1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 // * Redistribution's of source code must retain the above copyright notice,
21 // this list of conditions and the following disclaimer.
22 //
23 // * Redistribution's in binary form must reproduce the above copyright notice,
24 // this list of conditions and the following disclaimer in the documentation
25 // and/or other materials provided with the distribution.
26 //
27 // * The name of the copyright holders may not be used to endorse or promote products
28 // derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42
43 #include "precomp.hpp"
44
45 using namespace cv;
46 using namespace cv::cuda;
47
48 #if !defined HAVE_CUDA || defined(CUDA_DISABLER)
49
createBackgroundSubtractorGMG(int,double)50 Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorGMG>(); }
51
52 #else
53
54 namespace cv { namespace cuda { namespace device {
55 namespace gmg
56 {
57 void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior,
58 float decisionThreshold, int maxFeatures, int numInitializationFrames);
59
60 template <typename SrcT>
61 void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
62 int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
63 }
64 }}}
65
66 namespace
67 {
68 class GMGImpl : public cuda::BackgroundSubtractorGMG
69 {
70 public:
71 GMGImpl(int initializationFrames, double decisionThreshold);
72
73 void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
74 void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream);
75
76 void getBackgroundImage(OutputArray backgroundImage) const;
77
getMaxFeatures() const78 int getMaxFeatures() const { return maxFeatures_; }
setMaxFeatures(int maxFeatures)79 void setMaxFeatures(int maxFeatures) { maxFeatures_ = maxFeatures; }
80
getDefaultLearningRate() const81 double getDefaultLearningRate() const { return learningRate_; }
setDefaultLearningRate(double lr)82 void setDefaultLearningRate(double lr) { learningRate_ = (float) lr; }
83
getNumFrames() const84 int getNumFrames() const { return numInitializationFrames_; }
setNumFrames(int nframes)85 void setNumFrames(int nframes) { numInitializationFrames_ = nframes; }
86
getQuantizationLevels() const87 int getQuantizationLevels() const { return quantizationLevels_; }
setQuantizationLevels(int nlevels)88 void setQuantizationLevels(int nlevels) { quantizationLevels_ = nlevels; }
89
getBackgroundPrior() const90 double getBackgroundPrior() const { return backgroundPrior_; }
setBackgroundPrior(double bgprior)91 void setBackgroundPrior(double bgprior) { backgroundPrior_ = (float) bgprior; }
92
getSmoothingRadius() const93 int getSmoothingRadius() const { return smoothingRadius_; }
setSmoothingRadius(int radius)94 void setSmoothingRadius(int radius) { smoothingRadius_ = radius; }
95
getDecisionThreshold() const96 double getDecisionThreshold() const { return decisionThreshold_; }
setDecisionThreshold(double thresh)97 void setDecisionThreshold(double thresh) { decisionThreshold_ = (float) thresh; }
98
getUpdateBackgroundModel() const99 bool getUpdateBackgroundModel() const { return updateBackgroundModel_; }
setUpdateBackgroundModel(bool update)100 void setUpdateBackgroundModel(bool update) { updateBackgroundModel_ = update; }
101
getMinVal() const102 double getMinVal() const { return minVal_; }
setMinVal(double val)103 void setMinVal(double val) { minVal_ = (float) val; }
104
getMaxVal() const105 double getMaxVal() const { return maxVal_; }
setMaxVal(double val)106 void setMaxVal(double val) { maxVal_ = (float) val; }
107
108 private:
109 void initialize(Size frameSize, float min, float max);
110
111 //! Total number of distinct colors to maintain in histogram.
112 int maxFeatures_;
113
114 //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
115 float learningRate_;
116
117 //! Number of frames of video to use to initialize histograms.
118 int numInitializationFrames_;
119
120 //! Number of discrete levels in each channel to be used in histograms.
121 int quantizationLevels_;
122
123 //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
124 float backgroundPrior_;
125
126 //! Smoothing radius, in pixels, for cleaning up FG image.
127 int smoothingRadius_;
128
129 //! Value above which pixel is determined to be FG.
130 float decisionThreshold_;
131
132 //! Perform background model update.
