1 //===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a coalescing interval map for small objects.
11 //
12 // KeyT objects are mapped to ValT objects. Intervals of keys that map to the
13 // same value are represented in a compressed form.
14 //
15 // Iterators provide ordered access to the compressed intervals rather than the
16 // individual keys, and insert and erase operations use key intervals as well.
17 //
18 // Like SmallVector, IntervalMap will store the first N intervals in the map
19 // object itself without any allocations. When space is exhausted it switches to
20 // a B+-tree representation with very small overhead for small key and value
21 // objects.
22 //
23 // A Traits class specifies how keys are compared. It also allows IntervalMap to
24 // work with both closed and half-open intervals.
25 //
26 // Keys and values are not stored next to each other in a std::pair, so we don't
27 // provide such a value_type. Dereferencing iterators only returns the mapped
28 // value. The interval bounds are accessible through the start() and stop()
29 // iterator methods.
30 //
31 // IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
32 // is the optimal size. For large objects use std::map instead.
33 //
34 //===----------------------------------------------------------------------===//
35 //
36 // Synopsis:
37 //
38 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
39 // class IntervalMap {
40 // public:
41 // typedef KeyT key_type;
42 // typedef ValT mapped_type;
43 // typedef RecyclingAllocator<...> Allocator;
44 // class iterator;
45 // class const_iterator;
46 //
47 // explicit IntervalMap(Allocator&);
48 // ~IntervalMap():
49 //
50 // bool empty() const;
51 // KeyT start() const;
52 // KeyT stop() const;
53 // ValT lookup(KeyT x, Value NotFound = Value()) const;
54 //
55 // const_iterator begin() const;
56 // const_iterator end() const;
57 // iterator begin();
58 // iterator end();
59 // const_iterator find(KeyT x) const;
60 // iterator find(KeyT x);
61 //
62 // void insert(KeyT a, KeyT b, ValT y);
63 // void clear();
64 // };
65 //
66 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
67 // class IntervalMap::const_iterator :
68 // public std::iterator<std::bidirectional_iterator_tag, ValT> {
69 // public:
70 // bool operator==(const const_iterator &) const;
71 // bool operator!=(const const_iterator &) const;
72 // bool valid() const;
73 //
74 // const KeyT &start() const;
75 // const KeyT &stop() const;
76 // const ValT &value() const;
77 // const ValT &operator*() const;
78 // const ValT *operator->() const;
79 //
80 // const_iterator &operator++();
81 // const_iterator &operator++(int);
82 // const_iterator &operator--();
83 // const_iterator &operator--(int);
84 // void goToBegin();
85 // void goToEnd();
86 // void find(KeyT x);
87 // void advanceTo(KeyT x);
88 // };
89 //
90 // template <typename KeyT, typename ValT, unsigned N, typename Traits>
91 // class IntervalMap::iterator : public const_iterator {
92 // public:
93 // void insert(KeyT a, KeyT b, Value y);
94 // void erase();
95 // };
96 //
97 //===----------------------------------------------------------------------===//
98
99 #ifndef LLVM_ADT_INTERVALMAP_H
100 #define LLVM_ADT_INTERVALMAP_H
101
102 #include "llvm/ADT/PointerIntPair.h"
103 #include "llvm/ADT/SmallVector.h"
104 #include "llvm/Support/AlignOf.h"
105 #include "llvm/Support/Allocator.h"
106 #include "llvm/Support/RecyclingAllocator.h"
107 #include <iterator>
108
109 namespace llvm {
110
111
112 //===----------------------------------------------------------------------===//
113 //--- Key traits ---//
114 //===----------------------------------------------------------------------===//
115 //
116 // The IntervalMap works with closed or half-open intervals.
117 // Adjacent intervals that map to the same value are coalesced.
118 //
119 // The IntervalMapInfo traits class is used to determine if a key is contained
120 // in an interval, and if two intervals are adjacent so they can be coalesced.
121 // The provided implementation works for closed integer intervals, other keys
122 // probably need a specialized version.
123 //
124 // The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
125 //
126 // It is assumed that (a;b] half-open intervals are not used, only [a;b) is
127 // allowed. This is so that stopLess(a, b) can be used to determine if two
128 // intervals overlap.
129 //
130 //===----------------------------------------------------------------------===//
131
132 template <typename T>
133 struct IntervalMapInfo {
134
135 /// startLess - Return true if x is not in [a;b].
136 /// This is x < a both for closed intervals and for [a;b) half-open intervals.
startLessIntervalMapInfo137 static inline bool startLess(const T &x, const T &a) {
138 return x < a;
139 }
140
141 /// stopLess - Return true if x is not in [a;b].
142 /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
stopLessIntervalMapInfo143 static inline bool stopLess(const T &b, const T &x) {
144 return b < x;
145 }
146
147 /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
148 /// This is a+1 == b for closed intervals, a == b for half-open intervals.
adjacentIntervalMapInfo149 static inline bool adjacent(const T &a, const T &b) {
150 return a+1 == b;
151 }
152
153 };
154
155 template <typename T>
156 struct IntervalMapHalfOpenInfo {
157
158 /// startLess - Return true if x is not in [a;b).
startLessIntervalMapHalfOpenInfo159 static inline bool startLess(const T &x, const T &a) {
160 return x < a;
161 }
162
163 /// stopLess - Return true if x is not in [a;b).
stopLessIntervalMapHalfOpenInfo164 static inline bool stopLess(const T &b, const T &x) {
165 return b <= x;
166 }
167
168 /// adjacent - Return true when the intervals [x;a) and [b;y) can coalesce.
adjacentIntervalMapHalfOpenInfo169 static inline bool adjacent(const T &a, const T &b) {
170 return a == b;
171 }
172
173 };
174
175 /// IntervalMapImpl - Namespace used for IntervalMap implementation details.
176 /// It should be considered private to the implementation.
177 namespace IntervalMapImpl {
178
179 // Forward declarations.
180 template <typename, typename, unsigned, typename> class LeafNode;
181 template <typename, typename, unsigned, typename> class BranchNode;
182
183 typedef std::pair<unsigned,unsigned> IdxPair;
184
185
186 //===----------------------------------------------------------------------===//
187 //--- IntervalMapImpl::NodeBase ---//
188 //===----------------------------------------------------------------------===//
189 //
190 // Both leaf and branch nodes store vectors of pairs.
191 // Leaves store ((KeyT, KeyT), ValT) pairs, branches use (NodeRef, KeyT).
192 //
193 // Keys and values are stored in separate arrays to avoid padding caused by
194 // different object alignments. This also helps improve locality of reference
195 // when searching the keys.
196 //
197 // The nodes don't know how many elements they contain - that information is
198 // stored elsewhere. Omitting the size field prevents padding and allows a node
199 // to fill the allocated cache lines completely.
200 //
201 // These are typical key and value sizes, the node branching factor (N), and
202 // wasted space when nodes are sized to fit in three cache lines (192 bytes):
203 //
204 // T1 T2 N Waste Used by
205 // 4 4 24 0 Branch<4> (32-bit pointers)
206 // 8 4 16 0 Leaf<4,4>, Branch<4>
207 // 8 8 12 0 Leaf<4,8>, Branch<8>
208 // 16 4 9 12 Leaf<8,4>
209 // 16 8 8 0 Leaf<8,8>
210 //
211 //===----------------------------------------------------------------------===//
212
213 template <typename T1, typename T2, unsigned N>
214 class NodeBase {
215 public:
216 enum { Capacity = N };
217
218 T1 first[N];
219 T2 second[N];
220
221 /// copy - Copy elements from another node.
222 /// @param Other Node elements are copied from.
223 /// @param i Beginning of the source range in other.
224 /// @param j Beginning of the destination range in this.
225 /// @param Count Number of elements to copy.
226 template <unsigned M>
copy(const NodeBase<T1,T2,M> & Other,unsigned i,unsigned j,unsigned Count)227 void copy(const NodeBase<T1, T2, M> &Other, unsigned i,
228 unsigned j, unsigned Count) {
229 assert(i + Count <= M && "Invalid source range");
230 assert(j + Count <= N && "Invalid dest range");
231 for (unsigned e = i + Count; i != e; ++i, ++j) {
232 first[j] = Other.first[i];
233 second[j] = Other.second[i];
234 }
235 }
236
237 /// moveLeft - Move elements to the left.
238 /// @param i Beginning of the source range.
239 /// @param j Beginning of the destination range.
240 /// @param Count Number of elements to copy.
moveLeft(unsigned i,unsigned j,unsigned Count)241 void moveLeft(unsigned i, unsigned j, unsigned Count) {
242 assert(j <= i && "Use moveRight shift elements right");
243 copy(*this, i, j, Count);
244 }
245
246 /// moveRight - Move elements to the right.
247 /// @param i Beginning of the source range.
248 /// @param j Beginning of the destination range.
249 /// @param Count Number of elements to copy.
moveRight(unsigned i,unsigned j,unsigned Count)250 void moveRight(unsigned i, unsigned j, unsigned Count) {
251 assert(i <= j && "Use moveLeft shift elements left");
252 assert(j + Count <= N && "Invalid range");
253 while (Count--) {
254 first[j + Count] = first[i + Count];
255 second[j + Count] = second[i + Count];
256 }
257 }
258
259 /// erase - Erase elements [i;j).
260 /// @param i Beginning of the range to erase.
261 /// @param j End of the range. (Exclusive).
262 /// @param Size Number of elements in node.
erase(unsigned i,unsigned j,unsigned Size)263 void erase(unsigned i, unsigned j, unsigned Size) {
264 moveLeft(j, i, Size - j);
265 }
266
267 /// erase - Erase element at i.
268 /// @param i Index of element to erase.
269 /// @param Size Number of elements in node.
erase(unsigned i,unsigned Size)270 void erase(unsigned i, unsigned Size) {
271 erase(i, i+1, Size);
272 }
273
274 /// shift - Shift elements [i;size) 1 position to the right.
275 /// @param i Beginning of the range to move.
276 /// @param Size Number of elements in node.
shift(unsigned i,unsigned Size)277 void shift(unsigned i, unsigned Size) {
278 moveRight(i, i + 1, Size - i);
279 }
280
281 /// transferToLeftSib - Transfer elements to a left sibling node.
282 /// @param Size Number of elements in this.
283 /// @param Sib Left sibling node.
284 /// @param SSize Number of elements in sib.
285 /// @param Count Number of elements to transfer.
transferToLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)286 void transferToLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize,
287 unsigned Count) {
288 Sib.copy(*this, 0, SSize, Count);
289 erase(0, Count, Size);
290 }
291
292 /// transferToRightSib - Transfer elements to a right sibling node.
