1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MipsSEISelDAGToDAG.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "Mips.h"
17 #include "MipsAnalyzeImmediate.h"
18 #include "MipsMachineFunction.h"
19 #include "MipsRegisterInfo.h"
20 #include "llvm/CodeGen/MachineConstantPool.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAGNodes.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "mips-isel"
38
runOnMachineFunction(MachineFunction & MF)39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
40 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
41 if (Subtarget->inMips16Mode())
42 return false;
43 return MipsDAGToDAGISel::runOnMachineFunction(MF);
44 }
45
addDSPCtrlRegOperands(bool IsDef,MachineInstr & MI,MachineFunction & MF)46 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
47 MachineFunction &MF) {
48 MachineInstrBuilder MIB(MF, &MI);
49 unsigned Mask = MI.getOperand(1).getImm();
50 unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit;
51
52 if (Mask & 1)
53 MIB.addReg(Mips::DSPPos, Flag);
54
55 if (Mask & 2)
56 MIB.addReg(Mips::DSPSCount, Flag);
57
58 if (Mask & 4)
59 MIB.addReg(Mips::DSPCarry, Flag);
60
61 if (Mask & 8)
62 MIB.addReg(Mips::DSPOutFlag, Flag);
63
64 if (Mask & 16)
65 MIB.addReg(Mips::DSPCCond, Flag);
66
67 if (Mask & 32)
68 MIB.addReg(Mips::DSPEFI, Flag);
69 }
70
getMSACtrlReg(const SDValue RegIdx) const71 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
72 switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
73 default:
74 llvm_unreachable("Could not map int to register");
75 case 0: return Mips::MSAIR;
76 case 1: return Mips::MSACSR;
77 case 2: return Mips::MSAAccess;
78 case 3: return Mips::MSASave;
79 case 4: return Mips::MSAModify;
80 case 5: return Mips::MSARequest;
81 case 6: return Mips::MSAMap;
82 case 7: return Mips::MSAUnmap;
83 }
84 }
85
replaceUsesWithZeroReg(MachineRegisterInfo * MRI,const MachineInstr & MI)86 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
87 const MachineInstr& MI) {
88 unsigned DstReg = 0, ZeroReg = 0;
89
90 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
91 if ((MI.getOpcode() == Mips::ADDiu) &&
92 (MI.getOperand(1).getReg() == Mips::ZERO) &&
93 (MI.getOperand(2).getImm() == 0)) {
94 DstReg = MI.getOperand(0).getReg();
95 ZeroReg = Mips::ZERO;
96 } else if ((MI.getOpcode() == Mips::DADDiu) &&
97 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
98 (MI.getOperand(2).getImm() == 0)) {
99 DstReg = MI.getOperand(0).getReg();
100 ZeroReg = Mips::ZERO_64;
101 }
102
103 if (!DstReg)
104 return false;
105
106 // Replace uses with ZeroReg.
107 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
108 E = MRI->use_end(); U != E;) {
109 MachineOperand &MO = *U;
110 unsigned OpNo = U.getOperandNo();
111 MachineInstr *MI = MO.getParent();
112 ++U;
113
114 // Do not replace if it is a phi's operand or is tied to def operand.
115 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
116 continue;
117
118 // Also, we have to check that the register class of the operand
119 // contains the zero register.
