1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 //   * Redistributions of source code must retain the above copyright notice,
20 //     this list of conditions and the following disclaimer.
21 //
22 //   * Redistributions in binary form must reproduce the above copyright notice,
23 //     this list of conditions and the following disclaimer in the documentation
24 //     and/or other materials provided with the distribution.
25 //
26 //   * The name of the copyright holders may not be used to endorse or promote products
27 //     derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41 
42 #include "precomp.hpp"
43 #include <vector>
44 
45 /////////////////////////////////////////////////////////////////////////////////////////
46 // Default LSD parameters
47 // SIGMA_SCALE 0.6    - Sigma for Gaussian filter is computed as sigma = sigma_scale/scale.
48 // QUANT       2.0    - Bound to the quantization error on the gradient norm.
49 // ANG_TH      22.5   - Gradient angle tolerance in degrees.
50 // LOG_EPS     0.0    - Detection threshold: -log10(NFA) > log_eps
51 // DENSITY_TH  0.7    - Minimal density of region points in rectangle.
52 // N_BINS      1024   - Number of bins in pseudo-ordering of gradient modulus.
53 
54 #define M_3_2_PI    (3 * CV_PI) / 2   // 3/2 pi
55 #define M_2__PI     (2 * CV_PI)         // 2 pi
56 
57 #ifndef M_LN10
58 #define M_LN10      2.30258509299404568402
59 #endif
60 
61 #define NOTDEF      double(-1024.0) // Label for pixels with undefined gradient.
62 
63 #define NOTUSED     0   // Label for pixels not used in yet.
64 #define USED        1   // Label for pixels already used in detection.
65 
66 #define RELATIVE_ERROR_FACTOR 100.0
67 
68 const double DEG_TO_RADS = CV_PI / 180;
69 
70 #define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))
71 
72 struct edge
73 {
74     cv::Point p;
75     bool taken;
76 };
77 
78 /////////////////////////////////////////////////////////////////////////////////////////
79 
distSq(const double x1,const double y1,const double x2,const double y2)80 inline double distSq(const double x1, const double y1,
81                      const double x2, const double y2)
82 {
83     return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1);
84 }
85 
dist(const double x1,const double y1,const double x2,const double y2)86 inline double dist(const double x1, const double y1,
87                    const double x2, const double y2)
88 {
89     return sqrt(distSq(x1, y1, x2, y2));
90 }
91 
92 // Signed angle difference
angle_diff_signed(const double & a,const double & b)93 inline double angle_diff_signed(const double& a, const double& b)
94 {
95     double diff = a - b;
96     while(diff <= -CV_PI) diff += M_2__PI;
97     while(diff >   CV_PI) diff -= M_2__PI;
98     return diff;
99 }
100 
101 // Absolute value angle difference
angle_diff(const double & a,const double & b)102 inline double angle_diff(const double& a, const double& b)
103 {
104     return std::fabs(angle_diff_signed(a, b));
105 }
106 
107 // Compare doubles by relative error.
double_equal(const double & a,const double & b)108 inline bool double_equal(const double& a, const double& b)
109 {
110     // trivial case
111     if(a == b) return true;
112 
113     double abs_diff = fabs(a - b);
114     double aa = fabs(a);
115     double bb = fabs(b);
116     double abs_max = (aa > bb)? aa : bb;
117 
118     if(abs_max < DBL_MIN) abs_max = DBL_MIN;
119 
120     return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
121 }
122 
AsmallerB_XoverY(const edge & a,const edge & b)123 inline bool AsmallerB_XoverY(const edge& a, const edge& b)
124 {
125     if (a.p.x == b.p.x) return a.p.y < b.p.y;
126     else return a.p.x < b.p.x;
127 }
128 
129 /**
130  *   Computes the natural logarithm of the absolute value of
131  *   the gamma function of x using Windschitl method.
132  *   See http://www.rskey.org/gamma.htm
133  */
log_gamma_windschitl(const double & x)134 inline double log_gamma_windschitl(const double& x)
135 {
136     return 0.918938533204673 + (x-0.5)*log(x) - x
137          + 0.5*x*log(x*sinh(1/x) + 1/(810.0*pow(x, 6.0)));
138 }
139 
140 /**
141  *   Computes the natural logarithm of the absolute value of
142  *   the gamma function of x using the Lanczos approximation.
