1 // resolve.cc -- symbol resolution for gold
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5 
6 // This file is part of gold.
7 
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12 
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17 
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22 
23 #include "gold.h"
24 
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30 
31 namespace gold
32 {
33 
34 // Symbol methods used in this file.
35 
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION.  Update the VERSION_ field accordingly.
38 
39 inline void
override_version(const char * version)40 Symbol::override_version(const char* version)
41 {
42   if (version == NULL)
43     {
44       // This is the case where this symbol is NAME/VERSION, and the
45       // version was not marked as hidden.  That makes it the default
46       // version, so we create NAME/NULL.  Later we see another symbol
47       // NAME/NULL, and that symbol is overriding this one.  In this
48       // case, since NAME/VERSION is the default, we make NAME/NULL
49       // override NAME/VERSION as well.  They are already the same
50       // Symbol structure.  Setting the VERSION_ field to NULL ensures
51       // that it will be output with the correct, empty, version.
52       this->version_ = version;
53     }
54   else
55     {
56       // This is the case where this symbol is NAME/VERSION_ONE, and
57       // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58       // overriding NAME.  If VERSION_ONE and VERSION_TWO are
59       // different, then this can only happen when VERSION_ONE is NULL
60       // and VERSION_TWO is not hidden.
61       gold_assert(this->version_ == version || this->version_ == NULL);
62       this->version_ = version;
63     }
64 }
65 
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY.  Updated the VISIBILITY_ field accordingly.
68 
69 inline void
override_visibility(elfcpp::STV visibility)70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72   // The rule for combining visibility is that we always choose the
73   // most constrained visibility.  In order of increasing constraint,
74   // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse
75   // of the numeric values, so the effect is that we always want the
76   // smallest non-zero value.
77   if (visibility != elfcpp::STV_DEFAULT)
78     {
79       if (this->visibility_ == elfcpp::STV_DEFAULT)
80 	this->visibility_ = visibility;
81       else if (this->visibility_ > visibility)
82 	this->visibility_ = visibility;
83     }
84 }
85 
86 // Override the fields in Symbol.
87 
88 template<int size, bool big_endian>
89 void
override_base(const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 		      unsigned int st_shndx, bool is_ordinary,
92 		      Object* object, const char* version)
93 {
94   gold_assert(this->source_ == FROM_OBJECT);
95   this->u_.from_object.object = object;
96   this->override_version(version);
97   this->u_.from_object.shndx = st_shndx;
98   this->is_ordinary_shndx_ = is_ordinary;
99   // Don't override st_type from plugin placeholder symbols.
100   if (object->pluginobj() == NULL)
101     this->type_ = sym.get_st_type();
102   this->binding_ = sym.get_st_bind();
103   this->override_visibility(sym.get_st_visibility());
104   this->nonvis_ = sym.get_st_nonvis();
105   if (object->is_dynamic())
106     this->in_dyn_ = true;
107   else
108     this->in_reg_ = true;
109 }
110 
111 // Override the fields in Sized_symbol.
112 
113 template<int size>
114 template<bool big_endian>
115 void
override(const elfcpp::Sym<size,big_endian> & sym,unsigned st_shndx,bool is_ordinary,Object * object,const char * version)116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 			     unsigned st_shndx, bool is_ordinary,
118 			     Object* object, const char* version)
119 {
120   this->override_base(sym, st_shndx, is_ordinary, object, version);
121   this->value_ = sym.get_st_value();
122   this->symsize_ = sym.get_st_size();
123 }
124 
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION.  This handles all aliases of TOSYM.
127 
128 template<int size, bool big_endian>
129 void
override(Sized_symbol<size> * tosym,const elfcpp::Sym<size,big_endian> & fromsym,unsigned int st_shndx,bool is_ordinary,Object * object,const char * version)130 Symbol_table::override(Sized_symbol<size>* tosym,
131 		       const elfcpp::Sym<size, big_endian>& fromsym,
132 		       unsigned int st_shndx, bool is_ordinary,
133 		       Object* object, const char* version)
134 {
135   tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136   if (tosym->has_alias())
137     {
138       Symbol* sym = this->weak_aliases_[tosym];
139       gold_assert(sym != NULL);
140       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141       do
142 	{
143 	  ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 	  sym = this->weak_aliases_[ssym];
145 	  gold_assert(sym != NULL);
146 	  ssym = this->get_sized_symbol<size>(sym);
147 	}
148       while (ssym != tosym);
149     }
150 }
151 
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157 
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161 
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165 
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170 
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173 
174 static unsigned int
symbol_to_bits(elfcpp::STB binding,bool is_dynamic,unsigned int shndx,bool is_ordinary,elfcpp::STT type)175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 	       unsigned int shndx, bool is_ordinary, elfcpp::STT type)
177 {
178   unsigned int bits;
179 
180   switch (binding)
181     {
182     case elfcpp::STB_GLOBAL:
183     case elfcpp::STB_GNU_UNIQUE:
184       bits = global_flag;
185       break;
186 
187     case elfcpp::STB_WEAK:
188       bits = weak_flag;
189       break;
190 
191     case elfcpp::STB_LOCAL:
192       // We should only see externally visible symbols in the symbol
193       // table.