120 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
121 continue;
122
123 MO.setReg(ZeroReg);
124 }
125
126 return true;
127 }
128
initGlobalBaseReg(MachineFunction & MF)129 void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
130 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
131
132 if (!MipsFI->globalBaseRegSet())
133 return;
134
135 MachineBasicBlock &MBB = MF.front();
136 MachineBasicBlock::iterator I = MBB.begin();
137 MachineRegisterInfo &RegInfo = MF.getRegInfo();
138 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
139 DebugLoc DL;
140 unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
141 const TargetRegisterClass *RC;
142 const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
143 RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
144
145 V0 = RegInfo.createVirtualRegister(RC);
146 V1 = RegInfo.createVirtualRegister(RC);
147
148 if (ABI.IsN64()) {
149 MF.getRegInfo().addLiveIn(Mips::T9_64);
150 MBB.addLiveIn(Mips::T9_64);
151
152 // lui $v0, %hi(%neg(%gp_rel(fname)))
153 // daddu $v1, $v0, $t9
154 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
155 const GlobalValue *FName = MF.getFunction();
156 BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
157 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
158 BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
159 .addReg(Mips::T9_64);
160 BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
161 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
162 return;
163 }
164
165 if (MF.getTarget().getRelocationModel() == Reloc::Static) {
166 // Set global register to __gnu_local_gp.
167 //
168 // lui $v0, %hi(__gnu_local_gp)
169 // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
170 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
171 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
172 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
173 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
174 return;
175 }
176
177 MF.getRegInfo().addLiveIn(Mips::T9);
178 MBB.addLiveIn(Mips::T9);
179
180 if (ABI.IsN32()) {
181 // lui $v0, %hi(%neg(%gp_rel(fname)))
182 // addu $v1, $v0, $t9
183 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
184 const GlobalValue *FName = MF.getFunction();
185 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
186 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
187 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
188 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
189 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
190 return;
191 }
192
193 assert(ABI.IsO32());
194
195 // For O32 ABI, the following instruction sequence is emitted to initialize
196 // the global base register:
197 //
198 // 0. lui $2, %hi(_gp_disp)
199 // 1. addiu $2, $2, %lo(_gp_disp)
200 // 2. addu $globalbasereg, $2, $t9
201 //
202 // We emit only the last instruction here.
203 //
204 // GNU linker requires that the first two instructions appear at the beginning
205 // of a function and no instructions be inserted before or between them.
206 // The two instructions are emitted during lowering to MC layer in order to
207 // avoid any reordering.
208 //
209 // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
210 // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
211 // reads it.
212 MF.getRegInfo().addLiveIn(Mips::V0);
213 MBB.addLiveIn(Mips::V0);
214 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
215 .addReg(Mips::V0).addReg(Mips::T9);
216 }
217
processFunctionAfterISel(MachineFunction & MF)218 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
219 initGlobalBaseReg(MF);
220
221 MachineRegisterInfo *MRI = &MF.getRegInfo();
222
223 for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE;
224 ++MFI)
225 for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
226 if (I->getOpcode() == Mips::RDDSP)
227 addDSPCtrlRegOperands(false, *I, MF);
228 else if (I->getOpcode() == Mips::WRDSP)
229 addDSPCtrlRegOperands(true, *I, MF);
230 else
231 replaceUsesWithZeroReg(MRI, *I);
232 }
233 }
234
selectAddESubE(unsigned MOp,SDValue InFlag,SDValue CmpLHS,SDLoc DL,SDNode * Node) const235 SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
236 SDValue CmpLHS, SDLoc DL,
237 SDNode *Node) const {
238 unsigned Opc = InFlag.getOpcode(); (void)Opc;
239
240 assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
241 (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
242 "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
243
244 unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu;
245 if (Subtarget->isGP64bit()) {
246 SLTuOp = Mips::SLTu64;
247 ADDuOp = Mips::DADDu;
248 }
249
250 SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
251 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
252 EVT VT = LHS.getValueType();
253
254 SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops);
255
256 if (Subtarget->isGP64bit()) {
257 // On 64-bit targets, sltu produces an i64 but our backend currently says
258 // that SLTu64 produces an i32. We need to fix this in the long run but for
259 // now, just make the DAG type-correct by asserting the upper bits are zero.
260 Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT,
261 CurDAG->getTargetConstant(0, DL, VT),
262 SDValue(Carry, 0),
263 CurDAG->getTargetConstant(Mips::sub_32, DL,
264 VT));
265 }
266
267 // Generate a second addition only if we know that RHS is not a
268 // constant-zero node.
