1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
6 #define V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
7 
8 #include "src/allocation.h"
9 #include "src/crankshaft/lithium.h"
10 #include "src/zone.h"
11 
12 namespace v8 {
13 namespace internal {
14 
15 // Forward declarations.
16 class HBasicBlock;
17 class HGraph;
18 class HPhi;
19 class HTracer;
20 class HValue;
21 class BitVector;
22 class StringStream;
23 
24 class LPlatformChunk;
25 class LOperand;
26 class LUnallocated;
27 class LGap;
28 class LParallelMove;
29 class LPointerMap;
30 
31 
32 // This class represents a single point of a LOperand's lifetime.
33 // For each lithium instruction there are exactly two lifetime positions:
34 // the beginning and the end of the instruction. Lifetime positions for
35 // different lithium instructions are disjoint.
36 class LifetimePosition {
37  public:
38   // Return the lifetime position that corresponds to the beginning of
39   // the instruction with the given index.
FromInstructionIndex(int index)40   static LifetimePosition FromInstructionIndex(int index) {
41     return LifetimePosition(index * kStep);
42   }
43 
44   // Returns a numeric representation of this lifetime position.
Value()45   int Value() const {
46     return value_;
47   }
48 
49   // Returns the index of the instruction to which this lifetime position
50   // corresponds.
InstructionIndex()51   int InstructionIndex() const {
52     DCHECK(IsValid());
53     return value_ / kStep;
54   }
55 
56   // Returns true if this lifetime position corresponds to the instruction
57   // start.
IsInstructionStart()58   bool IsInstructionStart() const {
59     return (value_ & (kStep - 1)) == 0;
60   }
61 
62   // Returns the lifetime position for the start of the instruction which
63   // corresponds to this lifetime position.
InstructionStart()64   LifetimePosition InstructionStart() const {
65     DCHECK(IsValid());
66     return LifetimePosition(value_ & ~(kStep - 1));
67   }
68 
69   // Returns the lifetime position for the end of the instruction which
70   // corresponds to this lifetime position.
InstructionEnd()71   LifetimePosition InstructionEnd() const {
72     DCHECK(IsValid());
73     return LifetimePosition(InstructionStart().Value() + kStep/2);
74   }
75 
76   // Returns the lifetime position for the beginning of the next instruction.
NextInstruction()77   LifetimePosition NextInstruction() const {
78     DCHECK(IsValid());
79     return LifetimePosition(InstructionStart().Value() + kStep);
80   }
81 
82   // Returns the lifetime position for the beginning of the previous
83   // instruction.
PrevInstruction()84   LifetimePosition PrevInstruction() const {
85     DCHECK(IsValid());
86     DCHECK(value_ > 1);
87     return LifetimePosition(InstructionStart().Value() - kStep);
88   }
89 
90   // Constructs the lifetime position which does not correspond to any
91   // instruction.
LifetimePosition()92   LifetimePosition() : value_(-1) {}
93 
94   // Returns true if this lifetime positions corrensponds to some
95   // instruction.
IsValid()96   bool IsValid() const { return value_ != -1; }
97 
Invalid()98   static inline LifetimePosition Invalid() { return LifetimePosition(); }
99 
MaxPosition()100   static inline LifetimePosition MaxPosition() {
101     // We have to use this kind of getter instead of static member due to
102     // crash bug in GDB.
103     return LifetimePosition(kMaxInt);
104   }
105 
106  private:
107   static const int kStep = 2;
108 
109   // Code relies on kStep being a power of two.
110   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
111 
LifetimePosition(int value)112   explicit LifetimePosition(int value) : value_(value) { }
113 
114   int value_;
115 };
116 
117 
118 // Representation of the non-empty interval [start,end[.
119 class UseInterval: public ZoneObject {
120  public:
UseInterval(LifetimePosition start,LifetimePosition end)121   UseInterval(LifetimePosition start, LifetimePosition end)
122       : start_(start), end_(end), next_(NULL) {
123     DCHECK(start.Value() < end.Value());
124   }
125 
start()126   LifetimePosition start() const { return start_; }
end()127   LifetimePosition end() const { return end_; }
next()128   UseInterval* next() const { return next_; }
129 
130   // Split this interval at the given position without effecting the
131   // live range that owns it. The interval must contain the position.