293 /// @param Size Number of elements in this.
294 /// @param Sib Right sibling node.
295 /// @param SSize Number of elements in sib.
296 /// @param Count Number of elements to transfer.
transferToRightSib(unsigned Size,NodeBase & Sib,unsigned SSize,unsigned Count)297 void transferToRightSib(unsigned Size, NodeBase &Sib, unsigned SSize,
298 unsigned Count) {
299 Sib.moveRight(0, Count, SSize);
300 Sib.copy(*this, Size-Count, 0, Count);
301 }
302
303 /// adjustFromLeftSib - Adjust the number if elements in this node by moving
304 /// elements to or from a left sibling node.
305 /// @param Size Number of elements in this.
306 /// @param Sib Right sibling node.
307 /// @param SSize Number of elements in sib.
308 /// @param Add The number of elements to add to this node, possibly < 0.
309 /// @return Number of elements added to this node, possibly negative.
adjustFromLeftSib(unsigned Size,NodeBase & Sib,unsigned SSize,int Add)310 int adjustFromLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
311 if (Add > 0) {
312 // We want to grow, copy from sib.
313 unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
314 Sib.transferToRightSib(SSize, *this, Size, Count);
315 return Count;
316 } else {
317 // We want to shrink, copy to sib.
318 unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
319 transferToLeftSib(Size, Sib, SSize, Count);
320 return -Count;
321 }
322 }
323 };
324
325 /// IntervalMapImpl::adjustSiblingSizes - Move elements between sibling nodes.
326 /// @param Node Array of pointers to sibling nodes.
327 /// @param Nodes Number of nodes.
328 /// @param CurSize Array of current node sizes, will be overwritten.
329 /// @param NewSize Array of desired node sizes.
330 template <typename NodeT>
adjustSiblingSizes(NodeT * Node[],unsigned Nodes,unsigned CurSize[],const unsigned NewSize[])331 void adjustSiblingSizes(NodeT *Node[], unsigned Nodes,
332 unsigned CurSize[], const unsigned NewSize[]) {
333 // Move elements right.
334 for (int n = Nodes - 1; n; --n) {
335 if (CurSize[n] == NewSize[n])
336 continue;
337 for (int m = n - 1; m != -1; --m) {
338 int d = Node[n]->adjustFromLeftSib(CurSize[n], *Node[m], CurSize[m],
339 NewSize[n] - CurSize[n]);
340 CurSize[m] -= d;
341 CurSize[n] += d;
342 // Keep going if the current node was exhausted.
343 if (CurSize[n] >= NewSize[n])
344 break;
345 }
346 }
347
348 if (Nodes == 0)
349 return;
350
351 // Move elements left.
352 for (unsigned n = 0; n != Nodes - 1; ++n) {
353 if (CurSize[n] == NewSize[n])
354 continue;
355 for (unsigned m = n + 1; m != Nodes; ++m) {
356 int d = Node[m]->adjustFromLeftSib(CurSize[m], *Node[n], CurSize[n],
357 CurSize[n] - NewSize[n]);
358 CurSize[m] += d;
359 CurSize[n] -= d;
360 // Keep going if the current node was exhausted.
361 if (CurSize[n] >= NewSize[n])
362 break;
363 }
364 }
365
366 #ifndef NDEBUG
367 for (unsigned n = 0; n != Nodes; n++)
368 assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
369 #endif
370 }
371
372 /// IntervalMapImpl::distribute - Compute a new distribution of node elements
373 /// after an overflow or underflow. Reserve space for a new element at Position,
374 /// and compute the node that will hold Position after redistributing node
375 /// elements.
376 ///
377 /// It is required that
378 ///
379 /// Elements == sum(CurSize), and
380 /// Elements + Grow <= Nodes * Capacity.
381 ///
382 /// NewSize[] will be filled in such that:
383 ///
384 /// sum(NewSize) == Elements, and
385 /// NewSize[i] <= Capacity.
386 ///
387 /// The returned index is the node where Position will go, so:
388 ///
389 /// sum(NewSize[0..idx-1]) <= Position
390 /// sum(NewSize[0..idx]) >= Position
391 ///
392 /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
393 /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
394 /// before the one holding the Position'th element where there is room for an
395 /// insertion.
396 ///
397 /// @param Nodes The number of nodes.
398 /// @param Elements Total elements in all nodes.
399 /// @param Capacity The capacity of each node.
400 /// @param CurSize Array[Nodes] of current node sizes, or NULL.
401 /// @param NewSize Array[Nodes] to receive the new node sizes.
402 /// @param Position Insert position.
403 /// @param Grow Reserve space for a new element at Position.
404 /// @return (node, offset) for Position.
405 IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
406 const unsigned *CurSize, unsigned NewSize[],
407 unsigned Position, bool Grow);
408
409
410 //===----------------------------------------------------------------------===//
411 //--- IntervalMapImpl::NodeSizer ---//
412 //===----------------------------------------------------------------------===//
413 //
414 // Compute node sizes from key and value types.
415 //
416 // The branching factors are chosen to make nodes fit in three cache lines.
417 // This may not be possible if keys or values are very large. Such large objects
418 // are handled correctly, but a std::map would probably give better performance.
419 //
420 //===----------------------------------------------------------------------===//
421
422 enum {
423 // Cache line size. Most architectures have 32 or 64 byte cache lines.
424 // We use 64 bytes here because it provides good branching factors.
425 Log2CacheLine = 6,
426 CacheLineBytes = 1 << Log2CacheLine,
427 DesiredNodeBytes = 3 * CacheLineBytes
428 };
429
430 template <typename KeyT, typename ValT>
431 struct NodeSizer {
432 enum {
433 // Compute the leaf node branching factor that makes a node fit in three
434 // cache lines. The branching factor must be at least 3, or some B+-tree
435 // balancing algorithms won't work.
436 // LeafSize can't be larger than CacheLineBytes. This is required by the
437 // PointerIntPair used by NodeRef.
438 DesiredLeafSize = DesiredNodeBytes /
439 static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
440 MinLeafSize = 3,
441 LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize
442 };
443
444 typedef NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize> LeafBase;
445
446 enum {
447 // Now that we have the leaf branching factor, compute the actual allocation
448 // unit size by rounding up to a whole number of cache lines.
449 AllocBytes = (sizeof(LeafBase) + CacheLineBytes-1) & ~(CacheLineBytes-1),
450
451 // Determine the branching factor for branch nodes.
452 BranchSize = AllocBytes /
453 static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
454 };
455
456 /// Allocator - The recycling allocator used for both branch and leaf nodes.
457 /// This typedef is very likely to be identical for all IntervalMaps with
458 /// reasonably sized entries, so the same allocator can be shared among
459 /// different kinds of maps.
460 typedef RecyclingAllocator<BumpPtrAllocator, char,
461 AllocBytes, CacheLineBytes> Allocator;
462
463 };
464
465
466 //===----------------------------------------------------------------------===//
467 //--- IntervalMapImpl::NodeRef ---//
468 //===----------------------------------------------------------------------===//
469 //
470 // B+-tree nodes can be leaves or branches, so we need a polymorphic node
471 // pointer that can point to both kinds.
472 //
473 // All nodes are cache line aligned and the low 6 bits of a node pointer are
474 // always 0. These bits are used to store the number of elements in the
475 // referenced node. Besides saving space, placing node sizes in the parents
476 // allow tree balancing algorithms to run without faulting cache lines for nodes
477 // that may not need to be modified.
478 //
479 // A NodeRef doesn't know whether it references a leaf node or a branch node.
480 // It is the responsibility of the caller to use the correct types.
481 //
482 // Nodes are never supposed to be empty, and it is invalid to store a node size
483 // of 0 in a NodeRef. The valid range of sizes is 1-64.
484 //
485 //===----------------------------------------------------------------------===//
486
487 class NodeRef {
488 struct CacheAlignedPointerTraits {
getAsVoidPointerCacheAlignedPointerTraits489 static inline void *getAsVoidPointer(void *P) { return P; }
getFromVoidPointerCacheAlignedPointerTraits490 static inline void *getFromVoidPointer(void *P) { return P; }
491 enum { NumLowBitsAvailable = Log2CacheLine };
492 };
493 PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
494
495 public:
496 /// NodeRef - Create a null ref.
NodeRef()497 NodeRef() {}
498
499 /// operator bool - Detect a null ref.
500 explicit operator bool() const { return pip.getOpaqueValue(); }
501
502 /// NodeRef - Create a reference to the node p with n elements.
503 template <typename NodeT>
NodeRef(NodeT * p,unsigned n)504 NodeRef(NodeT *p, unsigned n) : pip(p, n - 1) {
505 assert(n <= NodeT::Capacity && "Size too big for node");
506 }
507
508 /// size - Return the number of elements in the referenced node.
size()509 unsigned size() const { return pip.getInt() + 1; }
510
511 /// setSize - Update the node size.
setSize(unsigned n)512 void setSize(unsigned n) { pip.setInt(n - 1); }
513
514 /// subtree - Access the i'th subtree reference in a branch node.
515 /// This depends on branch nodes storing the NodeRef array as their first
516 /// member.
subtree(unsigned i)517 NodeRef &subtree(unsigned i) const {
518 return reinterpret_cast<NodeRef*>(pip.getPointer())[i];
519 }
520
521 /// get - Dereference as a NodeT reference.
522 template <typename NodeT>
get()523 NodeT &get() const {
524 return *reinterpret_cast<NodeT*>(pip.getPointer());
525 }
526
527 bool operator==(const NodeRef &RHS) const {
528 if (pip == RHS.pip)
529 return true;
530 assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
531 return false;
532 }
533
534 bool operator!=(const NodeRef &RHS) const {
535 return !operator==(RHS);
536 }
537 };
538
539 //===----------------------------------------------------------------------===//
540 //--- IntervalMapImpl::LeafNode ---//
541 //===----------------------------------------------------------------------===//
542 //
543 // Leaf nodes store up to N disjoint intervals with corresponding values.
544 //
545 // The intervals are kept sorted and fully coalesced so there are no adjacent
546 // intervals mapping to the same value.
547 //
548 // These constraints are always satisfied:
549 //
550 // - Traits::stopLess(start(i), stop(i)) - Non-empty, sane intervals.
551 //
552 // - Traits::stopLess(stop(i), start(i + 1) - Sorted.
553 //
554 // - value(i) != value(i + 1) || !Traits::adjacent(stop(i), start(i + 1))
555 // - Fully coalesced.