269 SDNode *AddCarry = Carry;
270 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
271 if (!C || C->getZExtValue())
272 AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS);
273
274 return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS,
275 SDValue(AddCarry, 0));
276 }
277
278 /// Match frameindex
selectAddrFrameIndex(SDValue Addr,SDValue & Base,SDValue & Offset) const279 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
280 SDValue &Offset) const {
281 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
282 EVT ValTy = Addr.getValueType();
283
284 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
285 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
286 return true;
287 }
288 return false;
289 }
290
291 /// Match frameindex+offset and frameindex|offset
selectAddrFrameIndexOffset(SDValue Addr,SDValue & Base,SDValue & Offset,unsigned OffsetBits) const292 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base,
293 SDValue &Offset,
294 unsigned OffsetBits) const {
295 if (CurDAG->isBaseWithConstantOffset(Addr)) {
296 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
297 if (isIntN(OffsetBits, CN->getSExtValue())) {
298 EVT ValTy = Addr.getValueType();
299
300 // If the first operand is a FI, get the TargetFI Node
301 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>
302 (Addr.getOperand(0)))
303 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
304 else
305 Base = Addr.getOperand(0);
306
307 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
308 ValTy);
309 return true;
310 }
311 }
312 return false;
313 }
314
315 /// ComplexPattern used on MipsInstrInfo
316 /// Used on Mips Load/Store instructions
selectAddrRegImm(SDValue Addr,SDValue & Base,SDValue & Offset) const317 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
318 SDValue &Offset) const {
319 // if Address is FI, get the TargetFrameIndex.
320 if (selectAddrFrameIndex(Addr, Base, Offset))
321 return true;
322
323 // on PIC code Load GA
324 if (Addr.getOpcode() == MipsISD::Wrapper) {
325 Base = Addr.getOperand(0);
326 Offset = Addr.getOperand(1);
327 return true;
328 }
329
330 if (TM.getRelocationModel() != Reloc::PIC_) {
331 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
332 Addr.getOpcode() == ISD::TargetGlobalAddress))
333 return false;
334 }
335
336 // Addresses of the form FI+const or FI|const
337 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
338 return true;
339
340 // Operand is a result from an ADD.
341 if (Addr.getOpcode() == ISD::ADD) {
342 // When loading from constant pools, load the lower address part in
343 // the instruction itself. Example, instead of:
344 // lui $2, %hi($CPI1_0)
345 // addiu $2, $2, %lo($CPI1_0)
346 // lwc1 $f0, 0($2)
347 // Generate:
348 // lui $2, %hi($CPI1_0)
349 // lwc1 $f0, %lo($CPI1_0)($2)
350 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
351 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
352 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
353 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
354 isa<JumpTableSDNode>(Opnd0)) {
355 Base = Addr.getOperand(0);
356 Offset = Opnd0;
357 return true;
358 }
359 }
360 }
361
362 return false;
363 }
364
365 /// ComplexPattern used on MipsInstrInfo
366 /// Used on Mips Load/Store instructions
selectAddrRegReg(SDValue Addr,SDValue & Base,SDValue & Offset) const367 bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base,
368 SDValue &Offset) const {
369 // Operand is a result from an ADD.
