1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "regalloc"
32
33 STATISTIC(NumFinished, "Number of splits finished");
34 STATISTIC(NumSimple, "Number of splits that were simple");
35 STATISTIC(NumCopies, "Number of copies inserted for splitting");
36 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
37 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
38
39 //===----------------------------------------------------------------------===//
40 // Split Analysis
41 //===----------------------------------------------------------------------===//
42
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
44 const MachineLoopInfo &mli)
45 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
46 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
47 LastSplitPoint(MF.getNumBlockIDs()) {}
48
clear()49 void SplitAnalysis::clear() {
50 UseSlots.clear();
51 UseBlocks.clear();
52 ThroughBlocks.clear();
53 CurLI = nullptr;
54 DidRepairRange = false;
55 }
56
computeLastSplitPoint(unsigned Num)57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
58 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
59 // FIXME: Handle multiple EH pad successors.
60 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
61 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
62 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
63
64 // Compute split points on the first call. The pair is independent of the
65 // current live interval.
66 if (!LSP.first.isValid()) {
67 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
68 if (FirstTerm == MBB->end())
69 LSP.first = MBBEnd;
70 else
71 LSP.first = LIS.getInstructionIndex(FirstTerm);
72
73 // If there is a landing pad successor, also find the call instruction.
74 if (!LPad)
75 return LSP.first;
76 // There may not be a call instruction (?) in which case we ignore LPad.
77 LSP.second = LSP.first;
78 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
79 I != E;) {
80 --I;
81 if (I->isCall()) {
82 LSP.second = LIS.getInstructionIndex(I);
83 break;
84 }
85 }
86 }
87
88 // If CurLI is live into a landing pad successor, move the last split point
89 // back to the call that may throw.
90 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
91 return LSP.first;
92
93 // Find the value leaving MBB.
94 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
95 if (!VNI)
96 return LSP.first;
97
98 // If the value leaving MBB was defined after the call in MBB, it can't
99 // really be live-in to the landing pad. This can happen if the landing pad
100 // has a PHI, and this register is undef on the exceptional edge.
101 // <rdar://problem/10664933>
102 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
103 return LSP.first;
104
105 // Value is properly live-in to the landing pad.
106 // Only allow splits before the call.
107 return LSP.second;
108 }
109
110 MachineBasicBlock::iterator
getLastSplitPointIter(MachineBasicBlock * MBB)111 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
112 SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
113 if (LSP == LIS.getMBBEndIdx(MBB))
114 return MBB->end();
115 return LIS.getInstructionFromIndex(LSP);
116 }
117
118 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()119 void SplitAnalysis::analyzeUses() {
120 assert(UseSlots.empty() && "Call clear first");
121
122 // First get all the defs from the interval values. This provides the correct
123 // slots for early clobbers.
124 for (const VNInfo *VNI : CurLI->valnos)
125 if (!VNI->isPHIDef() && !VNI->isUnused())
126 UseSlots.push_back(VNI->def);
127
128 // Get use slots form the use-def chain.
129 const MachineRegisterInfo &MRI = MF.getRegInfo();
130 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
131 if (!MO.isUndef())
132 UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
133
134 array_pod_sort(UseSlots.begin(), UseSlots.end());
135
136 // Remove duplicates, keeping the smaller slot for each instruction.
137 // That is what we want for early clobbers.
138 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
139 SlotIndex::isSameInstr),
140 UseSlots.end());
141
142 // Compute per-live block info.
143 if (!calcLiveBlockInfo()) {
144 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
145 // I am looking at you, RegisterCoalescer!
146 DidRepairRange = true;
147 ++NumRepairs;
148 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
149 const_cast<LiveIntervals&>(LIS)
150 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
151 UseBlocks.clear();
152 ThroughBlocks.clear();
153 bool fixed = calcLiveBlockInfo();
154 (void)fixed;
155 assert(fixed && "Couldn't fix broken live interval");
156 }
157
158 DEBUG(dbgs() << "Analyze counted "
159 << UseSlots.size() << " instrs in "
160 << UseBlocks.size() << " blocks, through "
161 << NumThroughBlocks << " blocks.\n");
162 }
163
164 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
165 /// where CurLI is live.
calcLiveBlockInfo()166 bool SplitAnalysis::calcLiveBlockInfo() {
167 ThroughBlocks.resize(MF.getNumBlockIDs());
168 NumThroughBlocks = NumGapBlocks = 0;
169 if (CurLI->empty())
170 return true;
171
172 LiveInterval::const_iterator LVI = CurLI->begin();
173 LiveInterval::const_iterator LVE = CurLI->end();
174
175 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
176 UseI = UseSlots.begin();
177 UseE = UseSlots.end();
178
179 // Loop over basic blocks where CurLI is live.
180 MachineFunction::iterator MFI =
181 LIS.getMBBFromIndex(LVI->start)->getIterator();
182 for (;;) {
183 BlockInfo BI;
184 BI.MBB = &*MFI;
185 SlotIndex Start, Stop;
186 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
187
188 // If the block contains no uses, the range must be live through. At one
189 // point, RegisterCoalescer could create dangling ranges that ended
190 // mid-block.
191 if (UseI == UseE || *UseI >= Stop) {
192 ++NumThroughBlocks;
193 ThroughBlocks.set(BI.MBB->getNumber());
194 // The range shouldn't end mid-block if there are no uses. This shouldn't
195 // happen.
196 if (LVI->end < Stop)
197 return false;
198 } else {
199 // This block has uses. Find the first and last uses in the block.