194       gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195       bits = global_flag;
196 
197     default:
198       // Any target which wants to handle STB_LOOS, etc., needs to
199       // define a resolve method.
200       gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201       bits = global_flag;
202     }
203 
204   if (is_dynamic)
205     bits |= dynamic_flag;
206   else
207     bits |= regular_flag;
208 
209   switch (shndx)
210     {
211     case elfcpp::SHN_UNDEF:
212       bits |= undef_flag;
213       break;
214 
215     case elfcpp::SHN_COMMON:
216       if (!is_ordinary)
217 	bits |= common_flag;
218       break;
219 
220     default:
221       if (type == elfcpp::STT_COMMON)
222 	bits |= common_flag;
223       else if (!is_ordinary && Symbol::is_common_shndx(shndx))
224 	bits |= common_flag;
225       else
226         bits |= def_flag;
227       break;
228     }
229 
230   return bits;
231 }
232 
233 // Resolve a symbol.  This is called the second and subsequent times
234 // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the
235 // section index for SYM, possibly adjusted for many sections.
236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237 // than a special code.  ORIG_ST_SHNDX is the original section index,
238 // before any munging because of discarded sections, except that all
239 // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is
240 // the version of SYM.
241 
242 template<int size, bool big_endian>
243 void
resolve(Sized_symbol<size> * to,const elfcpp::Sym<size,big_endian> & sym,unsigned int st_shndx,bool is_ordinary,unsigned int orig_st_shndx,Object * object,const char * version)244 Symbol_table::resolve(Sized_symbol<size>* to,
245 		      const elfcpp::Sym<size, big_endian>& sym,
246 		      unsigned int st_shndx, bool is_ordinary,
247 		      unsigned int orig_st_shndx,
248 		      Object* object, const char* version)
249 {
250   // It's possible for a symbol to be defined in an object file
251   // using .symver to give it a version, and for there to also be
252   // a linker script giving that symbol the same version.  We
253   // don't want to give a multiple-definition error for this
254   // harmless redefinition.
255   bool to_is_ordinary;
256   if (to->source() == Symbol::FROM_OBJECT
257       && to->object() == object
258       && is_ordinary
259       && to->is_defined()
260       && to->shndx(&to_is_ordinary) == st_shndx
261       && to_is_ordinary
262       && to->value() == sym.get_st_value())
263     return;
264 
265   if (parameters->target().has_resolve())
266     {
267       Sized_target<size, big_endian>* sized_target;
268       sized_target = parameters->sized_target<size, big_endian>();
269       sized_target->resolve(to, sym, object, version);
270       return;
271     }
272 
273   if (!object->is_dynamic())
274     {
275       // Record that we've seen this symbol in a regular object.
276       to->set_in_reg();
277     }
278   else if (st_shndx == elfcpp::SHN_UNDEF
279            && (to->visibility() == elfcpp::STV_HIDDEN
280                || to->visibility() == elfcpp::STV_INTERNAL))
281     {
282       // it is good to be helpful, but the warning leads to build error
283       // for some users, so disable it if not really wanted.
284       return;
285     }
286   else
287     {
288       // Record that we've seen this symbol in a dynamic object.
289       to->set_in_dyn();
290     }
291 
292   // Record if we've seen this symbol in a real ELF object (i.e., the
293   // symbol is referenced from outside the world known to the plugin).
294   if (object->pluginobj() == NULL && !object->is_dynamic())
295     to->set_in_real_elf();
296 
297   // If we're processing replacement files, allow new symbols to override
298   // the placeholders from the plugin objects.
299   // Treat common symbols specially since it is possible that an ELF
300   // file increased the size of the alignment.
301   if (to->source() == Symbol::FROM_OBJECT)
302     {
303       Pluginobj* obj = to->object()->pluginobj();
304       if (obj != NULL
305           && parameters->options().plugins()->in_replacement_phase())
306         {
307 	  bool adjust_common = false;
308 	  typename Sized_symbol<size>::Size_type tosize = 0;
309 	  typename Sized_symbol<size>::Value_type tovalue = 0;
310 	  if (to->is_common() && !is_ordinary && st_shndx == elfcpp::SHN_COMMON)
311 	    {
312 	      adjust_common = true;
313 	      tosize = to->symsize();
314 	      tovalue = to->value();
315 	    }
316 	  this->override(to, sym, st_shndx, is_ordinary, object, version);
317 	  if (adjust_common)
318 	    {
319 	      if (tosize > to->symsize())
320 		to->set_symsize(tosize);
321 	      if (tovalue > to->value())
322 		to->set_value(tovalue);
323 	    }
324 	  return;
325         }
326     }
327 
328   // A new weak undefined reference, merging with an old weak
329   // reference, could be a One Definition Rule (ODR) violation --
330   // especially if the types or sizes of the references differ.  We'll
331   // store such pairs and look them up later to make sure they
332   // actually refer to the same lines of code.  We also check
333   // combinations of weak and strong, which might occur if one case is
334   // inline and the other is not.  (Note: not all ODR violations can
335   // be found this way, and not everything this finds is an ODR
336   // violation.  But it's helpful to warn about.)