370 if (Addr.getOpcode() == ISD::ADD) {
371 Base = Addr.getOperand(0);
372 Offset = Addr.getOperand(1);
373 return true;
374 }
375
376 return false;
377 }
378
selectAddrDefault(SDValue Addr,SDValue & Base,SDValue & Offset) const379 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
380 SDValue &Offset) const {
381 Base = Addr;
382 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
383 return true;
384 }
385
selectIntAddr(SDValue Addr,SDValue & Base,SDValue & Offset) const386 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
387 SDValue &Offset) const {
388 return selectAddrRegImm(Addr, Base, Offset) ||
389 selectAddrDefault(Addr, Base, Offset);
390 }
391
selectAddrRegImm9(SDValue Addr,SDValue & Base,SDValue & Offset) const392 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
393 SDValue &Offset) const {
394 if (selectAddrFrameIndex(Addr, Base, Offset))
395 return true;
396
397 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
398 return true;
399
400 return false;
401 }
402
selectAddrRegImm10(SDValue Addr,SDValue & Base,SDValue & Offset) const403 bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base,
404 SDValue &Offset) const {
405 if (selectAddrFrameIndex(Addr, Base, Offset))
406 return true;
407
408 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
409 return true;
410
411 return false;
412 }
413
414 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
selectAddrRegImm12(SDValue Addr,SDValue & Base,SDValue & Offset) const415 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
416 SDValue &Offset) const {
417 if (selectAddrFrameIndex(Addr, Base, Offset))
418 return true;
419
420 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
421 return true;
422
423 return false;
424 }
425
selectAddrRegImm16(SDValue Addr,SDValue & Base,SDValue & Offset) const426 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
427 SDValue &Offset) const {
428 if (selectAddrFrameIndex(Addr, Base, Offset))
429 return true;
430
431 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
432 return true;
433
434 return false;
435 }
436
selectIntAddrMM(SDValue Addr,SDValue & Base,SDValue & Offset) const437 bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base,
438 SDValue &Offset) const {
439 return selectAddrRegImm12(Addr, Base, Offset) ||
440 selectAddrDefault(Addr, Base, Offset);
441 }
442
selectIntAddrLSL2MM(SDValue Addr,SDValue & Base,SDValue & Offset) const443 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
444 SDValue &Offset) const {
445 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
446 if (isa<FrameIndexSDNode>(Base))
447 return false;
448
449 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
450 unsigned CnstOff = CN->getZExtValue();
451 return (CnstOff == (CnstOff & 0x3c));
452 }
453
454 return false;
455 }
456
457 // For all other cases where "lw" would be selected, don't select "lw16"
458 // because it would result in additional instructions to prepare operands.
459 if (selectAddrRegImm(Addr, Base, Offset))
460 return false;
461
462 return selectAddrDefault(Addr, Base, Offset);
463 }
464
selectIntAddrMSA(SDValue Addr,SDValue & Base,SDValue & Offset) const465 bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base,
466 SDValue &Offset) const {
467 if (selectAddrRegImm10(Addr, Base, Offset))
468 return true;
469
470 if (selectAddrDefault(Addr, Base, Offset))
471 return true;
472
473 return false;
474 }
475
476 // Select constant vector splats.
477 //
478 // Returns true and sets Imm if:
479 // * MSA is enabled
480 // * N is a ISD::BUILD_VECTOR representing a constant splat
selectVSplat(SDNode * N,APInt & Imm,unsigned MinSizeInBits) const481 bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
482 unsigned MinSizeInBits) const {
483 if (!Subtarget->hasMSA())
484 return false;
485
486 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
487
488 if (!Node)
489 return false;
490
491 APInt SplatValue, SplatUndef;
492 unsigned SplatBitSize;
493 bool HasAnyUndefs;
494
495 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
496 MinSizeInBits, !Subtarget->isLittle()))
497 return false;
498
499 Imm = SplatValue;
500
501 return true;
502 }
503
504 // Select constant vector splats.
505 //
506 // In addition to the requirements of selectVSplat(), this function returns
507 // true and sets Imm if:
508 // * The splat value is the same width as the elements of the vector
509 // * The splat value fits in an integer with the specified signed-ness and
510 // width.
511 //
512 // This function looks through ISD::BITCAST nodes.
513 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
514 // sometimes a shuffle in big-endian mode.
515 //
516 // It's worth noting that this function is not used as part of the selection
517 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
518 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
519 // MipsSEDAGToDAGISel::selectNode.