200 BI.FirstInstr = *UseI;
201 assert(BI.FirstInstr >= Start);
202 do ++UseI;
203 while (UseI != UseE && *UseI < Stop);
204 BI.LastInstr = UseI[-1];
205 assert(BI.LastInstr < Stop);
206
207 // LVI is the first live segment overlapping MBB.
208 BI.LiveIn = LVI->start <= Start;
209
210 // When not live in, the first use should be a def.
211 if (!BI.LiveIn) {
212 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
213 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
214 BI.FirstDef = BI.FirstInstr;
215 }
216
217 // Look for gaps in the live range.
218 BI.LiveOut = true;
219 while (LVI->end < Stop) {
220 SlotIndex LastStop = LVI->end;
221 if (++LVI == LVE || LVI->start >= Stop) {
222 BI.LiveOut = false;
223 BI.LastInstr = LastStop;
224 break;
225 }
226
227 if (LastStop < LVI->start) {
228 // There is a gap in the live range. Create duplicate entries for the
229 // live-in snippet and the live-out snippet.
230 ++NumGapBlocks;
231
232 // Push the Live-in part.
233 BI.LiveOut = false;
234 UseBlocks.push_back(BI);
235 UseBlocks.back().LastInstr = LastStop;
236
237 // Set up BI for the live-out part.
238 BI.LiveIn = false;
239 BI.LiveOut = true;
240 BI.FirstInstr = BI.FirstDef = LVI->start;
241 }
242
243 // A Segment that starts in the middle of the block must be a def.
244 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
245 if (!BI.FirstDef)
246 BI.FirstDef = LVI->start;
247 }
248
249 UseBlocks.push_back(BI);
250
251 // LVI is now at LVE or LVI->end >= Stop.
252 if (LVI == LVE)
253 break;
254 }
255
256 // Live segment ends exactly at Stop. Move to the next segment.
257 if (LVI->end == Stop && ++LVI == LVE)
258 break;
259
260 // Pick the next basic block.
261 if (LVI->start < Stop)
262 ++MFI;
263 else
264 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
265 }
266
267 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
268 return true;
269 }
270
countLiveBlocks(const LiveInterval * cli) const271 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
272 if (cli->empty())
273 return 0;
274 LiveInterval *li = const_cast<LiveInterval*>(cli);
275 LiveInterval::iterator LVI = li->begin();
276 LiveInterval::iterator LVE = li->end();
277 unsigned Count = 0;
278
279 // Loop over basic blocks where li is live.
280 MachineFunction::const_iterator MFI =
281 LIS.getMBBFromIndex(LVI->start)->getIterator();
282 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
283 for (;;) {
284 ++Count;
285 LVI = li->advanceTo(LVI, Stop);
286 if (LVI == LVE)
287 return Count;
288 do {
289 ++MFI;
290 Stop = LIS.getMBBEndIdx(&*MFI);
291 } while (Stop <= LVI->start);
292 }
293 }
294
isOriginalEndpoint(SlotIndex Idx) const295 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
296 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
297 const LiveInterval &Orig = LIS.getInterval(OrigReg);
298 assert(!Orig.empty() && "Splitting empty interval?");
299 LiveInterval::const_iterator I = Orig.find(Idx);
300
301 // Range containing Idx should begin at Idx.
302 if (I != Orig.end() && I->start <= Idx)
303 return I->start == Idx;
304
305 // Range does not contain Idx, previous must end at Idx.
306 return I != Orig.begin() && (--I)->end == Idx;
307 }
308
analyze(const LiveInterval * li)309 void SplitAnalysis::analyze(const LiveInterval *li) {
310 clear();
311 CurLI = li;
312 analyzeUses();
313 }
314
315
316 //===----------------------------------------------------------------------===//
317 // Split Editor
318 //===----------------------------------------------------------------------===//
319
320 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt,MachineBlockFrequencyInfo & mbfi)321 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
322 MachineDominatorTree &mdt,
323 MachineBlockFrequencyInfo &mbfi)
324 : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
325 MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
326 TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
327 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
328 RegAssign(Allocator) {}
329
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)330 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
331 Edit = &LRE;
332 SpillMode = SM;
333 OpenIdx = 0;
334 RegAssign.clear();
335 Values.clear();
336
337 // Reset the LiveRangeCalc instances needed for this spill mode.
338 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
339 &LIS.getVNInfoAllocator());
340 if (SpillMode)
341 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
342 &LIS.getVNInfoAllocator());
343
344 // We don't need an AliasAnalysis since we will only be performing
345 // cheap-as-a-copy remats anyway.
346 Edit->anyRematerializable(nullptr);
347 }
348
349 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const350 void SplitEditor::dump() const {
351 if (RegAssign.empty()) {
352 dbgs() << " empty\n";
353 return;
354 }
355
356 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
357 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
358 dbgs() << '\n';
359 }
360 #endif
361
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx)362 VNInfo *SplitEditor::defValue(unsigned RegIdx,
363 const VNInfo *ParentVNI,
364 SlotIndex Idx) {
365 assert(ParentVNI && "Mapping NULL value");
366 assert(Idx.isValid() && "Invalid SlotIndex");
367 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
368 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
369
370 // Create a new value.
371 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
372
373 // Use insert for lookup, so we can add missing values with a second lookup.
374 std::pair<ValueMap::iterator, bool> InsP =
375 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
376 ValueForcePair(VNI, false)));
377
378 // This was the first time (RegIdx, ParentVNI) was mapped.
379 // Keep it as a simple def without any liveness.