337   if (parameters->options().detect_odr_violations()
338       && (sym.get_st_bind() == elfcpp::STB_WEAK
339 	  || to->binding() == elfcpp::STB_WEAK)
340       && orig_st_shndx != elfcpp::SHN_UNDEF
341       && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
342       && to_is_ordinary
343       && sym.get_st_size() != 0    // Ignore weird 0-sized symbols.
344       && to->symsize() != 0
345       && (sym.get_st_type() != to->type()
346           || sym.get_st_size() != to->symsize())
347       // C does not have a concept of ODR, so we only need to do this
348       // on C++ symbols.  These have (mangled) names starting with _Z.
349       && to->name()[0] == '_' && to->name()[1] == 'Z')
350     {
351       Symbol_location fromloc
352           = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
353       Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
354 				static_cast<off_t>(to->value()) };
355       this->candidate_odr_violations_[to->name()].insert(fromloc);
356       this->candidate_odr_violations_[to->name()].insert(toloc);
357     }
358 
359   // Plugins don't provide a symbol type, so adopt the existing type
360   // if the FROM symbol is from a plugin.
361   elfcpp::STT fromtype = (object->pluginobj() != NULL
362 			  ? to->type()
363 			  : sym.get_st_type());
364   unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
365                                          object->is_dynamic(),
366 					 st_shndx, is_ordinary,
367                                          fromtype);
368 
369   bool adjust_common_sizes;
370   bool adjust_dyndef;
371   typename Sized_symbol<size>::Size_type tosize = to->symsize();
372   if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
373 				    object, &adjust_common_sizes,
374 				    &adjust_dyndef))
375     {
376       elfcpp::STB tobinding = to->binding();
377       typename Sized_symbol<size>::Value_type tovalue = to->value();
378       this->override(to, sym, st_shndx, is_ordinary, object, version);
379       if (adjust_common_sizes)
380 	{
381 	  if (tosize > to->symsize())
382 	    to->set_symsize(tosize);
383 	  if (tovalue > to->value())
384 	    to->set_value(tovalue);
385 	}
386       if (adjust_dyndef)
387 	{
388 	  // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
389 	  // Remember which kind of UNDEF it was for future reference.
390 	  to->set_undef_binding(tobinding);
391 	}
392     }
393   else
394     {
395       if (adjust_common_sizes)
396 	{
397 	  if (sym.get_st_size() > tosize)
398 	    to->set_symsize(sym.get_st_size());
399 	  if (sym.get_st_value() > to->value())
400 	    to->set_value(sym.get_st_value());
401 	}
402       if (adjust_dyndef)
403 	{
404 	  // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
405 	  // Remember which kind of UNDEF it was.
406 	  to->set_undef_binding(sym.get_st_bind());
407 	}
408       // The ELF ABI says that even for a reference to a symbol we
409       // merge the visibility.
410       to->override_visibility(sym.get_st_visibility());
411     }
412 
413   if (adjust_common_sizes && parameters->options().warn_common())
414     {
415       if (tosize > sym.get_st_size())
416 	Symbol_table::report_resolve_problem(false,
417 					     _("common of '%s' overriding "
418 					       "smaller common"),
419 					     to, OBJECT, object);
420       else if (tosize < sym.get_st_size())
421 	Symbol_table::report_resolve_problem(false,
422 					     _("common of '%s' overidden by "
423 					       "larger common"),
424 					     to, OBJECT, object);
425       else
426 	Symbol_table::report_resolve_problem(false,
427 					     _("multiple common of '%s'"),
428 					     to, OBJECT, object);
429     }
430 }
431 
432 // Handle the core of symbol resolution.  This is called with the
433 // existing symbol, TO, and a bitflag describing the new symbol.  This
434 // returns true if we should override the existing symbol with the new
435 // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to
436 // true if we should set the symbol size to the maximum of the TO and
437 // FROM sizes.  It handles error conditions.
