1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistribution's of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistribution's in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of the copyright holders may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the OpenCV Foundation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 #include "precomp.hpp"
42 
43 #if 0
44 #define dprintf(x) printf x
45 #define print_matrix(x) print(x)
46 #else
47 #define dprintf(x)
48 #define print_matrix(x)
49 #endif
50 
51 /*
52 
53 ****Error Message********************************************************************************************************************
54 
55 Downhill Simplex method in OpenCV dev 3.0.0 getting this error:
56 
57 OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1])
58 && elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50)
59 >> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in Mat::at,
60 file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893
61 
62 ****Problem and Possible Fix*********************************************************************************************************
63 
64 DownhillSolverImpl::innerDownhillSimplex something looks broken here:
65 Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim,0.0);
66 fcount = 0;
67 for(i=0;i<ndim+1;++i)
68 {
69 y(i) = f->calc(p[i]);
70 }
71 
72 y has only ndim elements, while the loop goes over ndim+1
73 
74 Edited the following for possible fix:
75 
76 Replaced y(1,ndim,0.0) ------> y(1,ndim+1,0.0)
77 
78 ***********************************************************************************************************************************
79 
80 The code below was used in tesing the source code.
81 Created by @SareeAlnaghy
82 
83 #include <iostream>
84 #include <cstdlib>
85 #include <cmath>
86 #include <algorithm>
87 #include <opencv2\optim\optim.hpp>
88 
89 using namespace std;
90 using namespace cv;
91 
92 void test(Ptr<optim::DownhillSolver> MinProblemSolver, Ptr<optim::MinProblemSolver::Function> ptr_F, Mat &P, Mat &step)
93 {
94 try{
95 
96 MinProblemSolver->setFunction(ptr_F);
97 MinProblemSolver->setInitStep(step);
98 double res = MinProblemSolver->minimize(P);
99 
100 cout << "res " << res << endl;
101 }
102 catch (exception e)
103 {
104 cerr << "Error:: " << e.what() << endl;
105 }
106 }
107 
108 int main()
109 {
110 
111 class DistanceToLines :public optim::MinProblemSolver::Function {
112 public:
113 double calc(const double* x)const{
114 
115 return x[0] * x[0] + x[1] * x[1];
116 
117 }
118 };
119 
120 Mat P = (Mat_<double>(1, 2) << 1.0, 1.0);
121 Mat step = (Mat_<double>(2, 1) << -0.5, 0.5);
122 
123 Ptr<optim::MinProblemSolver::Function> ptr_F(new DistanceToLines());
124 Ptr<optim::DownhillSolver> MinProblemSolver = optim::createDownhillSolver();
125 
126 test(MinProblemSolver, ptr_F, P, step);
127 
128 system("pause");
129 return 0;
130 }
131 
132 ****Suggesttion for imporving Simplex implentation***************************************************************************************
133 
134 Currently the downhilll simplex method outputs the function value that is minimized. It should also return the coordinate points where the
135 function is minimized. This is very useful in many applications such as using back projection methods to find a point of intersection of
136 multiple lines in three dimensions as not all lines intersect in three dimensions.