520 bool MipsSEDAGToDAGISel::
selectVSplatCommon(SDValue N,SDValue & Imm,bool Signed,unsigned ImmBitSize) const521 selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
522 unsigned ImmBitSize) const {
523 APInt ImmValue;
524 EVT EltTy = N->getValueType(0).getVectorElementType();
525
526 if (N->getOpcode() == ISD::BITCAST)
527 N = N->getOperand(0);
528
529 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
530 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
531
532 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
533 (!Signed && ImmValue.isIntN(ImmBitSize))) {
534 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
535 return true;
536 }
537 }
538
539 return false;
540 }
541
542 // Select constant vector splats.
543 bool MipsSEDAGToDAGISel::
selectVSplatUimm1(SDValue N,SDValue & Imm) const544 selectVSplatUimm1(SDValue N, SDValue &Imm) const {
545 return selectVSplatCommon(N, Imm, false, 1);
546 }
547
548 bool MipsSEDAGToDAGISel::
selectVSplatUimm2(SDValue N,SDValue & Imm) const549 selectVSplatUimm2(SDValue N, SDValue &Imm) const {
550 return selectVSplatCommon(N, Imm, false, 2);
551 }
552
553 bool MipsSEDAGToDAGISel::
selectVSplatUimm3(SDValue N,SDValue & Imm) const554 selectVSplatUimm3(SDValue N, SDValue &Imm) const {
555 return selectVSplatCommon(N, Imm, false, 3);
556 }
557
558 // Select constant vector splats.
559 bool MipsSEDAGToDAGISel::
selectVSplatUimm4(SDValue N,SDValue & Imm) const560 selectVSplatUimm4(SDValue N, SDValue &Imm) const {
561 return selectVSplatCommon(N, Imm, false, 4);
562 }
563
564 // Select constant vector splats.
565 bool MipsSEDAGToDAGISel::
selectVSplatUimm5(SDValue N,SDValue & Imm) const566 selectVSplatUimm5(SDValue N, SDValue &Imm) const {
567 return selectVSplatCommon(N, Imm, false, 5);
568 }
569
570 // Select constant vector splats.
571 bool MipsSEDAGToDAGISel::
selectVSplatUimm6(SDValue N,SDValue & Imm) const572 selectVSplatUimm6(SDValue N, SDValue &Imm) const {
573 return selectVSplatCommon(N, Imm, false, 6);
574 }
575
576 // Select constant vector splats.
577 bool MipsSEDAGToDAGISel::
selectVSplatUimm8(SDValue N,SDValue & Imm) const578 selectVSplatUimm8(SDValue N, SDValue &Imm) const {
579 return selectVSplatCommon(N, Imm, false, 8);
580 }
581
582 // Select constant vector splats.
583 bool MipsSEDAGToDAGISel::
selectVSplatSimm5(SDValue N,SDValue & Imm) const584 selectVSplatSimm5(SDValue N, SDValue &Imm) const {
585 return selectVSplatCommon(N, Imm, true, 5);
586 }
587
588 // Select constant vector splats whose value is a power of 2.
589 //
590 // In addition to the requirements of selectVSplat(), this function returns
591 // true and sets Imm if:
592 // * The splat value is the same width as the elements of the vector
593 // * The splat value is a power of two.
594 //
595 // This function looks through ISD::BITCAST nodes.
596 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
597 // sometimes a shuffle in big-endian mode.
selectVSplatUimmPow2(SDValue N,SDValue & Imm) const598 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
599 APInt ImmValue;
600 EVT EltTy = N->getValueType(0).getVectorElementType();
601
602 if (N->getOpcode() == ISD::BITCAST)
603 N = N->getOperand(0);
604
605 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
606 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
607 int32_t Log2 = ImmValue.exactLogBase2();
608
609 if (Log2 != -1) {
610 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
611 return true;
612 }
613 }
614
615 return false;
616 }
617
618 // Select constant vector splats whose value only has a consecutive sequence
619 // of left-most bits set (e.g. 0b11...1100...00).