556 //
557 //===----------------------------------------------------------------------===//
558
559 template <typename KeyT, typename ValT, unsigned N, typename Traits>
560 class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
561 public:
start(unsigned i)562 const KeyT &start(unsigned i) const { return this->first[i].first; }
stop(unsigned i)563 const KeyT &stop(unsigned i) const { return this->first[i].second; }
value(unsigned i)564 const ValT &value(unsigned i) const { return this->second[i]; }
565
start(unsigned i)566 KeyT &start(unsigned i) { return this->first[i].first; }
stop(unsigned i)567 KeyT &stop(unsigned i) { return this->first[i].second; }
value(unsigned i)568 ValT &value(unsigned i) { return this->second[i]; }
569
570 /// findFrom - Find the first interval after i that may contain x.
571 /// @param i Starting index for the search.
572 /// @param Size Number of elements in node.
573 /// @param x Key to search for.
574 /// @return First index with !stopLess(key[i].stop, x), or size.
575 /// This is the first interval that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)576 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
577 assert(i <= Size && Size <= N && "Bad indices");
578 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
579 "Index is past the needed point");
580 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
581 return i;
582 }
583
584 /// safeFind - Find an interval that is known to exist. This is the same as
585 /// findFrom except is it assumed that x is at least within range of the last
586 /// interval.
587 /// @param i Starting index for the search.
588 /// @param x Key to search for.
589 /// @return First index with !stopLess(key[i].stop, x), never size.
590 /// This is the first interval that can possibly contain x.
safeFind(unsigned i,KeyT x)591 unsigned safeFind(unsigned i, KeyT x) const {
592 assert(i < N && "Bad index");
593 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
594 "Index is past the needed point");
595 while (Traits::stopLess(stop(i), x)) ++i;
596 assert(i < N && "Unsafe intervals");
597 return i;
598 }
599
600 /// safeLookup - Lookup mapped value for a safe key.
601 /// It is assumed that x is within range of the last entry.
602 /// @param x Key to search for.
603 /// @param NotFound Value to return if x is not in any interval.
604 /// @return The mapped value at x or NotFound.
safeLookup(KeyT x,ValT NotFound)605 ValT safeLookup(KeyT x, ValT NotFound) const {
606 unsigned i = safeFind(0, x);
607 return Traits::startLess(x, start(i)) ? NotFound : value(i);
608 }
609
610 unsigned insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y);
611 };
612
613 /// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
614 /// possible. This may cause the node to grow by 1, or it may cause the node
615 /// to shrink because of coalescing.
616 /// @param Pos Starting index = insertFrom(0, size, a)
617 /// @param Size Number of elements in node.
618 /// @param a Interval start.
619 /// @param b Interval stop.
620 /// @param y Value be mapped.
621 /// @return (insert position, new size), or (i, Capacity+1) on overflow.
622 template <typename KeyT, typename ValT, unsigned N, typename Traits>
623 unsigned LeafNode<KeyT, ValT, N, Traits>::
insertFrom(unsigned & Pos,unsigned Size,KeyT a,KeyT b,ValT y)624 insertFrom(unsigned &Pos, unsigned Size, KeyT a, KeyT b, ValT y) {
625 unsigned i = Pos;
626 assert(i <= Size && Size <= N && "Invalid index");
627 assert(!Traits::stopLess(b, a) && "Invalid interval");
628
629 // Verify the findFrom invariant.
630 assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
631 assert((i == Size || !Traits::stopLess(stop(i), a)));
632 assert((i == Size || Traits::stopLess(b, start(i))) && "Overlapping insert");
633
634 // Coalesce with previous interval.
635 if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a)) {
636 Pos = i - 1;
637 // Also coalesce with next interval?
638 if (i != Size && value(i) == y && Traits::adjacent(b, start(i))) {
639 stop(i - 1) = stop(i);
640 this->erase(i, Size);
641 return Size - 1;
642 }
643 stop(i - 1) = b;
644 return Size;
645 }
646
647 // Detect overflow.
648 if (i == N)
649 return N + 1;
650
651 // Add new interval at end.
652 if (i == Size) {
653 start(i) = a;
654 stop(i) = b;
655 value(i) = y;
656 return Size + 1;
657 }
658
659 // Try to coalesce with following interval.
660 if (value(i) == y && Traits::adjacent(b, start(i))) {
661 start(i) = a;
662 return Size;
663 }
664
665 // We must insert before i. Detect overflow.
666 if (Size == N)
667 return N + 1;
668
669 // Insert before i.
670 this->shift(i, Size);
671 start(i) = a;
672 stop(i) = b;
673 value(i) = y;
674 return Size + 1;
675 }
676
677
678 //===----------------------------------------------------------------------===//
679 //--- IntervalMapImpl::BranchNode ---//
680 //===----------------------------------------------------------------------===//
681 //
682 // A branch node stores references to 1--N subtrees all of the same height.
683 //
684 // The key array in a branch node holds the rightmost stop key of each subtree.
685 // It is redundant to store the last stop key since it can be found in the
686 // parent node, but doing so makes tree balancing a lot simpler.
687 //
688 // It is unusual for a branch node to only have one subtree, but it can happen
689 // in the root node if it is smaller than the normal nodes.
690 //
691 // When all of the leaf nodes from all the subtrees are concatenated, they must
692 // satisfy the same constraints as a single leaf node. They must be sorted,
693 // sane, and fully coalesced.
694 //
695 //===----------------------------------------------------------------------===//
696
697 template <typename KeyT, typename ValT, unsigned N, typename Traits>
698 class BranchNode : public NodeBase<NodeRef, KeyT, N> {
699 public:
stop(unsigned i)700 const KeyT &stop(unsigned i) const { return this->second[i]; }
subtree(unsigned i)701 const NodeRef &subtree(unsigned i) const { return this->first[i]; }
702
stop(unsigned i)703 KeyT &stop(unsigned i) { return this->second[i]; }
subtree(unsigned i)704 NodeRef &subtree(unsigned i) { return this->first[i]; }
705
706 /// findFrom - Find the first subtree after i that may contain x.
707 /// @param i Starting index for the search.
708 /// @param Size Number of elements in node.
709 /// @param x Key to search for.
710 /// @return First index with !stopLess(key[i], x), or size.
711 /// This is the first subtree that can possibly contain x.
findFrom(unsigned i,unsigned Size,KeyT x)712 unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
713 assert(i <= Size && Size <= N && "Bad indices");
714 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
715 "Index to findFrom is past the needed point");
716 while (i != Size && Traits::stopLess(stop(i), x)) ++i;
717 return i;
718 }
719
720 /// safeFind - Find a subtree that is known to exist. This is the same as
721 /// findFrom except is it assumed that x is in range.
722 /// @param i Starting index for the search.
723 /// @param x Key to search for.
724 /// @return First index with !stopLess(key[i], x), never size.
725 /// This is the first subtree that can possibly contain x.
safeFind(unsigned i,KeyT x)726 unsigned safeFind(unsigned i, KeyT x) const {
727 assert(i < N && "Bad index");
728 assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
729 "Index is past the needed point");
730 while (Traits::stopLess(stop(i), x)) ++i;
731 assert(i < N && "Unsafe intervals");
732 return i;
733 }
734
735 /// safeLookup - Get the subtree containing x, Assuming that x is in range.
736 /// @param x Key to search for.
737 /// @return Subtree containing x
safeLookup(KeyT x)738 NodeRef safeLookup(KeyT x) const {
739 return subtree(safeFind(0, x));
740 }
741
742 /// insert - Insert a new (subtree, stop) pair.
743 /// @param i Insert position, following entries will be shifted.
744 /// @param Size Number of elements in node.
745 /// @param Node Subtree to insert.
746 /// @param Stop Last key in subtree.
insert(unsigned i,unsigned Size,NodeRef Node,KeyT Stop)747 void insert(unsigned i, unsigned Size, NodeRef Node, KeyT Stop) {
748 assert(Size < N && "branch node overflow");
749 assert(i <= Size && "Bad insert position");
750 this->shift(i, Size);
751 subtree(i) = Node;
752 stop(i) = Stop;
753 }
754 };
755
756 //===----------------------------------------------------------------------===//
757 //--- IntervalMapImpl::Path ---//
758 //===----------------------------------------------------------------------===//
759 //
760 // A Path is used by iterators to represent a position in a B+-tree, and the
761 // path to get there from the root.
762 //
763 // The Path class also contains the tree navigation code that doesn't have to
764 // be templatized.
765 //
766 //===----------------------------------------------------------------------===//
767
768 class Path {
769 /// Entry - Each step in the path is a node pointer and an offset into that
770 /// node.
771 struct Entry {
772 void *node;
773 unsigned size;
774 unsigned offset;
775
EntryEntry776 Entry(void *Node, unsigned Size, unsigned Offset)
777 : node(Node), size(Size), offset(Offset) {}
778
EntryEntry779 Entry(NodeRef Node, unsigned Offset)
780 : node(&Node.subtree(0)), size(Node.size()), offset(Offset) {}
781
subtreeEntry782 NodeRef &subtree(unsigned i) const {
783 return reinterpret_cast<NodeRef*>(node)[i];
784 }
785 };
786
787 /// path - The path entries, path[0] is the root node, path.back() is a leaf.
788 SmallVector<Entry, 4> path;
789
790 public:
791 // Node accessors.
node(unsigned Level)792 template <typename NodeT> NodeT &node(unsigned Level) const {
793 return *reinterpret_cast<NodeT*>(path[Level].node);
794 }
size(unsigned Level)795 unsigned size(unsigned Level) const { return path[Level].size; }
offset(unsigned Level)796 unsigned offset(unsigned Level) const { return path[Level].offset; }
offset(unsigned Level)797 unsigned &offset(unsigned Level) { return path[Level].offset; }
798
799 // Leaf accessors.
leaf()800 template <typename NodeT> NodeT &leaf() const {
801 return *reinterpret_cast<NodeT*>(path.back().node);
802 }
leafSize()803 unsigned leafSize() const { return path.back().size; }
leafOffset()804 unsigned leafOffset() const { return path.back().offset; }
leafOffset()805 unsigned &leafOffset() { return path.back().offset; }
806
807 /// valid - Return true if path is at a valid node, not at end().
valid()808 bool valid() const {
809 return !path.empty() && path.front().offset < path.front().size;
810 }
811
812 /// height - Return the height of the tree corresponding to this path.
813 /// This matches map->height in a full path.
height()814 unsigned height() const { return path.size() - 1; }
815
816 /// subtree - Get the subtree referenced from Level. When the path is
817 /// consistent, node(Level + 1) == subtree(Level).
