useFPForScavengingIndex() does the
666   // right thing for the emergency spill slot.
667   bool UseFP = false;
668   if (AFI->hasStackFrame()) {
669     // Note: Keeping the following as multiple 'if' statements rather than
670     // merging to a single expression for readability.
671     //
672     // Argument access should always use the FP.
673     if (isFixed) {
674       UseFP = hasFP(MF);
675     } else if (hasFP(MF) && !RegInfo->hasBasePointer(MF) &&
676                !RegInfo->needsStackRealignment(MF)) {
677       // Use SP or FP, whichever gives us the best chance of the offset
678       // being in range for direct access. If the FPOffset is positive,
679       // that'll always be best, as the SP will be even further away.
680       // If the FPOffset is negative, we have to keep in mind that the
681       // available offset range for negative offsets is smaller than for
682       // positive ones. If we have variable sized objects, we're stuck with
683       // using the FP regardless, though, as the SP offset is unknown
684       // and we don't have a base pointer available. If an offset is
685       // available via the FP and the SP, use whichever is closest.
686       if (PreferFP || MFI->hasVarSizedObjects() || FPOffset >= 0 ||
687           (FPOffset >= -256 && Offset > -FPOffset))
688         UseFP = true;
689     }
690   }
691 
692   assert((isFixed || !RegInfo->needsStackRealignment(MF) || !UseFP) &&
693          "In the presence of dynamic stack pointer realignment, "
694          "non-argument objects cannot be accessed through the frame pointer");
695 
696   if (UseFP) {
697     FrameReg = RegInfo->getFrameRegister(MF);
698     return FPOffset;
699   }
700 
701   // Use the base pointer if we have one.
702   if (RegInfo->hasBasePointer(MF))
703     FrameReg = RegInfo->getBaseRegister();
704   else {
705     FrameReg = AArch64::SP;
706     // If we're using the red zone for this function, the SP won't actually
707     // be adjusted, so the offsets will be negative. They're also all
708     // within range of the signed 9-bit immediate instructions.
709     if (canUseRedZone(MF))
710       Offset -= AFI->getLocalStackSize();
711   }
712 
713   return Offset;
714 }
715 
getPrologueDeath(MachineFunction & MF,unsigned Reg)716 static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
717   if (Reg != AArch64::LR)
718     return getKillRegState(true);
719 
720   // LR maybe referred to later by an @llvm.returnaddress intrinsic.
721   bool LRLiveIn = MF.getRegInfo().isLiveIn(AArch64::LR);
722   bool LRKill = !(LRLiveIn && MF.getFrameInfo()->isReturnAddressTaken());
723   return getKillRegState(LRKill);
724 }
725 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const726 bool AArch64FrameLowering::spillCalleeSavedRegisters(
727     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
728     const std::vector<CalleeSavedInfo> &CSI,
729     const TargetRegisterInfo *TRI) const {
730   MachineFunction &MF = *MBB.getParent();
731   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
732   unsigned Count = CSI.size();
733   DebugLoc DL;
734   assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
735 
736   for (unsigned i = 0; i < Count; i += 2) {
737     unsigned idx = Count - i - 2;
738     unsigned Reg1 = CSI[idx].getReg();
739     unsigned Reg2 = CSI[idx + 1].getReg();
740     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
741     // list to come in sorted by frame index so that we can issue the store
742     // pair instructions directly. Assert if we see anything otherwise.
743     //
744     // The order of the registers in the list is controlled by
745     // getCalleeSavedRegs(), so they will always be in-order, as well.
746     assert(CSI[idx].getFrameIdx() + 1 == CSI[idx + 1].getFrameIdx() &&
747            "Out of order callee saved regs!");
748     unsigned StrOpc;
749     assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
750     assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
751     // Issue sequence of non-sp increment and pi sp spills for cs regs. The
752     // first spill is a pre-increment that allocates the stack.
753     // For example:
754     //    stp     x22, x21, [sp, #-48]!   // addImm(-6)
755     //    stp     x20, x19, [sp, #16]    // addImm(+2)
756     //    stp     fp, lr, [sp, #32]      // addImm(+4)
757     // Rationale: This sequence saves uop updates compared to a sequence of
758     // pre-increment spills like stp xi,xj,[sp,#-16]!