143  *   See http://www.rskey.org/gamma.htm
144  */
log_gamma_lanczos(const double & x)145 inline double log_gamma_lanczos(const double& x)
146 {
147     static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
148                          8687.24529705, 1168.92649479, 83.8676043424,
149                          2.50662827511 };
150     double a = (x + 0.5) * log(x + 5.5) - (x + 5.5);
151     double b = 0;
152     for(int n = 0; n < 7; ++n)
153     {
154         a -= log(x + double(n));
155         b += q[n] * pow(x, double(n));
156     }
157     return a + log(b);
158 }
159 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
160 
161 namespace cv{
162 
163 class LineSegmentDetectorImpl : public LineSegmentDetector
164 {
165 public:
166 
167 /**
168  * Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
169  *
170  * @param _refine       How should the lines found be refined?
171  *                      LSD_REFINE_NONE - No refinement applied.
172  *                      LSD_REFINE_STD  - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
173  *                      LSD_REFINE_ADV  - Advanced refinement. Number of false alarms is calculated,
174  *                                    lines are refined through increase of precision, decrement in size, etc.
175  * @param _scale        The scale of the image that will be used to find the lines. Range (0..1].
176  * @param _sigma_scale  Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
177  * @param _quant        Bound to the quantization error on the gradient norm.
178  * @param _ang_th       Gradient angle tolerance in degrees.
179  * @param _log_eps      Detection threshold: -log10(NFA) > _log_eps
180  * @param _density_th   Minimal density of aligned region points in rectangle.
181  * @param _n_bins       Number of bins in pseudo-ordering of gradient modulus.
182  */
183     LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
184         double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
185         double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
186 
187 /**
188  * Detect lines in the input image.
189  *
190  * @param _image    A grayscale(CV_8UC1) input image.
191  *                  If only a roi needs to be selected, use
192  *                  lsd_ptr->detect(image(roi), ..., lines);
193  *                  lines += Scalar(roi.x, roi.y, roi.x, roi.y);
194  * @param _lines    Return: A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line.
195  *                          Where Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
196  *                          Returned lines are strictly oriented depending on the gradient.
197  * @param width     Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
198  * @param prec      Return: Vector of precisions with which the lines are found.
199  * @param nfa       Return: Vector containing number of false alarms in the line region, with precision of 10%.
200  *                          The bigger the value, logarithmically better the detection.
201  *                              * -1 corresponds to 10 mean false alarms
202  *                              * 0 corresponds to 1 mean false alarm
203  *                              * 1 corresponds to 0.1 mean false alarms
204  *                          This vector will be calculated _only_ when the objects type is REFINE_ADV
205  */
206     void detect(InputArray _image, OutputArray _lines,
207                 OutputArray width = noArray(), OutputArray prec = noArray(),
208                 OutputArray nfa = noArray());
209 
210 /**
211  * Draw lines on the given canvas.
212  *
213  * @param image     The image, where lines will be drawn.
214  *                  Should have the size of the image, where the lines were found
215  * @param lines     The lines that need to be drawn
216  */
217     void drawSegments(InputOutputArray _image, InputArray lines);
218 
219 /**
220  * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
221  *
222  * @param size      The size of the image, where lines1 and lines2 were found.
223  * @param lines1    The first lines that need to be drawn. Color - Blue.
224  * @param lines2    The second lines that need to be drawn. Color - Red.
225  * @param image     An optional image, where lines will be drawn.
226  *                  Should have the size of the image, where the lines were found
227  * @return          The number of mismatching pixels between lines1 and lines2.