137 
138 */
139 
140 namespace cv
141 {
142 
143 class DownhillSolverImpl : public DownhillSolver
144 {
145 public:
DownhillSolverImpl()146     DownhillSolverImpl()
147     {
148         _Function=Ptr<Function>();
149         _step=Mat_<double>();
150     }
151 
getInitStep(OutputArray step) const152     void getInitStep(OutputArray step) const { _step.copyTo(step); }
setInitStep(InputArray step)153     void setInitStep(InputArray step)
154     {
155         // set dimensionality and make a deep copy of step
156         Mat m = step.getMat();
157         dprintf(("m.cols=%d\nm.rows=%d\n", m.cols, m.rows));
158         if( m.rows == 1 )
159             m.copyTo(_step);
160         else
161             transpose(m, _step);
162     }
163 
getFunction() const164     Ptr<MinProblemSolver::Function> getFunction() const { return _Function; }
165 
setFunction(const Ptr<Function> & f)166     void setFunction(const Ptr<Function>& f) { _Function=f; }
167 
getTermCriteria() const168     TermCriteria getTermCriteria() const { return _termcrit; }
169 
setTermCriteria(const TermCriteria & termcrit)170     void setTermCriteria( const TermCriteria& termcrit )
171     {
172         CV_Assert( termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) &&
173                    termcrit.epsilon > 0 &&
174                    termcrit.maxCount > 0 );
175         _termcrit=termcrit;
176     }
177 
minimize(InputOutputArray x_)178     double minimize( InputOutputArray x_ )
179     {
180         dprintf(("hi from minimize\n"));
181         CV_Assert( !_Function.empty() );
182         CV_Assert( std::min(_step.cols, _step.rows) == 1 &&
183                   std::max(_step.cols, _step.rows) >= 2 &&
184                   _step.type() == CV_64FC1 );
185         dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
186         dprintf(("step\n"));
187         print_matrix(_step);
188 
189         Mat x = x_.getMat(), simplex;
190 
191         createInitialSimplex(x, simplex, _step);
192         int count = 0;
193         double res = innerDownhillSimplex(simplex,_termcrit.epsilon, _termcrit.epsilon,
194                                           count, _termcrit.maxCount);
195         dprintf(("%d iterations done\n",count));
196 
197         if( !x.empty() )
198         {
199             Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
200             simplex_0m.convertTo(x, x.type());
201         }
202         else
203         {
204             int x_type = x_.fixedType() ? x_.type() : CV_64F;
205             simplex.row(0).convertTo(x_, x_type);
206         }
207         return res;
208     }
209 protected:
210     Ptr<MinProblemSolver::Function> _Function;
211     TermCriteria _termcrit;
212     Mat _step;
213 
updateCoordSum(const Mat & p,Mat & coord_sum)214     inline void updateCoordSum(const Mat& p, Mat& coord_sum)
215     {
216         int i, j, m = p.rows, n = p.cols;
217         double* coord_sum_ = coord_sum.ptr<double>();
218         CV_Assert( coord_sum.cols == n && coord_sum.rows == 1 );
219 
220         for( j = 0; j < n; j++ )
221             coord_sum_[j] = 0.;
222 
223         for( i = 0; i < m; i++ )
224         {
225             const double* p_i = p.ptr<double>(i);
226             for( j = 0; j < n; j++ )
227                 coord_sum_[j] += p_i[j];
228         }
229 
230         dprintf(("\nupdated coord sum:\n"));
231         print_matrix(coord_sum);
232 
233     }
234 
createInitialSimplex(const Mat & x0,Mat & simplex,Mat & step)235     inline void createInitialSimplex( const Mat& x0, Mat& simplex, Mat& step )
236     {
237         int i, j, ndim = step.cols;
238         CV_Assert( _Function->getDims() == ndim );
239         Mat x = x0;
240         if( x0.empty() )
241             x = Mat::zeros(1, ndim, CV_64F);
242         CV_Assert( (x.cols == 1 && x.rows == ndim) || (x.cols == ndim && x.rows == 1) );
243         CV_Assert( x.type() == CV_32F || x.type() == CV_64F );
244 
245         simplex.create(ndim + 1, ndim, CV_64F);
246         Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
247 
248         x.convertTo(simplex_0m, CV_64F);
249         double* simplex_0 = simplex.ptr<double>();
250         const double* step_ = step.ptr<double>();
251         for( i = 1; i <= ndim; i++ )
252         {
253             double* simplex_i = simplex.ptr<double>(i);
254             for( j = 0; j < ndim; j++ )
255                 simplex_i[j] = simplex_0[j];
256             simplex_i[i-1] += 0.5*step_[i-1];
257         }
258         for( j = 0; j < ndim; j++ )
259             simplex_0[j] -= 0.5*step_[j];
260 
261         dprintf(("\nthis is simplex\n"));
262         print_matrix(simplex);
263     }
264 
265     /*
266      Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done)
267 
268      The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
269      form a simplex - each row is an ndim vector.