380 if (InsP.second)
381 return VNI;
382
383 // If the previous value was a simple mapping, add liveness for it now.
384 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
385 SlotIndex Def = OldVNI->def;
386 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
387 // No longer a simple mapping. Switch to a complex, non-forced mapping.
388 InsP.first->second = ValueForcePair();
389 }
390
391 // This is a complex mapping, add liveness for VNI
392 SlotIndex Def = VNI->def;
393 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
394
395 return VNI;
396 }
397
forceRecompute(unsigned RegIdx,const VNInfo * ParentVNI)398 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
399 assert(ParentVNI && "Mapping NULL value");
400 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
401 VNInfo *VNI = VFP.getPointer();
402
403 // ParentVNI was either unmapped or already complex mapped. Either way, just
404 // set the force bit.
405 if (!VNI) {
406 VFP.setInt(true);
407 return;
408 }
409
410 // This was previously a single mapping. Make sure the old def is represented
411 // by a trivial live range.
412 SlotIndex Def = VNI->def;
413 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
414 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
415 // Mark as complex mapped, forced.
416 VFP = ValueForcePair(nullptr, true);
417 }
418
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)419 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
420 VNInfo *ParentVNI,
421 SlotIndex UseIdx,
422 MachineBasicBlock &MBB,
423 MachineBasicBlock::iterator I) {
424 MachineInstr *CopyMI = nullptr;
425 SlotIndex Def;
426 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
427
428 // We may be trying to avoid interference that ends at a deleted instruction,
429 // so always begin RegIdx 0 early and all others late.
430 bool Late = RegIdx != 0;
431
432 // Attempt cheap-as-a-copy rematerialization.
433 LiveRangeEdit::Remat RM(ParentVNI);
434 if (Edit->canRematerializeAt(RM, UseIdx, true)) {
435 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
436 ++NumRemats;
437 } else {
438 // Can't remat, just insert a copy from parent.
439 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
440 .addReg(Edit->getReg());
441 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
442 .getRegSlot();
443 ++NumCopies;
444 }
445
446 // Define the value in Reg.
447 return defValue(RegIdx, ParentVNI, Def);
448 }
449
450 /// Create a new virtual register and live interval.
openIntv()451 unsigned SplitEditor::openIntv() {
452 // Create the complement as index 0.
453 if (Edit->empty())
454 Edit->createEmptyInterval();
455
456 // Create the open interval.
457 OpenIdx = Edit->size();
458 Edit->createEmptyInterval();
459 return OpenIdx;
460 }
461
selectIntv(unsigned Idx)462 void SplitEditor::selectIntv(unsigned Idx) {
463 assert(Idx != 0 && "Cannot select the complement interval");
464 assert(Idx < Edit->size() && "Can only select previously opened interval");
465 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
466 OpenIdx = Idx;
467 }
468
enterIntvBefore(SlotIndex Idx)469 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
470 assert(OpenIdx && "openIntv not called before enterIntvBefore");
471 DEBUG(dbgs() << " enterIntvBefore " << Idx);
472 Idx = Idx.getBaseIndex();
473 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
474 if (!ParentVNI) {
475 DEBUG(dbgs() << ": not live\n");
476 return Idx;
477 }
478 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
479 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
480 assert(MI && "enterIntvBefore called with invalid index");
481
482 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
483 return VNI->def;
484 }
485
enterIntvAfter(SlotIndex Idx)486 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
487 assert(OpenIdx && "openIntv not called before enterIntvAfter");
488 DEBUG(dbgs() << " enterIntvAfter " << Idx);
489 Idx = Idx.getBoundaryIndex();
490 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
491 if (!ParentVNI) {
492 DEBUG(dbgs() << ": not live\n");
493 return Idx;
494 }
495 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
496 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
497 assert(MI && "enterIntvAfter called with invalid index");
498
499 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
500 std::next(MachineBasicBlock::iterator(MI)));
501 return VNI->def;
502 }
503
enterIntvAtEnd(MachineBasicBlock & MBB)504 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
505 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
506 SlotIndex End = LIS.getMBBEndIdx(&MBB);
507 SlotIndex Last = End.getPrevSlot();
508 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
509 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
510 if (!ParentVNI) {
511 DEBUG(dbgs() << ": not live\n");
512 return End;
513 }
514 DEBUG(dbgs() << ": valno " << ParentVNI->id);
515 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
516 SA.getLastSplitPointIter(&MBB));
517 RegAssign.insert(VNI->def, End, OpenIdx);
518 DEBUG(dump());
519 return VNI->def;
520 }
521
522 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)523 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
524 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
525 }
526
useIntv(SlotIndex Start,SlotIndex End)527 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
528 assert(OpenIdx && "openIntv not called before useIntv");
529 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
530 RegAssign.insert(Start, End, OpenIdx);
531 DEBUG(dump());
532 }
533
leaveIntvAfter(SlotIndex Idx)534 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
535 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
536 DEBUG(dbgs() << " leaveIntvAfter " << Idx);
537
538 // The interval must be live beyond the instruction at Idx.
539 SlotIndex Boundary = Idx.getBoundaryIndex();
540 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
541 if (!ParentVNI) {
542 DEBUG(dbgs() << ": not live\n");
543 return Boundary.getNextSlot();
544 }
545 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
546 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
547 assert(MI && "No instruction at index");
548
549 // In spill mode, make live ranges as short as possible by inserting the copy
550 // before MI. This is only possible if that instruction doesn't redefine the
551 // value. The inserted COPY is not a kill, and we don't need to recompute
552 // the source live range. The spiller also won't try to hoist this copy.