228  */
229     int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray());
230 
231 private:
232     Mat image;
233     Mat_<double> scaled_image;
234     double *scaled_image_data;
235     Mat_<double> angles;     // in rads
236     double *angles_data;
237     Mat_<double> modgrad;
238     double *modgrad_data;
239     Mat_<uchar> used;
240 
241     int img_width;
242     int img_height;
243     double LOG_NT;
244 
245     bool w_needed;
246     bool p_needed;
247     bool n_needed;
248 
249     const double SCALE;
250     const int doRefine;
251     const double SIGMA_SCALE;
252     const double QUANT;
253     const double ANG_TH;
254     const double LOG_EPS;
255     const double DENSITY_TH;
256     const int N_BINS;
257 
258     struct RegionPoint {
259         int x;
260         int y;
261         uchar* used;
262         double angle;
263         double modgrad;
264     };
265 
266 
267     struct coorlist
268     {
269         Point2i p;
270         struct coorlist* next;
271     };
272 
273     struct rect
274     {
275         double x1, y1, x2, y2;    // first and second point of the line segment
276         double width;             // rectangle width
277         double x, y;              // center of the rectangle
278         double theta;             // angle
279         double dx,dy;             // (dx,dy) is vector oriented as the line segment
280         double prec;              // tolerance angle
281         double p;                 // probability of a point with angle within 'prec'
282     };
283 
284     LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC
285 
286 /**
287  * Detect lines in the whole input image.
288  *
289  * @param lines         Return: A vector of Vec4f elements specifying the beginning and ending point of a line.
290  *                              Where Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
291  *                              Returned lines are strictly oriented depending on the gradient.
292  * @param widths        Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
293  * @param precisions    Return: Vector of precisions with which the lines are found.
294  * @param nfas          Return: Vector containing number of false alarms in the line region, with precision of 10%.
295  *                              The bigger the value, logarithmically better the detection.
296  *                                  * -1 corresponds to 10 mean false alarms
297  *                                  * 0 corresponds to 1 mean false alarm
298  *                                  * 1 corresponds to 0.1 mean false alarms
299  */
300     void flsd(std::vector<Vec4f>& lines,
301               std::vector<double>& widths, std::vector<double>& precisions,
302               std::vector<double>& nfas);
303 
304 /**
305  * Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
306  *
307  * @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF
308  * @param n_bins    The number of bins with which gradients are ordered by, using bucket sort.
309  * @param list      Return: Vector of coordinate points that are pseudo ordered by magnitude.
310  *                  Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
311  */
312     void ll_angle(const double& threshold, const unsigned int& n_bins, std::vector<coorlist>& list);
313 
314 /**
315  * Grow a region starting from point s with a defined precision,
316  * returning the containing points size and the angle of the gradients.
317  *
318  * @param s         Starting point for the region.
319  * @param reg       Return: Vector of points, that are part of the region
320  * @param reg_size  Return: The size of the region.
321  * @param reg_angle Return: The mean angle of the region.
322  * @param prec      The precision by which each region angle should be aligned to the mean.
323  */
324     void region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
325                      int& reg_size, double& reg_angle, const double& prec);
326 
327 /**
328  * Finds the bounding rotated rectangle of a region.
329  *
330  * @param reg       The region of points, from which the rectangle to be constructed from.
331  * @param reg_size  The number of points in the region.
332  * @param reg_angle The mean angle of the region.
333  * @param prec      The precision by which points were found.
334  * @param p         Probability of a point with angle within 'prec'.
335  * @param rec       Return: The generated rectangle.
336  */
337     void region2rect(const std::vector<RegionPoint>& reg, const int reg_size, const double reg_angle,
338                      const double prec, const double p, rect& rec) const;
339 
340 /**
341  * Compute region's angle as the principal inertia axis of the region.
342  * @return          Regions angle.
343  */
344     double get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
345                      const double& y, const double& reg_angle, const double& prec) const;
346 
347 /**
348  * An estimation of the angle tolerance is performed by the standard deviation of the angle at points
349  * near the region's starting point. Then, a new region is grown starting from the same point, but using the
350  * estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
351  * 'reduce_region_radius' is called to try to satisfy this condition.
352  */
353     bool refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
354                 const double prec, double p, rect& rec, const double& density_th);
355 
356 /**
357  * Reduce the region size, by elimination the points far from the starting point, until that leads to
358  * rectangle with the right density of region points or to discard the region if too small.
359  */
360     bool reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
361                 const double prec, double p, rect& rec, double density, const double& density_th);
362 
363 /**
364  * Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
365  * @return      The new NFA value.
366  */
367     double rect_improve(rect& rec) const;
368 
369 /**
370  * Calculates the number of correctly aligned points within the rectangle.
371  * @return      The new NFA value.