270      On output, fcount gives the number of function evaluations taken.
271     */
innerDownhillSimplex(Mat & p,double MinRange,double MinError,int & fcount,int nmax)272     double innerDownhillSimplex( Mat& p, double MinRange, double MinError, int& fcount, int nmax )
273     {
274         int i, j, ndim = p.cols;
275         Mat coord_sum(1, ndim, CV_64F), buf(1, ndim, CV_64F), y(1, ndim+1, CV_64F);
276         double* y_ = y.ptr<double>();
277 
278         fcount = ndim+1;
279         for( i = 0; i <= ndim; i++ )
280             y_[i] = calc_f(p.ptr<double>(i));
281 
282         updateCoordSum(p, coord_sum);
283 
284         for (;;)
285         {
286             // find highest (worst), next-to-worst, and lowest
287             // (best) points by going through all of them.
288             int ilo = 0, ihi, inhi;
289             if( y_[0] > y_[1] )
290             {
291                 ihi = 0; inhi = 1;
292             }
293             else
294             {
295                 ihi = 1; inhi = 0;
296             }
297             for( i = 0; i <= ndim; i++ )
298             {
299                 double yval = y_[i];
300                 if (yval <= y_[ilo])
301                     ilo = i;
302                 if (yval > y_[ihi])
303                 {
304                     inhi = ihi;
305                     ihi = i;
306                 }
307                 else if (yval > y_[inhi] && i != ihi)
308                     inhi = i;
309             }
310             CV_Assert( ihi != inhi );
311             if( ilo == inhi || ilo == ihi )
312             {
313                 for( i = 0; i <= ndim; i++ )
314                 {
315                     double yval = y_[i];
316                     if( yval == y_[ilo] && i != ihi && i != inhi )
317                     {
318                         ilo = i;
319                         break;
320                     }
321                 }
322             }
323             dprintf(("\nthis is y on iteration %d:\n",fcount));
324             print_matrix(y);
325 
326             // check stop criterion
327             double error = fabs(y_[ihi] - y_[ilo]);
328             double range = 0;
329             for( j = 0; j < ndim; j++ )
330             {
331                 double minval, maxval;
332                 minval = maxval = p.at<double>(0, j);
333                 for( i = 1; i <= ndim; i++ )
334                 {
335                     double pval = p.at<double>(i, j);
336                     minval = std::min(minval, pval);
337                     maxval = std::max(maxval, pval);
338                 }
339                 range = std::max(range, fabs(maxval - minval));
340             }
341 
342             if( range <= MinRange || error <= MinError || fcount >= nmax )
343             {
344                 // Put best point and value in first slot.
345                 std::swap(y_[0], y_[ilo]);
346                 for( j = 0; j < ndim; j++ )
347                 {
348                     std::swap(p.at<double>(0, j), p.at<double>(ilo, j));
349                 }
350                 break;
351             }
352 
353             double y_lo = y_[ilo], y_nhi = y_[inhi], y_hi = y_[ihi];
354             // Begin a new iteration. First, reflect the worst point about the centroid of others
355             double alpha = -1.0;
356             double y_alpha = tryNewPoint(p, coord_sum, ihi, alpha, buf, fcount);
357 
358             dprintf(("\ny_lo=%g, y_nhi=%g, y_hi=%g, y_alpha=%g, p_alpha:\n", y_lo, y_nhi, y_hi, y_alpha));
359             print_matrix(buf);
360 
361             if( y_alpha < y_nhi )
362             {
363                 if( y_alpha < y_lo )
364                 {
365                     // If that's better than the best point, go twice as far in that direction
366                     double beta = -2.0;
367                     double y_beta = tryNewPoint(p, coord_sum, ihi, beta, buf, fcount);
368                     dprintf(("\ny_beta=%g, p_beta:\n", y_beta));
369                     print_matrix(buf);
370                     if( y_beta < y_alpha )
371                     {
372                         alpha = beta;
373                         y_alpha = y_beta;
374                     }
375                 }
376                 replacePoint(p, coord_sum, y, ihi, alpha, y_alpha);
377             }
378             else
379             {
380                 // The new point is worse than the second-highest,
381                 // do not go so far in that direction
382                 double gamma = 0.5;
383                 double y_gamma = tryNewPoint(p, coord_sum, ihi, gamma, buf, fcount);
384                 dprintf(("\ny_gamma=%g, p_gamma:\n", y_gamma));
385                 print_matrix(buf);
386                 if( y_gamma < y_hi )
387                     replacePoint(p, coord_sum, y, ihi, gamma, y_gamma);
388                 else
389                 {
390                     // Can't seem to improve things.