553 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
554 MI->readsVirtualRegister(Edit->getReg())) {
555 forceRecompute(0, ParentVNI);
556 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
557 return Idx;
558 }
559
560 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
561 std::next(MachineBasicBlock::iterator(MI)));
562 return VNI->def;
563 }
564
leaveIntvBefore(SlotIndex Idx)565 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
566 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
567 DEBUG(dbgs() << " leaveIntvBefore " << Idx);
568
569 // The interval must be live into the instruction at Idx.
570 Idx = Idx.getBaseIndex();
571 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
572 if (!ParentVNI) {
573 DEBUG(dbgs() << ": not live\n");
574 return Idx.getNextSlot();
575 }
576 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
577
578 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
579 assert(MI && "No instruction at index");
580 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
581 return VNI->def;
582 }
583
leaveIntvAtTop(MachineBasicBlock & MBB)584 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
585 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
586 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
587 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
588
589 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
590 if (!ParentVNI) {
591 DEBUG(dbgs() << ": not live\n");
592 return Start;
593 }
594
595 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
596 MBB.SkipPHIsAndLabels(MBB.begin()));
597 RegAssign.insert(Start, VNI->def, OpenIdx);
598 DEBUG(dump());
599 return VNI->def;
600 }
601
overlapIntv(SlotIndex Start,SlotIndex End)602 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
603 assert(OpenIdx && "openIntv not called before overlapIntv");
604 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
605 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
606 "Parent changes value in extended range");
607 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
608 "Range cannot span basic blocks");
609
610 // The complement interval will be extended as needed by LRCalc.extend().
611 if (ParentVNI)
612 forceRecompute(0, ParentVNI);
613 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
614 RegAssign.insert(Start, End, OpenIdx);
615 DEBUG(dump());
616 }
617
618 //===----------------------------------------------------------------------===//
619 // Spill modes
620 //===----------------------------------------------------------------------===//
621
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)622 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
623 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
624 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
625 RegAssignMap::iterator AssignI;
626 AssignI.setMap(RegAssign);
627
628 for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
629 SlotIndex Def = Copies[i]->def;
630 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
631 assert(MI && "No instruction for back-copy");
632
633 MachineBasicBlock *MBB = MI->getParent();
634 MachineBasicBlock::iterator MBBI(MI);
635 bool AtBegin;
636 do AtBegin = MBBI == MBB->begin();
637 while (!AtBegin && (--MBBI)->isDebugValue());
638
639 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
640 LIS.removeVRegDefAt(*LI, Def);
641 LIS.RemoveMachineInstrFromMaps(MI);
642 MI->eraseFromParent();
643
644 // Adjust RegAssign if a register assignment is killed at Def. We want to
645 // avoid calculating the live range of the source register if possible.
646 AssignI.find(Def.getPrevSlot());
647 if (!AssignI.valid() || AssignI.start() >= Def)
648 continue;
649 // If MI doesn't kill the assigned register, just leave it.
650 if (AssignI.stop() != Def)
651 continue;
652 unsigned RegIdx = AssignI.value();
653 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
654 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n');
655 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
656 } else {
657 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
658 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
659 AssignI.setStop(Kill);
660 }
661 }
662 }
663
664 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)665 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
666 MachineBasicBlock *DefMBB) {
667 if (MBB == DefMBB)
668 return MBB;
669 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
670
671 const MachineLoopInfo &Loops = SA.Loops;
672 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
673 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
674
675 // Best candidate so far.
676 MachineBasicBlock *BestMBB = MBB;
677 unsigned BestDepth = UINT_MAX;
678
679 for (;;) {
680 const MachineLoop *Loop = Loops.getLoopFor(MBB);
681
682 // MBB isn't in a loop, it doesn't get any better. All dominators have a
683 // higher frequency by definition.
684 if (!Loop) {
685 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
686 << MBB->getNumber() << " at depth 0\n");
687 return MBB;
688 }
689
690 // We'll never be able to exit the DefLoop.
691 if (Loop == DefLoop) {
692 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
693 << MBB->getNumber() << " in the same loop\n");
694 return MBB;
695 }
696
697 // Least busy dominator seen so far.
698 unsigned Depth = Loop->getLoopDepth();
699 if (Depth < BestDepth) {
700 BestMBB = MBB;
701 BestDepth = Depth;
702 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
703 << MBB->getNumber() << " at depth " << Depth << '\n');
704 }
705
706 // Leave loop by going to the immediate dominator of the loop header.
707 // This is a bigger stride than simply walking up the dominator tree.
708 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
709
710 // Too far up the dominator tree?
711 if (!IDom || !MDT.dominates(DefDomNode, IDom))
712 return BestMBB;
713
714 MBB = IDom->getBlock();
715 }
716 }
717
hoistCopiesForSize()718 void SplitEditor::hoistCopiesForSize() {
719 // Get the complement interval, always RegIdx 0.
720 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
721 LiveInterval *Parent = &Edit->getParent();
722
723 // Track the nearest common dominator for all back-copies for each ParentVNI,
724 // indexed by ParentVNI->id.
725 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
726 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
727
728 // Find the nearest common dominator for parent values with multiple
729 // back-copies. If a single back-copy dominates, put it in DomPair.second.
730 for (VNInfo *VNI : LI->valnos) {
731 if (VNI->isUnused())
732 continue;
733 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
734 assert(ParentVNI && "Parent not live at complement def");
735
736 // Don't hoist remats. The complement is probably going to disappear
737 // completely anyway.