372  */
373     double rect_nfa(const rect& rec) const;
374 
375 /**
376  * Computes the NFA values based on the total number of points, points that agree.
377  * n, k, p are the binomial parameters.
378  * @return      The new NFA value.
379  */
380     double nfa(const int& n, const int& k, const double& p) const;
381 
382 /**
383  * Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
384  * @return      Whether the point is aligned.
385  */
386     bool isAligned(const int& address, const double& theta, const double& prec) const;
387 };
388 
389 /////////////////////////////////////////////////////////////////////////////////////////
390 
createLineSegmentDetector(int _refine,double _scale,double _sigma_scale,double _quant,double _ang_th,double _log_eps,double _density_th,int _n_bins)391 CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetector(
392         int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
393         double _log_eps, double _density_th, int _n_bins)
394 {
395     return makePtr<LineSegmentDetectorImpl>(
396             _refine, _scale, _sigma_scale, _quant, _ang_th,
397             _log_eps, _density_th, _n_bins);
398 }
399 
400 /////////////////////////////////////////////////////////////////////////////////////////
401 
LineSegmentDetectorImpl(int _refine,double _scale,double _sigma_scale,double _quant,double _ang_th,double _log_eps,double _density_th,int _n_bins)402 LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
403         double _ang_th, double _log_eps, double _density_th, int _n_bins)
404         :SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant),
405         ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins)
406 {
407     CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
408               _ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
409               _n_bins > 0);
410 }
411 
detect(InputArray _image,OutputArray _lines,OutputArray _width,OutputArray _prec,OutputArray _nfa)412 void LineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines,
413                 OutputArray _width, OutputArray _prec, OutputArray _nfa)
414 {
415     Mat_<double> img = _image.getMat();
416     CV_Assert(!img.empty() && img.channels() == 1);
417 
418     // Convert image to double
419     img.convertTo(image, CV_64FC1);
420 
421     std::vector<Vec4f> lines;
422     std::vector<double> w, p, n;
423     w_needed = _width.needed();
424     p_needed = _prec.needed();
425     if (doRefine < LSD_REFINE_ADV)
426         n_needed = false;
427     else
428         n_needed = _nfa.needed();
429 
430     flsd(lines, w, p, n);
431 
432     Mat(lines).copyTo(_lines);
433     if(w_needed) Mat(w).copyTo(_width);
434     if(p_needed) Mat(p).copyTo(_prec);
435     if(n_needed) Mat(n).copyTo(_nfa);
436 }
437 
flsd(std::vector<Vec4f> & lines,std::vector<double> & widths,std::vector<double> & precisions,std::vector<double> & nfas)438 void LineSegmentDetectorImpl::flsd(std::vector<Vec4f>& lines,
439     std::vector<double>& widths, std::vector<double>& precisions,
440     std::vector<double>& nfas)
441 {
442     // Angle tolerance
443     const double prec = CV_PI * ANG_TH / 180;
444     const double p = ANG_TH / 180;
445     const double rho = QUANT / sin(prec);    // gradient magnitude threshold
446 
447     std::vector<coorlist> list;
448     if(SCALE != 1)
449     {
450         Mat gaussian_img;
451         const double sigma = (SCALE < 1)?(SIGMA_SCALE / SCALE):(SIGMA_SCALE);
452         const double sprec = 3;
453         const unsigned int h =  (unsigned int)(ceil(sigma * sqrt(2 * sprec * log(10.0))));
454         Size ksize(1 + 2 * h, 1 + 2 * h); // kernel size
455         GaussianBlur(image, gaussian_img, ksize, sigma);
456         // Scale image to needed size
457         resize(gaussian_img, scaled_image, Size(), SCALE, SCALE);
458         ll_angle(rho, N_BINS, list);
459     }
460     else
461     {
462         scaled_image = image;
463         ll_angle(rho, N_BINS, list);
464     }
465 
466     LOG_NT = 5 * (log10(double(img_width)) + log10(double(img_height))) / 2 + log10(11.0);
467     const int min_reg_size = int(-LOG_NT/log10(p)); // minimal number of points in region that can give a meaningful event
468 
469     // // Initialize region only when needed
470     // Mat region = Mat::zeros(scaled_image.size(), CV_8UC1);
471     used = Mat_<uchar>::zeros(scaled_image.size()); // zeros = NOTUSED
472     std::vector<RegionPoint> reg(img_width * img_height);
473 
474     // Search for line segments
475     unsigned int ls_count = 0;
476     for(size_t i = 0, list_size = list.size(); i < list_size; ++i)
477     {
478         unsigned int adx = list[i].p.x + list[i].p.y * img_width;
479         if((used.ptr()[adx] == NOTUSED) && (angles_data[adx] != NOTDEF))
480         {
481             int reg_size;
482             double reg_angle;
483             region_grow(list[i].p, reg, reg_size, reg_angle, prec);
484 
485             // Ignore small regions
486             if(reg_size < min_reg_size) { continue; }
487 
488             // Construct rectangular approximation for the region
489             rect rec;
490             region2rect(reg, reg_size, reg_angle, prec, p, rec);
491 
492             double log_nfa = -1;
493             if(doRefine > LSD_REFINE_NONE)
494             {
495                 // At least REFINE_STANDARD lvl.