132   void SplitAt(LifetimePosition pos, Zone* zone);
133 
134   // If this interval intersects with other return smallest position
135   // that belongs to both of them.
Intersect(const UseInterval * other)136   LifetimePosition Intersect(const UseInterval* other) const {
137     if (other->start().Value() < start_.Value()) return other->Intersect(this);
138     if (other->start().Value() < end_.Value()) return other->start();
139     return LifetimePosition::Invalid();
140   }
141 
Contains(LifetimePosition point)142   bool Contains(LifetimePosition point) const {
143     return start_.Value() <= point.Value() && point.Value() < end_.Value();
144   }
145 
146  private:
set_start(LifetimePosition start)147   void set_start(LifetimePosition start) { start_ = start; }
set_next(UseInterval * next)148   void set_next(UseInterval* next) { next_ = next; }
149 
150   LifetimePosition start_;
151   LifetimePosition end_;
152   UseInterval* next_;
153 
154   friend class LiveRange;  // Assigns to start_.
155 };
156 
157 // Representation of a use position.
158 class UsePosition: public ZoneObject {
159  public:
160   UsePosition(LifetimePosition pos, LOperand* operand, LOperand* hint);
161 
operand()162   LOperand* operand() const { return operand_; }
HasOperand()163   bool HasOperand() const { return operand_ != NULL; }
164 
hint()165   LOperand* hint() const { return hint_; }
166   bool HasHint() const;
167   bool RequiresRegister() const;
168   bool RegisterIsBeneficial() const;
169 
pos()170   LifetimePosition pos() const { return pos_; }
next()171   UsePosition* next() const { return next_; }
172 
173  private:
set_next(UsePosition * next)174   void set_next(UsePosition* next) { next_ = next; }
175 
176   LOperand* const operand_;
177   LOperand* const hint_;
178   LifetimePosition const pos_;
179   UsePosition* next_;
180   bool requires_reg_;
181   bool register_beneficial_;
182 
183   friend class LiveRange;
184 };
185 
186 // Representation of SSA values' live ranges as a collection of (continuous)
187 // intervals over the instruction ordering.
188 class LiveRange: public ZoneObject {
189  public:
190   static const int kInvalidAssignment = 0x7fffffff;
191 
192   LiveRange(int id, Zone* zone);
193 
first_interval()194   UseInterval* first_interval() const { return first_interval_; }
first_pos()195   UsePosition* first_pos() const { return first_pos_; }
parent()196   LiveRange* parent() const { return parent_; }
TopLevel()197   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
next()198   LiveRange* next() const { return next_; }
IsChild()199   bool IsChild() const { return parent() != NULL; }
id()200   int id() const { return id_; }
IsFixed()201   bool IsFixed() const { return id_ < 0; }
IsEmpty()202   bool IsEmpty() const { return first_interval() == NULL; }
203   LOperand* CreateAssignedOperand(Zone* zone);
assigned_register()204   int assigned_register() const { return assigned_register_; }
spill_start_index()205   int spill_start_index() const { return spill_start_index_; }
206   void set_assigned_register(int reg, Zone* zone);
207   void MakeSpilled(Zone* zone);
208 
209   // Returns use position in this live range that follows both start
210   // and last processed use position.
211   // Modifies internal state of live range!
212   UsePosition* NextUsePosition(LifetimePosition start);
213 
214   // Returns use position for which register is required in this live
215   // range and which follows both start and last processed use position
216   // Modifies internal state of live range!
217   UsePosition* NextRegisterPosition(LifetimePosition start);
218 
219   // Returns use position for which register is beneficial in this live
220   // range and which follows both start and last processed use position
221   // Modifies internal state of live range!
222   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
223 
224   // Returns use position for which register is beneficial in this live
225   // range and which precedes start.
226   UsePosition* PreviousUsePositionRegisterIsBeneficial(LifetimePosition start);
227 
228   // Can this live range be spilled at this position.