759     // Note: Similar rational and sequence for restores in epilog.
760     if (AArch64::GPR64RegClass.contains(Reg1)) {
761       assert(AArch64::GPR64RegClass.contains(Reg2) &&
762              "Expected GPR64 callee-saved register pair!");
763       // For first spill use pre-increment store.
764       if (i == 0)
765         StrOpc = AArch64::STPXpre;
766       else
767         StrOpc = AArch64::STPXi;
768     } else if (AArch64::FPR64RegClass.contains(Reg1)) {
769       assert(AArch64::FPR64RegClass.contains(Reg2) &&
770              "Expected FPR64 callee-saved register pair!");
771       // For first spill use pre-increment store.
772       if (i == 0)
773         StrOpc = AArch64::STPDpre;
774       else
775         StrOpc = AArch64::STPDi;
776     } else
777       llvm_unreachable("Unexpected callee saved register!");
778     DEBUG(dbgs() << "CSR spill: (" << TRI->getName(Reg1) << ", "
779                  << TRI->getName(Reg2) << ") -> fi#(" << CSI[idx].getFrameIdx()
780                  << ", " << CSI[idx + 1].getFrameIdx() << ")\n");
781     // Compute offset: i = 0 => offset = -Count;
782     //                 i = 2 => offset = -(Count - 2) + Count = 2 = i; etc.
783     const int Offset = (i == 0) ? -Count : i;
784     assert((Offset >= -64 && Offset <= 63) &&
785            "Offset out of bounds for STP immediate");
786     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
787     if (StrOpc == AArch64::STPDpre || StrOpc == AArch64::STPXpre)
788       MIB.addReg(AArch64::SP, RegState::Define);
789 
790     MBB.addLiveIn(Reg1);
791     MBB.addLiveIn(Reg2);
792     MIB.addReg(Reg2, getPrologueDeath(MF, Reg2))
793         .addReg(Reg1, getPrologueDeath(MF, Reg1))
794         .addReg(AArch64::SP)
795         .addImm(Offset) // [sp, #offset * 8], where factor * 8 is implicit
796         .setMIFlag(MachineInstr::FrameSetup);
797   }
798   return true;
799 }
800 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const801 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
802     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
803     const std::vector<CalleeSavedInfo> &CSI,
804     const TargetRegisterInfo *TRI) const {
805   MachineFunction &MF = *MBB.getParent();
806   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
807   unsigned Count = CSI.size();
808   DebugLoc DL;
809   assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
810 
811   if (MI != MBB.end())
812     DL = MI->getDebugLoc();
813 
814   for (unsigned i = 0; i < Count; i += 2) {
815     unsigned Reg1 = CSI[i].getReg();
816     unsigned Reg2 = CSI[i + 1].getReg();
817     // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
818     // list to come in sorted by frame index so that we can issue the store
819     // pair instructions directly. Assert if we see anything otherwise.
820     assert(CSI[i].getFrameIdx() + 1 == CSI[i + 1].getFrameIdx() &&
821            "Out of order callee saved regs!");
822     // Issue sequence of non-sp increment and sp-pi restores for cs regs. Only
823     // the last load is sp-pi post-increment and de-allocates the stack:
824     // For example:
825     //    ldp     fp, lr, [sp, #32]       // addImm(+4)
826     //    ldp     x20, x19, [sp, #16]     // addImm(+2)
827     //    ldp     x22, x21, [sp], #48     // addImm(+6)
828     // Note: see comment in spillCalleeSavedRegisters()
829     unsigned LdrOpc;
830 
831     assert((Count & 1) == 0 && "Odd number of callee-saved regs to spill!");
832     assert((i & 1) == 0 && "Odd index for callee-saved reg spill!");
833     if (AArch64::GPR64RegClass.contains(Reg1)) {
834       assert(AArch64::GPR64RegClass.contains(Reg2) &&
835              "Expected GPR64 callee-saved register pair!");
836       if (i == Count - 2)
837         LdrOpc = AArch64::LDPXpost;
838       else
839         LdrOpc = AArch64::LDPXi;
840     } else if (AArch64::FPR64RegClass.contains(Reg1)) {
841       assert(AArch64::FPR64RegClass.contains(Reg2) &&
842              "Expected FPR64 callee-saved register pair!");
843       if (i == Count - 2)
844         LdrOpc = AArch64::LDPDpost;
845       else
846         LdrOpc = AArch64::LDPDi;
847     } else
848       llvm_unreachable("Unexpected callee saved register!");
849     DEBUG(dbgs() << "CSR restore: (" << TRI->getName(Reg1) << ", "
850                  << TRI->getName(Reg2) << ") -> fi#(" << CSI[i].getFrameIdx()
851                  << ", " << CSI[i + 1].getFrameIdx() << ")\n");
852 
853     // Compute offset: i = 0 => offset = Count - 2; i = 2 => offset = Count - 4;
854     // etc.