818 /// @param Level 0..height-1. The leaves have no subtrees.
subtree(unsigned Level)819 NodeRef &subtree(unsigned Level) const {
820 return path[Level].subtree(path[Level].offset);
821 }
822
823 /// reset - Reset cached information about node(Level) from subtree(Level -1).
824 /// @param Level 1..height. THe node to update after parent node changed.
reset(unsigned Level)825 void reset(unsigned Level) {
826 path[Level] = Entry(subtree(Level - 1), offset(Level));
827 }
828
829 /// push - Add entry to path.
830 /// @param Node Node to add, should be subtree(path.size()-1).
831 /// @param Offset Offset into Node.
push(NodeRef Node,unsigned Offset)832 void push(NodeRef Node, unsigned Offset) {
833 path.push_back(Entry(Node, Offset));
834 }
835
836 /// pop - Remove the last path entry.
pop()837 void pop() {
838 path.pop_back();
839 }
840
841 /// setSize - Set the size of a node both in the path and in the tree.
842 /// @param Level 0..height. Note that setting the root size won't change
843 /// map->rootSize.
844 /// @param Size New node size.
setSize(unsigned Level,unsigned Size)845 void setSize(unsigned Level, unsigned Size) {
846 path[Level].size = Size;
847 if (Level)
848 subtree(Level - 1).setSize(Size);
849 }
850
851 /// setRoot - Clear the path and set a new root node.
852 /// @param Node New root node.
853 /// @param Size New root size.
854 /// @param Offset Offset into root node.
setRoot(void * Node,unsigned Size,unsigned Offset)855 void setRoot(void *Node, unsigned Size, unsigned Offset) {
856 path.clear();
857 path.push_back(Entry(Node, Size, Offset));
858 }
859
860 /// replaceRoot - Replace the current root node with two new entries after the
861 /// tree height has increased.
862 /// @param Root The new root node.
863 /// @param Size Number of entries in the new root.
864 /// @param Offsets Offsets into the root and first branch nodes.
865 void replaceRoot(void *Root, unsigned Size, IdxPair Offsets);
866
867 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
868 /// @param Level Get the sibling to node(Level).
869 /// @return Left sibling, or NodeRef().
870 NodeRef getLeftSibling(unsigned Level) const;
871
872 /// moveLeft - Move path to the left sibling at Level. Leave nodes below Level
873 /// unaltered.
874 /// @param Level Move node(Level).
875 void moveLeft(unsigned Level);
876
877 /// fillLeft - Grow path to Height by taking leftmost branches.
878 /// @param Height The target height.
fillLeft(unsigned Height)879 void fillLeft(unsigned Height) {
880 while (height() < Height)
881 push(subtree(height()), 0);
882 }
883
884 /// getLeftSibling - Get the left sibling node at Level, or a null NodeRef.
885 /// @param Level Get the sinbling to node(Level).
886 /// @return Left sibling, or NodeRef().
887 NodeRef getRightSibling(unsigned Level) const;
888
889 /// moveRight - Move path to the left sibling at Level. Leave nodes below
890 /// Level unaltered.
891 /// @param Level Move node(Level).
892 void moveRight(unsigned Level);
893
894 /// atBegin - Return true if path is at begin().
atBegin()895 bool atBegin() const {
896 for (unsigned i = 0, e = path.size(); i != e; ++i)
897 if (path[i].offset != 0)
898 return false;
899 return true;
900 }
901
902 /// atLastEntry - Return true if the path is at the last entry of the node at
903 /// Level.
904 /// @param Level Node to examine.
atLastEntry(unsigned Level)905 bool atLastEntry(unsigned Level) const {
906 return path[Level].offset == path[Level].size - 1;
907 }
908
909 /// legalizeForInsert - Prepare the path for an insertion at Level. When the
910 /// path is at end(), node(Level) may not be a legal node. legalizeForInsert
911 /// ensures that node(Level) is real by moving back to the last node at Level,
912 /// and setting offset(Level) to size(Level) if required.
913 /// @param Level The level where an insertion is about to take place.
legalizeForInsert(unsigned Level)914 void legalizeForInsert(unsigned Level) {
915 if (valid())
916 return;
917 moveLeft(Level);
918 ++path[Level].offset;
919 }
920 };
921
922 } // namespace IntervalMapImpl
923
924
925 //===----------------------------------------------------------------------===//
926 //--- IntervalMap ----//
927 //===----------------------------------------------------------------------===//
928
929 template <typename KeyT, typename ValT,
930 unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
931 typename Traits = IntervalMapInfo<KeyT> >
932 class IntervalMap {
933 typedef IntervalMapImpl::NodeSizer<KeyT, ValT> Sizer;
934 typedef IntervalMapImpl::LeafNode<KeyT, ValT, Sizer::LeafSize, Traits> Leaf;
935 typedef IntervalMapImpl::BranchNode<KeyT, ValT, Sizer::BranchSize, Traits>
936 Branch;
937 typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
938 typedef IntervalMapImpl::IdxPair IdxPair;
939
940 // The RootLeaf capacity is given as a template parameter. We must compute the
941 // corresponding RootBranch capacity.
942 enum {
943 DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
944 (sizeof(KeyT) + sizeof(IntervalMapImpl::NodeRef)),
945 RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
946 };
947
948 typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits>
949 RootBranch;
950
951 // When branched, we store a global start key as well as the branch node.
952 struct RootBranchData {
953 KeyT start;
954 RootBranch node;
955 };
956
957 public:
958 typedef typename Sizer::Allocator Allocator;
959 typedef KeyT KeyType;
960 typedef ValT ValueType;
961 typedef Traits KeyTraits;
962
963 private:
964 // The root data is either a RootLeaf or a RootBranchData instance.
965 AlignedCharArrayUnion<RootLeaf, RootBranchData> data;
966
967 // Tree height.
968 // 0: Leaves in root.
969 // 1: Root points to leaf.
970 // 2: root->branch->leaf ...
971 unsigned height;
972
973 // Number of entries in the root node.
974 unsigned rootSize;
975
976 // Allocator used for creating external nodes.
977 Allocator &allocator;
978
979 /// dataAs - Represent data as a node type without breaking aliasing rules.
980 template <typename T>
dataAs()981 T &dataAs() const {
982 union {
983 const char *d;
984 T *t;
985 } u;
986 u.d = data.buffer;
987 return *u.t;
988 }
989
rootLeaf()990 const RootLeaf &rootLeaf() const {
991 assert(!branched() && "Cannot acces leaf data in branched root");
992 return dataAs<RootLeaf>();
993 }
rootLeaf()994 RootLeaf &rootLeaf() {
995 assert(!branched() && "Cannot acces leaf data in branched root");
996 return dataAs<RootLeaf>();
997 }
rootBranchData()998 RootBranchData &rootBranchData() const {
999 assert(branched() && "Cannot access branch data in non-branched root");
1000 return dataAs<RootBranchData>();
1001 }
rootBranchData()1002 RootBranchData &rootBranchData() {
1003 assert(branched() && "Cannot access branch data in non-branched root");
1004 return dataAs<RootBranchData>();
1005 }
rootBranch()1006 const RootBranch &rootBranch() const { return rootBranchData().node; }
rootBranch()1007 RootBranch &rootBranch() { return rootBranchData().node; }
rootBranchStart()1008 KeyT rootBranchStart() const { return rootBranchData().start; }
rootBranchStart()1009 KeyT &rootBranchStart() { return rootBranchData().start; }
1010
newNode()1011 template <typename NodeT> NodeT *newNode() {
1012 return new(allocator.template Allocate<NodeT>()) NodeT();
1013 }
1014
deleteNode(NodeT * P)1015 template <typename NodeT> void deleteNode(NodeT *P) {
1016 P->~NodeT();
1017 allocator.Deallocate(P);
1018 }
1019
1020 IdxPair branchRoot(unsigned Position);
1021 IdxPair splitRoot(unsigned Position);
1022
switchRootToBranch()1023 void switchRootToBranch() {
1024 rootLeaf().~RootLeaf();
1025 height = 1;
1026 new (&rootBranchData()) RootBranchData();
1027 }
1028
switchRootToLeaf()1029 void switchRootToLeaf() {
1030 rootBranchData().~RootBranchData();
1031 height = 0;
1032 new(&rootLeaf()) RootLeaf();
1033 }
1034
branched()1035 bool branched() const { return height > 0; }
1036
1037 ValT treeSafeLookup(KeyT x, ValT NotFound) const;
1038 void visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef,
1039 unsigned Level));
1040 void deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level);
1041
1042 public:
IntervalMap(Allocator & a)1043 explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
1044 assert((uintptr_t(data.buffer) & (alignOf<RootLeaf>() - 1)) == 0 &&
1045 "Insufficient alignment");
1046 new(&rootLeaf()) RootLeaf();
1047 }
1048
~IntervalMap()1049 ~IntervalMap() {
1050 clear();
1051 rootLeaf().~RootLeaf();
1052 }
1053
1054 /// empty - Return true when no intervals are mapped.
empty()1055 bool empty() const {
1056 return rootSize == 0;
1057 }
1058
1059 /// start - Return the smallest mapped key in a non-empty map.
start()1060 KeyT start() const {
1061 assert(!empty() && "Empty IntervalMap has no start");
1062 return !branched() ? rootLeaf().start(0) : rootBranchStart();
1063 }
1064
1065 /// stop - Return the largest mapped key in a non-empty map.
stop()1066 KeyT stop() const {
1067 assert(!empty() && "Empty IntervalMap has no stop");
1068 return !branched() ? rootLeaf().stop(rootSize - 1) :
1069 rootBranch().stop(rootSize - 1);
1070 }
1071
1072 /// lookup - Return the mapped value at x or NotFound.
1073 ValT lookup(KeyT x, ValT NotFound = ValT()) const {
1074 if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
1075 return NotFound;
1076 return branched() ? treeSafeLookup(x, NotFound) :
1077 rootLeaf().safeLookup(x, NotFound);
1078 }
1079
1080 /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
1081 /// It is assumed that no key in the interval is mapped to another value, but
1082 /// overlapping intervals already mapped to y will be coalesced.
insert(KeyT a,KeyT b,ValT y)1083 void insert(KeyT a, KeyT b, ValT y) {
1084 if (branched() || rootSize == RootLeaf::Capacity)
1085 return find(a).insert(a, b, y);
1086
1087 // Easy insert into root leaf.
1088 unsigned p = rootLeaf().findFrom(0, rootSize, a);
1089 rootSize = rootLeaf().insertFrom(p, rootSize, a, b, y);
1090 }
1091
1092 /// clear - Remove all entries.