229   bool CanBeSpilled(LifetimePosition pos);
230 
231   // Split this live range at the given position which must follow the start of
232   // the range.
233   // All uses following the given position will be moved from this
234   // live range to the result live range.
235   void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
236 
Kind()237   RegisterKind Kind() const { return kind_; }
HasRegisterAssigned()238   bool HasRegisterAssigned() const {
239     return assigned_register_ != kInvalidAssignment;
240   }
IsSpilled()241   bool IsSpilled() const { return spilled_; }
242 
current_hint_operand()243   LOperand* current_hint_operand() const {
244     DCHECK(current_hint_operand_ == FirstHint());
245     return current_hint_operand_;
246   }
FirstHint()247   LOperand* FirstHint() const {
248     UsePosition* pos = first_pos_;
249     while (pos != NULL && !pos->HasHint()) pos = pos->next();
250     if (pos != NULL) return pos->hint();
251     return NULL;
252   }
253 
Start()254   LifetimePosition Start() const {
255     DCHECK(!IsEmpty());
256     return first_interval()->start();
257   }
258 
End()259   LifetimePosition End() const {
260     DCHECK(!IsEmpty());
261     return last_interval_->end();
262   }
263 
264   bool HasAllocatedSpillOperand() const;
GetSpillOperand()265   LOperand* GetSpillOperand() const { return spill_operand_; }
266   void SetSpillOperand(LOperand* operand);
267 
SetSpillStartIndex(int start)268   void SetSpillStartIndex(int start) {
269     spill_start_index_ = Min(start, spill_start_index_);
270   }
271 
272   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
273   bool CanCover(LifetimePosition position) const;
274   bool Covers(LifetimePosition position);
275   LifetimePosition FirstIntersection(LiveRange* other);
276 
277   // Add a new interval or a new use position to this live range.
278   void EnsureInterval(LifetimePosition start,
279                       LifetimePosition end,
280                       Zone* zone);
281   void AddUseInterval(LifetimePosition start,
282                       LifetimePosition end,
283                       Zone* zone);
284   void AddUsePosition(LifetimePosition pos,
285                       LOperand* operand,
286                       LOperand* hint,
287                       Zone* zone);
288 
289   // Shorten the most recently added interval by setting a new start.
290   void ShortenTo(LifetimePosition start);
291 
292 #ifdef DEBUG
293   // True if target overlaps an existing interval.
294   bool HasOverlap(UseInterval* target) const;
295   void Verify() const;
296 #endif
297 
298  private:
299   void ConvertOperands(Zone* zone);
300   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
301   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
302                                   LifetimePosition but_not_past) const;
303 
304   int id_;
305   bool spilled_;
306   RegisterKind kind_;
307   int assigned_register_;
308   UseInterval* last_interval_;
309   UseInterval* first_interval_;
310   UsePosition* first_pos_;
311   LiveRange* parent_;
312   LiveRange* next_;
313   // This is used as a cache, it doesn't affect correctness.
314   mutable UseInterval* current_interval_;
315   UsePosition* last_processed_use_;
316   // This is used as a cache, it's invalid outside of BuildLiveRanges.
317   LOperand* current_hint_operand_;
318   LOperand* spill_operand_;
319   int spill_start_index_;
320 
321   friend class LAllocator;  // Assigns to kind_.
322 };
323 
324 
325 class LAllocator BASE_EMBEDDED {
326  public:
327   LAllocator(int first_virtual_register, HGraph* graph);
328 
329   static void TraceAlloc(const char* msg, ...);
330 
331   // Checks whether the value of a given virtual register is tagged.
332   bool HasTaggedValue(int virtual_register) const;
333 
334   // Returns the register kind required by the given virtual register.
335   RegisterKind RequiredRegisterKind(int virtual_register) const;
336 
337   bool Allocate(LChunk* chunk);
338 
live_ranges()339   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
fixed_live_ranges()340   const Vector<LiveRange*>* fixed_live_ranges() const {
341     return &fixed_live_ranges_;
342   }
fixed_double_live_ranges()343   const Vector<LiveRange*>* fixed_double_live_ranges() const {
344     return &fixed_double_live_ranges_;
345   }
346 
chunk()347   LPlatformChunk* chunk() const { return chunk_; }
graph()348   HGraph* graph() const { return graph_; }
isolate()349   Isolate* isolate() const { return graph_->isolate(); }
zone()350   Zone* zone() { return &zone_; }
351 
GetVirtualRegister()352   int GetVirtualRegister() {
353     if (next_virtual_register_ >= LUnallocated::kMaxVirtualRegisters) {
354       allocation_ok_ = false;
355       // Maintain the invariant that we return something below the maximum.
