1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #include "precomp.hpp"
44 
45 using namespace cv;
46 using namespace cv::cuda;
47 
48 #if !defined HAVE_CUDA || defined(CUDA_DISABLER)
49 
createBackgroundSubtractorGMG(int,double)50 Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorGMG>(); }
51 
52 #else
53 
54 namespace cv { namespace cuda { namespace device {
55     namespace gmg
56     {
57         void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior,
58                            float decisionThreshold, int maxFeatures, int numInitializationFrames);
59 
60         template <typename SrcT>
61         void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
62                         int frameNum,  float learningRate, bool updateBackgroundModel, cudaStream_t stream);
63     }
64 }}}
65 
66 namespace
67 {
68     class GMGImpl : public cuda::BackgroundSubtractorGMG
69     {
70     public:
71         GMGImpl(int initializationFrames, double decisionThreshold);
72 
73         void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
74         void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream);
75 
76         void getBackgroundImage(OutputArray backgroundImage) const;
77 
getMaxFeatures() const78         int getMaxFeatures() const { return maxFeatures_; }
setMaxFeatures(int maxFeatures)79         void setMaxFeatures(int maxFeatures) { maxFeatures_ = maxFeatures; }
80 
getDefaultLearningRate() const81         double getDefaultLearningRate() const { return learningRate_; }
setDefaultLearningRate(double lr)82         void setDefaultLearningRate(double lr) { learningRate_ = (float) lr; }
83 
getNumFrames() const84         int getNumFrames() const { return numInitializationFrames_; }
setNumFrames(int nframes)85         void setNumFrames(int nframes) { numInitializationFrames_ = nframes; }
86 
getQuantizationLevels() const87         int getQuantizationLevels() const { return quantizationLevels_; }
setQuantizationLevels(int nlevels)88         void setQuantizationLevels(int nlevels) { quantizationLevels_ = nlevels; }
89 
getBackgroundPrior() const90         double getBackgroundPrior() const { return backgroundPrior_; }
setBackgroundPrior(double bgprior)91         void setBackgroundPrior(double bgprior) { backgroundPrior_ = (float) bgprior; }
92 
getSmoothingRadius() const93         int getSmoothingRadius() const { return smoothingRadius_; }
setSmoothingRadius(int radius)94         void setSmoothingRadius(int radius) { smoothingRadius_ = radius; }
95 
getDecisionThreshold() const96         double getDecisionThreshold() const { return decisionThreshold_; }
setDecisionThreshold(double thresh)97         void setDecisionThreshold(double thresh) { decisionThreshold_ = (float) thresh; }
98 
getUpdateBackgroundModel() const99         bool getUpdateBackgroundModel() const { return updateBackgroundModel_; }
setUpdateBackgroundModel(bool update)100         void setUpdateBackgroundModel(bool update) { updateBackgroundModel_ = update; }
101 
getMinVal() const102         double getMinVal() const { return minVal_; }
setMinVal(double val)103         void setMinVal(double val) { minVal_ = (float) val; }
104 
getMaxVal() const105         double getMaxVal() const { return maxVal_; }
setMaxVal(double val)106         void setMaxVal(double val) { maxVal_ = (float) val; }
107 
108     private:
109         void initialize(Size frameSize, float min, float max);
110 
111         //! Total number of distinct colors to maintain in histogram.
112         int maxFeatures_;
113 
114         //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
115         float learningRate_;
116 
117         //! Number of frames of video to use to initialize histograms.
118         int numInitializationFrames_;
119 
120         //! Number of discrete levels in each channel to be used in histograms.
121         int quantizationLevels_;
122 
123         //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
124         float backgroundPrior_;
125 
126         //! Smoothing radius, in pixels, for cleaning up FG image.
127         int smoothingRadius_;
128 
129         //! Value above which pixel is determined to be FG.
130         float decisionThreshold_;
131 
132         //! Perform background model update.