438 
439 bool
should_override(const Symbol * to,unsigned int frombits,elfcpp::STT fromtype,Defined defined,Object * object,bool * adjust_common_sizes,bool * adjust_dyndef)440 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
441 			      elfcpp::STT fromtype, Defined defined,
442 			      Object* object, bool* adjust_common_sizes,
443 			      bool* adjust_dyndef)
444 {
445   *adjust_common_sizes = false;
446   *adjust_dyndef = false;
447 
448   unsigned int tobits;
449   if (to->source() == Symbol::IS_UNDEFINED)
450     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
451 			    to->type());
452   else if (to->source() != Symbol::FROM_OBJECT)
453     tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
454 			    to->type());
455   else
456     {
457       bool is_ordinary;
458       unsigned int shndx = to->shndx(&is_ordinary);
459       tobits = symbol_to_bits(to->binding(),
460 			      to->object()->is_dynamic(),
461 			      shndx,
462 			      is_ordinary,
463 			      to->type());
464     }
465 
466   if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
467       && !to->is_placeholder())
468     Symbol_table::report_resolve_problem(true,
469 					 _("symbol '%s' used as both __thread "
470 					   "and non-__thread"),
471 					 to, defined, object);
472 
473   // We use a giant switch table for symbol resolution.  This code is
474   // unwieldy, but: 1) it is efficient; 2) we definitely handle all
475   // cases; 3) it is easy to change the handling of a particular case.
476   // The alternative would be a series of conditionals, but it is easy
477   // to get the ordering wrong.  This could also be done as a table,
478   // but that is no easier to understand than this large switch
479   // statement.
480 
481   // These are the values generated by the bit codes.
482   enum
483   {
484     DEF =              global_flag | regular_flag | def_flag,
485     WEAK_DEF =         weak_flag   | regular_flag | def_flag,
486     DYN_DEF =          global_flag | dynamic_flag | def_flag,
487     DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag,
488     UNDEF =            global_flag | regular_flag | undef_flag,
489     WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag,
490     DYN_UNDEF =        global_flag | dynamic_flag | undef_flag,
491     DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag,
492     COMMON =           global_flag | regular_flag | common_flag,
493     WEAK_COMMON =      weak_flag   | regular_flag | common_flag,
494     DYN_COMMON =       global_flag | dynamic_flag | common_flag,
495     DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag
496   };
497 
498   switch (tobits * 16 + frombits)
499     {
500     case DEF * 16 + DEF:
501       // Two definitions of the same symbol.
502 
503       // If either symbol is defined by an object included using
504       // --just-symbols, then don't warn.  This is for compatibility
505       // with the GNU linker.  FIXME: This is a hack.
506       if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
507           || (object != NULL && object->just_symbols()))
508         return false;
509 
510       if (!parameters->options().muldefs())
511 	Symbol_table::report_resolve_problem(true,
512 					     _("multiple definition of '%s'"),
513 					     to, defined, object);
514       return false;
515 
516     case WEAK_DEF * 16 + DEF:
517       // We've seen a weak definition, and now we see a strong
518       // definition.  In the original SVR4 linker, this was treated as
519       // a multiple definition error.  In the Solaris linker and the
520       // GNU linker, a weak definition followed by a regular
521       // definition causes the weak definition to be overridden.  We
522       // are currently compatible with the GNU linker.  In the future
523       // we should add a target specific option to change this.
524       // FIXME.
525       return true;
526 
527     case DYN_DEF * 16 + DEF:
528     case DYN_WEAK_DEF * 16 + DEF:
529       // We've seen a definition in a dynamic object, and now we see a
530       // definition in a regular object.  The definition in the
531       // regular object overrides the definition in the dynamic
532       // object.
533       return true;
534 
535     case UNDEF * 16 + DEF:
536     case WEAK_UNDEF * 16 + DEF:
537     case DYN_UNDEF * 16 + DEF:
538     case DYN_WEAK_UNDEF * 16 + DEF:
539       // We've seen an undefined reference, and now we see a
540       // definition.  We use the definition.
541       return true;
542 
543     case COMMON * 16 + DEF:
544     case WEAK_COMMON * 16 + DEF:
545     case DYN_COMMON * 16 + DEF:
546     case DYN_WEAK_COMMON * 16 + DEF:
547       // We've seen a common symbol and now we see a definition.  The
548       // definition overrides.
549       if (parameters->options().warn_common())
550 	Symbol_table::report_resolve_problem(false,
551 					     _("definition of '%s' overriding "
552 					       "common"),
553 					     to, defined, object);
554       return true;
555 
556     case DEF * 16 + WEAK_DEF:
557     case WEAK_DEF * 16 + WEAK_DEF:
558       // We've seen a definition and now we see a weak definition.  We
559       // ignore the new weak definition.
560       return false;
561 
562     case DYN_DEF * 16 + WEAK_DEF:
563     case DYN_WEAK_DEF * 16 + WEAK_DEF:
564       // We've seen a dynamic definition and now we see a regular weak
565       // definition.  The regular weak definition overrides.