738 if (Edit->didRematerialize(ParentVNI))
739 continue;
740
741 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
742 DomPair &Dom = NearestDom[ParentVNI->id];
743
744 // Keep directly defined parent values. This is either a PHI or an
745 // instruction in the complement range. All other copies of ParentVNI
746 // should be eliminated.
747 if (VNI->def == ParentVNI->def) {
748 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
749 Dom = DomPair(ValMBB, VNI->def);
750 continue;
751 }
752 // Skip the singly mapped values. There is nothing to gain from hoisting a
753 // single back-copy.
754 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
755 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
756 continue;
757 }
758
759 if (!Dom.first) {
760 // First time we see ParentVNI. VNI dominates itself.
761 Dom = DomPair(ValMBB, VNI->def);
762 } else if (Dom.first == ValMBB) {
763 // Two defs in the same block. Pick the earlier def.
764 if (!Dom.second.isValid() || VNI->def < Dom.second)
765 Dom.second = VNI->def;
766 } else {
767 // Different basic blocks. Check if one dominates.
768 MachineBasicBlock *Near =
769 MDT.findNearestCommonDominator(Dom.first, ValMBB);
770 if (Near == ValMBB)
771 // Def ValMBB dominates.
772 Dom = DomPair(ValMBB, VNI->def);
773 else if (Near != Dom.first)
774 // None dominate. Hoist to common dominator, need new def.
775 Dom = DomPair(Near, SlotIndex());
776 }
777
778 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
779 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
780 << " hoist to BB#" << Dom.first->getNumber() << ' '
781 << Dom.second << '\n');
782 }
783
784 // Insert the hoisted copies.
785 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
786 DomPair &Dom = NearestDom[i];
787 if (!Dom.first || Dom.second.isValid())
788 continue;
789 // This value needs a hoisted copy inserted at the end of Dom.first.
790 VNInfo *ParentVNI = Parent->getValNumInfo(i);
791 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
792 // Get a less loopy dominator than Dom.first.
793 Dom.first = findShallowDominator(Dom.first, DefMBB);
794 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
795 Dom.second =
796 defFromParent(0, ParentVNI, Last, *Dom.first,
797 SA.getLastSplitPointIter(Dom.first))->def;
798 }
799
800 // Remove redundant back-copies that are now known to be dominated by another
801 // def with the same value.
802 SmallVector<VNInfo*, 8> BackCopies;
803 for (VNInfo *VNI : LI->valnos) {
804 if (VNI->isUnused())
805 continue;
806 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
807 const DomPair &Dom = NearestDom[ParentVNI->id];
808 if (!Dom.first || Dom.second == VNI->def)
809 continue;
810 BackCopies.push_back(VNI);
811 forceRecompute(0, ParentVNI);
812 }
813 removeBackCopies(BackCopies);
814 }
815
816
817 /// transferValues - Transfer all possible values to the new live ranges.
818 /// Values that were rematerialized are left alone, they need LRCalc.extend().
transferValues()819 bool SplitEditor::transferValues() {
820 bool Skipped = false;
821 RegAssignMap::const_iterator AssignI = RegAssign.begin();
822 for (const LiveRange::Segment &S : Edit->getParent()) {
823 DEBUG(dbgs() << " blit " << S << ':');
824 VNInfo *ParentVNI = S.valno;
825 // RegAssign has holes where RegIdx 0 should be used.
826 SlotIndex Start = S.start;
827 AssignI.advanceTo(Start);
828 do {
829 unsigned RegIdx;
830 SlotIndex End = S.end;
831 if (!AssignI.valid()) {
832 RegIdx = 0;
833 } else if (AssignI.start() <= Start) {
834 RegIdx = AssignI.value();
835 if (AssignI.stop() < End) {
836 End = AssignI.stop();
837 ++AssignI;
838 }
839 } else {
840 RegIdx = 0;
841 End = std::min(End, AssignI.start());
842 }
843
844 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
845 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
846 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
847
848 // Check for a simply defined value that can be blitted directly.
849 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
850 if (VNInfo *VNI = VFP.getPointer()) {
851 DEBUG(dbgs() << ':' << VNI->id);
852 LR.addSegment(LiveInterval::Segment(Start, End, VNI));
853 Start = End;
854 continue;
855 }
856
857 // Skip values with forced recomputation.
858 if (VFP.getInt()) {
859 DEBUG(dbgs() << "(recalc)");
860 Skipped = true;
861 Start = End;
862 continue;
863 }
864
865 LiveRangeCalc &LRC = getLRCalc(RegIdx);
866
867 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
868 // so the live range is accurate. Add live-in blocks in [Start;End) to the
869 // LiveInBlocks.
870 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
871 SlotIndex BlockStart, BlockEnd;
872 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
873
874 // The first block may be live-in, or it may have its own def.
875 if (Start != BlockStart) {
876 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
877 assert(VNI && "Missing def for complex mapped value");
878 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
879 // MBB has its own def. Is it also live-out?
880 if (BlockEnd <= End)
881 LRC.setLiveOutValue(&*MBB, VNI);
882
883 // Skip to the next block for live-in.
884 ++MBB;
885 BlockStart = BlockEnd;
886 }
887
888 // Handle the live-in blocks covered by [Start;End).
889 assert(Start <= BlockStart && "Expected live-in block");
890 while (BlockStart < End) {
891 DEBUG(dbgs() << ">BB#" << MBB->getNumber());
892 BlockEnd = LIS.getMBBEndIdx(&*MBB);
893 if (BlockStart == ParentVNI->def) {
894 // This block has the def of a parent PHI, so it isn't live-in.