133         bool updateBackgroundModel_;
134 
135         float minVal_, maxVal_;
136 
137         Size frameSize_;
138         int frameNum_;
139 
140         GpuMat nfeatures_;
141         GpuMat colors_;
142         GpuMat weights_;
143 
144 #if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
145         Ptr<cuda::Filter> boxFilter_;
146         GpuMat buf_;
147 #endif
148     };
149 
GMGImpl(int initializationFrames,double decisionThreshold)150     GMGImpl::GMGImpl(int initializationFrames, double decisionThreshold)
151     {
152         maxFeatures_ = 64;
153         learningRate_ = 0.025f;
154         numInitializationFrames_ = initializationFrames;
155         quantizationLevels_ = 16;
156         backgroundPrior_ = 0.8f;
157         decisionThreshold_ = (float) decisionThreshold;
158         smoothingRadius_ = 7;
159         updateBackgroundModel_ = true;
160         minVal_ = maxVal_ = 0;
161     }
162 
apply(InputArray image,OutputArray fgmask,double learningRate)163     void GMGImpl::apply(InputArray image, OutputArray fgmask, double learningRate)
164     {
165         apply(image, fgmask, learningRate, Stream::Null());
166     }
167 
apply(InputArray _frame,OutputArray _fgmask,double newLearningRate,Stream & stream)168     void GMGImpl::apply(InputArray _frame, OutputArray _fgmask, double newLearningRate, Stream& stream)
169     {
170         using namespace cv::cuda::device::gmg;
171 
172         typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
173                                int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
174         static const func_t funcs[6][4] =
175         {
176             {update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>},
177             {0,0,0,0},
178             {update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>},
179             {0,0,0,0},
180             {0,0,0,0},
181             {update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>}
182         };
183 
184         GpuMat frame = _frame.getGpuMat();
185 
186         CV_Assert( frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F );
187         CV_Assert( frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4 );
188 
189         if (newLearningRate != -1.0)
190         {
191             CV_Assert( newLearningRate >= 0.0 && newLearningRate <= 1.0 );
192             learningRate_ = (float) newLearningRate;
193         }
194 
195         if (frame.size() != frameSize_)
196         {
197             double minVal = minVal_;
198             double maxVal = maxVal_;
199 
200             if (minVal_ == 0 && maxVal_ == 0)
201             {
202                 minVal = 0;
203                 maxVal = frame.depth() == CV_8U ? 255.0 : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0;
204             }
205 
206             initialize(frame.size(), (float) minVal, (float) maxVal);
207         }
208 
209         _fgmask.create(frameSize_, CV_8UC1);
210         GpuMat fgmask = _fgmask.getGpuMat();
211 
212         fgmask.setTo(Scalar::all(0), stream);
213 
214         funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_,
215                                                    learningRate_, updateBackgroundModel_, StreamAccessor::getStream(stream));
216 
217 #if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
218         // medianBlur
219         if (smoothingRadius_ > 0)
220         {
221             boxFilter_->apply(fgmask, buf_, stream);
222             const int minCount = (smoothingRadius_ * smoothingRadius_ + 1) / 2;
223             const double thresh = 255.0 * minCount / (smoothingRadius_ * smoothingRadius_);
224             cuda::threshold(buf_, fgmask, thresh, 255.0, THRESH_BINARY, stream);
225         }
226 #endif
227 
228         // keep track of how many frames we have processed
229         ++frameNum_;
230     }
231 
getBackgroundImage(OutputArray backgroundImage) const232     void GMGImpl::getBackgroundImage(OutputArray backgroundImage) const
233     {
234         (void) backgroundImage;
235         CV_Error(Error::StsNotImplemented, "Not implemented");
236     }
237 
initialize(Size frameSize,float min,float max)238     void GMGImpl::initialize(Size frameSize, float min, float max)
239     {
240         using namespace cv::cuda::device::gmg;
241 
242         CV_Assert( maxFeatures_ > 0 );
243         CV_Assert( learningRate_ >= 0.0f && learningRate_ <= 1.0f);
244         CV_Assert( numInitializationFrames_ >= 1);
245         CV_Assert( quantizationLevels_ >= 1 && quantizationLevels_ <= 255);
246         CV_Assert( backgroundPrior_ >= 0.0f && backgroundPrior_ <= 1.0f);
247 
248         minVal_ = min;
249         maxVal_ = max;
250         CV_Assert( minVal_ < maxVal_ );
251 
252         frameSize_ = frameSize;
253 
254         frameNum_ = 0;
255 
256         nfeatures_.create(frameSize_, CV_32SC1);
257         colors_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32SC1);
258         weights_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32FC1);
259 
260         nfeatures_.setTo(Scalar::all(0));
261 
262 #if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
263         if (smoothingRadius_ > 0)
264             boxFilter_ = cuda::createBoxFilter(CV_8UC1, -1, Size(smoothingRadius_, smoothingRadius_));
265 #endif
266 
267         loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_,
268                       quantizationLevels_, backgroundPrior_, decisionThreshold_, maxFeatures_, numInitializationFrames_);
269     }
270 }
271 
createBackgroundSubtractorGMG(int initializationFrames,double decisionThreshold)272 Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold)
273 {
274     return makePtr<GMGImpl>(initializationFrames, decisionThreshold);
275 }
276 
277 #endif
278