356       return 0;
357     }
358     return next_virtual_register_++;
359   }
360 
AllocationOk()361   bool AllocationOk() { return allocation_ok_; }
362 
MarkAsOsrEntry()363   void MarkAsOsrEntry() {
364     // There can be only one.
365     DCHECK(!has_osr_entry_);
366     // Simply set a flag to find and process instruction later.
367     has_osr_entry_ = true;
368   }
369 
370 #ifdef DEBUG
371   void Verify() const;
372 #endif
373 
assigned_registers()374   BitVector* assigned_registers() {
375     return assigned_registers_;
376   }
assigned_double_registers()377   BitVector* assigned_double_registers() {
378     return assigned_double_registers_;
379   }
380 
381  private:
382   void MeetRegisterConstraints();
383   void ResolvePhis();
384   void BuildLiveRanges();
385   void AllocateGeneralRegisters();
386   void AllocateDoubleRegisters();
387   void ConnectRanges();
388   void ResolveControlFlow();
389   void PopulatePointerMaps();
390   void AllocateRegisters();
391   bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
392   inline bool SafePointsAreInOrder() const;
393 
394   // Liveness analysis support.
395   void InitializeLivenessAnalysis();
396   BitVector* ComputeLiveOut(HBasicBlock* block);
397   void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
398   void ProcessInstructions(HBasicBlock* block, BitVector* live);
399   void MeetRegisterConstraints(HBasicBlock* block);
400   void MeetConstraintsBetween(LInstruction* first,
401                               LInstruction* second,
402                               int gap_index);
403   void ResolvePhis(HBasicBlock* block);
404 
405   // Helper methods for building intervals.
406   LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
407   LiveRange* LiveRangeFor(LOperand* operand);
408   void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
409   void Use(LifetimePosition block_start,
410            LifetimePosition position,
411            LOperand* operand,
412            LOperand* hint);
413   void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
414 
415   // Helper methods for updating the life range lists.
416   void AddToActive(LiveRange* range);
417   void AddToInactive(LiveRange* range);
418   void AddToUnhandledSorted(LiveRange* range);
419   void AddToUnhandledUnsorted(LiveRange* range);
420   void SortUnhandled();
421   bool UnhandledIsSorted();
422   void ActiveToHandled(LiveRange* range);
423   void ActiveToInactive(LiveRange* range);
424   void InactiveToHandled(LiveRange* range);
425   void InactiveToActive(LiveRange* range);
426   void FreeSpillSlot(LiveRange* range);
427   LOperand* TryReuseSpillSlot(LiveRange* range);
428 
429   // Helper methods for allocating registers.
430   bool TryAllocateFreeReg(LiveRange* range);
431   void AllocateBlockedReg(LiveRange* range);
432 
433   // Live range splitting helpers.
434 
435   // Split the given range at the given position.
436   // If range starts at or after the given position then the
437   // original range is returned.
438   // Otherwise returns the live range that starts at pos and contains
439   // all uses from the original range that follow pos. Uses at pos will
440   // still be owned by the original range after splitting.
441   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
442 
443   // Split the given range in a position from the interval [start, end].
444   LiveRange* SplitBetween(LiveRange* range,
445                           LifetimePosition start,
446                           LifetimePosition end);
447 
448   // Find a lifetime position in the interval [start, end] which
449   // is optimal for splitting: it is either header of the outermost
450   // loop covered by this interval or the latest possible position.
451   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
452                                        LifetimePosition end);
453 
454   // Spill the given life range after position pos.
455   void SpillAfter(LiveRange* range, LifetimePosition pos);
456 
457   // Spill the given life range after position [start] and up to position [end].