391                     // Contract the simplex to good point
392                     // in hope to find a simplex landscape.
393                     for( i = 0; i <= ndim; i++ )
394                     {
395                         if (i != ilo)
396                         {
397                             for( j = 0; j < ndim; j++ )
398                                 p.at<double>(i, j) = 0.5*(p.at<double>(i, j) + p.at<double>(ilo, j));
399                             y_[i] = calc_f(p.ptr<double>(i));
400                         }
401                     }
402                     fcount += ndim;
403                     updateCoordSum(p, coord_sum);
404                 }
405             }
406             dprintf(("\nthis is simplex on iteration %d\n",fcount));
407             print_matrix(p);
408         }
409         return y_[0];
410     }
411 
calc_f(const double * ptr)412     inline double calc_f(const double* ptr)
413     {
414         double res = _Function->calc(ptr);
415         CV_Assert( !cvIsNaN(res) && !cvIsInf(res) );
416         return res;
417     }
418 
tryNewPoint(Mat & p,Mat & coord_sum,int ihi,double alpha_,Mat & ptry,int & fcount)419     double tryNewPoint( Mat& p, Mat& coord_sum, int ihi, double alpha_, Mat& ptry, int& fcount )
420     {
421         int j, ndim = p.cols;
422 
423         double alpha = (1.0 - alpha_)/ndim;
424         double beta = alpha - alpha_;
425         double* p_ihi = p.ptr<double>(ihi);
426         double* ptry_ = ptry.ptr<double>();
427         double* coord_sum_ = coord_sum.ptr<double>();
428 
429         for( j = 0; j < ndim; j++ )
430             ptry_[j] = coord_sum_[j]*alpha - p_ihi[j]*beta;
431 
432         fcount++;
433         return calc_f(ptry_);
434     }
435 
replacePoint(Mat & p,Mat & coord_sum,Mat & y,int ihi,double alpha_,double ytry)436     void replacePoint( Mat& p, Mat& coord_sum, Mat& y, int ihi, double alpha_, double ytry )
437     {
438         int j, ndim = p.cols;
439 
440         double alpha = (1.0 - alpha_)/ndim;
441         double beta = alpha - alpha_;
442         double* p_ihi = p.ptr<double>(ihi);
443         double* coord_sum_ = coord_sum.ptr<double>();
444 
445         for( j = 0; j < ndim; j++ )
446             p_ihi[j] = coord_sum_[j]*alpha - p_ihi[j]*beta;
447         y.at<double>(ihi) = ytry;
448         updateCoordSum(p, coord_sum);
449     }
450 };
451 
452 
453 // both minRange & minError are specified by termcrit.epsilon;
454 // In addition, user may specify the number of iterations that the algorithm does.
create(const Ptr<MinProblemSolver::Function> & f,InputArray initStep,TermCriteria termcrit)455 Ptr<DownhillSolver> DownhillSolver::create( const Ptr<MinProblemSolver::Function>& f,
456                                             InputArray initStep, TermCriteria termcrit )
457 {
458     Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
459     DS->setFunction(f);
460     DS->setInitStep(initStep);
461     DS->setTermCriteria(termcrit);
462     return DS;
463 }
464 
465 }
466