566       return true;
567 
568     case UNDEF * 16 + WEAK_DEF:
569     case WEAK_UNDEF * 16 + WEAK_DEF:
570     case DYN_UNDEF * 16 + WEAK_DEF:
571     case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
572       // A weak definition of a currently undefined symbol.
573       return true;
574 
575     case COMMON * 16 + WEAK_DEF:
576     case WEAK_COMMON * 16 + WEAK_DEF:
577       // A weak definition does not override a common definition.
578       return false;
579 
580     case DYN_COMMON * 16 + WEAK_DEF:
581     case DYN_WEAK_COMMON * 16 + WEAK_DEF:
582       // A weak definition does override a definition in a dynamic
583       // object.
584       if (parameters->options().warn_common())
585 	Symbol_table::report_resolve_problem(false,
586 					     _("definition of '%s' overriding "
587 					       "dynamic common definition"),
588 					     to, defined, object);
589       return true;
590 
591     case DEF * 16 + DYN_DEF:
592     case WEAK_DEF * 16 + DYN_DEF:
593     case DYN_DEF * 16 + DYN_DEF:
594     case DYN_WEAK_DEF * 16 + DYN_DEF:
595       // Ignore a dynamic definition if we already have a definition.
596       return false;
597 
598     case UNDEF * 16 + DYN_DEF:
599     case DYN_UNDEF * 16 + DYN_DEF:
600     case DYN_WEAK_UNDEF * 16 + DYN_DEF:
601       // Use a dynamic definition if we have a reference.
602       return true;
603 
604     case WEAK_UNDEF * 16 + DYN_DEF:
605       // When overriding a weak undef by a dynamic definition,
606       // we need to remember that the original undef was weak.
607       *adjust_dyndef = true;
608       return true;
609 
610     case COMMON * 16 + DYN_DEF:
611     case WEAK_COMMON * 16 + DYN_DEF:
612     case DYN_COMMON * 16 + DYN_DEF:
613     case DYN_WEAK_COMMON * 16 + DYN_DEF:
614       // Ignore a dynamic definition if we already have a common
615       // definition.
616       return false;
617 
618     case DEF * 16 + DYN_WEAK_DEF:
619     case WEAK_DEF * 16 + DYN_WEAK_DEF:
620     case DYN_DEF * 16 + DYN_WEAK_DEF:
621     case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
622       // Ignore a weak dynamic definition if we already have a
623       // definition.
624       return false;
625 
626     case UNDEF * 16 + DYN_WEAK_DEF:
627       // When overriding an undef by a dynamic weak definition,
628       // we need to remember that the original undef was not weak.
629       *adjust_dyndef = true;
630       return true;
631 
632     case DYN_UNDEF * 16 + DYN_WEAK_DEF:
633     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
634       // Use a weak dynamic definition if we have a reference.
635       return true;
636 
637     case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
638       // When overriding a weak undef by a dynamic definition,
639       // we need to remember that the original undef was weak.
640       *adjust_dyndef = true;
641       return true;
642 
643     case COMMON * 16 + DYN_WEAK_DEF:
644     case WEAK_COMMON * 16 + DYN_WEAK_DEF:
645     case DYN_COMMON * 16 + DYN_WEAK_DEF:
646     case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
647       // Ignore a weak dynamic definition if we already have a common
648       // definition.
649       return false;
650 
651     case DEF * 16 + UNDEF:
652     case WEAK_DEF * 16 + UNDEF:
653     case UNDEF * 16 + UNDEF:
654       // A new undefined reference tells us nothing.
655       return false;
656 
657     case DYN_DEF * 16 + UNDEF:
658     case DYN_WEAK_DEF * 16 + UNDEF:
659       // For a dynamic def, we need to remember which kind of undef we see.
660       *adjust_dyndef = true;
661       return false;
662 
663     case WEAK_UNDEF * 16 + UNDEF:
664     case DYN_UNDEF * 16 + UNDEF:
665     case DYN_WEAK_UNDEF * 16 + UNDEF:
666       // A strong undef overrides a dynamic or weak undef.
667       return true;
668 
669     case COMMON * 16 + UNDEF:
670     case WEAK_COMMON * 16 + UNDEF:
671     case DYN_COMMON * 16 + UNDEF:
672     case DYN_WEAK_COMMON * 16 + UNDEF:
673       // A new undefined reference tells us nothing.
674       return false;
675 
676     case DEF * 16 + WEAK_UNDEF:
677     case WEAK_DEF * 16 + WEAK_UNDEF:
678     case UNDEF * 16 + WEAK_UNDEF:
679     case WEAK_UNDEF * 16 + WEAK_UNDEF:
680     case DYN_UNDEF * 16 + WEAK_UNDEF:
681     case COMMON * 16 + WEAK_UNDEF:
682     case WEAK_COMMON * 16 + WEAK_UNDEF:
683     case DYN_COMMON * 16 + WEAK_UNDEF:
684     case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
685       // A new weak undefined reference tells us nothing unless the
686       // exisiting symbol is a dynamic weak reference.