895 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
896 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
897 assert(VNI && "Missing def for complex mapped parent PHI");
898 if (End >= BlockEnd)
899 LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
900 } else {
901 // This block needs a live-in value. The last block covered may not
902 // be live-out.
903 if (End < BlockEnd)
904 LRC.addLiveInBlock(LR, MDT[&*MBB], End);
905 else {
906 // Live-through, and we don't know the value.
907 LRC.addLiveInBlock(LR, MDT[&*MBB]);
908 LRC.setLiveOutValue(&*MBB, nullptr);
909 }
910 }
911 BlockStart = BlockEnd;
912 ++MBB;
913 }
914 Start = End;
915 } while (Start != S.end);
916 DEBUG(dbgs() << '\n');
917 }
918
919 LRCalc[0].calculateValues();
920 if (SpillMode)
921 LRCalc[1].calculateValues();
922
923 return Skipped;
924 }
925
extendPHIKillRanges()926 void SplitEditor::extendPHIKillRanges() {
927 // Extend live ranges to be live-out for successor PHI values.
928 for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
929 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
930 continue;
931 unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
932 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
933 LiveRangeCalc &LRC = getLRCalc(RegIdx);
934 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
935 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
936 PE = MBB->pred_end(); PI != PE; ++PI) {
937 SlotIndex End = LIS.getMBBEndIdx(*PI);
938 SlotIndex LastUse = End.getPrevSlot();
939 // The predecessor may not have a live-out value. That is OK, like an
940 // undef PHI operand.
941 if (Edit->getParent().liveAt(LastUse)) {
942 assert(RegAssign.lookup(LastUse) == RegIdx &&
943 "Different register assignment in phi predecessor");
944 LRC.extend(LR, End);
945 }
946 }
947 }
948 }
949
950 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)951 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
952 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
953 RE = MRI.reg_end(); RI != RE;) {
954 MachineOperand &MO = *RI;
955 MachineInstr *MI = MO.getParent();
956 ++RI;
957 // LiveDebugVariables should have handled all DBG_VALUE instructions.
958 if (MI->isDebugValue()) {
959 DEBUG(dbgs() << "Zapping " << *MI);
960 MO.setReg(0);
961 continue;
962 }
963
964 // <undef> operands don't really read the register, so it doesn't matter
965 // which register we choose. When the use operand is tied to a def, we must
966 // use the same register as the def, so just do that always.
967 SlotIndex Idx = LIS.getInstructionIndex(MI);
968 if (MO.isDef() || MO.isUndef())
969 Idx = Idx.getRegSlot(MO.isEarlyClobber());
970
971 // Rewrite to the mapped register at Idx.
972 unsigned RegIdx = RegAssign.lookup(Idx);
973 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
974 MO.setReg(LI->reg);
975 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
976 << Idx << ':' << RegIdx << '\t' << *MI);
977
978 // Extend liveness to Idx if the instruction reads reg.
979 if (!ExtendRanges || MO.isUndef())
980 continue;
981
982 // Skip instructions that don't read Reg.
983 if (MO.isDef()) {
984 if (!MO.getSubReg() && !MO.isEarlyClobber())
985 continue;
986 // We may wan't to extend a live range for a partial redef, or for a use
987 // tied to an early clobber.
988 Idx = Idx.getPrevSlot();
989 if (!Edit->getParent().liveAt(Idx))
990 continue;
991 } else
992 Idx = Idx.getRegSlot(true);
993
994 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
995 }
996 }
997
deleteRematVictims()998 void SplitEditor::deleteRematVictims() {
999 SmallVector<MachineInstr*, 8> Dead;
1000 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1001 LiveInterval *LI = &LIS.getInterval(*I);
1002 for (const LiveRange::Segment &S : LI->segments) {
1003 // Dead defs end at the dead slot.
1004 if (S.end != S.valno->def.getDeadSlot())
1005 continue;
1006 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1007 assert(MI && "Missing instruction for dead def");
1008 MI->addRegisterDead(LI->reg, &TRI);
1009
1010 if (!MI->allDefsAreDead())
1011 continue;
1012
1013 DEBUG(dbgs() << "All defs dead: " << *MI);
1014 Dead.push_back(MI);
1015 }
1016 }
1017
1018 if (Dead.empty())
1019 return;
1020
1021 Edit->eliminateDeadDefs(Dead);
1022 }
1023
finish(SmallVectorImpl<unsigned> * LRMap)1024 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1025 ++NumFinished;
1026
1027 // At this point, the live intervals in Edit contain VNInfos corresponding to
1028 // the inserted copies.
1029
1030 // Add the original defs from the parent interval.
1031 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1032 if (ParentVNI->isUnused())
1033 continue;
1034 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1035 defValue(RegIdx, ParentVNI, ParentVNI->def);
1036
1037 // Force rematted values to be recomputed everywhere.
1038 // The new live ranges may be truncated.
1039 if (Edit->didRematerialize(ParentVNI))
1040 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1041 forceRecompute(i, ParentVNI);
1042 }
1043
1044 // Hoist back-copies to the complement interval when in spill mode.
1045 switch (SpillMode) {
1046 case SM_Partition:
1047 // Leave all back-copies as is.
1048 break;
1049 case SM_Size:
1050 hoistCopiesForSize();
1051 break;
1052 case SM_Speed:
1053 llvm_unreachable("Spill mode 'speed' not implemented yet");
1054 }
1055
1056 // Transfer the simply mapped values, check if any are skipped.
