1 /* BFD back-end for Renesas Super-H COFF binaries.
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4 Written by Steve Chamberlain, <sac@cygnus.com>.
5 Relaxing code written by Ian Lance Taylor, <ian@cygnus.com>.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24 #include "sysdep.h"
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "bfdlink.h"
29 #include "coff/sh.h"
30 #include "coff/internal.h"
31
32 #undef bfd_pe_print_pdata
33
34 #ifdef COFF_WITH_PE
35 #include "coff/pe.h"
36
37 #ifndef COFF_IMAGE_WITH_PE
38 static bfd_boolean sh_align_load_span
39 (bfd *, asection *, bfd_byte *,
40 bfd_boolean (*) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
41 void *, bfd_vma **, bfd_vma *, bfd_vma, bfd_vma, bfd_boolean *);
42
43 #define _bfd_sh_align_load_span sh_align_load_span
44 #endif
45
46 #define bfd_pe_print_pdata _bfd_pe_print_ce_compressed_pdata
47
48 #else
49
50 #define bfd_pe_print_pdata NULL
51
52 #endif /* COFF_WITH_PE. */
53
54 #include "libcoff.h"
55
56 /* Internal functions. */
57
58 #ifdef COFF_WITH_PE
59 /* Can't build import tables with 2**4 alignment. */
60 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 2
61 #else
62 /* Default section alignment to 2**4. */
63 #define COFF_DEFAULT_SECTION_ALIGNMENT_POWER 4
64 #endif
65
66 #ifdef COFF_IMAGE_WITH_PE
67 /* Align PE executables. */
68 #define COFF_PAGE_SIZE 0x1000
69 #endif
70
71 /* Generate long file names. */
72 #define COFF_LONG_FILENAMES
73
74 #ifdef COFF_WITH_PE
75 /* Return TRUE if this relocation should
76 appear in the output .reloc section. */
77
78 static bfd_boolean
in_reloc_p(bfd * abfd ATTRIBUTE_UNUSED,reloc_howto_type * howto)79 in_reloc_p (bfd * abfd ATTRIBUTE_UNUSED,
80 reloc_howto_type * howto)
81 {
82 return ! howto->pc_relative && howto->type != R_SH_IMAGEBASE;
83 }
84 #endif
85
86 static bfd_reloc_status_type
87 sh_reloc (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
88 static bfd_boolean
89 sh_relocate_section (bfd *, struct bfd_link_info *, bfd *, asection *,
90 bfd_byte *, struct internal_reloc *,
91 struct internal_syment *, asection **);
92 static bfd_boolean
93 sh_align_loads (bfd *, asection *, struct internal_reloc *,
94 bfd_byte *, bfd_boolean *);
95
96 /* The supported relocations. There are a lot of relocations defined
97 in coff/internal.h which we do not expect to ever see. */
98 static reloc_howto_type sh_coff_howtos[] =
99 {
100 EMPTY_HOWTO (0),
101 EMPTY_HOWTO (1),
102 #ifdef COFF_WITH_PE
103 /* Windows CE */
104 HOWTO (R_SH_IMM32CE, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_bitfield, /* complain_on_overflow */
111 sh_reloc, /* special_function */
112 "r_imm32ce", /* name */
113 TRUE, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE), /* pcrel_offset */
117 #else
118 EMPTY_HOWTO (2),
119 #endif
120 EMPTY_HOWTO (3), /* R_SH_PCREL8 */
121 EMPTY_HOWTO (4), /* R_SH_PCREL16 */
122 EMPTY_HOWTO (5), /* R_SH_HIGH8 */
123 EMPTY_HOWTO (6), /* R_SH_IMM24 */
124 EMPTY_HOWTO (7), /* R_SH_LOW16 */
125 EMPTY_HOWTO (8),
126 EMPTY_HOWTO (9), /* R_SH_PCDISP8BY4 */
127
128 HOWTO (R_SH_PCDISP8BY2, /* type */
129 1, /* rightshift */
130 1, /* size (0 = byte, 1 = short, 2 = long) */
131 8, /* bitsize */
132 TRUE, /* pc_relative */
133 0, /* bitpos */
134 complain_overflow_signed, /* complain_on_overflow */
135 sh_reloc, /* special_function */
136 "r_pcdisp8by2", /* name */
137 TRUE, /* partial_inplace */
138 0xff, /* src_mask */
139 0xff, /* dst_mask */
140 TRUE), /* pcrel_offset */
141
142 EMPTY_HOWTO (11), /* R_SH_PCDISP8 */
143
144 HOWTO (R_SH_PCDISP, /* type */
145 1, /* rightshift */
146 1, /* size (0 = byte, 1 = short, 2 = long) */
147 12, /* bitsize */
148 TRUE, /* pc_relative */
149 0, /* bitpos */
150 complain_overflow_signed, /* complain_on_overflow */
151 sh_reloc, /* special_function */
152 "r_pcdisp12by2", /* name */
153 TRUE, /* partial_inplace */
154 0xfff, /* src_mask */
155 0xfff, /* dst_mask */
156 TRUE), /* pcrel_offset */
157
158 EMPTY_HOWTO (13),
159
160 HOWTO (R_SH_IMM32, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 32, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield, /* complain_on_overflow */
167 sh_reloc, /* special_function */
168 "r_imm32", /* name */
169 TRUE, /* partial_inplace */
170 0xffffffff, /* src_mask */
171 0xffffffff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 EMPTY_HOWTO (15),
175 #ifdef COFF_WITH_PE
176 HOWTO (R_SH_IMAGEBASE, /* type */
177 0, /* rightshift */
178 2, /* size (0 = byte, 1 = short, 2 = long) */
179 32, /* bitsize */
180 FALSE, /* pc_relative */
181 0, /* bitpos */
182 complain_overflow_bitfield, /* complain_on_overflow */
183 sh_reloc, /* special_function */
184 "rva32", /* name */
185 TRUE, /* partial_inplace */
186 0xffffffff, /* src_mask */
187 0xffffffff, /* dst_mask */
188 FALSE), /* pcrel_offset */
189 #else
190 EMPTY_HOWTO (16), /* R_SH_IMM8 */
191 #endif
192 EMPTY_HOWTO (17), /* R_SH_IMM8BY2 */
193 EMPTY_HOWTO (18), /* R_SH_IMM8BY4 */
194 EMPTY_HOWTO (19), /* R_SH_IMM4 */
195 EMPTY_HOWTO (20), /* R_SH_IMM4BY2 */
196 EMPTY_HOWTO (21), /* R_SH_IMM4BY4 */
197
198 HOWTO (R_SH_PCRELIMM8BY2, /* type */
199 1, /* rightshift */
200 1, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 TRUE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_unsigned, /* complain_on_overflow */
205 sh_reloc, /* special_function */
206 "r_pcrelimm8by2", /* name */
207 TRUE, /* partial_inplace */
208 0xff, /* src_mask */
209 0xff, /* dst_mask */
210 TRUE), /* pcrel_offset */
211
212 HOWTO (R_SH_PCRELIMM8BY4, /* type */
213 2, /* rightshift */
214 1, /* size (0 = byte, 1 = short, 2 = long) */
215 8, /* bitsize */
216 TRUE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_unsigned, /* complain_on_overflow */
219 sh_reloc, /* special_function */
220 "r_pcrelimm8by4", /* name */
221 TRUE, /* partial_inplace */
222 0xff, /* src_mask */
223 0xff, /* dst_mask */
224 TRUE), /* pcrel_offset */
225
226 HOWTO (R_SH_IMM16, /* type */
227 0, /* rightshift */
228 1, /* size (0 = byte, 1 = short, 2 = long) */
229 16, /* bitsize */
230 FALSE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_bitfield, /* complain_on_overflow */
233 sh_reloc, /* special_function */
234 "r_imm16", /* name */
235 TRUE, /* partial_inplace */
236 0xffff, /* src_mask */
237 0xffff, /* dst_mask */
238 FALSE), /* pcrel_offset */
239
240 HOWTO (R_SH_SWITCH16, /* type */
241 0, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 16, /* bitsize */
244 FALSE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_bitfield, /* complain_on_overflow */
247 sh_reloc, /* special_function */
248 "r_switch16", /* name */
249 TRUE, /* partial_inplace */
250 0xffff, /* src_mask */
251 0xffff, /* dst_mask */
252 FALSE), /* pcrel_offset */
253
254 HOWTO (R_SH_SWITCH32, /* type */
255 0, /* rightshift */
256 2, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_bitfield, /* complain_on_overflow */
261 sh_reloc, /* special_function */
262 "r_switch32", /* name */
263 TRUE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_SH_USES, /* type */
269 0, /* rightshift */
270 1, /* size (0 = byte, 1 = short, 2 = long) */
271 16, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 sh_reloc, /* special_function */
276 "r_uses", /* name */
277 TRUE, /* partial_inplace */
278 0xffff, /* src_mask */
279 0xffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_SH_COUNT, /* type */
283 0, /* rightshift */
284 2, /* size (0 = byte, 1 = short, 2 = long) */
285 32, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_bitfield, /* complain_on_overflow */
289 sh_reloc, /* special_function */
290 "r_count", /* name */
291 TRUE, /* partial_inplace */
292 0xffffffff, /* src_mask */
293 0xffffffff, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 HOWTO (R_SH_ALIGN, /* type */
297 0, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 32, /* bitsize */
300 FALSE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_bitfield, /* complain_on_overflow */
303 sh_reloc, /* special_function */
304 "r_align", /* name */
305 TRUE, /* partial_inplace */
306 0xffffffff, /* src_mask */
307 0xffffffff, /* dst_mask */
308 FALSE), /* pcrel_offset */
309
310 HOWTO (R_SH_CODE, /* type */
311 0, /* rightshift */
312 2, /* size (0 = byte, 1 = short, 2 = long) */
313 32, /* bitsize */
314 FALSE, /* pc_relative */
315 0, /* bitpos */
316 complain_overflow_bitfield, /* complain_on_overflow */
317 sh_reloc, /* special_function */
318 "r_code", /* name */
319 TRUE, /* partial_inplace */
320 0xffffffff, /* src_mask */
321 0xffffffff, /* dst_mask */
322 FALSE), /* pcrel_offset */
323
324 HOWTO (R_SH_DATA, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield, /* complain_on_overflow */
331 sh_reloc, /* special_function */
332 "r_data", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
337
338 HOWTO (R_SH_LABEL, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 sh_reloc, /* special_function */
346 "r_label", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 HOWTO (R_SH_SWITCH8, /* type */
353 0, /* rightshift */
354 0, /* size (0 = byte, 1 = short, 2 = long) */
355 8, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield, /* complain_on_overflow */
359 sh_reloc, /* special_function */
360 "r_switch8", /* name */
361 TRUE, /* partial_inplace */
362 0xff, /* src_mask */
363 0xff, /* dst_mask */
364 FALSE) /* pcrel_offset */
365 };
366
367 #define SH_COFF_HOWTO_COUNT (sizeof sh_coff_howtos / sizeof sh_coff_howtos[0])
368
369 /* Check for a bad magic number. */
370 #define BADMAG(x) SHBADMAG(x)
371
372 /* Customize coffcode.h (this is not currently used). */
373 #define SH 1
374
375 /* FIXME: This should not be set here. */
376 #define __A_MAGIC_SET__
377
378 #ifndef COFF_WITH_PE
379 /* Swap the r_offset field in and out. */
380 #define SWAP_IN_RELOC_OFFSET H_GET_32
381 #define SWAP_OUT_RELOC_OFFSET H_PUT_32
382
383 /* Swap out extra information in the reloc structure. */
384 #define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
385 do \
386 { \
387 dst->r_stuff[0] = 'S'; \
388 dst->r_stuff[1] = 'C'; \
389 } \
390 while (0)
391 #endif
392
393 /* Get the value of a symbol, when performing a relocation. */
394
395 static long
get_symbol_value(asymbol * symbol)396 get_symbol_value (asymbol *symbol)
397 {
398 bfd_vma relocation;
399
400 if (bfd_is_com_section (symbol->section))
401 relocation = 0;
402 else
403 relocation = (symbol->value +
404 symbol->section->output_section->vma +
405 symbol->section->output_offset);
406
407 return relocation;
408 }
409
410 #ifdef COFF_WITH_PE
411 /* Convert an rtype to howto for the COFF backend linker.