620 //
621 // In addition to the requirements of selectVSplat(), this function returns
622 // true and sets Imm if:
623 // * The splat value is the same width as the elements of the vector
624 // * The splat value is a consecutive sequence of left-most bits.
625 //
626 // This function looks through ISD::BITCAST nodes.
627 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
628 // sometimes a shuffle in big-endian mode.
selectVSplatMaskL(SDValue N,SDValue & Imm) const629 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
630 APInt ImmValue;
631 EVT EltTy = N->getValueType(0).getVectorElementType();
632
633 if (N->getOpcode() == ISD::BITCAST)
634 N = N->getOperand(0);
635
636 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
637 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
638 // Extract the run of set bits starting with bit zero from the bitwise
639 // inverse of ImmValue, and test that the inverse of this is the same
640 // as the original value.
641 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
642
643 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
644 EltTy);
645 return true;
646 }
647 }
648
649 return false;
650 }
651
652 // Select constant vector splats whose value only has a consecutive sequence
653 // of right-most bits set (e.g. 0b00...0011...11).
654 //
655 // In addition to the requirements of selectVSplat(), this function returns
656 // true and sets Imm if:
657 // * The splat value is the same width as the elements of the vector
658 // * The splat value is a consecutive sequence of right-most bits.
659 //
660 // This function looks through ISD::BITCAST nodes.
661 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
662 // sometimes a shuffle in big-endian mode.
selectVSplatMaskR(SDValue N,SDValue & Imm) const663 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
664 APInt ImmValue;
665 EVT EltTy = N->getValueType(0).getVectorElementType();
666
667 if (N->getOpcode() == ISD::BITCAST)
668 N = N->getOperand(0);
669
670 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
671 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
672 // Extract the run of set bits starting with bit zero, and test that the
673 // result is the same as the original value
674 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
675 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), SDLoc(N),
676 EltTy);
677 return true;
678 }
679 }
680
681 return false;
682 }
683
selectVSplatUimmInvPow2(SDValue N,SDValue & Imm) const684 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
685 SDValue &Imm) const {
686 APInt ImmValue;
687 EVT EltTy = N->getValueType(0).getVectorElementType();
688
689 if (N->getOpcode() == ISD::BITCAST)
690 N = N->getOperand(0);
691
692 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
693 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
694 int32_t Log2 = (~ImmValue).exactLogBase2();
695
696 if (Log2 != -1) {
697 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
698 return true;
699 }
700 }
701
702 return false;
703 }
704
selectNode(SDNode * Node)705 std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) {
706 unsigned Opcode = Node->getOpcode();
707 SDLoc DL(Node);
708
709 ///
710 // Instruction Selection not handled by the auto-generated
711 // tablegen selection should be handled here.
712 ///
713 SDNode *Result;
714
715 switch(Opcode) {
716 default: break;
717
718 case ISD::SUBE: {
719 SDValue InFlag = Node->getOperand(2);
720 unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu;
721 Result = selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node);
722 return std::make_pair(true, Result);
723 }
724
725 case ISD::ADDE: {
726 if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
727 break;
728 SDValue InFlag = Node->getOperand(2);
729 unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu;
730 Result = selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node);
731 return std::make_pair(true, Result);
732 }
733
734 case ISD::ConstantFP: {
735 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
736 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
737 if (Subtarget->isGP64bit()) {
738 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
739 Mips::ZERO_64, MVT::i64);
740 Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero);
741 } else if (Subtarget->isFP64bit()) {
742 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
743 Mips::ZERO, MVT::i32);
744 Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64,
745 Zero, Zero);
746 } else {
747 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
748 Mips::ZERO, MVT::i32);
749 Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero,
750 Zero);
751 }
752
753 return std::make_pair(true, Result);
754 }
755 break;
756 }
757
758 case ISD::Constant: {
759 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
760 unsigned Size = CN->getValueSizeInBits(0);
761
762 if (Size == 32)
763 break;
764
765 MipsAnalyzeImmediate AnalyzeImm;
766 int64_t Imm = CN->getSExtValue();
767
768 const MipsAnalyzeImmediate::InstSeq &Seq =
769 AnalyzeImm.Analyze(Imm, Size, false);
770
771 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
772 SDLoc DL(CN);
773 SDNode *RegOpnd;
774 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
775 DL, MVT::i64);
776
777 // The first instruction can be a LUi which is different from other
778 // instructions (ADDiu, ORI and SLL) in that it does not have a register
779 // operand.