1057 bool Skipped = transferValues();
1058 if (Skipped)
1059 extendPHIKillRanges();
1060 else
1061 ++NumSimple;
1062
1063 // Rewrite virtual registers, possibly extending ranges.
1064 rewriteAssigned(Skipped);
1065
1066 // Delete defs that were rematted everywhere.
1067 if (Skipped)
1068 deleteRematVictims();
1069
1070 // Get rid of unused values and set phi-kill flags.
1071 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1072 LiveInterval &LI = LIS.getInterval(*I);
1073 LI.RenumberValues();
1074 }
1075
1076 // Provide a reverse mapping from original indices to Edit ranges.
1077 if (LRMap) {
1078 LRMap->clear();
1079 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1080 LRMap->push_back(i);
1081 }
1082
1083 // Now check if any registers were separated into multiple components.
1084 ConnectedVNInfoEqClasses ConEQ(LIS);
1085 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1086 // Don't use iterators, they are invalidated by create() below.
1087 unsigned VReg = Edit->get(i);
1088 LiveInterval &LI = LIS.getInterval(VReg);
1089 SmallVector<LiveInterval*, 8> SplitLIs;
1090 LIS.splitSeparateComponents(LI, SplitLIs);
1091 unsigned Original = VRM.getOriginal(VReg);
1092 for (LiveInterval *SplitLI : SplitLIs)
1093 VRM.setIsSplitFromReg(SplitLI->reg, Original);
1094
1095 // The new intervals all map back to i.
1096 if (LRMap)
1097 LRMap->resize(Edit->size(), i);
1098 }
1099
1100 // Calculate spill weight and allocation hints for new intervals.
1101 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1102
1103 assert(!LRMap || LRMap->size() == Edit->size());
1104 }
1105
1106
1107 //===----------------------------------------------------------------------===//
1108 // Single Block Splitting
1109 //===----------------------------------------------------------------------===//
1110
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1111 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1112 bool SingleInstrs) const {
1113 // Always split for multiple instructions.
1114 if (!BI.isOneInstr())
1115 return true;
1116 // Don't split for single instructions unless explicitly requested.
1117 if (!SingleInstrs)
1118 return false;
1119 // Splitting a live-through range always makes progress.
1120 if (BI.LiveIn && BI.LiveOut)
1121 return true;
1122 // No point in isolating a copy. It has no register class constraints.
1123 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1124 return false;
1125 // Finally, don't isolate an end point that was created by earlier splits.
1126 return isOriginalEndpoint(BI.FirstInstr);
1127 }
1128
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1129 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1130 openIntv();
1131 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1132 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1133 LastSplitPoint));
1134 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1135 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1136 } else {
1137 // The last use is after the last valid split point.
1138 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1139 useIntv(SegStart, SegStop);
1140 overlapIntv(SegStop, BI.LastInstr);
1141 }
1142 }
1143
1144
1145 //===----------------------------------------------------------------------===//
1146 // Global Live Range Splitting Support
1147 //===----------------------------------------------------------------------===//
1148
1149 // These methods support a method of global live range splitting that uses a
1150 // global algorithm to decide intervals for CFG edges. They will insert split
1151 // points and color intervals in basic blocks while avoiding interference.
1152 //
1153 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1154 // are on the stack.
1155
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1156 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1157 unsigned IntvIn, SlotIndex LeaveBefore,
1158 unsigned IntvOut, SlotIndex EnterAfter){
1159 SlotIndex Start, Stop;
1160 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1161
1162 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1163 << ") intf " << LeaveBefore << '-' << EnterAfter
1164 << ", live-through " << IntvIn << " -> " << IntvOut);
1165
1166 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1167
1168 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1169 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1170 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1171
1172 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1173
1174 if (!IntvOut) {
1175 DEBUG(dbgs() << ", spill on entry.\n");
1176 //
1177 // <<<<<<<<< Possible LeaveBefore interference.
1178 // |-----------| Live through.
1179 // -____________ Spill on entry.
1180 //
1181 selectIntv(IntvIn);
1182 SlotIndex Idx = leaveIntvAtTop(*MBB);
1183 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1184 (void)Idx;
1185 return;
1186 }
1187
1188 if (!IntvIn) {
1189 DEBUG(dbgs() << ", reload on exit.\n");
1190 //
1191 // >>>>>>> Possible EnterAfter interference.
1192 // |-----------| Live through.
1193 // ___________-- Reload on exit.
1194 //
1195 selectIntv(IntvOut);
1196 SlotIndex Idx = enterIntvAtEnd(*MBB);
1197 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1198 (void)Idx;
1199 return;
1200 }
1201
1202 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1203 DEBUG(dbgs() << ", straight through.\n");
1204 //
1205 // |-----------| Live through.
1206 // ------------- Straight through, same intv, no interference.
1207 //
1208 selectIntv(IntvOut);
1209 useIntv(Start, Stop);
1210 return;
1211 }
1212
1213 // We cannot legally insert splits after LSP.
1214 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1215 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1216
1217 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1218 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1219 DEBUG(dbgs() << ", switch avoiding interference.\n");
1220 //
1221 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1222 // |-----------| Live through.
1223 // ------======= Switch intervals between interference.
1224 //
1225 selectIntv(IntvOut);
1226 SlotIndex Idx;
1227 if (LeaveBefore && LeaveBefore < LSP) {
1228 Idx = enterIntvBefore(LeaveBefore);
1229 useIntv(Idx, Stop);
1230 } else {
1231 Idx = enterIntvAtEnd(*MBB);
1232 }
1233 selectIntv(IntvIn);
1234 useIntv(Start, Idx);
1235 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1236 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1237 return;
1238 }
1239
1240 DEBUG(dbgs() << ", create local intv for interference.\n");
1241 //
1242 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1243 // |-----------| Live through.