687       return false;
688 
689     case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
690       // A new weak reference overrides an existing dynamic weak reference.
691       // This is necessary because a dynamic weak reference remembers
692       // the old binding, which may not be weak.  If we keeps the existing
693       // dynamic weak reference, the weakness may be dropped in the output.
694       return true;
695 
696     case DYN_DEF * 16 + WEAK_UNDEF:
697     case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
698       // For a dynamic def, we need to remember which kind of undef we see.
699       *adjust_dyndef = true;
700       return false;
701 
702     case DEF * 16 + DYN_UNDEF:
703     case WEAK_DEF * 16 + DYN_UNDEF:
704     case DYN_DEF * 16 + DYN_UNDEF:
705     case DYN_WEAK_DEF * 16 + DYN_UNDEF:
706     case UNDEF * 16 + DYN_UNDEF:
707     case WEAK_UNDEF * 16 + DYN_UNDEF:
708     case DYN_UNDEF * 16 + DYN_UNDEF:
709     case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
710     case COMMON * 16 + DYN_UNDEF:
711     case WEAK_COMMON * 16 + DYN_UNDEF:
712     case DYN_COMMON * 16 + DYN_UNDEF:
713     case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
714       // A new dynamic undefined reference tells us nothing.
715       return false;
716 
717     case DEF * 16 + DYN_WEAK_UNDEF:
718     case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
719     case DYN_DEF * 16 + DYN_WEAK_UNDEF:
720     case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
721     case UNDEF * 16 + DYN_WEAK_UNDEF:
722     case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
723     case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
724     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
725     case COMMON * 16 + DYN_WEAK_UNDEF:
726     case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
727     case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
728     case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
729       // A new weak dynamic undefined reference tells us nothing.
730       return false;
731 
732     case DEF * 16 + COMMON:
733       // A common symbol does not override a definition.
734       if (parameters->options().warn_common())
735 	Symbol_table::report_resolve_problem(false,
736 					     _("common '%s' overridden by "
737 					       "previous definition"),
738 					     to, defined, object);
739       return false;
740 
741     case WEAK_DEF * 16 + COMMON:
742     case DYN_DEF * 16 + COMMON:
743     case DYN_WEAK_DEF * 16 + COMMON:
744       // A common symbol does override a weak definition or a dynamic
745       // definition.
746       return true;
747 
748     case UNDEF * 16 + COMMON:
749     case WEAK_UNDEF * 16 + COMMON:
750     case DYN_UNDEF * 16 + COMMON:
751     case DYN_WEAK_UNDEF * 16 + COMMON:
752       // A common symbol is a definition for a reference.
753       return true;
754 
755     case COMMON * 16 + COMMON:
756       // Set the size to the maximum.
757       *adjust_common_sizes = true;
758       return false;
759 
760     case WEAK_COMMON * 16 + COMMON:
761       // I'm not sure just what a weak common symbol means, but
762       // presumably it can be overridden by a regular common symbol.
763       return true;
764 
765     case DYN_COMMON * 16 + COMMON:
766     case DYN_WEAK_COMMON * 16 + COMMON:
767       // Use the real common symbol, but adjust the size if necessary.
768       *adjust_common_sizes = true;
769       return true;
770 
771     case DEF * 16 + WEAK_COMMON:
772     case WEAK_DEF * 16 + WEAK_COMMON:
773     case DYN_DEF * 16 + WEAK_COMMON:
774     case DYN_WEAK_DEF * 16 + WEAK_COMMON:
775       // Whatever a weak common symbol is, it won't override a
776       // definition.
777       return false;
778 
779     case UNDEF * 16 + WEAK_COMMON:
780     case WEAK_UNDEF * 16 + WEAK_COMMON:
781     case DYN_UNDEF * 16 + WEAK_COMMON:
782     case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
783       // A weak common symbol is better than an undefined symbol.
784       return true;
785 
786     case COMMON * 16 + WEAK_COMMON:
787     case WEAK_COMMON * 16 + WEAK_COMMON:
788     case DYN_COMMON * 16 + WEAK_COMMON:
789     case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
790       // Ignore a weak common symbol in the presence of a real common
791       // symbol.
792       return false;
793 
794     case DEF * 16 + DYN_COMMON:
795     case WEAK_DEF * 16 + DYN_COMMON:
796     case DYN_DEF * 16 + DYN_COMMON:
797     case DYN_WEAK_DEF * 16 + DYN_COMMON:
798       // Ignore a dynamic common symbol in the presence of a
799       // definition.
800       return false;
801 
802     case UNDEF * 16 + DYN_COMMON:
803     case WEAK_UNDEF * 16 + DYN_COMMON:
804     case DYN_UNDEF * 16 + DYN_COMMON:
805     case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
806       // A dynamic common symbol is a definition of sorts.