1093 void clear();
1094
1095 class const_iterator;
1096 class iterator;
1097 friend class const_iterator;
1098 friend class iterator;
1099
begin()1100 const_iterator begin() const {
1101 const_iterator I(*this);
1102 I.goToBegin();
1103 return I;
1104 }
1105
begin()1106 iterator begin() {
1107 iterator I(*this);
1108 I.goToBegin();
1109 return I;
1110 }
1111
end()1112 const_iterator end() const {
1113 const_iterator I(*this);
1114 I.goToEnd();
1115 return I;
1116 }
1117
end()1118 iterator end() {
1119 iterator I(*this);
1120 I.goToEnd();
1121 return I;
1122 }
1123
1124 /// find - Return an iterator pointing to the first interval ending at or
1125 /// after x, or end().
find(KeyT x)1126 const_iterator find(KeyT x) const {
1127 const_iterator I(*this);
1128 I.find(x);
1129 return I;
1130 }
1131
find(KeyT x)1132 iterator find(KeyT x) {
1133 iterator I(*this);
1134 I.find(x);
1135 return I;
1136 }
1137 };
1138
1139 /// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
1140 /// branched root.
1141 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1142 ValT IntervalMap<KeyT, ValT, N, Traits>::
treeSafeLookup(KeyT x,ValT NotFound)1143 treeSafeLookup(KeyT x, ValT NotFound) const {
1144 assert(branched() && "treeLookup assumes a branched root");
1145
1146 IntervalMapImpl::NodeRef NR = rootBranch().safeLookup(x);
1147 for (unsigned h = height-1; h; --h)
1148 NR = NR.get<Branch>().safeLookup(x);
1149 return NR.get<Leaf>().safeLookup(x, NotFound);
1150 }
1151
1152
1153 // branchRoot - Switch from a leaf root to a branched root.
1154 // Return the new (root offset, node offset) corresponding to Position.
1155 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1156 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
branchRoot(unsigned Position)1157 branchRoot(unsigned Position) {
1158 using namespace IntervalMapImpl;
1159 // How many external leaf nodes to hold RootLeaf+1?
1160 const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
1161
1162 // Compute element distribution among new nodes.
1163 unsigned size[Nodes];
1164 IdxPair NewOffset(0, Position);
1165
1166 // Is is very common for the root node to be smaller than external nodes.
1167 if (Nodes == 1)
1168 size[0] = rootSize;
1169 else
1170 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, size,
1171 Position, true);
1172
1173 // Allocate new nodes.
1174 unsigned pos = 0;
1175 NodeRef node[Nodes];
1176 for (unsigned n = 0; n != Nodes; ++n) {
1177 Leaf *L = newNode<Leaf>();
1178 L->copy(rootLeaf(), pos, 0, size[n]);
1179 node[n] = NodeRef(L, size[n]);
1180 pos += size[n];
1181 }
1182
1183 // Destroy the old leaf node, construct branch node instead.
1184 switchRootToBranch();
1185 for (unsigned n = 0; n != Nodes; ++n) {
1186 rootBranch().stop(n) = node[n].template get<Leaf>().stop(size[n]-1);
1187 rootBranch().subtree(n) = node[n];
1188 }
1189 rootBranchStart() = node[0].template get<Leaf>().start(0);
1190 rootSize = Nodes;
1191 return NewOffset;
1192 }
1193
1194 // splitRoot - Split the current BranchRoot into multiple Branch nodes.
1195 // Return the new (root offset, node offset) corresponding to Position.
1196 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1197 IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
splitRoot(unsigned Position)1198 splitRoot(unsigned Position) {
1199 using namespace IntervalMapImpl;
1200 // How many external leaf nodes to hold RootBranch+1?
1201 const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
1202
1203 // Compute element distribution among new nodes.
1204 unsigned Size[Nodes];
1205 IdxPair NewOffset(0, Position);
1206
1207 // Is is very common for the root node to be smaller than external nodes.
1208 if (Nodes == 1)
1209 Size[0] = rootSize;
1210 else
1211 NewOffset = distribute(Nodes, rootSize, Leaf::Capacity, nullptr, Size,
1212 Position, true);
1213
1214 // Allocate new nodes.
1215 unsigned Pos = 0;
1216 NodeRef Node[Nodes];
1217 for (unsigned n = 0; n != Nodes; ++n) {
1218 Branch *B = newNode<Branch>();
1219 B->copy(rootBranch(), Pos, 0, Size[n]);
1220 Node[n] = NodeRef(B, Size[n]);
1221 Pos += Size[n];
1222 }
1223
1224 for (unsigned n = 0; n != Nodes; ++n) {
1225 rootBranch().stop(n) = Node[n].template get<Branch>().stop(Size[n]-1);
1226 rootBranch().subtree(n) = Node[n];
1227 }
1228 rootSize = Nodes;
1229 ++height;
1230 return NewOffset;
1231 }
1232
1233 /// visitNodes - Visit each external node.
1234 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1235 void IntervalMap<KeyT, ValT, N, Traits>::
visitNodes(void (IntervalMap::* f)(IntervalMapImpl::NodeRef,unsigned Height))1236 visitNodes(void (IntervalMap::*f)(IntervalMapImpl::NodeRef, unsigned Height)) {
1237 if (!branched())
1238 return;
1239 SmallVector<IntervalMapImpl::NodeRef, 4> Refs, NextRefs;
1240
1241 // Collect level 0 nodes from the root.
1242 for (unsigned i = 0; i != rootSize; ++i)
1243 Refs.push_back(rootBranch().subtree(i));
1244
1245 // Visit all branch nodes.
1246 for (unsigned h = height - 1; h; --h) {
1247 for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
1248 for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
1249 NextRefs.push_back(Refs[i].subtree(j));
1250 (this->*f)(Refs[i], h);
1251 }
1252 Refs.clear();
1253 Refs.swap(NextRefs);
1254 }
1255
1256 // Visit all leaf nodes.
1257 for (unsigned i = 0, e = Refs.size(); i != e; ++i)
1258 (this->*f)(Refs[i], 0);
1259 }
1260
1261 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1262 void IntervalMap<KeyT, ValT, N, Traits>::
deleteNode(IntervalMapImpl::NodeRef Node,unsigned Level)1263 deleteNode(IntervalMapImpl::NodeRef Node, unsigned Level) {
1264 if (Level)
1265 deleteNode(&Node.get<Branch>());
1266 else
1267 deleteNode(&Node.get<Leaf>());
1268 }
1269
1270 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1271 void IntervalMap<KeyT, ValT, N, Traits>::
clear()1272 clear() {
1273 if (branched()) {
1274 visitNodes(&IntervalMap::deleteNode);
1275 switchRootToLeaf();
1276 }
1277 rootSize = 0;
1278 }
1279
1280 //===----------------------------------------------------------------------===//
1281 //--- IntervalMap::const_iterator ----//
1282 //===----------------------------------------------------------------------===//
1283
1284 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1285 class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
1286 public std::iterator<std::bidirectional_iterator_tag, ValT> {
1287 protected:
1288 friend class IntervalMap;
1289
1290 // The map referred to.
1291 IntervalMap *map;
1292
1293 // We store a full path from the root to the current position.
1294 // The path may be partially filled, but never between iterator calls.
1295 IntervalMapImpl::Path path;
1296
const_iterator(const IntervalMap & map)1297 explicit const_iterator(const IntervalMap &map) :
1298 map(const_cast<IntervalMap*>(&map)) {}
1299
branched()1300 bool branched() const {
1301 assert(map && "Invalid iterator");
1302 return map->branched();
1303 }
1304
setRoot(unsigned Offset)1305 void setRoot(unsigned Offset) {
1306 if (branched())
1307 path.setRoot(&map->rootBranch(), map->rootSize, Offset);
1308 else
1309 path.setRoot(&map->rootLeaf(), map->rootSize, Offset);
1310 }
1311
1312 void pathFillFind(KeyT x);
1313 void treeFind(KeyT x);
1314 void treeAdvanceTo(KeyT x);
1315
1316 /// unsafeStart - Writable access to start() for iterator.
unsafeStart()1317 KeyT &unsafeStart() const {
1318 assert(valid() && "Cannot access invalid iterator");
1319 return branched() ? path.leaf<Leaf>().start(path.leafOffset()) :
1320 path.leaf<RootLeaf>().start(path.leafOffset());
1321 }
1322
1323 /// unsafeStop - Writable access to stop() for iterator.
unsafeStop()1324 KeyT &unsafeStop() const {
1325 assert(valid() && "Cannot access invalid iterator");
1326 return branched() ? path.leaf<Leaf>().stop(path.leafOffset()) :
1327 path.leaf<RootLeaf>().stop(path.leafOffset());
1328 }
1329
1330 /// unsafeValue - Writable access to value() for iterator.
unsafeValue()1331 ValT &unsafeValue() const {
1332 assert(valid() && "Cannot access invalid iterator");
1333 return branched() ? path.leaf<Leaf>().value(path.leafOffset()) :
1334 path.leaf<RootLeaf>().value(path.leafOffset());
1335 }
1336
1337 public:
1338 /// const_iterator - Create an iterator that isn't pointing anywhere.
const_iterator()1339 const_iterator() : map(nullptr) {}
1340
1341 /// setMap - Change the map iterated over. This call must be followed by a
1342 /// call to goToBegin(), goToEnd(), or find()
setMap(const IntervalMap & m)1343 void setMap(const IntervalMap &m) { map = const_cast<IntervalMap*>(&m); }
1344
1345 /// valid - Return true if the current position is valid, false for end().
valid()1346 bool valid() const { return path.valid(); }
1347
1348 /// atBegin - Return true if the current position is the first map entry.
atBegin()1349 bool atBegin() const { return path.atBegin(); }
1350
1351 /// start - Return the beginning of the current interval.
start()1352 const KeyT &start() const { return unsafeStart(); }
1353
1354 /// stop - Return the end of the current interval.
stop()1355 const KeyT &stop() const { return unsafeStop(); }
1356
1357 /// value - Return the mapped value at the current interval.
value()1358 const ValT &value() const { return unsafeValue(); }
1359
1360 const ValT &operator*() const { return value(); }
1361
1362 bool operator==(const const_iterator &RHS) const {
1363 assert(map == RHS.map && "Cannot compare iterators from different maps");
1364 if (!valid())
1365 return !RHS.valid();
1366 if (path.leafOffset() != RHS.path.leafOffset())
1367 return false;
1368 return &path.template leaf<Leaf>() == &RHS.path.template leaf<Leaf>();
1369 }
1370
1371 bool operator!=(const const_iterator &RHS) const {
1372 return !operator==(RHS);
1373 }
1374
1375 /// goToBegin - Move to the first interval in map.
goToBegin()1376 void goToBegin() {
1377 setRoot(0);
1378 if (branched())
1379 path.fillLeft(map->height);
1380 }
1381
1382 /// goToEnd - Move beyond the last interval in map.
goToEnd()1383 void goToEnd() {
1384 setRoot(map->rootSize);
1385 }
1386
1387 /// preincrement - move to the next interval.