1244 // ==---------== Switch intervals before/after interference.
1245 //
1246 assert(LeaveBefore <= EnterAfter && "Missed case");
1247
1248 selectIntv(IntvOut);
1249 SlotIndex Idx = enterIntvAfter(EnterAfter);
1250 useIntv(Idx, Stop);
1251 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1252
1253 selectIntv(IntvIn);
1254 Idx = leaveIntvBefore(LeaveBefore);
1255 useIntv(Start, Idx);
1256 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1257 }
1258
1259
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1260 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1261 unsigned IntvIn, SlotIndex LeaveBefore) {
1262 SlotIndex Start, Stop;
1263 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1264
1265 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1266 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1267 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1268 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1269
1270 assert(IntvIn && "Must have register in");
1271 assert(BI.LiveIn && "Must be live-in");
1272 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1273
1274 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1275 DEBUG(dbgs() << " before interference.\n");
1276 //
1277 // <<< Interference after kill.
1278 // |---o---x | Killed in block.
1279 // ========= Use IntvIn everywhere.
1280 //
1281 selectIntv(IntvIn);
1282 useIntv(Start, BI.LastInstr);
1283 return;
1284 }
1285
1286 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1287
1288 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1289 //
1290 // <<< Possible interference after last use.
1291 // |---o---o---| Live-out on stack.
1292 // =========____ Leave IntvIn after last use.
1293 //
1294 // < Interference after last use.
1295 // |---o---o--o| Live-out on stack, late last use.
1296 // ============ Copy to stack after LSP, overlap IntvIn.
1297 // \_____ Stack interval is live-out.
1298 //
1299 if (BI.LastInstr < LSP) {
1300 DEBUG(dbgs() << ", spill after last use before interference.\n");
1301 selectIntv(IntvIn);
1302 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1303 useIntv(Start, Idx);
1304 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1305 } else {
1306 DEBUG(dbgs() << ", spill before last split point.\n");
1307 selectIntv(IntvIn);
1308 SlotIndex Idx = leaveIntvBefore(LSP);
1309 overlapIntv(Idx, BI.LastInstr);
1310 useIntv(Start, Idx);
1311 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1312 }
1313 return;
1314 }
1315
1316 // The interference is overlapping somewhere we wanted to use IntvIn. That
1317 // means we need to create a local interval that can be allocated a
1318 // different register.
1319 unsigned LocalIntv = openIntv();
1320 (void)LocalIntv;
1321 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1322
1323 if (!BI.LiveOut || BI.LastInstr < LSP) {
1324 //
1325 // <<<<<<< Interference overlapping uses.
1326 // |---o---o---| Live-out on stack.
1327 // =====----____ Leave IntvIn before interference, then spill.
1328 //
1329 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1330 SlotIndex From = enterIntvBefore(LeaveBefore);
1331 useIntv(From, To);
1332 selectIntv(IntvIn);
1333 useIntv(Start, From);
1334 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1335 return;
1336 }
1337
1338 // <<<<<<< Interference overlapping uses.
1339 // |---o---o--o| Live-out on stack, late last use.
1340 // =====------- Copy to stack before LSP, overlap LocalIntv.
1341 // \_____ Stack interval is live-out.
1342 //
1343 SlotIndex To = leaveIntvBefore(LSP);
1344 overlapIntv(To, BI.LastInstr);
1345 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1346 useIntv(From, To);
1347 selectIntv(IntvIn);
1348 useIntv(Start, From);
1349 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1350 }
1351
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1352 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1353 unsigned IntvOut, SlotIndex EnterAfter) {
1354 SlotIndex Start, Stop;
1355 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1356
1357 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1358 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1359 << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1360 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1361
1362 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1363
1364 assert(IntvOut && "Must have register out");
1365 assert(BI.LiveOut && "Must be live-out");
1366 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1367
1368 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1369 DEBUG(dbgs() << " after interference.\n");
1370 //
1371 // >>>> Interference before def.
1372 // | o---o---| Defined in block.
1373 // ========= Use IntvOut everywhere.
1374 //
1375 selectIntv(IntvOut);
1376 useIntv(BI.FirstInstr, Stop);
1377 return;
1378 }
1379
1380 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1381 DEBUG(dbgs() << ", reload after interference.\n");
1382 //
1383 // >>>> Interference before def.
1384 // |---o---o---| Live-through, stack-in.
1385 // ____========= Enter IntvOut before first use.
1386 //
1387 selectIntv(IntvOut);
1388 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1389 useIntv(Idx, Stop);
1390 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1391 return;
1392 }
1393
1394 // The interference is overlapping somewhere we wanted to use IntvOut. That
1395 // means we need to create a local interval that can be allocated a
1396 // different register.
1397 DEBUG(dbgs() << ", interference overlaps uses.\n");
1398 //
1399 // >>>>>>> Interference overlapping uses.
1400 // |---o---o---| Live-through, stack-in.
1401 // ____---====== Create local interval for interference range.
1402 //
1403 selectIntv(IntvOut);
1404 SlotIndex Idx = enterIntvAfter(EnterAfter);
1405 useIntv(Idx, Stop);
1406 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1407
1408 openIntv();
1409 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1410 useIntv(From, Idx);
1411 }
1412