133 bool updateBackgroundModel_;
134
135 float minVal_, maxVal_;
136
137 Size frameSize_;
138 int frameNum_;
139
140 GpuMat nfeatures_;
141 GpuMat colors_;
142 GpuMat weights_;
143
144 #if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
145 Ptr<cuda::Filter> boxFilter_;
146 GpuMat buf_;
147 #endif
148 };
149
GMGImpl(int initializationFrames,double decisionThreshold)150 GMGImpl::GMGImpl(int initializationFrames, double decisionThreshold)
151 {
152 maxFeatures_ = 64;
153 learningRate_ = 0.025f;
154 numInitializationFrames_ = initializationFrames;
155 quantizationLevels_ = 16;
156 backgroundPrior_ = 0.8f;
157 decisionThreshold_ = (float) decisionThreshold;
158 smoothingRadius_ = 7;
159 updateBackgroundModel_ = true;
160 minVal_ = maxVal_ = 0;
161 }
162
apply(InputArray image,OutputArray fgmask,double learningRate)163 void GMGImpl::apply(InputArray image, OutputArray fgmask, double learningRate)
164 {
165 apply(image, fgmask, learningRate, Stream::Null());
166 }
167
apply(InputArray _frame,OutputArray _fgmask,double newLearningRate,Stream & stream)168 void GMGImpl::apply(InputArray _frame, OutputArray _fgmask, double newLearningRate, Stream& stream)
169 {
170 using namespace cv::cuda::device::gmg;
171
172 typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
173 int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
174 static const func_t funcs[6][4] =
175 {
176 {update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>},
177 {0,0,0,0},
178 {update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>},
179 {0,0,0,0},
180 {0,0,0,0},
181 {update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>}
182 };
183
184 GpuMat frame = _frame.getGpuMat();
185
186 CV_Assert( frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F );
187 CV_Assert( frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4 );
188
189 if (newLearningRate != -1.0)
190 {
191 CV_Assert( newLearningRate >= 0.0 && newLearningRate <= 1.0 );
192 learningRate_ = (float) newLearningRate;
193 }
194
195 if (frame.size() != frameSize_)
196 {
197 double minVal = minVal_;
198 double maxVal = maxVal_;
199
200 if (minVal_ == 0 && maxVal_ == 0)
201 {
202 minVal = 0;
203 maxVal = frame.depth() == CV_8U ? 255.0 : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0;
204 }
205
206 initialize(frame.size(), (float) minVal, (float) maxVal);
207 }
208
209 _fgmask.create(frameSize_, CV_8UC1);
210 GpuMat fgmask = _fgmask.getGpuMat();
211
212 fgmask.setTo(Scalar::all(0), stream);
213
214 funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_,
215 learningRate_, updateBackgroundModel_, StreamAccessor::getStream(stream));
216
217 #if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
218 // medianBlur
219 if (smoothingRadius_ > 0)
220 {
221 boxFilter_->apply(fgmask, buf_, stream);
222 const int minCount = (smoothingRadius_ * smoothingRadius_ + 1) / 2;
223 const double thresh = 255.0 * minCount / (smoothingRadius_ * smoothingRadius_);
224 cuda::threshold(buf_, fgmask, thresh, 255.0, THRESH_BINARY, stream);
225 }
226 #endif
227
228 // keep track of how many frames we have processed
229 ++frameNum_;
230 }
231
getBackgroundImage(OutputArray backgroundImage) const232 void GMGImpl::getBackgroundImage(OutputArray backgroundImage) const
233 {
234 (void) backgroundImage;
235 CV_Error(Error::StsNotImplemented, "Not implemented");
236 }
237
initialize(Size frameSize,float min,float max)238 void GMGImpl::initialize(Size frameSize, float min, float max)
239 {
240 using namespace cv::cuda::device::gmg;
241
242 CV_Assert( maxFeatures_ > 0 );
243 CV_Assert( learningRate_ >= 0.0f && learningRate_ <= 1.0f);
244 CV_Assert( numInitializationFrames_ >= 1);
245 CV_Assert( quantizationLevels_ >= 1 && quantizationLevels_ <= 255);
246 CV_Assert( backgroundPrior_ >= 0.0f && backgroundPrior_ <= 1.0f);
247
248 minVal_ = min;
249 maxVal_ = max;
250 CV_Assert( minVal_ < maxVal_ );
251
252 frameSize_ = frameSize;
253
254 frameNum_ = 0;
255
256 nfeatures_.create(frameSize_, CV_32SC1);
257 colors_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32SC1);
258 weights_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32FC1);
259
260 nfeatures_.setTo(Scalar::all(0));
261
262 #if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
263 if (smoothingRadius_ > 0)
264 boxFilter_ = cuda::createBoxFilter(CV_8UC1, -1, Size(smoothingRadius_, smoothingRadius_));
265 #endif
266
267 loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_,
268 quantizationLevels_, backgroundPrior_, decisionThreshold_, maxFeatures_, numInitializationFrames_);
269 }
270 }
271
createBackgroundSubtractorGMG(int initializationFrames,double decisionThreshold)272 Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold)
273 {
274 return makePtr<GMGImpl>(initializationFrames, decisionThreshold);
275 }
276
277 #endif
278