1388 const_iterator &operator++() {
1389 assert(valid() && "Cannot increment end()");
1390 if (++path.leafOffset() == path.leafSize() && branched())
1391 path.moveRight(map->height);
1392 return *this;
1393 }
1394
1395 /// postincrement - Dont do that!
1396 const_iterator operator++(int) {
1397 const_iterator tmp = *this;
1398 operator++();
1399 return tmp;
1400 }
1401
1402 /// predecrement - move to the previous interval.
1403 const_iterator &operator--() {
1404 if (path.leafOffset() && (valid() || !branched()))
1405 --path.leafOffset();
1406 else
1407 path.moveLeft(map->height);
1408 return *this;
1409 }
1410
1411 /// postdecrement - Dont do that!
1412 const_iterator operator--(int) {
1413 const_iterator tmp = *this;
1414 operator--();
1415 return tmp;
1416 }
1417
1418 /// find - Move to the first interval with stop >= x, or end().
1419 /// This is a full search from the root, the current position is ignored.
find(KeyT x)1420 void find(KeyT x) {
1421 if (branched())
1422 treeFind(x);
1423 else
1424 setRoot(map->rootLeaf().findFrom(0, map->rootSize, x));
1425 }
1426
1427 /// advanceTo - Move to the first interval with stop >= x, or end().
1428 /// The search is started from the current position, and no earlier positions
1429 /// can be found. This is much faster than find() for small moves.
advanceTo(KeyT x)1430 void advanceTo(KeyT x) {
1431 if (!valid())
1432 return;
1433 if (branched())
1434 treeAdvanceTo(x);
1435 else
1436 path.leafOffset() =
1437 map->rootLeaf().findFrom(path.leafOffset(), map->rootSize, x);
1438 }
1439
1440 };
1441
1442 /// pathFillFind - Complete path by searching for x.
1443 /// @param x Key to search for.
1444 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1445 void IntervalMap<KeyT, ValT, N, Traits>::
pathFillFind(KeyT x)1446 const_iterator::pathFillFind(KeyT x) {
1447 IntervalMapImpl::NodeRef NR = path.subtree(path.height());
1448 for (unsigned i = map->height - path.height() - 1; i; --i) {
1449 unsigned p = NR.get<Branch>().safeFind(0, x);
1450 path.push(NR, p);
1451 NR = NR.subtree(p);
1452 }
1453 path.push(NR, NR.get<Leaf>().safeFind(0, x));
1454 }
1455
1456 /// treeFind - Find in a branched tree.
1457 /// @param x Key to search for.
1458 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1459 void IntervalMap<KeyT, ValT, N, Traits>::
treeFind(KeyT x)1460 const_iterator::treeFind(KeyT x) {
1461 setRoot(map->rootBranch().findFrom(0, map->rootSize, x));
1462 if (valid())
1463 pathFillFind(x);
1464 }
1465
1466 /// treeAdvanceTo - Find position after the current one.
1467 /// @param x Key to search for.
1468 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1469 void IntervalMap<KeyT, ValT, N, Traits>::
treeAdvanceTo(KeyT x)1470 const_iterator::treeAdvanceTo(KeyT x) {
1471 // Can we stay on the same leaf node?
1472 if (!Traits::stopLess(path.leaf<Leaf>().stop(path.leafSize() - 1), x)) {
1473 path.leafOffset() = path.leaf<Leaf>().safeFind(path.leafOffset(), x);
1474 return;
1475 }
1476
1477 // Drop the current leaf.
1478 path.pop();
1479
1480 // Search towards the root for a usable subtree.
1481 if (path.height()) {
1482 for (unsigned l = path.height() - 1; l; --l) {
1483 if (!Traits::stopLess(path.node<Branch>(l).stop(path.offset(l)), x)) {
1484 // The branch node at l+1 is usable
1485 path.offset(l + 1) =
1486 path.node<Branch>(l + 1).safeFind(path.offset(l + 1), x);
1487 return pathFillFind(x);
1488 }
1489 path.pop();
1490 }
1491 // Is the level-1 Branch usable?
1492 if (!Traits::stopLess(map->rootBranch().stop(path.offset(0)), x)) {
1493 path.offset(1) = path.node<Branch>(1).safeFind(path.offset(1), x);
1494 return pathFillFind(x);
1495 }
1496 }
1497
1498 // We reached the root.
1499 setRoot(map->rootBranch().findFrom(path.offset(0), map->rootSize, x));
1500 if (valid())
1501 pathFillFind(x);
1502 }
1503
1504 //===----------------------------------------------------------------------===//
1505 //--- IntervalMap::iterator ----//
1506 //===----------------------------------------------------------------------===//
1507
1508 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1509 class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
1510 friend class IntervalMap;
1511 typedef IntervalMapImpl::IdxPair IdxPair;
1512
iterator(IntervalMap & map)1513 explicit iterator(IntervalMap &map) : const_iterator(map) {}
1514
1515 void setNodeStop(unsigned Level, KeyT Stop);
1516 bool insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop);
1517 template <typename NodeT> bool overflow(unsigned Level);
1518 void treeInsert(KeyT a, KeyT b, ValT y);
1519 void eraseNode(unsigned Level);
1520 void treeErase(bool UpdateRoot = true);
1521 bool canCoalesceLeft(KeyT Start, ValT x);
1522 bool canCoalesceRight(KeyT Stop, ValT x);
1523
1524 public:
1525 /// iterator - Create null iterator.
iterator()1526 iterator() {}
1527
1528 /// setStart - Move the start of the current interval.
1529 /// This may cause coalescing with the previous interval.
1530 /// @param a New start key, must not overlap the previous interval.
1531 void setStart(KeyT a);
1532
1533 /// setStop - Move the end of the current interval.
1534 /// This may cause coalescing with the following interval.
1535 /// @param b New stop key, must not overlap the following interval.
1536 void setStop(KeyT b);
1537
1538 /// setValue - Change the mapped value of the current interval.
1539 /// This may cause coalescing with the previous and following intervals.
1540 /// @param x New value.
1541 void setValue(ValT x);
1542
1543 /// setStartUnchecked - Move the start of the current interval without
1544 /// checking for coalescing or overlaps.
1545 /// This should only be used when it is known that coalescing is not required.
1546 /// @param a New start key.
setStartUnchecked(KeyT a)1547 void setStartUnchecked(KeyT a) { this->unsafeStart() = a; }
1548
1549 /// setStopUnchecked - Move the end of the current interval without checking
1550 /// for coalescing or overlaps.
1551 /// This should only be used when it is known that coalescing is not required.
1552 /// @param b New stop key.
setStopUnchecked(KeyT b)1553 void setStopUnchecked(KeyT b) {
1554 this->unsafeStop() = b;
1555 // Update keys in branch nodes as well.
1556 if (this->path.atLastEntry(this->path.height()))
1557 setNodeStop(this->path.height(), b);
1558 }
1559
1560 /// setValueUnchecked - Change the mapped value of the current interval
1561 /// without checking for coalescing.
1562 /// @param x New value.
setValueUnchecked(ValT x)1563 void setValueUnchecked(ValT x) { this->unsafeValue() = x; }
1564
1565 /// insert - Insert mapping [a;b] -> y before the current position.
1566 void insert(KeyT a, KeyT b, ValT y);
1567
1568 /// erase - Erase the current interval.
1569 void erase();
1570
1571 iterator &operator++() {
1572 const_iterator::operator++();
1573 return *this;
1574 }
1575
1576 iterator operator++(int) {
1577 iterator tmp = *this;
1578 operator++();
1579 return tmp;
1580 }
1581
1582 iterator &operator--() {
1583 const_iterator::operator--();
1584 return *this;
1585 }
1586
1587 iterator operator--(int) {
1588 iterator tmp = *this;
1589 operator--();
1590 return tmp;
1591 }
1592
1593 };
1594
1595 /// canCoalesceLeft - Can the current interval coalesce to the left after
1596 /// changing start or value?
1597 /// @param Start New start of current interval.
1598 /// @param Value New value for current interval.
1599 /// @return True when updating the current interval would enable coalescing.
1600 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1601 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceLeft(KeyT Start,ValT Value)1602 iterator::canCoalesceLeft(KeyT Start, ValT Value) {
1603 using namespace IntervalMapImpl;
1604 Path &P = this->path;
1605 if (!this->branched()) {
1606 unsigned i = P.leafOffset();
1607 RootLeaf &Node = P.leaf<RootLeaf>();
1608 return i && Node.value(i-1) == Value &&
1609 Traits::adjacent(Node.stop(i-1), Start);
1610 }
1611 // Branched.
1612 if (unsigned i = P.leafOffset()) {
1613 Leaf &Node = P.leaf<Leaf>();
1614 return Node.value(i-1) == Value && Traits::adjacent(Node.stop(i-1), Start);
1615 } else if (NodeRef NR = P.getLeftSibling(P.height())) {
1616 unsigned i = NR.size() - 1;
1617 Leaf &Node = NR.get<Leaf>();
1618 return Node.value(i) == Value && Traits::adjacent(Node.stop(i), Start);
1619 }
1620 return false;
1621 }
1622
1623 /// canCoalesceRight - Can the current interval coalesce to the right after
1624 /// changing stop or value?
1625 /// @param Stop New stop of current interval.
1626 /// @param Value New value for current interval.
1627 /// @return True when updating the current interval would enable coalescing.
1628 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1629 bool IntervalMap<KeyT, ValT, N, Traits>::
canCoalesceRight(KeyT Stop,ValT Value)1630 iterator::canCoalesceRight(KeyT Stop, ValT Value) {
1631 using namespace IntervalMapImpl;
1632 Path &P = this->path;
1633 unsigned i = P.leafOffset() + 1;
1634 if (!this->branched()) {
1635 if (i >= P.leafSize())
1636 return false;
1637 RootLeaf &Node = P.leaf<RootLeaf>();
1638 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1639 }
1640 // Branched.