412 Copied from coff-i386. */
413 #define coff_rtype_to_howto coff_sh_rtype_to_howto
414
415
416 static reloc_howto_type *
coff_sh_rtype_to_howto(bfd * abfd ATTRIBUTE_UNUSED,asection * sec,struct internal_reloc * rel,struct coff_link_hash_entry * h,struct internal_syment * sym,bfd_vma * addendp)417 coff_sh_rtype_to_howto (bfd * abfd ATTRIBUTE_UNUSED,
418 asection * sec,
419 struct internal_reloc * rel,
420 struct coff_link_hash_entry * h,
421 struct internal_syment * sym,
422 bfd_vma * addendp)
423 {
424 reloc_howto_type * howto;
425
426 howto = sh_coff_howtos + rel->r_type;
427
428 *addendp = 0;
429
430 if (howto->pc_relative)
431 *addendp += sec->vma;
432
433 if (sym != NULL && sym->n_scnum == 0 && sym->n_value != 0)
434 {
435 /* This is a common symbol. The section contents include the
436 size (sym->n_value) as an addend. The relocate_section
437 function will be adding in the final value of the symbol. We
438 need to subtract out the current size in order to get the
439 correct result. */
440 BFD_ASSERT (h != NULL);
441 }
442
443 if (howto->pc_relative)
444 {
445 *addendp -= 4;
446
447 /* If the symbol is defined, then the generic code is going to
448 add back the symbol value in order to cancel out an
449 adjustment it made to the addend. However, we set the addend
450 to 0 at the start of this function. We need to adjust here,
451 to avoid the adjustment the generic code will make. FIXME:
452 This is getting a bit hackish. */
453 if (sym != NULL && sym->n_scnum != 0)
454 *addendp -= sym->n_value;
455 }
456
457 if (rel->r_type == R_SH_IMAGEBASE)
458 *addendp -= pe_data (sec->output_section->owner)->pe_opthdr.ImageBase;
459
460 return howto;
461 }
462
463 #endif /* COFF_WITH_PE */
464
465 /* This structure is used to map BFD reloc codes to SH PE relocs. */
466 struct shcoff_reloc_map
467 {
468 bfd_reloc_code_real_type bfd_reloc_val;
469 unsigned char shcoff_reloc_val;
470 };
471
472 #ifdef COFF_WITH_PE
473 /* An array mapping BFD reloc codes to SH PE relocs. */
474 static const struct shcoff_reloc_map sh_reloc_map[] =
475 {
476 { BFD_RELOC_32, R_SH_IMM32CE },
477 { BFD_RELOC_RVA, R_SH_IMAGEBASE },
478 { BFD_RELOC_CTOR, R_SH_IMM32CE },
479 };
480 #else
481 /* An array mapping BFD reloc codes to SH PE relocs. */
482 static const struct shcoff_reloc_map sh_reloc_map[] =
483 {
484 { BFD_RELOC_32, R_SH_IMM32 },
485 { BFD_RELOC_CTOR, R_SH_IMM32 },
486 };
487 #endif
488
489 /* Given a BFD reloc code, return the howto structure for the
490 corresponding SH PE reloc. */
491 #define coff_bfd_reloc_type_lookup sh_coff_reloc_type_lookup
492 #define coff_bfd_reloc_name_lookup sh_coff_reloc_name_lookup
493
494 static reloc_howto_type *
sh_coff_reloc_type_lookup(bfd * abfd ATTRIBUTE_UNUSED,bfd_reloc_code_real_type code)495 sh_coff_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED,
496 bfd_reloc_code_real_type code)
497 {
498 unsigned int i;
499
500 for (i = ARRAY_SIZE (sh_reloc_map); i--;)
501 if (sh_reloc_map[i].bfd_reloc_val == code)
502 return &sh_coff_howtos[(int) sh_reloc_map[i].shcoff_reloc_val];
503
504 (*_bfd_error_handler) (_("SH Error: unknown reloc type %d"), code);
505 return NULL;
506 }
507
508 static reloc_howto_type *
sh_coff_reloc_name_lookup(bfd * abfd ATTRIBUTE_UNUSED,const char * r_name)509 sh_coff_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
510 const char *r_name)
511 {
512 unsigned int i;
513
514 for (i = 0; i < sizeof (sh_coff_howtos) / sizeof (sh_coff_howtos[0]); i++)
515 if (sh_coff_howtos[i].name != NULL
516 && strcasecmp (sh_coff_howtos[i].name, r_name) == 0)
517 return &sh_coff_howtos[i];
518
519 return NULL;
520 }
521
522 /* This macro is used in coffcode.h to get the howto corresponding to
523 an internal reloc. */
524
525 #define RTYPE2HOWTO(relent, internal) \
526 ((relent)->howto = \
527 ((internal)->r_type < SH_COFF_HOWTO_COUNT \
528 ? &sh_coff_howtos[(internal)->r_type] \
529 : (reloc_howto_type *) NULL))
530
531 /* This is the same as the macro in coffcode.h, except that it copies
532 r_offset into reloc_entry->addend for some relocs. */
533 #define CALC_ADDEND(abfd, ptr, reloc, cache_ptr) \
534 { \
535 coff_symbol_type *coffsym = (coff_symbol_type *) NULL; \
536 if (ptr && bfd_asymbol_bfd (ptr) != abfd) \
537 coffsym = (obj_symbols (abfd) \
538 + (cache_ptr->sym_ptr_ptr - symbols)); \
539 else if (ptr) \
540 coffsym = coff_symbol_from (abfd, ptr); \
541 if (coffsym != (coff_symbol_type *) NULL \
542 && coffsym->native->u.syment.n_scnum == 0) \
543 cache_ptr->addend = 0; \
544 else if (ptr && bfd_asymbol_bfd (ptr) == abfd \
545 && ptr->section != (asection *) NULL) \
546 cache_ptr->addend = - (ptr->section->vma + ptr->value); \
547 else \
548 cache_ptr->addend = 0; \
549 if ((reloc).r_type == R_SH_SWITCH8 \
550 || (reloc).r_type == R_SH_SWITCH16 \
551 || (reloc).r_type == R_SH_SWITCH32 \
552 || (reloc).r_type == R_SH_USES \
553 || (reloc).r_type == R_SH_COUNT \
554 || (reloc).r_type == R_SH_ALIGN) \
555 cache_ptr->addend = (reloc).r_offset; \
556 }
557
558 /* This is the howto function for the SH relocations. */
559
560 static bfd_reloc_status_type
sh_reloc(bfd * abfd,arelent * reloc_entry,asymbol * symbol_in,void * data,asection * input_section,bfd * output_bfd,char ** error_message ATTRIBUTE_UNUSED)561 sh_reloc (bfd * abfd,
562 arelent * reloc_entry,
563 asymbol * symbol_in,
564 void * data,
565 asection * input_section,
566 bfd * output_bfd,
567 char ** error_message ATTRIBUTE_UNUSED)
568 {
569 unsigned long insn;
570 bfd_vma sym_value;
571 unsigned short r_type;
572 bfd_vma addr = reloc_entry->address;
573 bfd_byte *hit_data = addr + (bfd_byte *) data;
574
575 r_type = reloc_entry->howto->type;
576
577 if (output_bfd != NULL)
578 {
579 /* Partial linking--do nothing. */
580 reloc_entry->address += input_section->output_offset;
581 return bfd_reloc_ok;
582 }
583
584 /* Almost all relocs have to do with relaxing. If any work must be
585 done for them, it has been done in sh_relax_section. */
586 if (r_type != R_SH_IMM32
587 #ifdef COFF_WITH_PE
588 && r_type != R_SH_IMM32CE
589 && r_type != R_SH_IMAGEBASE
590 #endif
591 && (r_type != R_SH_PCDISP
592 || (symbol_in->flags & BSF_LOCAL) != 0))
593 return bfd_reloc_ok;
594
595 if (symbol_in != NULL
596 && bfd_is_und_section (symbol_in->section))
597 return bfd_reloc_undefined;
598
599 sym_value = get_symbol_value (symbol_in);
600
601 switch (r_type)
602 {
603 case R_SH_IMM32:
604 #ifdef COFF_WITH_PE
605 case R_SH_IMM32CE:
606 #endif
607 insn = bfd_get_32 (abfd, hit_data);
608 insn += sym_value + reloc_entry->addend;
609 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
610 break;
611 #ifdef COFF_WITH_PE
612 case R_SH_IMAGEBASE:
613 insn = bfd_get_32 (abfd, hit_data);
614 insn += sym_value + reloc_entry->addend;
615 insn -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
616 bfd_put_32 (abfd, (bfd_vma) insn, hit_data);
617 break;
618 #endif
619 case R_SH_PCDISP:
620 insn = bfd_get_16 (abfd, hit_data);
621 sym_value += reloc_entry->addend;
622 sym_value -= (input_section->output_section->vma
623 + input_section->output_offset
624 + addr
625 + 4);
626 sym_value += (insn & 0xfff) << 1;
627 if (insn & 0x800)
628 sym_value -= 0x1000;
629 insn = (insn & 0xf000) | (sym_value & 0xfff);
630 bfd_put_16 (abfd, (bfd_vma) insn, hit_data);
631 if (sym_value < (bfd_vma) -0x1000 || sym_value >= 0x1000)
632 return bfd_reloc_overflow;
633 break;
634 default:
635 abort ();
636 break;
637 }
638
639 return bfd_reloc_ok;
640 }
641
642 #define coff_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
643
644 /* We can do relaxing. */
645 #define coff_bfd_relax_section sh_relax_section
646
647 /* We use the special COFF backend linker. */
648 #define coff_relocate_section sh_relocate_section
649
650 /* When relaxing, we need to use special code to get the relocated
651 section contents. */
652 #define coff_bfd_get_relocated_section_contents \
653 sh_coff_get_relocated_section_contents
654
655 #include "coffcode.h"
656
657 static bfd_boolean
658 sh_relax_delete_bytes (bfd *, asection *, bfd_vma, int);
659
660 /* This function handles relaxing on the SH.
661
662 Function calls on the SH look like this:
663
664 movl L1,r0
665 ...
666 jsr @r0
667 ...
668 L1:
669 .long function
670
671 The compiler and assembler will cooperate to create R_SH_USES
672 relocs on the jsr instructions. The r_offset field of the
673 R_SH_USES reloc is the PC relative offset to the instruction which
674 loads the register (the r_offset field is computed as though it
675 were a jump instruction, so the offset value is actually from four
676 bytes past the instruction). The linker can use this reloc to
677 determine just which function is being called, and thus decide
678 whether it is possible to replace the jsr with a bsr.
679
680 If multiple function calls are all based on a single register load
681 (i.e., the same function is called multiple times), the compiler
682 guarantees that each function call will have an R_SH_USES reloc.
683 Therefore, if the linker is able to convert each R_SH_USES reloc
684 which refers to that address, it can safely eliminate the register
685 load.
686
687 When the assembler creates an R_SH_USES reloc, it examines it to
688 determine which address is being loaded (L1 in the above example).
689 It then counts the number of references to that address, and
690 creates an R_SH_COUNT reloc at that address. The r_offset field of
691 the R_SH_COUNT reloc will be the number of references. If the
692 linker is able to eliminate a register load, it can use the
693 R_SH_COUNT reloc to see whether it can also eliminate the function
694 address.
695
696 SH relaxing also handles another, unrelated, matter. On the SH, if
697 a load or store instruction is not aligned on a four byte boundary,
698 the memory cycle interferes with the 32 bit instruction fetch,
699 causing a one cycle bubble in the pipeline. Therefore, we try to
700 align load and store instructions on four byte boundaries if we
701 can, by swapping them with one of the adjacent instructions. */
702
703 static bfd_boolean
sh_relax_section(bfd * abfd,asection * sec,struct bfd_link_info * link_info,bfd_boolean * again)704 sh_relax_section (bfd *abfd,
705 asection *sec,
706 struct bfd_link_info *link_info,
707 bfd_boolean *again)
708 {
709 struct internal_reloc *internal_relocs;
710 bfd_boolean have_code;
711 struct internal_reloc *irel, *irelend;
712 bfd_byte *contents = NULL;
713
714 *again = FALSE;
715
716 if (link_info->relocatable
717 || (sec->flags & SEC_RELOC) == 0
718 || sec->reloc_count == 0)
719 return TRUE;
720
721 if (coff_section_data (abfd, sec) == NULL)
722 {
723 bfd_size_type amt = sizeof (struct coff_section_tdata);
724 sec->used_by_bfd = bfd_zalloc (abfd, amt);
725 if (sec->used_by_bfd == NULL)
726 return FALSE;
727 }
728
729 internal_relocs = (_bfd_coff_read_internal_relocs
730 (abfd, sec, link_info->keep_memory,
731 (bfd_byte *) NULL, FALSE,
732 (struct internal_reloc *) NULL));
733 if (internal_relocs == NULL)
734 goto error_return;
735
736 have_code = FALSE;
737
738 irelend = internal_relocs + sec->reloc_count;
739 for (irel = internal_relocs; irel < irelend; irel++)
740 {
741 bfd_vma laddr, paddr, symval;
742 unsigned short insn;
743 struct internal_reloc *irelfn, *irelscan, *irelcount;
744 struct internal_syment sym;
745 bfd_signed_vma foff;
746
747 if (irel->r_type == R_SH_CODE)
748 have_code = TRUE;
749
750 if (irel->r_type != R_SH_USES)
751 continue;
752
753 /* Get the section contents. */
754 if (contents == NULL)
755 {
756 if (coff_section_data (abfd, sec)->contents != NULL)
757 contents = coff_section_data (abfd, sec)->contents;
758 else
759 {
760 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
761 goto error_return;
762 }
763 }
764
765 /* The r_offset field of the R_SH_USES reloc will point us to
766 the register load. The 4 is because the r_offset field is
767 computed as though it were a jump offset, which are based
768 from 4 bytes after the jump instruction. */
769 laddr = irel->r_vaddr - sec->vma + 4;
770 /* Careful to sign extend the 32-bit offset. */
771 laddr += ((irel->r_offset & 0xffffffff) ^ 0x80000000) - 0x80000000;
772 if (laddr >= sec->size)
773 {
774 (*_bfd_error_handler) ("%B: 0x%lx: warning: bad R_SH_USES offset",
775 abfd, (unsigned long) irel->r_vaddr);
776 continue;
777 }
778 insn = bfd_get_16 (abfd, contents + laddr);
779
780 /* If the instruction is not mov.l NN,rN, we don't know what to do. */
781 if ((insn & 0xf000) != 0xd000)
782 {
783 ((*_bfd_error_handler)
784 ("%B: 0x%lx: warning: R_SH_USES points to unrecognized insn 0x%x",
785 abfd, (unsigned long) irel->r_vaddr, insn));
786 continue;
787 }
788
789 /* Get the address from which the register is being loaded. The
790 displacement in the mov.l instruction is quadrupled. It is a
791 displacement from four bytes after the movl instruction, but,
792 before adding in the PC address, two least significant bits
793 of the PC are cleared. We assume that the section is aligned
794 on a four byte boundary. */
795 paddr = insn & 0xff;
796 paddr *= 4;
797 paddr += (laddr + 4) &~ (bfd_vma) 3;
798 if (paddr >= sec->size)
799 {
800 ((*_bfd_error_handler)
801 ("%B: 0x%lx: warning: bad R_SH_USES load offset",
802 abfd, (unsigned long) irel->r_vaddr));
803 continue;
804 }
805
806 /* Get the reloc for the address from which the register is
807 being loaded. This reloc will tell us which function is
808 actually being called. */
809 paddr += sec->vma;
810 for (irelfn = internal_relocs; irelfn < irelend; irelfn++)
811 if (irelfn->r_vaddr == paddr
812 #ifdef COFF_WITH_PE
813 && (irelfn->r_type == R_SH_IMM32
814 || irelfn->r_type == R_SH_IMM32CE
815 || irelfn->r_type == R_SH_IMAGEBASE)
816
817 #else
818 && irelfn->r_type == R_SH_IMM32
819 #endif
820 )
821 break;
822 if (irelfn >= irelend)
823 {
824 ((*_bfd_error_handler)
825 ("%B: 0x%lx: warning: could not find expected reloc",
826 abfd, (unsigned long) paddr));
827 continue;
828 }
829
830 /* Get the value of the symbol referred to by the reloc. */
831 if (! _bfd_coff_get_external_symbols (abfd))
832 goto error_return;
833 bfd_coff_swap_sym_in (abfd,
834 ((bfd_byte *) obj_coff_external_syms (abfd)
835 + (irelfn->r_symndx
836 * bfd_coff_symesz (abfd))),
837 &sym);
838 if (sym.n_scnum != 0 && sym.n_scnum != sec->target_index)
839 {
840 ((*_bfd_error_handler)
841 ("%B: 0x%lx: warning: symbol in unexpected section",
842 abfd, (unsigned long) paddr));
843 continue;
844 }
845
846 if (sym.n_sclass != C_EXT)
847 {
848 symval = (sym.n_value
849 - sec->vma
850 + sec->output_section->vma
851 + sec->output_offset);
852 }
853 else
854 {
855 struct coff_link_hash_entry *h;
856
857 h = obj_coff_sym_hashes (abfd)[irelfn->r_symndx];
858 BFD_ASSERT (h != NULL);
859 if (h->root.type != bfd_link_hash_defined
860 && h->root.type != bfd_link_hash_defweak)
861 {
862 /* This appears to be a reference to an undefined
863 symbol. Just ignore it--it will be caught by the
864 regular reloc processing. */
865 continue;
866 }
867
868 symval = (h->root.u.def.value
869 + h->root.u.def.section->output_section->vma
870 + h->root.u.def.section->output_offset);
871 }
872
873 symval += bfd_get_32 (abfd, contents + paddr - sec->vma);
874
875 /* See if this function call can be shortened. */
876 foff = (symval
877 - (irel->r_vaddr
878 - sec->vma
879 + sec->output_section->vma
880 + sec->output_offset
881 + 4));
882 if (foff < -0x1000 || foff >= 0x1000)
883 {
884 /* After all that work, we can't shorten this function call. */
885 continue;
886 }
887
888 /* Shorten the function call. */
889
890 /* For simplicity of coding, we are going to modify the section
891 contents, the section relocs, and the BFD symbol table. We
892 must tell the rest of the code not to free up this
893 information. It would be possible to instead create a table
894 of changes which have to be made, as is done in coff-mips.c;
895 that would be more work, but would require less memory when
896 the linker is run. */
897
898 coff_section_data (abfd, sec)->relocs = internal_relocs;
899 coff_section_data (abfd, sec)->keep_relocs = TRUE;
900
901 coff_section_data (abfd, sec)->contents = contents;
902 coff_section_data (abfd, sec)->keep_contents = TRUE;
903
904 obj_coff_keep_syms (abfd) = TRUE;
905
906 /* Replace the jsr with a bsr. */
907
908 /* Change the R_SH_USES reloc into an R_SH_PCDISP reloc, and
909 replace the jsr with a bsr. */
910 irel->r_type = R_SH_PCDISP;
911 irel->r_symndx = irelfn->r_symndx;
912 if (sym.n_sclass != C_EXT)
913 {
914 /* If this needs to be changed because of future relaxing,
915 it will be handled here like other internal PCDISP
916 relocs. */
917 bfd_put_16 (abfd,
918 (bfd_vma) 0xb000 | ((foff >> 1) & 0xfff),
919 contents + irel->r_vaddr - sec->vma);
920 }
921 else
922 {
923 /* We can't fully resolve this yet, because the external
924 symbol value may be changed by future relaxing. We let
925 the final link phase handle it. */
926 bfd_put_16 (abfd, (bfd_vma) 0xb000,
927 contents + irel->r_vaddr - sec->vma);
928 }
929
930 /* See if there is another R_SH_USES reloc referring to the same
931 register load. */
932 for (irelscan = internal_relocs; irelscan < irelend; irelscan++)
933 if (irelscan->r_type == R_SH_USES
934 && laddr == irelscan->r_vaddr - sec->vma + 4 + irelscan->r_offset)
935 break;
936 if (irelscan < irelend)
937 {
938 /* Some other function call depends upon this register load,
939 and we have not yet converted that function call.