780 if (Inst->Opc == Mips::LUi64)
781 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
782 else
783 RegOpnd =
784 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
785 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
786 ImmOpnd);
787
788 // The remaining instructions in the sequence are handled here.
789 for (++Inst; Inst != Seq.end(); ++Inst) {
790 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
791 MVT::i64);
792 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
793 SDValue(RegOpnd, 0), ImmOpnd);
794 }
795
796 return std::make_pair(true, RegOpnd);
797 }
798
799 case ISD::INTRINSIC_W_CHAIN: {
800 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
801 default:
802 break;
803
804 case Intrinsic::mips_cfcmsa: {
805 SDValue ChainIn = Node->getOperand(0);
806 SDValue RegIdx = Node->getOperand(2);
807 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
808 getMSACtrlReg(RegIdx), MVT::i32);
809 return std::make_pair(true, Reg.getNode());
810 }
811 }
812 break;
813 }
814
815 case ISD::INTRINSIC_WO_CHAIN: {
816 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
817 default:
818 break;
819
820 case Intrinsic::mips_move_v:
821 // Like an assignment but will always produce a move.v even if
822 // unnecessary.
823 return std::make_pair(true,
824 CurDAG->getMachineNode(Mips::MOVE_V, DL,
825 Node->getValueType(0),
826 Node->getOperand(1)));
827 }
828 break;
829 }
830
831 case ISD::INTRINSIC_VOID: {
832 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
833 default:
834 break;
835
836 case Intrinsic::mips_ctcmsa: {
837 SDValue ChainIn = Node->getOperand(0);
838 SDValue RegIdx = Node->getOperand(2);
839 SDValue Value = Node->getOperand(3);
840 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
841 getMSACtrlReg(RegIdx), Value);
842 return std::make_pair(true, ChainOut.getNode());
843 }
844 }
845 break;
846 }
847
848 case MipsISD::ThreadPointer: {
849 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
850 unsigned RdhwrOpc, DestReg;
851
852 if (PtrVT == MVT::i32) {
853 RdhwrOpc = Mips::RDHWR;
854 DestReg = Mips::V1;
855 } else {
856 RdhwrOpc = Mips::RDHWR64;
857 DestReg = Mips::V1_64;
858 }
859
860 SDNode *Rdhwr =
861 CurDAG->getMachineNode(RdhwrOpc, DL,
862 Node->getValueType(0),
863 CurDAG->getRegister(Mips::HWR29, MVT::i32));
864 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
865 SDValue(Rdhwr, 0));
866 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
867 ReplaceUses(SDValue(Node, 0), ResNode);
868 return std::make_pair(true, ResNode.getNode());
869 }
870
871 case ISD::BUILD_VECTOR: {
872 // Select appropriate ldi.[bhwd] instructions for constant splats of
873 // 128-bit when MSA is enabled. Fixup any register class mismatches that
874 // occur as a result.