458   void SpillBetween(LiveRange* range,
459                     LifetimePosition start,
460                     LifetimePosition end);
461 
462   // Spill the given life range after position [start] and up to position [end].
463   // Range is guaranteed to be spilled at least until position [until].
464   void SpillBetweenUntil(LiveRange* range,
465                          LifetimePosition start,
466                          LifetimePosition until,
467                          LifetimePosition end);
468 
469   void SplitAndSpillIntersecting(LiveRange* range);
470 
471   // If we are trying to spill a range inside the loop try to
472   // hoist spill position out to the point just before the loop.
473   LifetimePosition FindOptimalSpillingPos(LiveRange* range,
474                                           LifetimePosition pos);
475 
476   void Spill(LiveRange* range);
477   bool IsBlockBoundary(LifetimePosition pos);
478 
479   // Helper methods for resolving control flow.
480   void ResolveControlFlow(LiveRange* range,
481                           HBasicBlock* block,
482                           HBasicBlock* pred);
483 
484   inline void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
485 
486   // Return parallel move that should be used to connect ranges split at the
487   // given position.
488   LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
489 
490   // Return the block which contains give lifetime position.
491   HBasicBlock* GetBlock(LifetimePosition pos);
492 
493   // Helper methods for the fixed registers.
494   int RegisterCount() const;
FixedLiveRangeID(int index)495   static int FixedLiveRangeID(int index) { return -index - 1; }
496   static int FixedDoubleLiveRangeID(int index);
497   LiveRange* FixedLiveRangeFor(int index);
498   LiveRange* FixedDoubleLiveRangeFor(int index);
499   LiveRange* LiveRangeFor(int index);
500   HPhi* LookupPhi(LOperand* operand) const;
501   LGap* GetLastGap(HBasicBlock* block);
502 
503   const char* RegisterName(int allocation_index);
504 
505   inline bool IsGapAt(int index);
506 
507   inline LInstruction* InstructionAt(int index);
508 
509   inline LGap* GapAt(int index);
510 
511   Zone zone_;
512 
513   LPlatformChunk* chunk_;
514 
515   // During liveness analysis keep a mapping from block id to live_in sets
516   // for blocks already analyzed.
517   ZoneList<BitVector*> live_in_sets_;
518 
519   // Liveness analysis results.
520   ZoneList<LiveRange*> live_ranges_;
521 
522   // Lists of live ranges
523   EmbeddedVector<LiveRange*, Register::kNumRegisters> fixed_live_ranges_;
524   EmbeddedVector<LiveRange*, DoubleRegister::kMaxNumRegisters>
525       fixed_double_live_ranges_;
526   ZoneList<LiveRange*> unhandled_live_ranges_;
527   ZoneList<LiveRange*> active_live_ranges_;
528   ZoneList<LiveRange*> inactive_live_ranges_;
529   ZoneList<LiveRange*> reusable_slots_;
530 
531   // Next virtual register number to be assigned to temporaries.
532   int next_virtual_register_;
533   int first_artificial_register_;
534   GrowableBitVector double_artificial_registers_;
535 
536   RegisterKind mode_;
537   int num_registers_;
538   const int* allocatable_register_codes_;
539 
540   BitVector* assigned_registers_;
541   BitVector* assigned_double_registers_;
542 
543   HGraph* graph_;
544 
545   bool has_osr_entry_;
546 
547   // Indicates success or failure during register allocation.
548   bool allocation_ok_;
549 
550 #ifdef DEBUG
551   LifetimePosition allocation_finger_;
552 #endif
553 
554   DISALLOW_COPY_AND_ASSIGN(LAllocator);
555 };
556 
557 
558 class LAllocatorPhase : public CompilationPhase {
559  public:
560   LAllocatorPhase(const char* name, LAllocator* allocator);
561   ~LAllocatorPhase();
562 
563  private:
564   LAllocator* allocator_;
565   size_t allocator_zone_start_allocation_size_;
566 
567   DISALLOW_COPY_AND_ASSIGN(LAllocatorPhase);
568 };
569 
570 
571 }  // namespace internal
572 }  // namespace v8
573 
574 #endif  // V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
575