940 Indeed, we may never be able to convert it. There is
941 nothing else we can do at this point. */
942 continue;
943 }
944
945 /* Look for a R_SH_COUNT reloc on the location where the
946 function address is stored. Do this before deleting any
947 bytes, to avoid confusion about the address. */
948 for (irelcount = internal_relocs; irelcount < irelend; irelcount++)
949 if (irelcount->r_vaddr == paddr
950 && irelcount->r_type == R_SH_COUNT)
951 break;
952
953 /* Delete the register load. */
954 if (! sh_relax_delete_bytes (abfd, sec, laddr, 2))
955 goto error_return;
956
957 /* That will change things, so, just in case it permits some
958 other function call to come within range, we should relax
959 again. Note that this is not required, and it may be slow. */
960 *again = TRUE;
961
962 /* Now check whether we got a COUNT reloc. */
963 if (irelcount >= irelend)
964 {
965 ((*_bfd_error_handler)
966 ("%B: 0x%lx: warning: could not find expected COUNT reloc",
967 abfd, (unsigned long) paddr));
968 continue;
969 }
970
971 /* The number of uses is stored in the r_offset field. We've
972 just deleted one. */
973 if (irelcount->r_offset == 0)
974 {
975 ((*_bfd_error_handler) ("%B: 0x%lx: warning: bad count",
976 abfd, (unsigned long) paddr));
977 continue;
978 }
979
980 --irelcount->r_offset;
981
982 /* If there are no more uses, we can delete the address. Reload
983 the address from irelfn, in case it was changed by the
984 previous call to sh_relax_delete_bytes. */
985 if (irelcount->r_offset == 0)
986 {
987 if (! sh_relax_delete_bytes (abfd, sec,
988 irelfn->r_vaddr - sec->vma, 4))
989 goto error_return;
990 }
991
992 /* We've done all we can with that function call. */
993 }
994
995 /* Look for load and store instructions that we can align on four
996 byte boundaries. */
997 if (have_code)
998 {
999 bfd_boolean swapped;
1000
1001 /* Get the section contents. */
1002 if (contents == NULL)
1003 {
1004 if (coff_section_data (abfd, sec)->contents != NULL)
1005 contents = coff_section_data (abfd, sec)->contents;
1006 else
1007 {
1008 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
1009 goto error_return;
1010 }
1011 }
1012
1013 if (! sh_align_loads (abfd, sec, internal_relocs, contents, &swapped))
1014 goto error_return;
1015
1016 if (swapped)
1017 {
1018 coff_section_data (abfd, sec)->relocs = internal_relocs;
1019 coff_section_data (abfd, sec)->keep_relocs = TRUE;
1020
1021 coff_section_data (abfd, sec)->contents = contents;
1022 coff_section_data (abfd, sec)->keep_contents = TRUE;
1023
1024 obj_coff_keep_syms (abfd) = TRUE;
1025 }
1026 }
1027
1028 if (internal_relocs != NULL
1029 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1030 {
1031 if (! link_info->keep_memory)
1032 free (internal_relocs);
1033 else
1034 coff_section_data (abfd, sec)->relocs = internal_relocs;
1035 }
1036
1037 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1038 {
1039 if (! link_info->keep_memory)
1040 free (contents);
1041 else
1042 /* Cache the section contents for coff_link_input_bfd. */
1043 coff_section_data (abfd, sec)->contents = contents;
1044 }
1045
1046 return TRUE;
1047
1048 error_return:
1049 if (internal_relocs != NULL
1050 && internal_relocs != coff_section_data (abfd, sec)->relocs)
1051 free (internal_relocs);
1052 if (contents != NULL && contents != coff_section_data (abfd, sec)->contents)
1053 free (contents);
1054 return FALSE;
1055 }
1056
1057 /* Delete some bytes from a section while relaxing. */
1058
1059 static bfd_boolean
sh_relax_delete_bytes(bfd * abfd,asection * sec,bfd_vma addr,int count)1060 sh_relax_delete_bytes (bfd *abfd,
1061 asection *sec,
1062 bfd_vma addr,
1063 int count)
1064 {
1065 bfd_byte *contents;
1066 struct internal_reloc *irel, *irelend;
1067 struct internal_reloc *irelalign;
1068 bfd_vma toaddr;
1069 bfd_byte *esym, *esymend;
1070 bfd_size_type symesz;
1071 struct coff_link_hash_entry **sym_hash;
1072 asection *o;
1073
1074 contents = coff_section_data (abfd, sec)->contents;
1075
1076 /* The deletion must stop at the next ALIGN reloc for an aligment
1077 power larger than the number of bytes we are deleting. */
1078
1079 irelalign = NULL;
1080 toaddr = sec->size;
1081
1082 irel = coff_section_data (abfd, sec)->relocs;
1083 irelend = irel + sec->reloc_count;
1084 for (; irel < irelend; irel++)
1085 {
1086 if (irel->r_type == R_SH_ALIGN
1087 && irel->r_vaddr - sec->vma > addr
1088 && count < (1 << irel->r_offset))
1089 {
1090 irelalign = irel;
1091 toaddr = irel->r_vaddr - sec->vma;
1092 break;
1093 }
1094 }
1095
1096 /* Actually delete the bytes. */
1097 memmove (contents + addr, contents + addr + count,
1098 (size_t) (toaddr - addr - count));
1099 if (irelalign == NULL)
1100 sec->size -= count;
1101 else
1102 {
1103 int i;
1104
1105 #define NOP_OPCODE (0x0009)
1106
1107 BFD_ASSERT ((count & 1) == 0);
1108 for (i = 0; i < count; i += 2)
1109 bfd_put_16 (abfd, (bfd_vma) NOP_OPCODE, contents + toaddr - count + i);
1110 }
1111
1112 /* Adjust all the relocs. */
1113 for (irel = coff_section_data (abfd, sec)->relocs; irel < irelend; irel++)
1114 {
1115 bfd_vma nraddr, stop;
1116 bfd_vma start = 0;
1117 int insn = 0;
1118 struct internal_syment sym;
1119 int off, adjust, oinsn;
1120 bfd_signed_vma voff = 0;
1121 bfd_boolean overflow;
1122
1123 /* Get the new reloc address. */
1124 nraddr = irel->r_vaddr - sec->vma;
1125 if ((irel->r_vaddr - sec->vma > addr
1126 && irel->r_vaddr - sec->vma < toaddr)
1127 || (irel->r_type == R_SH_ALIGN
1128 && irel->r_vaddr - sec->vma == toaddr))
1129 nraddr -= count;
1130
1131 /* See if this reloc was for the bytes we have deleted, in which
1132 case we no longer care about it. Don't delete relocs which
1133 represent addresses, though. */
1134 if (irel->r_vaddr - sec->vma >= addr
1135 && irel->r_vaddr - sec->vma < addr + count
1136 && irel->r_type != R_SH_ALIGN
1137 && irel->r_type != R_SH_CODE
1138 && irel->r_type != R_SH_DATA
1139 && irel->r_type != R_SH_LABEL)
1140 irel->r_type = R_SH_UNUSED;
1141
1142 /* If this is a PC relative reloc, see if the range it covers
1143 includes the bytes we have deleted. */
1144 switch (irel->r_type)
1145 {
1146 default:
1147 break;
1148
1149 case R_SH_PCDISP8BY2:
1150 case R_SH_PCDISP:
1151 case R_SH_PCRELIMM8BY2:
1152 case R_SH_PCRELIMM8BY4:
1153 start = irel->r_vaddr - sec->vma;
1154 insn = bfd_get_16 (abfd, contents + nraddr);
1155 break;
1156 }
1157
1158 switch (irel->r_type)
1159 {
1160 default:
1161 start = stop = addr;
1162 break;
1163
1164 case R_SH_IMM32:
1165 #ifdef COFF_WITH_PE
1166 case R_SH_IMM32CE:
1167 case R_SH_IMAGEBASE:
1168 #endif
1169 /* If this reloc is against a symbol defined in this
1170 section, and the symbol will not be adjusted below, we
1171 must check the addend to see it will put the value in
1172 range to be adjusted, and hence must be changed. */
1173 bfd_coff_swap_sym_in (abfd,
1174 ((bfd_byte *) obj_coff_external_syms (abfd)
1175 + (irel->r_symndx
1176 * bfd_coff_symesz (abfd))),
1177 &sym);
1178 if (sym.n_sclass != C_EXT
1179 && sym.n_scnum == sec->target_index
1180 && ((bfd_vma) sym.n_value <= addr
1181 || (bfd_vma) sym.n_value >= toaddr))
1182 {
1183 bfd_vma val;
1184
1185 val = bfd_get_32 (abfd, contents + nraddr);
1186 val += sym.n_value;
1187 if (val > addr && val < toaddr)
1188 bfd_put_32 (abfd, val - count, contents + nraddr);
1189 }
1190 start = stop = addr;
1191 break;
1192
1193 case R_SH_PCDISP8BY2:
1194 off = insn & 0xff;
1195 if (off & 0x80)
1196 off -= 0x100;
1197 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1198 break;
1199
1200 case R_SH_PCDISP:
1201 bfd_coff_swap_sym_in (abfd,
1202 ((bfd_byte *) obj_coff_external_syms (abfd)
1203 + (irel->r_symndx
1204 * bfd_coff_symesz (abfd))),
1205 &sym);
1206 if (sym.n_sclass == C_EXT)
1207 start = stop = addr;
1208 else
1209 {
1210 off = insn & 0xfff;
1211 if (off & 0x800)
1212 off -= 0x1000;
1213 stop = (bfd_vma) ((bfd_signed_vma) start + 4 + off * 2);
1214 }
1215 break;
1216
1217 case R_SH_PCRELIMM8BY2:
1218 off = insn & 0xff;
1219 stop = start + 4 + off * 2;
1220 break;
1221
1222 case R_SH_PCRELIMM8BY4:
1223 off = insn & 0xff;
1224 stop = (start &~ (bfd_vma) 3) + 4 + off * 4;
1225 break;
1226
1227 case R_SH_SWITCH8:
1228 case R_SH_SWITCH16:
1229 case R_SH_SWITCH32:
1230 /* These relocs types represent
1231 .word L2-L1
1232 The r_offset field holds the difference between the reloc
1233 address and L1. That is the start of the reloc, and
1234 adding in the contents gives us the top. We must adjust
1235 both the r_offset field and the section contents. */
1236
1237 start = irel->r_vaddr - sec->vma;
1238 stop = (bfd_vma) ((bfd_signed_vma) start - (long) irel->r_offset);
1239
1240 if (start > addr
1241 && start < toaddr
1242 && (stop <= addr || stop >= toaddr))
1243 irel->r_offset += count;
1244 else if (stop > addr
1245 && stop < toaddr
1246 && (start <= addr || start >= toaddr))
1247 irel->r_offset -= count;
1248
1249 start = stop;
1250
1251 if (irel->r_type == R_SH_SWITCH16)
1252 voff = bfd_get_signed_16 (abfd, contents + nraddr);
1253 else if (irel->r_type == R_SH_SWITCH8)
1254 voff = bfd_get_8 (abfd, contents + nraddr);
1255 else
1256 voff = bfd_get_signed_32 (abfd, contents + nraddr);
1257 stop = (bfd_vma) ((bfd_signed_vma) start + voff);
1258
1259 break;
1260
1261 case R_SH_USES:
1262 start = irel->r_vaddr - sec->vma;
1263 stop = (bfd_vma) ((bfd_signed_vma) start
1264 + (long) irel->r_offset
1265 + 4);
1266 break;
1267 }
1268
1269 if (start > addr
1270 && start < toaddr
1271 && (stop <= addr || stop >= toaddr))
1272 adjust = count;
1273 else if (stop > addr
1274 && stop < toaddr
1275 && (start <= addr || start >= toaddr))
1276 adjust = - count;
1277 else
1278 adjust = 0;
1279
1280 if (adjust != 0)
1281 {
1282 oinsn = insn;
1283 overflow = FALSE;
1284 switch (irel->r_type)
1285 {
1286 default:
1287 abort ();
1288 break;
1289
1290 case R_SH_PCDISP8BY2:
1291 case R_SH_PCRELIMM8BY2:
1292 insn += adjust / 2;
1293 if ((oinsn & 0xff00) != (insn & 0xff00))
1294 overflow = TRUE;
1295 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1296 break;
1297
1298 case R_SH_PCDISP:
1299 insn += adjust / 2;
1300 if ((oinsn & 0xf000) != (insn & 0xf000))
1301 overflow = TRUE;
1302 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1303 break;
1304
1305 case R_SH_PCRELIMM8BY4:
1306 BFD_ASSERT (adjust == count || count >= 4);
1307 if (count >= 4)
1308 insn += adjust / 4;
1309 else
1310 {
1311 if ((irel->r_vaddr & 3) == 0)
1312 ++insn;
1313 }
1314 if ((oinsn & 0xff00) != (insn & 0xff00))
1315 overflow = TRUE;
1316 bfd_put_16 (abfd, (bfd_vma) insn, contents + nraddr);
1317 break;
1318
1319 case R_SH_SWITCH8:
1320 voff += adjust;
1321 if (voff < 0 || voff >= 0xff)
1322 overflow = TRUE;
1323 bfd_put_8 (abfd, (bfd_vma) voff, contents + nraddr);
1324 break;
1325
1326 case R_SH_SWITCH16:
1327 voff += adjust;
1328 if (voff < - 0x8000 || voff >= 0x8000)
1329 overflow = TRUE;
1330 bfd_put_signed_16 (abfd, (bfd_vma) voff, contents + nraddr);
1331 break;
1332
1333 case R_SH_SWITCH32:
1334 voff += adjust;
1335 bfd_put_signed_32 (abfd, (bfd_vma) voff, contents + nraddr);
1336 break;
1337
1338 case R_SH_USES:
1339 irel->r_offset += adjust;
1340 break;
1341 }
1342
1343 if (overflow)
1344 {
1345 ((*_bfd_error_handler)
1346 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
1347 abfd, (unsigned long) irel->r_vaddr));
1348 bfd_set_error (bfd_error_bad_value);
1349 return FALSE;
1350 }
1351 }
1352
1353 irel->r_vaddr = nraddr + sec->vma;
1354 }
1355
1356 /* Look through all the other sections. If there contain any IMM32
1357 relocs against internal symbols which we are not going to adjust
1358 below, we may need to adjust the addends. */
1359 for (o = abfd->sections; o != NULL; o = o->next)
1360 {
1361 struct internal_reloc *internal_relocs;
1362 struct internal_reloc *irelscan, *irelscanend;
1363 bfd_byte *ocontents;
1364
1365 if (o == sec
1366 || (o->flags & SEC_RELOC) == 0
1367 || o->reloc_count == 0)
1368 continue;
1369
1370 /* We always cache the relocs. Perhaps, if info->keep_memory is
1371 FALSE, we should free them, if we are permitted to, when we
1372 leave sh_coff_relax_section. */
1373 internal_relocs = (_bfd_coff_read_internal_relocs
1374 (abfd, o, TRUE, (bfd_byte *) NULL, FALSE,
1375 (struct internal_reloc *) NULL));
1376 if (internal_relocs == NULL)
1377 return FALSE;
1378
1379 ocontents = NULL;
1380 irelscanend = internal_relocs + o->reloc_count;
1381 for (irelscan = internal_relocs; irelscan < irelscanend; irelscan++)
1382 {
1383 struct internal_syment sym;
1384
1385 #ifdef COFF_WITH_PE
1386 if (irelscan->r_type != R_SH_IMM32
1387 && irelscan->r_type != R_SH_IMAGEBASE
1388 && irelscan->r_type != R_SH_IMM32CE)
1389 #else
1390 if (irelscan->r_type != R_SH_IMM32)
1391 #endif
1392 continue;
1393
1394 bfd_coff_swap_sym_in (abfd,
1395 ((bfd_byte *) obj_coff_external_syms (abfd)
1396 + (irelscan->r_symndx
1397 * bfd_coff_symesz (abfd))),
1398 &sym);
1399 if (sym.n_sclass != C_EXT
1400 && sym.n_scnum == sec->target_index
1401 && ((bfd_vma) sym.n_value <= addr
1402 || (bfd_vma) sym.n_value >= toaddr))
1403 {
1404 bfd_vma val;
1405
1406 if (ocontents == NULL)
1407 {
1408 if (coff_section_data (abfd, o)->contents != NULL)
1409 ocontents = coff_section_data (abfd, o)->contents;
1410 else
1411 {
1412 if (!bfd_malloc_and_get_section (abfd, o, &ocontents))
1413 return FALSE;
1414 /* We always cache the section contents.