875 //
876 // This allows the compiler to use a wider range of immediates than would
877 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
878 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
879 // 0x01010101 } without using a constant pool. This would be sub-optimal
880 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
881 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
882 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
883
884 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
885 APInt SplatValue, SplatUndef;
886 unsigned SplatBitSize;
887 bool HasAnyUndefs;
888 unsigned LdiOp;
889 EVT ResVecTy = BVN->getValueType(0);
890 EVT ViaVecTy;
891
892 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
893 return std::make_pair(false, nullptr);
894
895 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
896 HasAnyUndefs, 8,
897 !Subtarget->isLittle()))
898 return std::make_pair(false, nullptr);
899
900 switch (SplatBitSize) {
901 default:
902 return std::make_pair(false, nullptr);
903 case 8:
904 LdiOp = Mips::LDI_B;
905 ViaVecTy = MVT::v16i8;
906 break;
907 case 16:
908 LdiOp = Mips::LDI_H;
909 ViaVecTy = MVT::v8i16;
910 break;
911 case 32:
912 LdiOp = Mips::LDI_W;
913 ViaVecTy = MVT::v4i32;
914 break;
915 case 64:
916 LdiOp = Mips::LDI_D;
917 ViaVecTy = MVT::v2i64;
918 break;
919 }
920
921 if (!SplatValue.isSignedIntN(10))
922 return std::make_pair(false, nullptr);
923
924 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
925 ViaVecTy.getVectorElementType());
926
927 SDNode *Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
928
929 if (ResVecTy != ViaVecTy) {
930 // If LdiOp is writing to a different register class to ResVecTy, then
931 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
932 // since the source and destination register sets contain the same
933 // registers.
934 const TargetLowering *TLI = getTargetLowering();
935 MVT ResVecTySimple = ResVecTy.getSimpleVT();
936 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
937 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
938 ResVecTy, SDValue(Res, 0),
939 CurDAG->getTargetConstant(RC->getID(), DL,
940 MVT::i32));
941 }
942
943 return std::make_pair(true, Res);
944 }
945
946 }
947
948 return std::make_pair(false, nullptr);
949 }
950
951 bool MipsSEDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)952 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
953 std::vector<SDValue> &OutOps) {
954 SDValue Base, Offset;
955
956 switch(ConstraintID) {
957 default:
958 llvm_unreachable("Unexpected asm memory constraint");
959 // All memory constraints can at least accept raw pointers.
960 case InlineAsm::Constraint_i:
961 OutOps.push_back(Op);
962 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
963 return false;
964 case InlineAsm::Constraint_m:
965 if (selectAddrRegImm16(Op, Base, Offset)) {
966 OutOps.push_back(Base);
967 OutOps.push_back(Offset);
968 return false;
969 }
970 OutOps.push_back(Op);
971 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
972 return false;
973 case InlineAsm::Constraint_R:
974 // The 'R' constraint is supposed to be much more complicated than this.
975 // However, it's becoming less useful due to architectural changes and
976 // ought to be replaced by other constraints such as 'ZC'.
977 // For now, support 9-bit signed offsets which is supportable by all
978 // subtargets for all instructions.
979 if (selectAddrRegImm9(Op, Base, Offset)) {
980 OutOps.push_back(Base);
981 OutOps.push_back(Offset);
982 return false;
983 }
984 OutOps.push_back(Op);
985 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
986 return false;
987 case InlineAsm::Constraint_ZC:
988 // ZC matches whatever the pref, ll, and sc instructions can handle for the
989 // given subtarget.
990 if (Subtarget->inMicroMipsMode()) {
991 // On microMIPS, they can handle 12-bit offsets.
992 if (selectAddrRegImm12(Op, Base, Offset)) {
993 OutOps.push_back(Base);
994 OutOps.push_back(Offset);
995 return false;
996 }
997 } else if (Subtarget->hasMips32r6()) {
998 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
999 if (selectAddrRegImm9(Op, Base, Offset)) {
1000 OutOps.push_back(Base);
1001 OutOps.push_back(Offset);
1002 return false;
1003 }
1004 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1005 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1006 OutOps.push_back(Base);
1007 OutOps.push_back(Offset);
1008 return false;
1009 }
1010 // In all cases, 0-bit offsets are acceptable.
1011 OutOps.push_back(Op);
1012 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1013 return false;
1014 }
1015 return true;
1016 }
1017
createMipsSEISelDag(MipsTargetMachine & TM)1018 FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) {
1019 return new MipsSEDAGToDAGISel(TM);
1020 }
1021