855     const int Offset = (i == Count - 2) ? Count : Count - i - 2;
856     assert((Offset >= -64 && Offset <= 63) &&
857            "Offset out of bounds for LDP immediate");
858     MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdrOpc));
859     if (LdrOpc == AArch64::LDPXpost || LdrOpc == AArch64::LDPDpost)
860       MIB.addReg(AArch64::SP, RegState::Define);
861 
862     MIB.addReg(Reg2, getDefRegState(true))
863         .addReg(Reg1, getDefRegState(true))
864         .addReg(AArch64::SP)
865         .addImm(Offset); // [sp], #offset * 8  or [sp, #offset * 8]
866                          // where the factor * 8 is implicit
867   }
868   return true;
869 }
870 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const871 void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF,
872                                                 BitVector &SavedRegs,
873                                                 RegScavenger *RS) const {
874   // All calls are tail calls in GHC calling conv, and functions have no
875   // prologue/epilogue.
876   if (MF.getFunction()->getCallingConv() == CallingConv::GHC)
877     return;
878 
879   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
880   const AArch64RegisterInfo *RegInfo = static_cast<const AArch64RegisterInfo *>(
881       MF.getSubtarget().getRegisterInfo());
882   AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
883   SmallVector<unsigned, 4> UnspilledCSGPRs;
884   SmallVector<unsigned, 4> UnspilledCSFPRs;
885 
886   // The frame record needs to be created by saving the appropriate registers
887   if (hasFP(MF)) {
888     SavedRegs.set(AArch64::FP);
889     SavedRegs.set(AArch64::LR);
890   }
891 
892   // Spill the BasePtr if it's used. Do this first thing so that the
893   // getCalleeSavedRegs() below will get the right answer.
894   if (RegInfo->hasBasePointer(MF))
895     SavedRegs.set(RegInfo->getBaseRegister());
896 
897   if (RegInfo->needsStackRealignment(MF) && !RegInfo->hasBasePointer(MF))
898     SavedRegs.set(AArch64::X9);
899 
900   // If any callee-saved registers are used, the frame cannot be eliminated.
901   unsigned NumGPRSpilled = 0;
902   unsigned NumFPRSpilled = 0;
903   bool ExtraCSSpill = false;
904   bool CanEliminateFrame = true;
905   DEBUG(dbgs() << "*** determineCalleeSaves\nUsed CSRs:");
906   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
907 
908   // Check pairs of consecutive callee-saved registers.
909   for (unsigned i = 0; CSRegs[i]; i += 2) {
910     assert(CSRegs[i + 1] && "Odd number of callee-saved registers!");
911 
912     const unsigned OddReg = CSRegs[i];
913     const unsigned EvenReg = CSRegs[i + 1];
914     assert((AArch64::GPR64RegClass.contains(OddReg) &&
915             AArch64::GPR64RegClass.contains(EvenReg)) ^
916                (AArch64::FPR64RegClass.contains(OddReg) &&
917                 AArch64::FPR64RegClass.contains(EvenReg)) &&
918            "Register class mismatch!");
919 
920     const bool OddRegUsed = SavedRegs.test(OddReg);
921     const bool EvenRegUsed = SavedRegs.test(EvenReg);
922 
923     // Early exit if none of the registers in the register pair is actually
924     // used.