1415 Perhaps, if info->keep_memory is FALSE, we
1416 should free them, if we are permitted to,
1417 when we leave sh_coff_relax_section. */
1418 coff_section_data (abfd, o)->contents = ocontents;
1419 }
1420 }
1421
1422 val = bfd_get_32 (abfd, ocontents + irelscan->r_vaddr - o->vma);
1423 val += sym.n_value;
1424 if (val > addr && val < toaddr)
1425 bfd_put_32 (abfd, val - count,
1426 ocontents + irelscan->r_vaddr - o->vma);
1427
1428 coff_section_data (abfd, o)->keep_contents = TRUE;
1429 }
1430 }
1431 }
1432
1433 /* Adjusting the internal symbols will not work if something has
1434 already retrieved the generic symbols. It would be possible to
1435 make this work by adjusting the generic symbols at the same time.
1436 However, this case should not arise in normal usage. */
1437 if (obj_symbols (abfd) != NULL
1438 || obj_raw_syments (abfd) != NULL)
1439 {
1440 ((*_bfd_error_handler)
1441 ("%B: fatal: generic symbols retrieved before relaxing", abfd));
1442 bfd_set_error (bfd_error_invalid_operation);
1443 return FALSE;
1444 }
1445
1446 /* Adjust all the symbols. */
1447 sym_hash = obj_coff_sym_hashes (abfd);
1448 symesz = bfd_coff_symesz (abfd);
1449 esym = (bfd_byte *) obj_coff_external_syms (abfd);
1450 esymend = esym + obj_raw_syment_count (abfd) * symesz;
1451 while (esym < esymend)
1452 {
1453 struct internal_syment isym;
1454
1455 bfd_coff_swap_sym_in (abfd, esym, &isym);
1456
1457 if (isym.n_scnum == sec->target_index
1458 && (bfd_vma) isym.n_value > addr
1459 && (bfd_vma) isym.n_value < toaddr)
1460 {
1461 isym.n_value -= count;
1462
1463 bfd_coff_swap_sym_out (abfd, &isym, esym);
1464
1465 if (*sym_hash != NULL)
1466 {
1467 BFD_ASSERT ((*sym_hash)->root.type == bfd_link_hash_defined
1468 || (*sym_hash)->root.type == bfd_link_hash_defweak);
1469 BFD_ASSERT ((*sym_hash)->root.u.def.value >= addr
1470 && (*sym_hash)->root.u.def.value < toaddr);
1471 (*sym_hash)->root.u.def.value -= count;
1472 }
1473 }
1474
1475 esym += (isym.n_numaux + 1) * symesz;
1476 sym_hash += isym.n_numaux + 1;
1477 }
1478
1479 /* See if we can move the ALIGN reloc forward. We have adjusted
1480 r_vaddr for it already. */
1481 if (irelalign != NULL)
1482 {
1483 bfd_vma alignto, alignaddr;
1484
1485 alignto = BFD_ALIGN (toaddr, 1 << irelalign->r_offset);
1486 alignaddr = BFD_ALIGN (irelalign->r_vaddr - sec->vma,
1487 1 << irelalign->r_offset);
1488 if (alignto != alignaddr)
1489 {
1490 /* Tail recursion. */
1491 return sh_relax_delete_bytes (abfd, sec, alignaddr,
1492 (int) (alignto - alignaddr));
1493 }
1494 }
1495
1496 return TRUE;
1497 }
1498
1499 /* This is yet another version of the SH opcode table, used to rapidly
1500 get information about a particular instruction. */
1501
1502 /* The opcode map is represented by an array of these structures. The
1503 array is indexed by the high order four bits in the instruction. */
1504
1505 struct sh_major_opcode
1506 {
1507 /* A pointer to the instruction list. This is an array which
1508 contains all the instructions with this major opcode. */
1509 const struct sh_minor_opcode *minor_opcodes;
1510 /* The number of elements in minor_opcodes. */
1511 unsigned short count;
1512 };
1513
1514 /* This structure holds information for a set of SH opcodes. The
1515 instruction code is anded with the mask value, and the resulting
1516 value is used to search the order opcode list. */
1517
1518 struct sh_minor_opcode
1519 {
1520 /* The sorted opcode list. */
1521 const struct sh_opcode *opcodes;
1522 /* The number of elements in opcodes. */
1523 unsigned short count;
1524 /* The mask value to use when searching the opcode list. */
1525 unsigned short mask;
1526 };
1527
1528 /* This structure holds information for an SH instruction. An array
1529 of these structures is sorted in order by opcode. */
1530
1531 struct sh_opcode
1532 {
1533 /* The code for this instruction, after it has been anded with the
1534 mask value in the sh_major_opcode structure. */
1535 unsigned short opcode;
1536 /* Flags for this instruction. */
1537 unsigned long flags;
1538 };
1539
1540 /* Flag which appear in the sh_opcode structure. */
1541
1542 /* This instruction loads a value from memory. */
1543 #define LOAD (0x1)
1544
1545 /* This instruction stores a value to memory. */
1546 #define STORE (0x2)
1547
1548 /* This instruction is a branch. */
1549 #define BRANCH (0x4)
1550
1551 /* This instruction has a delay slot. */
1552 #define DELAY (0x8)
1553
1554 /* This instruction uses the value in the register in the field at
1555 mask 0x0f00 of the instruction. */
1556 #define USES1 (0x10)
1557 #define USES1_REG(x) ((x & 0x0f00) >> 8)
1558
1559 /* This instruction uses the value in the register in the field at
1560 mask 0x00f0 of the instruction. */
1561 #define USES2 (0x20)
1562 #define USES2_REG(x) ((x & 0x00f0) >> 4)
1563
1564 /* This instruction uses the value in register 0. */
1565 #define USESR0 (0x40)
1566
1567 /* This instruction sets the value in the register in the field at
1568 mask 0x0f00 of the instruction. */
1569 #define SETS1 (0x80)
1570 #define SETS1_REG(x) ((x & 0x0f00) >> 8)
1571
1572 /* This instruction sets the value in the register in the field at
1573 mask 0x00f0 of the instruction. */
1574 #define SETS2 (0x100)
1575 #define SETS2_REG(x) ((x & 0x00f0) >> 4)
1576
1577 /* This instruction sets register 0. */
1578 #define SETSR0 (0x200)
1579
1580 /* This instruction sets a special register. */
1581 #define SETSSP (0x400)
1582
1583 /* This instruction uses a special register. */
1584 #define USESSP (0x800)
1585
1586 /* This instruction uses the floating point register in the field at
1587 mask 0x0f00 of the instruction. */
1588 #define USESF1 (0x1000)
1589 #define USESF1_REG(x) ((x & 0x0f00) >> 8)
1590
1591 /* This instruction uses the floating point register in the field at
1592 mask 0x00f0 of the instruction. */
1593 #define USESF2 (0x2000)
1594 #define USESF2_REG(x) ((x & 0x00f0) >> 4)
1595
1596 /* This instruction uses floating point register 0. */
1597 #define USESF0 (0x4000)
1598
1599 /* This instruction sets the floating point register in the field at
1600 mask 0x0f00 of the instruction. */
1601 #define SETSF1 (0x8000)
1602 #define SETSF1_REG(x) ((x & 0x0f00) >> 8)
1603
1604 #define USESAS (0x10000)
1605 #define USESAS_REG(x) (((((x) >> 8) - 2) & 3) + 2)
1606 #define USESR8 (0x20000)
1607 #define SETSAS (0x40000)
1608 #define SETSAS_REG(x) USESAS_REG (x)
1609
1610 #define MAP(a) a, sizeof a / sizeof a[0]
1611
1612 #ifndef COFF_IMAGE_WITH_PE
1613
1614 /* The opcode maps. */
1615
1616 static const struct sh_opcode sh_opcode00[] =
1617 {
1618 { 0x0008, SETSSP }, /* clrt */
1619 { 0x0009, 0 }, /* nop */
1620 { 0x000b, BRANCH | DELAY | USESSP }, /* rts */
1621 { 0x0018, SETSSP }, /* sett */
1622 { 0x0019, SETSSP }, /* div0u */
1623 { 0x001b, 0 }, /* sleep */
1624 { 0x0028, SETSSP }, /* clrmac */
1625 { 0x002b, BRANCH | DELAY | SETSSP }, /* rte */
1626 { 0x0038, USESSP | SETSSP }, /* ldtlb */
1627 { 0x0048, SETSSP }, /* clrs */
1628 { 0x0058, SETSSP } /* sets */
1629 };
1630
1631 static const struct sh_opcode sh_opcode01[] =
1632 {
1633 { 0x0003, BRANCH | DELAY | USES1 | SETSSP }, /* bsrf rn */
1634 { 0x000a, SETS1 | USESSP }, /* sts mach,rn */
1635 { 0x001a, SETS1 | USESSP }, /* sts macl,rn */
1636 { 0x0023, BRANCH | DELAY | USES1 }, /* braf rn */
1637 { 0x0029, SETS1 | USESSP }, /* movt rn */
1638 { 0x002a, SETS1 | USESSP }, /* sts pr,rn */
1639 { 0x005a, SETS1 | USESSP }, /* sts fpul,rn */
1640 { 0x006a, SETS1 | USESSP }, /* sts fpscr,rn / sts dsr,rn */
1641 { 0x0083, LOAD | USES1 }, /* pref @rn */
1642 { 0x007a, SETS1 | USESSP }, /* sts a0,rn */
1643 { 0x008a, SETS1 | USESSP }, /* sts x0,rn */
1644 { 0x009a, SETS1 | USESSP }, /* sts x1,rn */
1645 { 0x00aa, SETS1 | USESSP }, /* sts y0,rn */
1646 { 0x00ba, SETS1 | USESSP } /* sts y1,rn */
1647 };
1648
1649 static const struct sh_opcode sh_opcode02[] =
1650 {
1651 { 0x0002, SETS1 | USESSP }, /* stc <special_reg>,rn */
1652 { 0x0004, STORE | USES1 | USES2 | USESR0 }, /* mov.b rm,@(r0,rn) */
1653 { 0x0005, STORE | USES1 | USES2 | USESR0 }, /* mov.w rm,@(r0,rn) */
1654 { 0x0006, STORE | USES1 | USES2 | USESR0 }, /* mov.l rm,@(r0,rn) */
1655 { 0x0007, SETSSP | USES1 | USES2 }, /* mul.l rm,rn */
1656 { 0x000c, LOAD | SETS1 | USES2 | USESR0 }, /* mov.b @(r0,rm),rn */
1657 { 0x000d, LOAD | SETS1 | USES2 | USESR0 }, /* mov.w @(r0,rm),rn */
1658 { 0x000e, LOAD | SETS1 | USES2 | USESR0 }, /* mov.l @(r0,rm),rn */
1659 { 0x000f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.l @rm+,@rn+ */
1660 };
1661
1662 static const struct sh_minor_opcode sh_opcode0[] =
1663 {
1664 { MAP (sh_opcode00), 0xffff },
1665 { MAP (sh_opcode01), 0xf0ff },
1666 { MAP (sh_opcode02), 0xf00f }
1667 };
1668
1669 static const struct sh_opcode sh_opcode10[] =
1670 {
1671 { 0x1000, STORE | USES1 | USES2 } /* mov.l rm,@(disp,rn) */
1672 };
1673
1674 static const struct sh_minor_opcode sh_opcode1[] =
1675 {
1676 { MAP (sh_opcode10), 0xf000 }
1677 };
1678
1679 static const struct sh_opcode sh_opcode20[] =
1680 {
1681 { 0x2000, STORE | USES1 | USES2 }, /* mov.b rm,@rn */
1682 { 0x2001, STORE | USES1 | USES2 }, /* mov.w rm,@rn */
1683 { 0x2002, STORE | USES1 | USES2 }, /* mov.l rm,@rn */
1684 { 0x2004, STORE | SETS1 | USES1 | USES2 }, /* mov.b rm,@-rn */
1685 { 0x2005, STORE | SETS1 | USES1 | USES2 }, /* mov.w rm,@-rn */
1686 { 0x2006, STORE | SETS1 | USES1 | USES2 }, /* mov.l rm,@-rn */
1687 { 0x2007, SETSSP | USES1 | USES2 | USESSP }, /* div0s */
1688 { 0x2008, SETSSP | USES1 | USES2 }, /* tst rm,rn */
1689 { 0x2009, SETS1 | USES1 | USES2 }, /* and rm,rn */
1690 { 0x200a, SETS1 | USES1 | USES2 }, /* xor rm,rn */
1691 { 0x200b, SETS1 | USES1 | USES2 }, /* or rm,rn */
1692 { 0x200c, SETSSP | USES1 | USES2 }, /* cmp/str rm,rn */
1693 { 0x200d, SETS1 | USES1 | USES2 }, /* xtrct rm,rn */
1694 { 0x200e, SETSSP | USES1 | USES2 }, /* mulu.w rm,rn */
1695 { 0x200f, SETSSP | USES1 | USES2 } /* muls.w rm,rn */
1696 };
1697
1698 static const struct sh_minor_opcode sh_opcode2[] =
1699 {
1700 { MAP (sh_opcode20), 0xf00f }
1701 };
1702
1703 static const struct sh_opcode sh_opcode30[] =
1704 {
1705 { 0x3000, SETSSP | USES1 | USES2 }, /* cmp/eq rm,rn */
1706 { 0x3002, SETSSP | USES1 | USES2 }, /* cmp/hs rm,rn */
1707 { 0x3003, SETSSP | USES1 | USES2 }, /* cmp/ge rm,rn */
1708 { 0x3004, SETSSP | USESSP | USES1 | USES2 }, /* div1 rm,rn */
1709 { 0x3005, SETSSP | USES1 | USES2 }, /* dmulu.l rm,rn */
1710 { 0x3006, SETSSP | USES1 | USES2 }, /* cmp/hi rm,rn */
1711 { 0x3007, SETSSP | USES1 | USES2 }, /* cmp/gt rm,rn */