807       return true;
808 
809     case COMMON * 16 + DYN_COMMON:
810     case WEAK_COMMON * 16 + DYN_COMMON:
811     case DYN_COMMON * 16 + DYN_COMMON:
812     case DYN_WEAK_COMMON * 16 + DYN_COMMON:
813       // Set the size to the maximum.
814       *adjust_common_sizes = true;
815       return false;
816 
817     case DEF * 16 + DYN_WEAK_COMMON:
818     case WEAK_DEF * 16 + DYN_WEAK_COMMON:
819     case DYN_DEF * 16 + DYN_WEAK_COMMON:
820     case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
821       // A common symbol is ignored in the face of a definition.
822       return false;
823 
824     case UNDEF * 16 + DYN_WEAK_COMMON:
825     case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
826     case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
827     case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
828       // I guess a weak common symbol is better than a definition.
829       return true;
830 
831     case COMMON * 16 + DYN_WEAK_COMMON:
832     case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
833     case DYN_COMMON * 16 + DYN_WEAK_COMMON:
834     case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
835       // Set the size to the maximum.
836       *adjust_common_sizes = true;
837       return false;
838 
839     default:
840       gold_unreachable();
841     }
842 }
843 
844 // Issue an error or warning due to symbol resolution.  IS_ERROR
845 // indicates an error rather than a warning.  MSG is the error
846 // message; it is expected to have a %s for the symbol name.  TO is
847 // the existing symbol.  DEFINED/OBJECT is where the new symbol was
848 // found.
849 
850 // FIXME: We should have better location information here.  When the
851 // symbol is defined, we should be able to pull the location from the
852 // debug info if there is any.
853 
854 void
report_resolve_problem(bool is_error,const char * msg,const Symbol * to,Defined defined,Object * object)855 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
856 				     const Symbol* to, Defined defined,
857 				     Object* object)
858 {
859   std::string demangled(to->demangled_name());
860   size_t len = strlen(msg) + demangled.length() + 10;
861   char* buf = new char[len];
862   snprintf(buf, len, msg, demangled.c_str());
863 
864   const char* objname;
865   switch (defined)
866     {
867     case OBJECT:
868       objname = object->name().c_str();
869       break;
870     case COPY:
871       objname = _("COPY reloc");
872       break;
873     case DEFSYM:
874     case UNDEFINED:
875       objname = _("command line");
876       break;
877     case SCRIPT:
878       objname = _("linker script");
879       break;
880     case PREDEFINED:
881     case INCREMENTAL_BASE:
882       objname = _("linker defined");
883       break;
884     default:
885       gold_unreachable();
886     }
887 
888   if (is_error)
889     gold_error("%s: %s", objname, buf);
890   else
891     gold_warning("%s: %s", objname, buf);
892 
893   delete[] buf;
894 
895   if (to->source() == Symbol::FROM_OBJECT)
896     objname = to->object()->name().c_str();
897   else
898     objname = _("command line");
899   gold_info("%s: %s: previous definition here", program_name, objname);
900 }
901 
902 // A special case of should_override which is only called for a strong
903 // defined symbol from a regular object file.  This is used when
904 // defining special symbols.
905 
906 bool
should_override_with_special(const Symbol * to,elfcpp::STT fromtype,Defined defined)907 Symbol_table::should_override_with_special(const Symbol* to,
908 					   elfcpp::STT fromtype,
909 					   Defined defined)
910 {
911   bool adjust_common_sizes;
912   bool adjust_dyn_def;
913   unsigned int frombits = global_flag | regular_flag | def_flag;
914   bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
915 					   NULL, &adjust_common_sizes,
916 					   &adjust_dyn_def);
917   gold_assert(!adjust_common_sizes && !adjust_dyn_def);
918   return ret;
919 }
920 
921 // Override symbol base with a special symbol.
922 
923 void
override_base_with_special(const Symbol * from)924 Symbol::override_base_with_special(const Symbol* from)
925 {
926   bool same_name = this->name_ == from->name_;
927   gold_assert(same_name || this->has_alias());
928 
929   // If we are overriding an undef, remember the original binding.
930   if (this->is_undefined())
931     this->set_undef_binding(this->binding_);
932 
933   this->source_ = from->source_;
934   switch (from->source_)
935     {
936     case FROM_OBJECT:
937       this->u_.from_object = from->u_.from_object;
938       break;
939     case IN_OUTPUT_DATA:
940       this->u_.in_output_data = from->u_.in_output_data;
941       break;
942     case IN_OUTPUT_SEGMENT:
943       this->u_.in_output_segment = from->u_.in_output_segment;
944       break;
945     case IS_CONSTANT:
946     case IS_UNDEFINED:
947       break;
948     default:
949       gold_unreachable();
950       break;
951     }
952 
953   if (same_name)
954     {
955       // When overriding a versioned symbol with a special symbol, we
956       // may be changing the version.  This will happen if we see a
957       // special symbol such as "_end" defined in a shared object with
958       // one version (from a version script), but we want to define it
959       // here with a different version (from a different version
960       // script).