925     if (!OddRegUsed && !EvenRegUsed) {
926       if (AArch64::GPR64RegClass.contains(OddReg)) {
927         UnspilledCSGPRs.push_back(OddReg);
928         UnspilledCSGPRs.push_back(EvenReg);
929       } else {
930         UnspilledCSFPRs.push_back(OddReg);
931         UnspilledCSFPRs.push_back(EvenReg);
932       }
933       continue;
934     }
935 
936     unsigned Reg = AArch64::NoRegister;
937     // If only one of the registers of the register pair is used, make sure to
938     // mark the other one as used as well.
939     if (OddRegUsed ^ EvenRegUsed) {
940       // Find out which register is the additional spill.
941       Reg = OddRegUsed ? EvenReg : OddReg;
942       SavedRegs.set(Reg);
943     }
944 
945     DEBUG(dbgs() << ' ' << PrintReg(OddReg, RegInfo));
946     DEBUG(dbgs() << ' ' << PrintReg(EvenReg, RegInfo));
947 
948     assert(((OddReg == AArch64::LR && EvenReg == AArch64::FP) ||
949             (RegInfo->getEncodingValue(OddReg) + 1 ==
950              RegInfo->getEncodingValue(EvenReg))) &&
951            "Register pair of non-adjacent registers!");
952     if (AArch64::GPR64RegClass.contains(OddReg)) {
953       NumGPRSpilled += 2;
954       // If it's not a reserved register, we can use it in lieu of an
955       // emergency spill slot for the register scavenger.
956       // FIXME: It would be better to instead keep looking and choose another
957       // unspilled register that isn't reserved, if there is one.
958       if (Reg != AArch64::NoRegister && !RegInfo->isReservedReg(MF, Reg))
959         ExtraCSSpill = true;
960     } else
961       NumFPRSpilled += 2;
962 
963     CanEliminateFrame = false;
964   }
965 
966   // FIXME: Set BigStack if any stack slot references may be out of range.
967   // For now, just conservatively guestimate based on unscaled indexing
968   // range. We'll end up allocating an unnecessary spill slot a lot, but
969   // realistically that's not a big deal at this stage of the game.
970   // The CSR spill slots have not been allocated yet, so estimateStackSize
971   // won't include them.
972   MachineFrameInfo *MFI = MF.getFrameInfo();
973   unsigned CFSize =
974       MFI->estimateStackSize(MF) + 8 * (NumGPRSpilled + NumFPRSpilled);
975   DEBUG(dbgs() << "Estimated stack frame size: " << CFSize << " bytes.\n");
976   bool BigStack = (CFSize >= 256);
977   if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
978     AFI->setHasStackFrame(true);
979 
980   // Estimate if we might need to scavenge a register at some point in order
981   // to materialize a stack offset. If so, either spill one additional
982   // callee-saved register or reserve a special spill slot to facilitate
983   // register scavenging. If we already spilled an extra callee-saved register
984   // above to keep the number of spills even, we don't need to do anything else
985   // here.
986   if (BigStack && !ExtraCSSpill) {
987 
988     // If we're adding a register to spill here, we have to add two of them
989     // to keep the number of regs to spill even.
990     assert(((UnspilledCSGPRs.size() & 1) == 0) && "Odd number of registers!");
991     unsigned Count = 0;
992     while (!UnspilledCSGPRs.empty() && Count < 2) {
993       unsigned Reg = UnspilledCSGPRs.back();
994       UnspilledCSGPRs.pop_back();
995       DEBUG(dbgs() << "Spilling " << PrintReg(Reg, RegInfo)
996                    << " to get a scratch register.\n");
997       SavedRegs.set(Reg);
998       ExtraCSSpill = true;
999       ++Count;
1000     }
1001 
1002     // If we didn't find an extra callee-saved register to spill, create
1003     // an emergency spill slot.
1004     if (!ExtraCSSpill) {
1005       const TargetRegisterClass *RC = &AArch64::GPR64RegClass;
1006       int FI = MFI->CreateStackObject(RC->getSize(), RC->getAlignment(), false);
1007       RS->addScavengingFrameIndex(FI);
1008       DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
1009                    << " as the emergency spill slot.\n");
1010     }
1011   }
1012 }
1013