1712 { 0x3008, SETS1 | USES1 | USES2 }, /* sub rm,rn */
1713 { 0x300a, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* subc rm,rn */
1714 { 0x300b, SETS1 | SETSSP | USES1 | USES2 }, /* subv rm,rn */
1715 { 0x300c, SETS1 | USES1 | USES2 }, /* add rm,rn */
1716 { 0x300d, SETSSP | USES1 | USES2 }, /* dmuls.l rm,rn */
1717 { 0x300e, SETS1 | SETSSP | USES1 | USES2 | USESSP }, /* addc rm,rn */
1718 { 0x300f, SETS1 | SETSSP | USES1 | USES2 } /* addv rm,rn */
1719 };
1720
1721 static const struct sh_minor_opcode sh_opcode3[] =
1722 {
1723 { MAP (sh_opcode30), 0xf00f }
1724 };
1725
1726 static const struct sh_opcode sh_opcode40[] =
1727 {
1728 { 0x4000, SETS1 | SETSSP | USES1 }, /* shll rn */
1729 { 0x4001, SETS1 | SETSSP | USES1 }, /* shlr rn */
1730 { 0x4002, STORE | SETS1 | USES1 | USESSP }, /* sts.l mach,@-rn */
1731 { 0x4004, SETS1 | SETSSP | USES1 }, /* rotl rn */
1732 { 0x4005, SETS1 | SETSSP | USES1 }, /* rotr rn */
1733 { 0x4006, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,mach */
1734 { 0x4008, SETS1 | USES1 }, /* shll2 rn */
1735 { 0x4009, SETS1 | USES1 }, /* shlr2 rn */
1736 { 0x400a, SETSSP | USES1 }, /* lds rm,mach */
1737 { 0x400b, BRANCH | DELAY | USES1 }, /* jsr @rn */
1738 { 0x4010, SETS1 | SETSSP | USES1 }, /* dt rn */
1739 { 0x4011, SETSSP | USES1 }, /* cmp/pz rn */
1740 { 0x4012, STORE | SETS1 | USES1 | USESSP }, /* sts.l macl,@-rn */
1741 { 0x4014, SETSSP | USES1 }, /* setrc rm */
1742 { 0x4015, SETSSP | USES1 }, /* cmp/pl rn */
1743 { 0x4016, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,macl */
1744 { 0x4018, SETS1 | USES1 }, /* shll8 rn */
1745 { 0x4019, SETS1 | USES1 }, /* shlr8 rn */
1746 { 0x401a, SETSSP | USES1 }, /* lds rm,macl */
1747 { 0x401b, LOAD | SETSSP | USES1 }, /* tas.b @rn */
1748 { 0x4020, SETS1 | SETSSP | USES1 }, /* shal rn */
1749 { 0x4021, SETS1 | SETSSP | USES1 }, /* shar rn */
1750 { 0x4022, STORE | SETS1 | USES1 | USESSP }, /* sts.l pr,@-rn */
1751 { 0x4024, SETS1 | SETSSP | USES1 | USESSP }, /* rotcl rn */
1752 { 0x4025, SETS1 | SETSSP | USES1 | USESSP }, /* rotcr rn */
1753 { 0x4026, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,pr */
1754 { 0x4028, SETS1 | USES1 }, /* shll16 rn */
1755 { 0x4029, SETS1 | USES1 }, /* shlr16 rn */
1756 { 0x402a, SETSSP | USES1 }, /* lds rm,pr */
1757 { 0x402b, BRANCH | DELAY | USES1 }, /* jmp @rn */
1758 { 0x4052, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpul,@-rn */
1759 { 0x4056, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpul */
1760 { 0x405a, SETSSP | USES1 }, /* lds.l rm,fpul */
1761 { 0x4062, STORE | SETS1 | USES1 | USESSP }, /* sts.l fpscr / dsr,@-rn */
1762 { 0x4066, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,fpscr / dsr */
1763 { 0x406a, SETSSP | USES1 }, /* lds rm,fpscr / lds rm,dsr */
1764 { 0x4072, STORE | SETS1 | USES1 | USESSP }, /* sts.l a0,@-rn */
1765 { 0x4076, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,a0 */
1766 { 0x407a, SETSSP | USES1 }, /* lds.l rm,a0 */
1767 { 0x4082, STORE | SETS1 | USES1 | USESSP }, /* sts.l x0,@-rn */
1768 { 0x4086, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x0 */
1769 { 0x408a, SETSSP | USES1 }, /* lds.l rm,x0 */
1770 { 0x4092, STORE | SETS1 | USES1 | USESSP }, /* sts.l x1,@-rn */
1771 { 0x4096, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,x1 */
1772 { 0x409a, SETSSP | USES1 }, /* lds.l rm,x1 */
1773 { 0x40a2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y0,@-rn */
1774 { 0x40a6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y0 */
1775 { 0x40aa, SETSSP | USES1 }, /* lds.l rm,y0 */
1776 { 0x40b2, STORE | SETS1 | USES1 | USESSP }, /* sts.l y1,@-rn */
1777 { 0x40b6, LOAD | SETS1 | SETSSP | USES1 }, /* lds.l @rm+,y1 */
1778 { 0x40ba, SETSSP | USES1 } /* lds.l rm,y1 */
1779 };
1780
1781 static const struct sh_opcode sh_opcode41[] =
1782 {
1783 { 0x4003, STORE | SETS1 | USES1 | USESSP }, /* stc.l <special_reg>,@-rn */
1784 { 0x4007, LOAD | SETS1 | SETSSP | USES1 }, /* ldc.l @rm+,<special_reg> */
1785 { 0x400c, SETS1 | USES1 | USES2 }, /* shad rm,rn */
1786 { 0x400d, SETS1 | USES1 | USES2 }, /* shld rm,rn */
1787 { 0x400e, SETSSP | USES1 }, /* ldc rm,<special_reg> */
1788 { 0x400f, LOAD|SETS1|SETS2|SETSSP|USES1|USES2|USESSP }, /* mac.w @rm+,@rn+ */
1789 };
1790
1791 static const struct sh_minor_opcode sh_opcode4[] =
1792 {
1793 { MAP (sh_opcode40), 0xf0ff },
1794 { MAP (sh_opcode41), 0xf00f }
1795 };
1796
1797 static const struct sh_opcode sh_opcode50[] =
1798 {
1799 { 0x5000, LOAD | SETS1 | USES2 } /* mov.l @(disp,rm),rn */
1800 };
1801
1802 static const struct sh_minor_opcode sh_opcode5[] =
1803 {
1804 { MAP (sh_opcode50), 0xf000 }
1805 };
1806
1807 static const struct sh_opcode sh_opcode60[] =
1808 {
1809 { 0x6000, LOAD | SETS1 | USES2 }, /* mov.b @rm,rn */
1810 { 0x6001, LOAD | SETS1 | USES2 }, /* mov.w @rm,rn */
1811 { 0x6002, LOAD | SETS1 | USES2 }, /* mov.l @rm,rn */
1812 { 0x6003, SETS1 | USES2 }, /* mov rm,rn */
1813 { 0x6004, LOAD | SETS1 | SETS2 | USES2 }, /* mov.b @rm+,rn */
1814 { 0x6005, LOAD | SETS1 | SETS2 | USES2 }, /* mov.w @rm+,rn */
1815 { 0x6006, LOAD | SETS1 | SETS2 | USES2 }, /* mov.l @rm+,rn */
1816 { 0x6007, SETS1 | USES2 }, /* not rm,rn */
1817 { 0x6008, SETS1 | USES2 }, /* swap.b rm,rn */
1818 { 0x6009, SETS1 | USES2 }, /* swap.w rm,rn */
1819 { 0x600a, SETS1 | SETSSP | USES2 | USESSP }, /* negc rm,rn */
1820 { 0x600b, SETS1 | USES2 }, /* neg rm,rn */
1821 { 0x600c, SETS1 | USES2 }, /* extu.b rm,rn */
1822 { 0x600d, SETS1 | USES2 }, /* extu.w rm,rn */
1823 { 0x600e, SETS1 | USES2 }, /* exts.b rm,rn */
1824 { 0x600f, SETS1 | USES2 } /* exts.w rm,rn */
1825 };
1826
1827 static const struct sh_minor_opcode sh_opcode6[] =
1828 {
1829 { MAP (sh_opcode60), 0xf00f }
1830 };
1831
1832 static const struct sh_opcode sh_opcode70[] =
1833 {
1834 { 0x7000, SETS1 | USES1 } /* add #imm,rn */
1835 };
1836
1837 static const struct sh_minor_opcode sh_opcode7[] =
1838 {
1839 { MAP (sh_opcode70), 0xf000 }
1840 };
1841
1842 static const struct sh_opcode sh_opcode80[] =
1843 {
1844 { 0x8000, STORE | USES2 | USESR0 }, /* mov.b r0,@(disp,rn) */
1845 { 0x8100, STORE | USES2 | USESR0 }, /* mov.w r0,@(disp,rn) */
1846 { 0x8200, SETSSP }, /* setrc #imm */
1847 { 0x8400, LOAD | SETSR0 | USES2 }, /* mov.b @(disp,rm),r0 */
1848 { 0x8500, LOAD | SETSR0 | USES2 }, /* mov.w @(disp,rn),r0 */
1849 { 0x8800, SETSSP | USESR0 }, /* cmp/eq #imm,r0 */
1850 { 0x8900, BRANCH | USESSP }, /* bt label */
1851 { 0x8b00, BRANCH | USESSP }, /* bf label */
1852 { 0x8c00, SETSSP }, /* ldrs @(disp,pc) */
1853 { 0x8d00, BRANCH | DELAY | USESSP }, /* bt/s label */
1854 { 0x8e00, SETSSP }, /* ldre @(disp,pc) */
1855 { 0x8f00, BRANCH | DELAY | USESSP } /* bf/s label */
1856 };
1857
1858 static const struct sh_minor_opcode sh_opcode8[] =
1859 {
1860 { MAP (sh_opcode80), 0xff00 }
1861 };
1862
1863 static const struct sh_opcode sh_opcode90[] =
1864 {
1865 { 0x9000, LOAD | SETS1 } /* mov.w @(disp,pc),rn */
1866 };
1867
1868 static const struct sh_minor_opcode sh_opcode9[] =
1869 {
1870 { MAP (sh_opcode90), 0xf000 }
1871 };
1872
1873 static const struct sh_opcode sh_opcodea0[] =
1874 {
1875 { 0xa000, BRANCH | DELAY } /* bra label */
1876 };
1877
1878 static const struct sh_minor_opcode sh_opcodea[] =
1879 {
1880 { MAP (sh_opcodea0), 0xf000 }
1881 };
1882
1883 static const struct sh_opcode sh_opcodeb0[] =
1884 {
1885 { 0xb000, BRANCH | DELAY } /* bsr label */
1886 };
1887
1888 static const struct sh_minor_opcode sh_opcodeb[] =
1889 {
1890 { MAP (sh_opcodeb0), 0xf000 }
1891 };
1892
1893 static const struct sh_opcode sh_opcodec0[] =
1894 {
1895 { 0xc000, STORE | USESR0 | USESSP }, /* mov.b r0,@(disp,gbr) */
1896 { 0xc100, STORE | USESR0 | USESSP }, /* mov.w r0,@(disp,gbr) */
1897 { 0xc200, STORE | USESR0 | USESSP }, /* mov.l r0,@(disp,gbr) */
1898 { 0xc300, BRANCH | USESSP }, /* trapa #imm */
1899 { 0xc400, LOAD | SETSR0 | USESSP }, /* mov.b @(disp,gbr),r0 */
1900 { 0xc500, LOAD | SETSR0 | USESSP }, /* mov.w @(disp,gbr),r0 */
1901 { 0xc600, LOAD | SETSR0 | USESSP }, /* mov.l @(disp,gbr),r0 */
1902 { 0xc700, SETSR0 }, /* mova @(disp,pc),r0 */
1903 { 0xc800, SETSSP | USESR0 }, /* tst #imm,r0 */
1904 { 0xc900, SETSR0 | USESR0 }, /* and #imm,r0 */
1905 { 0xca00, SETSR0 | USESR0 }, /* xor #imm,r0 */
1906 { 0xcb00, SETSR0 | USESR0 }, /* or #imm,r0 */
1907 { 0xcc00, LOAD | SETSSP | USESR0 | USESSP }, /* tst.b #imm,@(r0,gbr) */
1908 { 0xcd00, LOAD | STORE | USESR0 | USESSP }, /* and.b #imm,@(r0,gbr) */
1909 { 0xce00, LOAD | STORE | USESR0 | USESSP }, /* xor.b #imm,@(r0,gbr) */
1910 { 0xcf00, LOAD | STORE | USESR0 | USESSP } /* or.b #imm,@(r0,gbr) */
1911 };
1912
1913 static const struct sh_minor_opcode sh_opcodec[] =
1914 {
1915 { MAP (sh_opcodec0), 0xff00 }
1916 };
1917
1918 static const struct sh_opcode sh_opcoded0[] =
1919 {
1920 { 0xd000, LOAD | SETS1 } /* mov.l @(disp,pc),rn */
1921 };
1922
1923 static const struct sh_minor_opcode sh_opcoded[] =
1924 {
1925 { MAP (sh_opcoded0), 0xf000 }
1926 };
1927
1928 static const struct sh_opcode sh_opcodee0[] =
1929 {
1930 { 0xe000, SETS1 } /* mov #imm,rn */
1931 };
1932
1933 static const struct sh_minor_opcode sh_opcodee[] =
1934 {
1935 { MAP (sh_opcodee0), 0xf000 }
1936 };
1937
1938 static const struct sh_opcode sh_opcodef0[] =
1939 {
1940 { 0xf000, SETSF1 | USESF1 | USESF2 }, /* fadd fm,fn */
1941 { 0xf001, SETSF1 | USESF1 | USESF2 }, /* fsub fm,fn */
1942 { 0xf002, SETSF1 | USESF1 | USESF2 }, /* fmul fm,fn */
1943 { 0xf003, SETSF1 | USESF1 | USESF2 }, /* fdiv fm,fn */
1944 { 0xf004, SETSSP | USESF1 | USESF2 }, /* fcmp/eq fm,fn */
1945 { 0xf005, SETSSP | USESF1 | USESF2 }, /* fcmp/gt fm,fn */
1946 { 0xf006, LOAD | SETSF1 | USES2 | USESR0 }, /* fmov.s @(r0,rm),fn */
1947 { 0xf007, STORE | USES1 | USESF2 | USESR0 }, /* fmov.s fm,@(r0,rn) */
1948 { 0xf008, LOAD | SETSF1 | USES2 }, /* fmov.s @rm,fn */
1949 { 0xf009, LOAD | SETS2 | SETSF1 | USES2 }, /* fmov.s @rm+,fn */
1950 { 0xf00a, STORE | USES1 | USESF2 }, /* fmov.s fm,@rn */
1951 { 0xf00b, STORE | SETS1 | USES1 | USESF2 }, /* fmov.s fm,@-rn */
1952 { 0xf00c, SETSF1 | USESF2 }, /* fmov fm,fn */
1953 { 0xf00e, SETSF1 | USESF1 | USESF2 | USESF0 } /* fmac f0,fm,fn */
1954 };
1955
1956 static const struct sh_opcode sh_opcodef1[] =
1957 {
1958 { 0xf00d, SETSF1 | USESSP }, /* fsts fpul,fn */
1959 { 0xf01d, SETSSP | USESF1 }, /* flds fn,fpul */
1960 { 0xf02d, SETSF1 | USESSP }, /* float fpul,fn */
1961 { 0xf03d, SETSSP | USESF1 }, /* ftrc fn,fpul */
1962 { 0xf04d, SETSF1 | USESF1 }, /* fneg fn */
1963 { 0xf05d, SETSF1 | USESF1 }, /* fabs fn */