961       this->version_ = from->version_;
962     }
963   this->type_ = from->type_;
964   this->binding_ = from->binding_;
965   this->override_visibility(from->visibility_);
966   this->nonvis_ = from->nonvis_;
967 
968   // Special symbols are always considered to be regular symbols.
969   this->in_reg_ = true;
970 
971   if (from->needs_dynsym_entry_)
972     this->needs_dynsym_entry_ = true;
973   if (from->needs_dynsym_value_)
974     this->needs_dynsym_value_ = true;
975 
976   this->is_predefined_ = from->is_predefined_;
977 
978   // We shouldn't see these flags.  If we do, we need to handle them
979   // somehow.
980   gold_assert(!from->is_forwarder_);
981   gold_assert(!from->has_plt_offset());
982   gold_assert(!from->has_warning_);
983   gold_assert(!from->is_copied_from_dynobj_);
984   gold_assert(!from->is_forced_local_);
985 }
986 
987 // Override a symbol with a special symbol.
988 
989 template<int size>
990 void
override_with_special(const Sized_symbol<size> * from)991 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
992 {
993   this->override_base_with_special(from);
994   this->value_ = from->value_;
995   this->symsize_ = from->symsize_;
996 }
997 
998 // Override TOSYM with the special symbol FROMSYM.  This handles all
999 // aliases of TOSYM.
1000 
1001 template<int size>
1002 void
override_with_special(Sized_symbol<size> * tosym,const Sized_symbol<size> * fromsym)1003 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1004 				    const Sized_symbol<size>* fromsym)
1005 {
1006   tosym->override_with_special(fromsym);
1007   if (tosym->has_alias())
1008     {
1009       Symbol* sym = this->weak_aliases_[tosym];
1010       gold_assert(sym != NULL);
1011       Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1012       do
1013 	{
1014 	  ssym->override_with_special(fromsym);
1015 	  sym = this->weak_aliases_[ssym];
1016 	  gold_assert(sym != NULL);
1017 	  ssym = this->get_sized_symbol<size>(sym);
1018 	}
1019       while (ssym != tosym);
1020     }
1021   if (tosym->binding() == elfcpp::STB_LOCAL
1022       || ((tosym->visibility() == elfcpp::STV_HIDDEN
1023 	   || tosym->visibility() == elfcpp::STV_INTERNAL)
1024 	  && (tosym->binding() == elfcpp::STB_GLOBAL
1025 	      || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1026 	      || tosym->binding() == elfcpp::STB_WEAK)
1027 	  && !parameters->options().relocatable()))
1028     this->force_local(tosym);
1029 }
1030 
1031 // Instantiate the templates we need.  We could use the configure
1032 // script to restrict this to only the ones needed for implemented
1033 // targets.
1034 
1035 // We have to instantiate both big and little endian versions because
1036 // these are used by other templates that depends on size only.
1037 
1038 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1039 template
1040 void
1041 Symbol_table::resolve<32, false>(
1042     Sized_symbol<32>* to,
1043     const elfcpp::Sym<32, false>& sym,
1044     unsigned int st_shndx,
1045     bool is_ordinary,
1046     unsigned int orig_st_shndx,
1047     Object* object,
1048     const char* version);
1049 
1050 template
1051 void
1052 Symbol_table::resolve<32, true>(
1053     Sized_symbol<32>* to,
1054     const elfcpp::Sym<32, true>& sym,
1055     unsigned int st_shndx,
1056     bool is_ordinary,
1057     unsigned int orig_st_shndx,
1058     Object* object,
1059     const char* version);
1060 #endif
1061 
1062 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1063 template
1064 void
1065 Symbol_table::resolve<64, false>(
1066     Sized_symbol<64>* to,
1067     const elfcpp::Sym<64, false>& sym,
1068     unsigned int st_shndx,
1069     bool is_ordinary,
1070     unsigned int orig_st_shndx,
1071     Object* object,
1072     const char* version);
1073 
1074 template
1075 void
1076 Symbol_table::resolve<64, true>(
1077     Sized_symbol<64>* to,
1078     const elfcpp::Sym<64, true>& sym,
1079     unsigned int st_shndx,
1080     bool is_ordinary,
1081     unsigned int orig_st_shndx,
1082     Object* object,
1083     const char* version);
1084 #endif
1085 
1086 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1087 template
1088 void
1089 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1090 					const Sized_symbol<32>*);
1091 #endif
1092 
1093 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1094 template
1095 void
1096 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1097 					const Sized_symbol<64>*);
1098 #endif
1099 
1100 } // End namespace gold.
1101