1641 if (i < P.leafSize()) {
1642 Leaf &Node = P.leaf<Leaf>();
1643 return Node.value(i) == Value && Traits::adjacent(Stop, Node.start(i));
1644 } else if (NodeRef NR = P.getRightSibling(P.height())) {
1645 Leaf &Node = NR.get<Leaf>();
1646 return Node.value(0) == Value && Traits::adjacent(Stop, Node.start(0));
1647 }
1648 return false;
1649 }
1650
1651 /// setNodeStop - Update the stop key of the current node at level and above.
1652 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1653 void IntervalMap<KeyT, ValT, N, Traits>::
setNodeStop(unsigned Level,KeyT Stop)1654 iterator::setNodeStop(unsigned Level, KeyT Stop) {
1655 // There are no references to the root node, so nothing to update.
1656 if (!Level)
1657 return;
1658 IntervalMapImpl::Path &P = this->path;
1659 // Update nodes pointing to the current node.
1660 while (--Level) {
1661 P.node<Branch>(Level).stop(P.offset(Level)) = Stop;
1662 if (!P.atLastEntry(Level))
1663 return;
1664 }
1665 // Update root separately since it has a different layout.
1666 P.node<RootBranch>(Level).stop(P.offset(Level)) = Stop;
1667 }
1668
1669 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1670 void IntervalMap<KeyT, ValT, N, Traits>::
setStart(KeyT a)1671 iterator::setStart(KeyT a) {
1672 assert(Traits::stopLess(a, this->stop()) && "Cannot move start beyond stop");
1673 KeyT &CurStart = this->unsafeStart();
1674 if (!Traits::startLess(a, CurStart) || !canCoalesceLeft(a, this->value())) {
1675 CurStart = a;
1676 return;
1677 }
1678 // Coalesce with the interval to the left.
1679 --*this;
1680 a = this->start();
1681 erase();
1682 setStartUnchecked(a);
1683 }
1684
1685 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1686 void IntervalMap<KeyT, ValT, N, Traits>::
setStop(KeyT b)1687 iterator::setStop(KeyT b) {
1688 assert(Traits::stopLess(this->start(), b) && "Cannot move stop beyond start");
1689 if (Traits::startLess(b, this->stop()) ||
1690 !canCoalesceRight(b, this->value())) {
1691 setStopUnchecked(b);
1692 return;
1693 }
1694 // Coalesce with interval to the right.
1695 KeyT a = this->start();
1696 erase();
1697 setStartUnchecked(a);
1698 }
1699
1700 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1701 void IntervalMap<KeyT, ValT, N, Traits>::
setValue(ValT x)1702 iterator::setValue(ValT x) {
1703 setValueUnchecked(x);
1704 if (canCoalesceRight(this->stop(), x)) {
1705 KeyT a = this->start();
1706 erase();
1707 setStartUnchecked(a);
1708 }
1709 if (canCoalesceLeft(this->start(), x)) {
1710 --*this;
1711 KeyT a = this->start();
1712 erase();
1713 setStartUnchecked(a);
1714 }
1715 }
1716
1717 /// insertNode - insert a node before the current path at level.
1718 /// Leave the current path pointing at the new node.
1719 /// @param Level path index of the node to be inserted.
1720 /// @param Node The node to be inserted.
1721 /// @param Stop The last index in the new node.
1722 /// @return True if the tree height was increased.
1723 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1724 bool IntervalMap<KeyT, ValT, N, Traits>::
insertNode(unsigned Level,IntervalMapImpl::NodeRef Node,KeyT Stop)1725 iterator::insertNode(unsigned Level, IntervalMapImpl::NodeRef Node, KeyT Stop) {
1726 assert(Level && "Cannot insert next to the root");
1727 bool SplitRoot = false;
1728 IntervalMap &IM = *this->map;
1729 IntervalMapImpl::Path &P = this->path;
1730
1731 if (Level == 1) {
1732 // Insert into the root branch node.
1733 if (IM.rootSize < RootBranch::Capacity) {
1734 IM.rootBranch().insert(P.offset(0), IM.rootSize, Node, Stop);
1735 P.setSize(0, ++IM.rootSize);
1736 P.reset(Level);
1737 return SplitRoot;
1738 }
1739
1740 // We need to split the root while keeping our position.
1741 SplitRoot = true;
1742 IdxPair Offset = IM.splitRoot(P.offset(0));
1743 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1744
1745 // Fall through to insert at the new higher level.
1746 ++Level;
1747 }
1748
1749 // When inserting before end(), make sure we have a valid path.
1750 P.legalizeForInsert(--Level);
1751
1752 // Insert into the branch node at Level-1.
1753 if (P.size(Level) == Branch::Capacity) {
1754 // Branch node is full, handle handle the overflow.
1755 assert(!SplitRoot && "Cannot overflow after splitting the root");
1756 SplitRoot = overflow<Branch>(Level);
1757 Level += SplitRoot;
1758 }
1759 P.node<Branch>(Level).insert(P.offset(Level), P.size(Level), Node, Stop);
1760 P.setSize(Level, P.size(Level) + 1);
1761 if (P.atLastEntry(Level))
1762 setNodeStop(Level, Stop);
1763 P.reset(Level + 1);
1764 return SplitRoot;
1765 }
1766
1767 // insert
1768 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1769 void IntervalMap<KeyT, ValT, N, Traits>::
insert(KeyT a,KeyT b,ValT y)1770 iterator::insert(KeyT a, KeyT b, ValT y) {
1771 if (this->branched())
1772 return treeInsert(a, b, y);
1773 IntervalMap &IM = *this->map;
1774 IntervalMapImpl::Path &P = this->path;
1775
1776 // Try simple root leaf insert.
1777 unsigned Size = IM.rootLeaf().insertFrom(P.leafOffset(), IM.rootSize, a, b, y);
1778
1779 // Was the root node insert successful?
1780 if (Size <= RootLeaf::Capacity) {
1781 P.setSize(0, IM.rootSize = Size);
1782 return;
1783 }
1784
1785 // Root leaf node is full, we must branch.
1786 IdxPair Offset = IM.branchRoot(P.leafOffset());
1787 P.replaceRoot(&IM.rootBranch(), IM.rootSize, Offset);
1788
1789 // Now it fits in the new leaf.
1790 treeInsert(a, b, y);
1791 }
1792
1793
1794 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1795 void IntervalMap<KeyT, ValT, N, Traits>::
treeInsert(KeyT a,KeyT b,ValT y)1796 iterator::treeInsert(KeyT a, KeyT b, ValT y) {
1797 using namespace IntervalMapImpl;
1798 Path &P = this->path;
1799
1800 if (!P.valid())
1801 P.legalizeForInsert(this->map->height);
1802
1803 // Check if this insertion will extend the node to the left.
1804 if (P.leafOffset() == 0 && Traits::startLess(a, P.leaf<Leaf>().start(0))) {
1805 // Node is growing to the left, will it affect a left sibling node?
1806 if (NodeRef Sib = P.getLeftSibling(P.height())) {
1807 Leaf &SibLeaf = Sib.get<Leaf>();
1808 unsigned SibOfs = Sib.size() - 1;
1809 if (SibLeaf.value(SibOfs) == y &&
1810 Traits::adjacent(SibLeaf.stop(SibOfs), a)) {
1811 // This insertion will coalesce with the last entry in SibLeaf. We can
1812 // handle it in two ways:
1813 // 1. Extend SibLeaf.stop to b and be done, or
1814 // 2. Extend a to SibLeaf, erase the SibLeaf entry and continue.
1815 // We prefer 1., but need 2 when coalescing to the right as well.
1816 Leaf &CurLeaf = P.leaf<Leaf>();
1817 P.moveLeft(P.height());
1818 if (Traits::stopLess(b, CurLeaf.start(0)) &&
1819 (y != CurLeaf.value(0) || !Traits::adjacent(b, CurLeaf.start(0)))) {
1820 // Easy, just extend SibLeaf and we're done.
1821 setNodeStop(P.height(), SibLeaf.stop(SibOfs) = b);
1822 return;
1823 } else {
1824 // We have both left and right coalescing. Erase the old SibLeaf entry
1825 // and continue inserting the larger interval.
1826 a = SibLeaf.start(SibOfs);
1827 treeErase(/* UpdateRoot= */false);
1828 }
1829 }
1830 } else {
1831 // No left sibling means we are at begin(). Update cached bound.
1832 this->map->rootBranchStart() = a;
1833 }
1834 }
1835
1836 // When we are inserting at the end of a leaf node, we must update stops.
1837 unsigned Size = P.leafSize();
1838 bool Grow = P.leafOffset() == Size;
1839 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), Size, a, b, y);
1840
1841 // Leaf insertion unsuccessful? Overflow and try again.
1842 if (Size > Leaf::Capacity) {
1843 overflow<Leaf>(P.height());
1844 Grow = P.leafOffset() == P.leafSize();
1845 Size = P.leaf<Leaf>().insertFrom(P.leafOffset(), P.leafSize(), a, b, y);
1846 assert(Size <= Leaf::Capacity && "overflow() didn't make room");
1847 }
1848
1849 // Inserted, update offset and leaf size.
1850 P.setSize(P.height(), Size);
1851
1852 // Insert was the last node entry, update stops.
1853 if (Grow)
1854 setNodeStop(P.height(), b);
1855 }
1856
1857 /// erase - erase the current interval and move to the next position.
1858 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1859 void IntervalMap<KeyT, ValT, N, Traits>::
erase()1860 iterator::erase() {
1861 IntervalMap &IM = *this->map;
1862 IntervalMapImpl::Path &P = this->path;
1863 assert(P.valid() && "Cannot erase end()");
1864 if (this->branched())
1865 return treeErase();
1866 IM.rootLeaf().erase(P.leafOffset(), IM.rootSize);
1867 P.setSize(0, --IM.rootSize);
1868 }
1869
1870 /// treeErase - erase() for a branched tree.
1871 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1872 void IntervalMap<KeyT, ValT, N, Traits>::
treeErase(bool UpdateRoot)1873 iterator::treeErase(bool UpdateRoot) {
1874 IntervalMap &IM = *this->map;
1875 IntervalMapImpl::Path &P = this->path;
1876 Leaf &Node = P.leaf<Leaf>();
1877
1878 // Nodes are not allowed to become empty.
1879 if (P.leafSize() == 1) {
1880 IM.deleteNode(&Node);
1881 eraseNode(IM.height);
1882 // Update rootBranchStart if we erased begin().
1883 if (UpdateRoot && IM.branched() && P.valid() && P.atBegin())
1884 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1885 return;
1886 }
1887
1888 // Erase current entry.