1964 { 0xf06d, SETSF1 | USESF1 }, /* fsqrt fn */
1965 { 0xf07d, SETSSP | USESF1 }, /* ftst/nan fn */
1966 { 0xf08d, SETSF1 }, /* fldi0 fn */
1967 { 0xf09d, SETSF1 } /* fldi1 fn */
1968 };
1969
1970 static const struct sh_minor_opcode sh_opcodef[] =
1971 {
1972 { MAP (sh_opcodef0), 0xf00f },
1973 { MAP (sh_opcodef1), 0xf0ff }
1974 };
1975
1976 static struct sh_major_opcode sh_opcodes[] =
1977 {
1978 { MAP (sh_opcode0) },
1979 { MAP (sh_opcode1) },
1980 { MAP (sh_opcode2) },
1981 { MAP (sh_opcode3) },
1982 { MAP (sh_opcode4) },
1983 { MAP (sh_opcode5) },
1984 { MAP (sh_opcode6) },
1985 { MAP (sh_opcode7) },
1986 { MAP (sh_opcode8) },
1987 { MAP (sh_opcode9) },
1988 { MAP (sh_opcodea) },
1989 { MAP (sh_opcodeb) },
1990 { MAP (sh_opcodec) },
1991 { MAP (sh_opcoded) },
1992 { MAP (sh_opcodee) },
1993 { MAP (sh_opcodef) }
1994 };
1995
1996 /* The double data transfer / parallel processing insns are not
1997 described here. This will cause sh_align_load_span to leave them alone. */
1998
1999 static const struct sh_opcode sh_dsp_opcodef0[] =
2000 {
2001 { 0xf400, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @-as,ds */
2002 { 0xf401, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@-as */
2003 { 0xf404, USESAS | LOAD | SETSSP }, /* movs.x @as,ds */
2004 { 0xf405, USESAS | STORE | USESSP }, /* movs.x ds,@as */
2005 { 0xf408, USESAS | SETSAS | LOAD | SETSSP }, /* movs.x @as+,ds */
2006 { 0xf409, USESAS | SETSAS | STORE | USESSP }, /* movs.x ds,@as+ */
2007 { 0xf40c, USESAS | SETSAS | LOAD | SETSSP | USESR8 }, /* movs.x @as+r8,ds */
2008 { 0xf40d, USESAS | SETSAS | STORE | USESSP | USESR8 } /* movs.x ds,@as+r8 */
2009 };
2010
2011 static const struct sh_minor_opcode sh_dsp_opcodef[] =
2012 {
2013 { MAP (sh_dsp_opcodef0), 0xfc0d }
2014 };
2015
2016 /* Given an instruction, return a pointer to the corresponding
2017 sh_opcode structure. Return NULL if the instruction is not
2018 recognized. */
2019
2020 static const struct sh_opcode *
sh_insn_info(unsigned int insn)2021 sh_insn_info (unsigned int insn)
2022 {
2023 const struct sh_major_opcode *maj;
2024 const struct sh_minor_opcode *min, *minend;
2025
2026 maj = &sh_opcodes[(insn & 0xf000) >> 12];
2027 min = maj->minor_opcodes;
2028 minend = min + maj->count;
2029 for (; min < minend; min++)
2030 {
2031 unsigned int l;
2032 const struct sh_opcode *op, *opend;
2033
2034 l = insn & min->mask;
2035 op = min->opcodes;
2036 opend = op + min->count;
2037
2038 /* Since the opcodes tables are sorted, we could use a binary
2039 search here if the count were above some cutoff value. */
2040 for (; op < opend; op++)
2041 if (op->opcode == l)
2042 return op;
2043 }
2044
2045 return NULL;
2046 }
2047
2048 /* See whether an instruction uses a general purpose register. */
2049
2050 static bfd_boolean
sh_insn_uses_reg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2051 sh_insn_uses_reg (unsigned int insn,
2052 const struct sh_opcode *op,
2053 unsigned int reg)
2054 {
2055 unsigned int f;
2056
2057 f = op->flags;
2058
2059 if ((f & USES1) != 0
2060 && USES1_REG (insn) == reg)
2061 return TRUE;
2062 if ((f & USES2) != 0
2063 && USES2_REG (insn) == reg)
2064 return TRUE;
2065 if ((f & USESR0) != 0
2066 && reg == 0)
2067 return TRUE;
2068 if ((f & USESAS) && reg == USESAS_REG (insn))
2069 return TRUE;
2070 if ((f & USESR8) && reg == 8)
2071 return TRUE;
2072
2073 return FALSE;
2074 }
2075
2076 /* See whether an instruction sets a general purpose register. */
2077
2078 static bfd_boolean
sh_insn_sets_reg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2079 sh_insn_sets_reg (unsigned int insn,
2080 const struct sh_opcode *op,
2081 unsigned int reg)
2082 {
2083 unsigned int f;
2084
2085 f = op->flags;
2086
2087 if ((f & SETS1) != 0
2088 && SETS1_REG (insn) == reg)
2089 return TRUE;
2090 if ((f & SETS2) != 0
2091 && SETS2_REG (insn) == reg)
2092 return TRUE;
2093 if ((f & SETSR0) != 0
2094 && reg == 0)
2095 return TRUE;
2096 if ((f & SETSAS) && reg == SETSAS_REG (insn))
2097 return TRUE;
2098
2099 return FALSE;
2100 }
2101
2102 /* See whether an instruction uses or sets a general purpose register */
2103
2104 static bfd_boolean
sh_insn_uses_or_sets_reg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2105 sh_insn_uses_or_sets_reg (unsigned int insn,
2106 const struct sh_opcode *op,
2107 unsigned int reg)
2108 {
2109 if (sh_insn_uses_reg (insn, op, reg))
2110 return TRUE;
2111
2112 return sh_insn_sets_reg (insn, op, reg);
2113 }
2114
2115 /* See whether an instruction uses a floating point register. */
2116
2117 static bfd_boolean
sh_insn_uses_freg(unsigned int insn,const struct sh_opcode * op,unsigned int freg)2118 sh_insn_uses_freg (unsigned int insn,
2119 const struct sh_opcode *op,
2120 unsigned int freg)
2121 {
2122 unsigned int f;
2123
2124 f = op->flags;
2125
2126 /* We can't tell if this is a double-precision insn, so just play safe
2127 and assume that it might be. So not only have we test FREG against
2128 itself, but also even FREG against FREG+1 - if the using insn uses
2129 just the low part of a double precision value - but also an odd
2130 FREG against FREG-1 - if the setting insn sets just the low part
2131 of a double precision value.
2132 So what this all boils down to is that we have to ignore the lowest
2133 bit of the register number. */
2134
2135 if ((f & USESF1) != 0
2136 && (USESF1_REG (insn) & 0xe) == (freg & 0xe))
2137 return TRUE;
2138 if ((f & USESF2) != 0
2139 && (USESF2_REG (insn) & 0xe) == (freg & 0xe))
2140 return TRUE;
2141 if ((f & USESF0) != 0
2142 && freg == 0)
2143 return TRUE;
2144
2145 return FALSE;
2146 }
2147
2148 /* See whether an instruction sets a floating point register. */
2149
2150 static bfd_boolean
sh_insn_sets_freg(unsigned int insn,const struct sh_opcode * op,unsigned int freg)2151 sh_insn_sets_freg (unsigned int insn,
2152 const struct sh_opcode *op,
2153 unsigned int freg)
2154 {
2155 unsigned int f;
2156
2157 f = op->flags;
2158
2159 /* We can't tell if this is a double-precision insn, so just play safe
2160 and assume that it might be. So not only have we test FREG against
2161 itself, but also even FREG against FREG+1 - if the using insn uses
2162 just the low part of a double precision value - but also an odd
2163 FREG against FREG-1 - if the setting insn sets just the low part
2164 of a double precision value.
2165 So what this all boils down to is that we have to ignore the lowest
2166 bit of the register number. */
2167
2168 if ((f & SETSF1) != 0
2169 && (SETSF1_REG (insn) & 0xe) == (freg & 0xe))
2170 return TRUE;
2171
2172 return FALSE;
2173 }
2174
2175 /* See whether an instruction uses or sets a floating point register */
2176
2177 static bfd_boolean
sh_insn_uses_or_sets_freg(unsigned int insn,const struct sh_opcode * op,unsigned int reg)2178 sh_insn_uses_or_sets_freg (unsigned int insn,
2179 const struct sh_opcode *op,
2180 unsigned int reg)
2181 {
2182 if (sh_insn_uses_freg (insn, op, reg))
2183 return TRUE;
2184
2185 return sh_insn_sets_freg (insn, op, reg);
2186 }
2187
2188 /* See whether instructions I1 and I2 conflict, assuming I1 comes
2189 before I2. OP1 and OP2 are the corresponding sh_opcode structures.
2190 This should return TRUE if there is a conflict, or FALSE if the
2191 instructions can be swapped safely. */
2192
2193 static bfd_boolean
sh_insns_conflict(unsigned int i1,const struct sh_opcode * op1,unsigned int i2,const struct sh_opcode * op2)2194 sh_insns_conflict (unsigned int i1,
2195 const struct sh_opcode *op1,
2196 unsigned int i2,
2197 const struct sh_opcode *op2)
2198 {
2199 unsigned int f1, f2;
2200
2201 f1 = op1->flags;
2202 f2 = op2->flags;
2203
2204 /* Load of fpscr conflicts with floating point operations.
2205 FIXME: shouldn't test raw opcodes here. */
2206 if (((i1 & 0xf0ff) == 0x4066 && (i2 & 0xf000) == 0xf000)
2207 || ((i2 & 0xf0ff) == 0x4066 && (i1 & 0xf000) == 0xf000))
2208 return TRUE;
2209
2210 if ((f1 & (BRANCH | DELAY)) != 0
2211 || (f2 & (BRANCH | DELAY)) != 0)
2212 return TRUE;
2213
2214 if (((f1 | f2) & SETSSP)
2215 && (f1 & (SETSSP | USESSP))
2216 && (f2 & (SETSSP | USESSP)))
2217 return TRUE;
2218
2219 if ((f1 & SETS1) != 0
2220 && sh_insn_uses_or_sets_reg (i2, op2, SETS1_REG (i1)))
2221 return TRUE;
2222 if ((f1 & SETS2) != 0
2223 && sh_insn_uses_or_sets_reg (i2, op2, SETS2_REG (i1)))
2224 return TRUE;
2225 if ((f1 & SETSR0) != 0
2226 && sh_insn_uses_or_sets_reg (i2, op2, 0))
2227 return TRUE;
2228 if ((f1 & SETSAS)
2229 && sh_insn_uses_or_sets_reg (i2, op2, SETSAS_REG (i1)))
2230 return TRUE;
2231 if ((f1 & SETSF1) != 0
2232 && sh_insn_uses_or_sets_freg (i2, op2, SETSF1_REG (i1)))
2233 return TRUE;
2234
2235 if ((f2 & SETS1) != 0
2236 && sh_insn_uses_or_sets_reg (i1, op1, SETS1_REG (i2)))
2237 return TRUE;
2238 if ((f2 & SETS2) != 0
2239 && sh_insn_uses_or_sets_reg (i1, op1, SETS2_REG (i2)))
2240 return TRUE;
2241 if ((f2 & SETSR0) != 0
2242 && sh_insn_uses_or_sets_reg (i1, op1, 0))
2243 return TRUE;
2244 if ((f2 & SETSAS)
2245 && sh_insn_uses_or_sets_reg (i1, op1, SETSAS_REG (i2)))
2246 return TRUE;
2247 if ((f2 & SETSF1) != 0
2248 && sh_insn_uses_or_sets_freg (i1, op1, SETSF1_REG (i2)))
2249 return TRUE;
2250
2251 /* The instructions do not conflict. */
2252 return FALSE;
2253 }
2254
2255 /* I1 is a load instruction, and I2 is some other instruction. Return
2256 TRUE if I1 loads a register which I2 uses. */
2257
2258 static bfd_boolean
sh_load_use(unsigned int i1,const struct sh_opcode * op1,unsigned int i2,const struct sh_opcode * op2)2259 sh_load_use (unsigned int i1,
2260 const struct sh_opcode *op1,
2261 unsigned int i2,
2262 const struct sh_opcode *op2)
2263 {
2264 unsigned int f1;
2265
2266 f1 = op1->flags;
2267
2268 if ((f1 & LOAD) == 0)
2269 return FALSE;
2270
2271 /* If both SETS1 and SETSSP are set, that means a load to a special
2272 register using postincrement addressing mode, which we don't care
2273 about here. */
2274 if ((f1 & SETS1) != 0
2275 && (f1 & SETSSP) == 0
2276 && sh_insn_uses_reg (i2, op2, (i1 & 0x0f00) >> 8))
2277 return TRUE;
2278
2279 if ((f1 & SETSR0) != 0
2280 && sh_insn_uses_reg (i2, op2, 0))
2281 return TRUE;
2282
2283 if ((f1 & SETSF1) != 0
2284 && sh_insn_uses_freg (i2, op2, (i1 & 0x0f00) >> 8))
2285 return TRUE;
2286
2287 return FALSE;
2288 }
2289
2290 /* Try to align loads and stores within a span of memory. This is
2291 called by both the ELF and the COFF sh targets. ABFD and SEC are
2292 the BFD and section we are examining. CONTENTS is the contents of
2293 the section. SWAP is the routine to call to swap two instructions.
2294 RELOCS is a pointer to the internal relocation information, to be
2295 passed to SWAP. PLABEL is a pointer to the current label in a
2296 sorted list of labels; LABEL_END is the end of the list. START and
2297 STOP are the range of memory to examine. If a swap is made,
2298 *PSWAPPED is set to TRUE. */
2299
2300 #ifdef COFF_WITH_PE
2301 static
2302 #endif
2303 bfd_boolean
_bfd_sh_align_load_span(bfd * abfd,asection * sec,bfd_byte * contents,bfd_boolean (* swap)(bfd *,asection *,void *,bfd_byte *,bfd_vma),void * relocs,bfd_vma ** plabel,bfd_vma * label_end,bfd_vma start,bfd_vma stop,bfd_boolean * pswapped)2304 _bfd_sh_align_load_span (bfd *abfd,
2305 asection *sec,
2306 bfd_byte *contents,
2307 bfd_boolean (*swap) (bfd *, asection *, void *, bfd_byte *, bfd_vma),
2308 void * relocs,
2309 bfd_vma **plabel,
2310 bfd_vma *label_end,
2311 bfd_vma start,
2312 bfd_vma stop,
2313 bfd_boolean *pswapped)
2314 {
2315 int dsp = (abfd->arch_info->mach == bfd_mach_sh_dsp
2316 || abfd->arch_info->mach == bfd_mach_sh3_dsp);
2317 bfd_vma i;
2318
2319 /* The SH4 has a Harvard architecture, hence aligning loads is not
2320 desirable. In fact, it is counter-productive, since it interferes
2321 with the schedules generated by the compiler. */
2322 if (abfd->arch_info->mach == bfd_mach_sh4)
2323 return TRUE;
2324
2325 /* If we are linking sh[3]-dsp code, swap the FPU instructions for DSP
2326 instructions. */
2327 if (dsp)
2328 {
2329 sh_opcodes[0xf].minor_opcodes = sh_dsp_opcodef;
2330 sh_opcodes[0xf].count = sizeof sh_dsp_opcodef / sizeof sh_dsp_opcodef;
2331 }
2332
2333 /* Instructions should be aligned on 2 byte boundaries. */
2334 if ((start & 1) == 1)
2335 ++start;
2336
2337 /* Now look through the unaligned addresses. */
2338 i = start;
2339 if ((i & 2) == 0)
2340 i += 2;
2341 for (; i < stop; i += 4)
2342 {
2343 unsigned int insn;
2344 const struct sh_opcode *op;
2345 unsigned int prev_insn = 0;
2346 const struct sh_opcode *prev_op = NULL;
2347
2348 insn = bfd_get_16 (abfd, contents + i);
2349 op = sh_insn_info (insn);
2350 if (op == NULL
2351 || (op->flags & (LOAD | STORE)) == 0)
2352 continue;
2353
2354 /* This is a load or store which is not on a four byte boundary. */
2355
2356 while (*plabel < label_end && **plabel < i)
2357 ++*plabel;
2358
2359 if (i > start)
2360 {
2361 prev_insn = bfd_get_16 (abfd, contents + i - 2);
2362 /* If INSN is the field b of a parallel processing insn, it is not
2363 a load / store after all. Note that the test here might mistake
2364 the field_b of a pcopy insn for the starting code of a parallel
2365 processing insn; this might miss a swapping opportunity, but at
2366 least we're on the safe side. */
2367 if (dsp && (prev_insn & 0xfc00) == 0xf800)
2368 continue;
2369
2370 /* Check if prev_insn is actually the field b of a parallel
2371 processing insn. Again, this can give a spurious match
2372 after a pcopy. */
2373 if (dsp && i - 2 > start)
2374 {
2375 unsigned pprev_insn = bfd_get_16 (abfd, contents + i - 4);
2376
2377 if ((pprev_insn & 0xfc00) == 0xf800)
2378 prev_op = NULL;
2379 else
2380 prev_op = sh_insn_info (prev_insn);
2381 }
2382 else
2383 prev_op = sh_insn_info (prev_insn);
2384
2385 /* If the load/store instruction is in a delay slot, we
2386 can't swap. */
2387 if (prev_op == NULL
2388 || (prev_op->flags & DELAY) != 0)
2389 continue;
2390 }
2391 if (i > start
2392 && (*plabel >= label_end || **plabel != i)
2393 && prev_op != NULL
2394 && (prev_op->flags & (LOAD | STORE)) == 0
2395 && ! sh_insns_conflict (prev_insn, prev_op, insn, op))
2396 {
2397 bfd_boolean ok;
2398
2399 /* The load/store instruction does not have a label, and
2400 there is a previous instruction; PREV_INSN is not
2401 itself a load/store instruction, and PREV_INSN and
2402 INSN do not conflict. */
2403
2404 ok = TRUE;
2405
2406 if (i >= start + 4)
2407 {
2408 unsigned int prev2_insn;
2409 const struct sh_opcode *prev2_op;
2410
2411 prev2_insn = bfd_get_16 (abfd, contents + i - 4);
2412 prev2_op = sh_insn_info (prev2_insn);
2413
2414 /* If the instruction before PREV_INSN has a delay
2415 slot--that is, PREV_INSN is in a delay slot--we
2416 can not swap. */
2417 if (prev2_op == NULL
2418 || (prev2_op->flags & DELAY) != 0)
2419 ok = FALSE;
2420
2421 /* If the instruction before PREV_INSN is a load,
2422 and it sets a register which INSN uses, then
2423 putting INSN immediately after PREV_INSN will
2424 cause a pipeline bubble, so there is no point to
2425 making the swap. */
2426 if (ok
2427 && (prev2_op->flags & LOAD) != 0
2428 && sh_load_use (prev2_insn, prev2_op, insn, op))
2429 ok = FALSE;
2430 }
2431
2432 if (ok)
2433 {
2434 if (! (*swap) (abfd, sec, relocs, contents, i - 2))
2435 return FALSE;
2436 *pswapped = TRUE;
2437 continue;
2438 }
2439 }
2440
2441 while (*plabel < label_end && **plabel < i + 2)
2442 ++*plabel;
2443
2444 if (i + 2 < stop
2445 && (*plabel >= label_end || **plabel != i + 2))
2446 {
2447 unsigned int next_insn;
2448 const struct sh_opcode *next_op;
2449
2450 /* There is an instruction after the load/store
2451 instruction, and it does not have a label. */
2452 next_insn = bfd_get_16 (abfd, contents + i + 2);
2453 next_op = sh_insn_info (next_insn);
2454 if (next_op != NULL
2455 && (next_op->flags & (LOAD | STORE)) == 0
2456 && ! sh_insns_conflict (insn, op, next_insn, next_op))
2457 {
2458 bfd_boolean ok;
2459
2460 /* NEXT_INSN is not itself a load/store instruction,
2461 and it does not conflict with INSN. */
2462
2463 ok = TRUE;
2464
2465 /* If PREV_INSN is a load, and it sets a register
2466 which NEXT_INSN uses, then putting NEXT_INSN
2467 immediately after PREV_INSN will cause a pipeline
2468 bubble, so there is no reason to make this swap. */
2469 if (prev_op != NULL
2470 && (prev_op->flags & LOAD) != 0
2471 && sh_load_use (prev_insn, prev_op, next_insn, next_op))
2472 ok = FALSE;
2473
2474 /* If INSN is a load, and it sets a register which
2475 the insn after NEXT_INSN uses, then doing the
2476 swap will cause a pipeline bubble, so there is no
2477 reason to make the swap. However, if the insn
2478 after NEXT_INSN is itself a load or store
2479 instruction, then it is misaligned, so
2480 optimistically hope that it will be swapped
2481 itself, and just live with the pipeline bubble if
2482 it isn't. */
2483 if (ok
2484 && i + 4 < stop
2485 && (op->flags & LOAD) != 0)
2486 {
2487 unsigned int next2_insn;
2488 const struct sh_opcode *next2_op;
2489
2490 next2_insn = bfd_get_16 (abfd, contents + i + 4);
2491 next2_op = sh_insn_info (next2_insn);
2492 if (next2_op == NULL
2493 || ((next2_op->flags & (LOAD | STORE)) == 0
2494 && sh_load_use (insn, op, next2_insn, next2_op)))
2495 ok = FALSE;
2496 }
2497
2498 if (ok)
2499 {
2500 if (! (*swap) (abfd, sec, relocs, contents, i))
2501 return FALSE;
2502 *pswapped = TRUE;
2503 continue;
2504 }
2505 }
2506 }
2507 }
2508
2509 return TRUE;
2510 }
2511 #endif /* not COFF_IMAGE_WITH_PE */
2512
2513 /* Swap two SH instructions. */
2514
2515 static bfd_boolean
sh_swap_insns(bfd * abfd,asection * sec,void * relocs,bfd_byte * contents,bfd_vma addr)2516 sh_swap_insns (bfd * abfd,
2517 asection * sec,
2518 void * relocs,
2519 bfd_byte * contents,
2520 bfd_vma addr)
2521 {
2522 struct internal_reloc *internal_relocs = (struct internal_reloc *) relocs;
2523 unsigned short i1, i2;
2524 struct internal_reloc *irel, *irelend;
2525
2526 /* Swap the instructions themselves. */
2527 i1 = bfd_get_16 (abfd, contents + addr);
2528 i2 = bfd_get_16 (abfd, contents + addr + 2);
2529 bfd_put_16 (abfd, (bfd_vma) i2, contents + addr);
2530 bfd_put_16 (abfd, (bfd_vma) i1, contents + addr + 2);
2531
2532 /* Adjust all reloc addresses. */
2533 irelend = internal_relocs + sec->reloc_count;
2534 for (irel = internal_relocs; irel < irelend; irel++)
2535 {
2536 int type, add;
2537
2538 /* There are a few special types of relocs that we don't want to
2539 adjust. These relocs do not apply to the instruction itself,
2540 but are only associated with the address. */
2541 type = irel->r_type;
2542 if (type == R_SH_ALIGN
2543 || type == R_SH_CODE
2544 || type == R_SH_DATA
2545 || type == R_SH_LABEL)
2546 continue;
2547
2548 /* If an R_SH_USES reloc points to one of the addresses being
2549 swapped, we must adjust it. It would be incorrect to do this
2550 for a jump, though, since we want to execute both
2551 instructions after the jump. (We have avoided swapping
2552 around a label, so the jump will not wind up executing an
2553 instruction it shouldn't). */
2554 if (type == R_SH_USES)
2555 {
2556 bfd_vma off;
2557
2558 off = irel->r_vaddr - sec->vma + 4 + irel->r_offset;
2559 if (off == addr)
2560 irel->r_offset += 2;
2561 else if (off == addr + 2)
2562 irel->r_offset -= 2;
2563 }
2564
2565 if (irel->r_vaddr - sec->vma == addr)
2566 {
2567 irel->r_vaddr += 2;
2568 add = -2;
2569 }
2570 else if (irel->r_vaddr - sec->vma == addr + 2)
2571 {
2572 irel->r_vaddr -= 2;
2573 add = 2;
2574 }
2575 else
2576 add = 0;
2577
2578 if (add != 0)
2579 {
2580 bfd_byte *loc;
2581 unsigned short insn, oinsn;
2582 bfd_boolean overflow;
2583
2584 loc = contents + irel->r_vaddr - sec->vma;
2585 overflow = FALSE;
2586 switch (type)
2587 {
2588 default:
2589 break;
2590
2591 case R_SH_PCDISP8BY2:
2592 case R_SH_PCRELIMM8BY2:
2593 insn = bfd_get_16 (abfd, loc);
2594 oinsn = insn;
2595 insn += add / 2;
2596 if ((oinsn & 0xff00) != (insn & 0xff00))
2597 overflow = TRUE;
2598 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2599 break;
2600
2601 case R_SH_PCDISP:
2602 insn = bfd_get_16 (abfd, loc);
2603 oinsn = insn;
2604 insn += add / 2;
2605 if ((oinsn & 0xf000) != (insn & 0xf000))
2606 overflow = TRUE;
2607 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2608 break;
2609
2610 case R_SH_PCRELIMM8BY4:
2611 /* This reloc ignores the least significant 3 bits of
2612 the program counter before adding in the offset.
2613 This means that if ADDR is at an even address, the
2614 swap will not affect the offset. If ADDR is an at an
2615 odd address, then the instruction will be crossing a
2616 four byte boundary, and must be adjusted. */
2617 if ((addr & 3) != 0)
2618 {
2619 insn = bfd_get_16 (abfd, loc);
2620 oinsn = insn;
2621 insn += add / 2;
2622 if ((oinsn & 0xff00) != (insn & 0xff00))
2623 overflow = TRUE;
2624 bfd_put_16 (abfd, (bfd_vma) insn, loc);
2625 }
2626
2627 break;
2628 }
2629
2630 if (overflow)
2631 {
2632 ((*_bfd_error_handler)
2633 ("%B: 0x%lx: fatal: reloc overflow while relaxing",
2634 abfd, (unsigned long) irel->r_vaddr));
2635 bfd_set_error (bfd_error_bad_value);
2636 return FALSE;
2637 }
2638 }
2639 }
2640
2641 return TRUE;
2642 }
2643
2644 /* Look for loads and stores which we can align to four byte
2645 boundaries. See the longer comment above sh_relax_section for why
2646 this is desirable. This sets *PSWAPPED if some instruction was
2647 swapped. */
2648
2649 static bfd_boolean
sh_align_loads(bfd * abfd,asection * sec,struct internal_reloc * internal_relocs,bfd_byte * contents,bfd_boolean * pswapped)2650 sh_align_loads (bfd *abfd,
2651 asection *sec,
2652 struct internal_reloc *internal_relocs,
2653 bfd_byte *contents,
2654 bfd_boolean *pswapped)
2655 {
2656 struct internal_reloc *irel, *irelend;
2657 bfd_vma *labels = NULL;
2658 bfd_vma *label, *label_end;
2659 bfd_size_type amt;
2660
2661 *pswapped = FALSE;
2662
2663 irelend = internal_relocs + sec->reloc_count;
2664
2665 /* Get all the addresses with labels on them. */
2666 amt = (bfd_size_type) sec->reloc_count * sizeof (bfd_vma);
2667 labels = (bfd_vma *) bfd_malloc (amt);
2668 if (labels == NULL)
2669 goto error_return;
2670 label_end = labels;
2671 for (irel = internal_relocs; irel < irelend; irel++)
2672 {
2673 if (irel->r_type == R_SH_LABEL)
2674 {
2675 *label_end = irel->r_vaddr - sec->vma;
2676 ++label_end;
2677 }
2678 }
2679
2680 /* Note that the assembler currently always outputs relocs in
2681 address order. If that ever changes, this code will need to sort
2682 the label values and the relocs. */
2683
2684 label = labels;
2685
2686 for (irel = internal_relocs; irel < irelend; irel++)
2687 {
2688 bfd_vma start, stop;
2689
2690 if (irel->r_type != R_SH_CODE)
2691 continue;
2692
2693 start = irel->r_vaddr - sec->vma;
2694
2695 for (irel++; irel < irelend; irel++)
2696 if (irel->r_type == R_SH_DATA)
2697 break;
2698 if (irel < irelend)
2699 stop = irel->r_vaddr - sec->vma;
2700 else
2701 stop = sec->size;
2702
2703 if (! _bfd_sh_align_load_span (abfd, sec, contents, sh_swap_insns,
2704 internal_relocs, &label,
2705 label_end, start, stop, pswapped))
2706 goto error_return;
2707 }
2708
2709 free (labels);
2710
2711 return TRUE;
2712
2713 error_return:
2714 if (labels != NULL)
2715 free (labels);
2716 return FALSE;
2717 }
2718
2719 /* This is a modification of _bfd_coff_generic_relocate_section, which
2720 will handle SH relaxing. */
2721
2722 static bfd_boolean
sh_relocate_section(bfd * output_bfd ATTRIBUTE_UNUSED,struct bfd_link_info * info,bfd * input_bfd,asection * input_section,bfd_byte * contents,struct internal_reloc * relocs,struct internal_syment * syms,asection ** sections)2723 sh_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
2724 struct bfd_link_info *info,
2725 bfd *input_bfd,
2726 asection *input_section,
2727 bfd_byte *contents,
2728 struct internal_reloc *relocs,
2729 struct internal_syment *syms,
2730 asection **sections)
2731 {
2732 struct internal_reloc *rel;
2733 struct internal_reloc *relend;
2734
2735 rel = relocs;
2736 relend = rel + input_section->reloc_count;
2737 for (; rel < relend; rel++)
2738 {
2739 long symndx;
2740 struct coff_link_hash_entry *h;
2741 struct internal_syment *sym;
2742 bfd_vma addend;
2743 bfd_vma val;
2744 reloc_howto_type *howto;
2745 bfd_reloc_status_type rstat;
2746
2747 /* Almost all relocs have to do with relaxing. If any work must
2748 be done for them, it has been done in sh_relax_section. */
2749 if (rel->r_type != R_SH_IMM32
2750 #ifdef COFF_WITH_PE
2751 && rel->r_type != R_SH_IMM32CE
2752 && rel->r_type != R_SH_IMAGEBASE