1889 Node.erase(P.leafOffset(), P.leafSize());
1890 unsigned NewSize = P.leafSize() - 1;
1891 P.setSize(IM.height, NewSize);
1892 // When we erase the last entry, update stop and move to a legal position.
1893 if (P.leafOffset() == NewSize) {
1894 setNodeStop(IM.height, Node.stop(NewSize - 1));
1895 P.moveRight(IM.height);
1896 } else if (UpdateRoot && P.atBegin())
1897 IM.rootBranchStart() = P.leaf<Leaf>().start(0);
1898 }
1899
1900 /// eraseNode - Erase the current node at Level from its parent and move path to
1901 /// the first entry of the next sibling node.
1902 /// The node must be deallocated by the caller.
1903 /// @param Level 1..height, the root node cannot be erased.
1904 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1905 void IntervalMap<KeyT, ValT, N, Traits>::
eraseNode(unsigned Level)1906 iterator::eraseNode(unsigned Level) {
1907 assert(Level && "Cannot erase root node");
1908 IntervalMap &IM = *this->map;
1909 IntervalMapImpl::Path &P = this->path;
1910
1911 if (--Level == 0) {
1912 IM.rootBranch().erase(P.offset(0), IM.rootSize);
1913 P.setSize(0, --IM.rootSize);
1914 // If this cleared the root, switch to height=0.
1915 if (IM.empty()) {
1916 IM.switchRootToLeaf();
1917 this->setRoot(0);
1918 return;
1919 }
1920 } else {
1921 // Remove node ref from branch node at Level.
1922 Branch &Parent = P.node<Branch>(Level);
1923 if (P.size(Level) == 1) {
1924 // Branch node became empty, remove it recursively.
1925 IM.deleteNode(&Parent);
1926 eraseNode(Level);
1927 } else {
1928 // Branch node won't become empty.
1929 Parent.erase(P.offset(Level), P.size(Level));
1930 unsigned NewSize = P.size(Level) - 1;
1931 P.setSize(Level, NewSize);
1932 // If we removed the last branch, update stop and move to a legal pos.
1933 if (P.offset(Level) == NewSize) {
1934 setNodeStop(Level, Parent.stop(NewSize - 1));
1935 P.moveRight(Level);
1936 }
1937 }
1938 }
1939 // Update path cache for the new right sibling position.
1940 if (P.valid()) {
1941 P.reset(Level + 1);
1942 P.offset(Level + 1) = 0;
1943 }
1944 }
1945
1946 /// overflow - Distribute entries of the current node evenly among
1947 /// its siblings and ensure that the current node is not full.
1948 /// This may require allocating a new node.
1949 /// @tparam NodeT The type of node at Level (Leaf or Branch).
1950 /// @param Level path index of the overflowing node.
1951 /// @return True when the tree height was changed.
1952 template <typename KeyT, typename ValT, unsigned N, typename Traits>
1953 template <typename NodeT>
1954 bool IntervalMap<KeyT, ValT, N, Traits>::
overflow(unsigned Level)1955 iterator::overflow(unsigned Level) {
1956 using namespace IntervalMapImpl;
1957 Path &P = this->path;
1958 unsigned CurSize[4];
1959 NodeT *Node[4];
1960 unsigned Nodes = 0;
1961 unsigned Elements = 0;
1962 unsigned Offset = P.offset(Level);
1963
1964 // Do we have a left sibling?
1965 NodeRef LeftSib = P.getLeftSibling(Level);
1966 if (LeftSib) {
1967 Offset += Elements = CurSize[Nodes] = LeftSib.size();
1968 Node[Nodes++] = &LeftSib.get<NodeT>();
1969 }
1970
1971 // Current node.
1972 Elements += CurSize[Nodes] = P.size(Level);
1973 Node[Nodes++] = &P.node<NodeT>(Level);
1974
1975 // Do we have a right sibling?
1976 NodeRef RightSib = P.getRightSibling(Level);
1977 if (RightSib) {
1978 Elements += CurSize[Nodes] = RightSib.size();
1979 Node[Nodes++] = &RightSib.get<NodeT>();
1980 }
1981
1982 // Do we need to allocate a new node?
1983 unsigned NewNode = 0;
1984 if (Elements + 1 > Nodes * NodeT::Capacity) {
1985 // Insert NewNode at the penultimate position, or after a single node.
1986 NewNode = Nodes == 1 ? 1 : Nodes - 1;
1987 CurSize[Nodes] = CurSize[NewNode];
1988 Node[Nodes] = Node[NewNode];
1989 CurSize[NewNode] = 0;
1990 Node[NewNode] = this->map->template newNode<NodeT>();
1991 ++Nodes;
1992 }
1993
1994 // Compute the new element distribution.
1995 unsigned NewSize[4];
1996 IdxPair NewOffset = distribute(Nodes, Elements, NodeT::Capacity,
1997 CurSize, NewSize, Offset, true);
1998 adjustSiblingSizes(Node, Nodes, CurSize, NewSize);
1999
2000 // Move current location to the leftmost node.
2001 if (LeftSib)
2002 P.moveLeft(Level);
2003
2004 // Elements have been rearranged, now update node sizes and stops.
2005 bool SplitRoot = false;
2006 unsigned Pos = 0;
2007 for (;;) {
2008 KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
2009 if (NewNode && Pos == NewNode) {
2010 SplitRoot = insertNode(Level, NodeRef(Node[Pos], NewSize[Pos]), Stop);
2011 Level += SplitRoot;
2012 } else {
2013 P.setSize(Level, NewSize[Pos]);
2014 setNodeStop(Level, Stop);
2015 }
2016 if (Pos + 1 == Nodes)
2017 break;
2018 P.moveRight(Level);
2019 ++Pos;
2020 }
2021
2022 // Where was I? Find NewOffset.
2023 while(Pos != NewOffset.first) {
2024 P.moveLeft(Level);
2025 --Pos;
2026 }
2027 P.offset(Level) = NewOffset.second;
2028 return SplitRoot;
2029 }
2030
2031 //===----------------------------------------------------------------------===//
2032 //--- IntervalMapOverlaps ----//
2033 //===----------------------------------------------------------------------===//
2034
2035 /// IntervalMapOverlaps - Iterate over the overlaps of mapped intervals in two
2036 /// IntervalMaps. The maps may be different, but the KeyT and Traits types
2037 /// should be the same.
2038 ///
2039 /// Typical uses:
2040 ///
2041 /// 1. Test for overlap:
2042 /// bool overlap = IntervalMapOverlaps(a, b).valid();
2043 ///
2044 /// 2. Enumerate overlaps:
2045 /// for (IntervalMapOverlaps I(a, b); I.valid() ; ++I) { ... }
2046 ///
2047 template <typename MapA, typename MapB>
2048 class IntervalMapOverlaps {
2049 typedef typename MapA::KeyType KeyType;
2050 typedef typename MapA::KeyTraits Traits;
2051 typename MapA::const_iterator posA;
2052 typename MapB::const_iterator posB;
2053
2054 /// advance - Move posA and posB forward until reaching an overlap, or until
2055 /// either meets end.
2056 /// Don't move the iterators if they are already overlapping.
advance()2057 void advance() {
2058 if (!valid())
2059 return;
2060
2061 if (Traits::stopLess(posA.stop(), posB.start())) {
2062 // A ends before B begins. Catch up.
2063 posA.advanceTo(posB.start());
2064 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2065 return;
2066 } else if (Traits::stopLess(posB.stop(), posA.start())) {
2067 // B ends before A begins. Catch up.
2068 posB.advanceTo(posA.start());
2069 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2070 return;
2071 } else
2072 // Already overlapping.
2073 return;
2074
2075 for (;;) {
2076 // Make a.end > b.start.
2077 posA.advanceTo(posB.start());
2078 if (!posA.valid() || !Traits::stopLess(posB.stop(), posA.start()))
2079 return;
2080 // Make b.end > a.start.
2081 posB.advanceTo(posA.start());
2082 if (!posB.valid() || !Traits::stopLess(posA.stop(), posB.start()))
2083 return;
2084 }
2085 }
2086
2087 public:
2088 /// IntervalMapOverlaps - Create an iterator for the overlaps of a and b.
IntervalMapOverlaps(const MapA & a,const MapB & b)2089 IntervalMapOverlaps(const MapA &a, const MapB &b)
2090 : posA(b.empty() ? a.end() : a.find(b.start())),
2091 posB(posA.valid() ? b.find(posA.start()) : b.end()) { advance(); }
2092
2093 /// valid - Return true if iterator is at an overlap.
valid()2094 bool valid() const {
2095 return posA.valid() && posB.valid();
2096 }
2097
2098 /// a - access the left hand side in the overlap.
a()2099 const typename MapA::const_iterator &a() const { return posA; }
2100
2101 /// b - access the right hand side in the overlap.
b()2102 const typename MapB::const_iterator &b() const { return posB; }
2103
2104 /// start - Beginning of the overlapping interval.
start()2105 KeyType start() const {
2106 KeyType ak = a().start();
2107 KeyType bk = b().start();
2108 return Traits::startLess(ak, bk) ? bk : ak;
2109 }
2110
2111 /// stop - End of the overlapping interval.
stop()2112 KeyType stop() const {
2113 KeyType ak = a().stop();
2114 KeyType bk = b().stop();
2115 return Traits::startLess(ak, bk) ? ak : bk;
2116 }
2117
2118 /// skipA - Move to the next overlap that doesn't involve a().
skipA()2119 void skipA() {
2120 ++posA;
2121 advance();
2122 }
2123
2124 /// skipB - Move to the next overlap that doesn't involve b().
skipB()2125 void skipB() {
2126 ++posB;
2127 advance();
2128 }
2129
2130 /// Preincrement - Move to the next overlap.
2131 IntervalMapOverlaps &operator++() {
2132 // Bump the iterator that ends first. The other one may have more overlaps.
2133 if (Traits::startLess(posB.stop(), posA.stop()))
2134 skipB();
2135 else
2136 skipA();
2137 return *this;
2138 }
2139
2140 /// advanceTo - Move to the first overlapping interval with
2141 /// stopLess(x, stop()).
advanceTo(KeyType x)2142 void advanceTo(KeyType x) {
2143 if (!valid())
2144 return;
2145 // Make sure advanceTo sees monotonic keys.
2146 if (Traits::stopLess(posA.stop(), x))
2147 posA.advanceTo(x);
2148 if (Traits::stopLess(posB.stop(), x))
2149 posB.advanceTo(x);
2150 advance();
2151 }
2152 };
2153
2154 } // namespace llvm
2155
2156 #endif
2157