2753 #endif
2754 && rel->r_type != R_SH_PCDISP)
2755 continue;
2756
2757 symndx = rel->r_symndx;
2758
2759 if (symndx == -1)
2760 {
2761 h = NULL;
2762 sym = NULL;
2763 }
2764 else
2765 {
2766 if (symndx < 0
2767 || (unsigned long) symndx >= obj_raw_syment_count (input_bfd))
2768 {
2769 (*_bfd_error_handler)
2770 ("%B: illegal symbol index %ld in relocs",
2771 input_bfd, symndx);
2772 bfd_set_error (bfd_error_bad_value);
2773 return FALSE;
2774 }
2775 h = obj_coff_sym_hashes (input_bfd)[symndx];
2776 sym = syms + symndx;
2777 }
2778
2779 if (sym != NULL && sym->n_scnum != 0)
2780 addend = - sym->n_value;
2781 else
2782 addend = 0;
2783
2784 if (rel->r_type == R_SH_PCDISP)
2785 addend -= 4;
2786
2787 if (rel->r_type >= SH_COFF_HOWTO_COUNT)
2788 howto = NULL;
2789 else
2790 howto = &sh_coff_howtos[rel->r_type];
2791
2792 if (howto == NULL)
2793 {
2794 bfd_set_error (bfd_error_bad_value);
2795 return FALSE;
2796 }
2797
2798 #ifdef COFF_WITH_PE
2799 if (rel->r_type == R_SH_IMAGEBASE)
2800 addend -= pe_data (input_section->output_section->owner)->pe_opthdr.ImageBase;
2801 #endif
2802
2803 val = 0;
2804
2805 if (h == NULL)
2806 {
2807 asection *sec;
2808
2809 /* There is nothing to do for an internal PCDISP reloc. */
2810 if (rel->r_type == R_SH_PCDISP)
2811 continue;
2812
2813 if (symndx == -1)
2814 {
2815 sec = bfd_abs_section_ptr;
2816 val = 0;
2817 }
2818 else
2819 {
2820 sec = sections[symndx];
2821 val = (sec->output_section->vma
2822 + sec->output_offset
2823 + sym->n_value
2824 - sec->vma);
2825 }
2826 }
2827 else
2828 {
2829 if (h->root.type == bfd_link_hash_defined
2830 || h->root.type == bfd_link_hash_defweak)
2831 {
2832 asection *sec;
2833
2834 sec = h->root.u.def.section;
2835 val = (h->root.u.def.value
2836 + sec->output_section->vma
2837 + sec->output_offset);
2838 }
2839 else if (! info->relocatable)
2840 {
2841 if (! ((*info->callbacks->undefined_symbol)
2842 (info, h->root.root.string, input_bfd, input_section,
2843 rel->r_vaddr - input_section->vma, TRUE)))
2844 return FALSE;
2845 }
2846 }
2847
2848 rstat = _bfd_final_link_relocate (howto, input_bfd, input_section,
2849 contents,
2850 rel->r_vaddr - input_section->vma,
2851 val, addend);
2852
2853 switch (rstat)
2854 {
2855 default:
2856 abort ();
2857 case bfd_reloc_ok:
2858 break;
2859 case bfd_reloc_overflow:
2860 {
2861 const char *name;
2862 char buf[SYMNMLEN + 1];
2863
2864 if (symndx == -1)
2865 name = "*ABS*";
2866 else if (h != NULL)
2867 name = NULL;
2868 else if (sym->_n._n_n._n_zeroes == 0
2869 && sym->_n._n_n._n_offset != 0)
2870 name = obj_coff_strings (input_bfd) + sym->_n._n_n._n_offset;
2871 else
2872 {
2873 strncpy (buf, sym->_n._n_name, SYMNMLEN);
2874 buf[SYMNMLEN] = '\0';
2875 name = buf;
2876 }
2877
2878 if (! ((*info->callbacks->reloc_overflow)
2879 (info, (h ? &h->root : NULL), name, howto->name,
2880 (bfd_vma) 0, input_bfd, input_section,
2881 rel->r_vaddr - input_section->vma)))
2882 return FALSE;
2883 }
2884 }
2885 }
2886
2887 return TRUE;
2888 }
2889
2890 /* This is a version of bfd_generic_get_relocated_section_contents
2891 which uses sh_relocate_section. */
2892
2893 static bfd_byte *
sh_coff_get_relocated_section_contents(bfd * output_bfd,struct bfd_link_info * link_info,struct bfd_link_order * link_order,bfd_byte * data,bfd_boolean relocatable,asymbol ** symbols)2894 sh_coff_get_relocated_section_contents (bfd *output_bfd,
2895 struct bfd_link_info *link_info,
2896 struct bfd_link_order *link_order,
2897 bfd_byte *data,
2898 bfd_boolean relocatable,
2899 asymbol **symbols)
2900 {
2901 asection *input_section = link_order->u.indirect.section;
2902 bfd *input_bfd = input_section->owner;
2903 asection **sections = NULL;
2904 struct internal_reloc *internal_relocs = NULL;
2905 struct internal_syment *internal_syms = NULL;
2906
2907 /* We only need to handle the case of relaxing, or of having a
2908 particular set of section contents, specially. */
2909 if (relocatable
2910 || coff_section_data (input_bfd, input_section) == NULL
2911 || coff_section_data (input_bfd, input_section)->contents == NULL)
2912 return bfd_generic_get_relocated_section_contents (output_bfd, link_info,
2913 link_order, data,
2914 relocatable,
2915 symbols);
2916
2917 memcpy (data, coff_section_data (input_bfd, input_section)->contents,
2918 (size_t) input_section->size);
2919
2920 if ((input_section->flags & SEC_RELOC) != 0
2921 && input_section->reloc_count > 0)
2922 {
2923 bfd_size_type symesz = bfd_coff_symesz (input_bfd);
2924 bfd_byte *esym, *esymend;
2925 struct internal_syment *isymp;
2926 asection **secpp;
2927 bfd_size_type amt;
2928
2929 if (! _bfd_coff_get_external_symbols (input_bfd))
2930 goto error_return;
2931
2932 internal_relocs = (_bfd_coff_read_internal_relocs
2933 (input_bfd, input_section, FALSE, (bfd_byte *) NULL,
2934 FALSE, (struct internal_reloc *) NULL));
2935 if (internal_relocs == NULL)
2936 goto error_return;
2937
2938 amt = obj_raw_syment_count (input_bfd);
2939 amt *= sizeof (struct internal_syment);
2940 internal_syms = (struct internal_syment *) bfd_malloc (amt);
2941 if (internal_syms == NULL)
2942 goto error_return;
2943
2944 amt = obj_raw_syment_count (input_bfd);
2945 amt *= sizeof (asection *);
2946 sections = (asection **) bfd_malloc (amt);
2947 if (sections == NULL)
2948 goto error_return;
2949
2950 isymp = internal_syms;
2951 secpp = sections;
2952 esym = (bfd_byte *) obj_coff_external_syms (input_bfd);
2953 esymend = esym + obj_raw_syment_count (input_bfd) * symesz;
2954 while (esym < esymend)
2955 {
2956 bfd_coff_swap_sym_in (input_bfd, esym, isymp);
2957
2958 if (isymp->n_scnum != 0)
2959 *secpp = coff_section_from_bfd_index (input_bfd, isymp->n_scnum);
2960 else
2961 {
2962 if (isymp->n_value == 0)
2963 *secpp = bfd_und_section_ptr;
2964 else
2965 *secpp = bfd_com_section_ptr;
2966 }
2967
2968 esym += (isymp->n_numaux + 1) * symesz;
2969 secpp += isymp->n_numaux + 1;
2970 isymp += isymp->n_numaux + 1;
2971 }
2972
2973 if (! sh_relocate_section (output_bfd, link_info, input_bfd,
2974 input_section, data, internal_relocs,
2975 internal_syms, sections))
2976 goto error_return;
2977
2978 free (sections);
2979 sections = NULL;
2980 free (internal_syms);
2981 internal_syms = NULL;
2982 free (internal_relocs);
2983 internal_relocs = NULL;
2984 }
2985
2986 return data;
2987
2988 error_return:
2989 if (internal_relocs != NULL)
2990 free (internal_relocs);
2991 if (internal_syms != NULL)
2992 free (internal_syms);
2993 if (sections != NULL)
2994 free (sections);
2995 return NULL;
2996 }
2997
2998 /* The target vectors. */
2999
3000 #ifndef TARGET_SHL_SYM
3001 CREATE_BIG_COFF_TARGET_VEC (sh_coff_vec, "coff-sh", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
3002 #endif
3003
3004 #ifdef TARGET_SHL_SYM
3005 #define TARGET_SYM TARGET_SHL_SYM
3006 #else
3007 #define TARGET_SYM sh_coff_le_vec
3008 #endif
3009
3010 #ifndef TARGET_SHL_NAME
3011 #define TARGET_SHL_NAME "coff-shl"
3012 #endif
3013
3014 #ifdef COFF_WITH_PE
3015 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3016 SEC_CODE | SEC_DATA, '_', NULL, COFF_SWAP_TABLE);
3017 #else
3018 CREATE_LITTLE_COFF_TARGET_VEC (TARGET_SYM, TARGET_SHL_NAME, BFD_IS_RELAXABLE,
3019 0, '_', NULL, COFF_SWAP_TABLE)
3020 #endif
3021
3022 #ifndef TARGET_SHL_SYM
3023
3024 /* Some people want versions of the SH COFF target which do not align
3025 to 16 byte boundaries. We implement that by adding a couple of new
3026 target vectors. These are just like the ones above, but they
3027 change the default section alignment. To generate them in the
3028 assembler, use -small. To use them in the linker, use -b
3029 coff-sh{l}-small and -oformat coff-sh{l}-small.
3030
3031 Yes, this is a horrible hack. A general solution for setting
3032 section alignment in COFF is rather complex. ELF handles this
3033 correctly. */
3034
3035 /* Only recognize the small versions if the target was not defaulted.
3036 Otherwise we won't recognize the non default endianness. */
3037
3038 static const bfd_target *
coff_small_object_p(bfd * abfd)3039 coff_small_object_p (bfd *abfd)
3040 {
3041 if (abfd->target_defaulted)
3042 {
3043 bfd_set_error (bfd_error_wrong_format);
3044 return NULL;
3045 }
3046 return coff_object_p (abfd);
3047 }
3048
3049 /* Set the section alignment for the small versions. */
3050
3051 static bfd_boolean
coff_small_new_section_hook(bfd * abfd,asection * section)3052 coff_small_new_section_hook (bfd *abfd, asection *section)
3053 {
3054 if (! coff_new_section_hook (abfd, section))
3055 return FALSE;
3056
3057 /* We must align to at least a four byte boundary, because longword
3058 accesses must be on a four byte boundary. */
3059 if (section->alignment_power == COFF_DEFAULT_SECTION_ALIGNMENT_POWER)
3060 section->alignment_power = 2;
3061
3062 return TRUE;
3063 }
3064
3065 /* This is copied from bfd_coff_std_swap_table so that we can change
3066 the default section alignment power. */
3067
3068 static bfd_coff_backend_data bfd_coff_small_swap_table =
3069 {
3070 coff_swap_aux_in, coff_swap_sym_in, coff_swap_lineno_in,
3071 coff_swap_aux_out, coff_swap_sym_out,
3072 coff_swap_lineno_out, coff_swap_reloc_out,
3073 coff_swap_filehdr_out, coff_swap_aouthdr_out,
3074 coff_swap_scnhdr_out,
3075 FILHSZ, AOUTSZ, SCNHSZ, SYMESZ, AUXESZ, RELSZ, LINESZ, FILNMLEN,
3076 #ifdef COFF_LONG_FILENAMES
3077 TRUE,
3078 #else
3079 FALSE,
3080 #endif
3081 COFF_DEFAULT_LONG_SECTION_NAMES,
3082 2,
3083 #ifdef COFF_FORCE_SYMBOLS_IN_STRINGS
3084 TRUE,
3085 #else
3086 FALSE,
3087 #endif
3088 #ifdef COFF_DEBUG_STRING_WIDE_PREFIX
3089 4,
3090 #else
3091 2,
3092 #endif
3093 32768,
3094 coff_swap_filehdr_in, coff_swap_aouthdr_in, coff_swap_scnhdr_in,
3095 coff_swap_reloc_in, coff_bad_format_hook, coff_set_arch_mach_hook,
3096 coff_mkobject_hook, styp_to_sec_flags, coff_set_alignment_hook,
3097 coff_slurp_symbol_table, symname_in_debug_hook, coff_pointerize_aux_hook,
3098 coff_print_aux, coff_reloc16_extra_cases, coff_reloc16_estimate,
3099 coff_classify_symbol, coff_compute_section_file_positions,
3100 coff_start_final_link, coff_relocate_section, coff_rtype_to_howto,
3101 coff_adjust_symndx, coff_link_add_one_symbol,
3102 coff_link_output_has_begun, coff_final_link_postscript,
3103 bfd_pe_print_pdata
3104 };
3105
3106 #define coff_small_close_and_cleanup \
3107 coff_close_and_cleanup
3108 #define coff_small_bfd_free_cached_info \
3109 coff_bfd_free_cached_info
3110 #define coff_small_get_section_contents \
3111 coff_get_section_contents
3112 #define coff_small_get_section_contents_in_window \
3113 coff_get_section_contents_in_window
3114
3115 extern const bfd_target sh_coff_small_le_vec;
3116
3117 const bfd_target sh_coff_small_vec =
3118 {
3119 "coff-sh-small", /* name */
3120 bfd_target_coff_flavour,
3121 BFD_ENDIAN_BIG, /* data byte order is big */
3122 BFD_ENDIAN_BIG, /* header byte order is big */
3123
3124 (HAS_RELOC | EXEC_P | /* object flags */
3125 HAS_LINENO | HAS_DEBUG |
3126 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3127
3128 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3129 '_', /* leading symbol underscore */
3130 '/', /* ar_pad_char */
3131 15, /* ar_max_namelen */
3132 0, /* match priority. */
3133 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3134 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3135 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */
3136 bfd_getb64, bfd_getb_signed_64, bfd_putb64,
3137 bfd_getb32, bfd_getb_signed_32, bfd_putb32,
3138 bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */
3139
3140 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3141 bfd_generic_archive_p, _bfd_dummy_target},
3142 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3143 bfd_false},
3144 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3145 _bfd_write_archive_contents, bfd_false},
3146
3147 BFD_JUMP_TABLE_GENERIC (coff_small),
3148 BFD_JUMP_TABLE_COPY (coff),
3149 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3150 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3151 BFD_JUMP_TABLE_SYMBOLS (coff),
3152 BFD_JUMP_TABLE_RELOCS (coff),
3153 BFD_JUMP_TABLE_WRITE (coff),
3154 BFD_JUMP_TABLE_LINK (coff),
3155 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3156
3157 & sh_coff_small_le_vec,
3158
3159 & bfd_coff_small_swap_table
3160 };
3161
3162 const bfd_target sh_coff_small_le_vec =
3163 {
3164 "coff-shl-small", /* name */
3165 bfd_target_coff_flavour,
3166 BFD_ENDIAN_LITTLE, /* data byte order is little */
3167 BFD_ENDIAN_LITTLE, /* header byte order is little endian too*/
3168
3169 (HAS_RELOC | EXEC_P | /* object flags */
3170 HAS_LINENO | HAS_DEBUG |
3171 HAS_SYMS | HAS_LOCALS | WP_TEXT | BFD_IS_RELAXABLE),
3172
3173 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC),
3174 '_', /* leading symbol underscore */
3175 '/', /* ar_pad_char */
3176 15, /* ar_max_namelen */
3177 0, /* match priority. */
3178 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3179 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3180 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
3181 bfd_getl64, bfd_getl_signed_64, bfd_putl64,
3182 bfd_getl32, bfd_getl_signed_32, bfd_putl32,
3183 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
3184
3185 {_bfd_dummy_target, coff_small_object_p, /* bfd_check_format */
3186 bfd_generic_archive_p, _bfd_dummy_target},
3187 {bfd_false, coff_mkobject, _bfd_generic_mkarchive, /* bfd_set_format */
3188 bfd_false},
3189 {bfd_false, coff_write_object_contents, /* bfd_write_contents */
3190 _bfd_write_archive_contents, bfd_false},
3191
3192 BFD_JUMP_TABLE_GENERIC (coff_small),
3193 BFD_JUMP_TABLE_COPY (coff),
3194 BFD_JUMP_TABLE_CORE (_bfd_nocore),
3195 BFD_JUMP_TABLE_ARCHIVE (_bfd_archive_coff),
3196 BFD_JUMP_TABLE_SYMBOLS (coff),
3197 BFD_JUMP_TABLE_RELOCS (coff),
3198 BFD_JUMP_TABLE_WRITE (coff),
3199 BFD_JUMP_TABLE_LINK (coff),
3200 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
3201
3202 & sh_coff_small_vec,
3203
3204 & bfd_coff_small_swap_table
3205 };
3206 #endif
3207