496                 if(!refine(reg, reg_size, reg_angle, prec, p, rec, DENSITY_TH)) { continue; }
497 
498                 if(doRefine >= LSD_REFINE_ADV)
499                 {
500                     // Compute NFA
501                     log_nfa = rect_improve(rec);
502                     if(log_nfa <= LOG_EPS) { continue; }
503                 }
504             }
505             // Found new line
506             ++ls_count;
507 
508             // Add the offset
509             rec.x1 += 0.5; rec.y1 += 0.5;
510             rec.x2 += 0.5; rec.y2 += 0.5;
511 
512             // scale the result values if a sub-sampling was performed
513             if(SCALE != 1)
514             {
515                 rec.x1 /= SCALE; rec.y1 /= SCALE;
516                 rec.x2 /= SCALE; rec.y2 /= SCALE;
517                 rec.width /= SCALE;
518             }
519 
520             //Store the relevant data
521             lines.push_back(Vec4f(float(rec.x1), float(rec.y1), float(rec.x2), float(rec.y2)));
522             if(w_needed) widths.push_back(rec.width);
523             if(p_needed) precisions.push_back(rec.p);
524             if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa);
525 
526 
527             // //Add the linesID to the region on the image
528             // for(unsigned int el = 0; el < reg_size; el++)
529             // {
530             //     region.data[reg[i].x + reg[i].y * width] = ls_count;
531             // }
532         }
533     }
534 }
535 
ll_angle(const double & threshold,const unsigned int & n_bins,std::vector<coorlist> & list)536 void LineSegmentDetectorImpl::ll_angle(const double& threshold,
537                                    const unsigned int& n_bins,
538                                    std::vector<coorlist>& list)
539 {
540     //Initialize data
541     angles = Mat_<double>(scaled_image.size());
542     modgrad = Mat_<double>(scaled_image.size());
543 
544     angles_data = angles.ptr<double>(0);
545     modgrad_data = modgrad.ptr<double>(0);
546     scaled_image_data = scaled_image.ptr<double>(0);
547 
548     img_width = scaled_image.cols;
549     img_height = scaled_image.rows;
550 
551     // Undefined the down and right boundaries
552     angles.row(img_height - 1).setTo(NOTDEF);
553     angles.col(img_width - 1).setTo(NOTDEF);
554 
555     // Computing gradient for remaining pixels
556     CV_Assert(scaled_image.isContinuous() &&
557               modgrad.isContinuous() &&
558               angles.isContinuous());   // Accessing image data linearly
559 
560     double max_grad = -1;
561     for(int y = 0; y < img_height - 1; ++y)
562     {
563         for(int addr = y * img_width, addr_end = addr + img_width - 1; addr < addr_end; ++addr)
564         {
565             double DA = scaled_image_data[addr + img_width + 1] - scaled_image_data[addr];
566             double BC = scaled_image_data[addr + 1] - scaled_image_data[addr + img_width];
567             double gx = DA + BC;    // gradient x component
568             double gy = DA - BC;    // gradient y component
569             double norm = std::sqrt((gx * gx + gy * gy) / 4); // gradient norm
570 
571             modgrad_data[addr] = norm;    // store gradient
572 
573             if (norm <= threshold)  // norm too small, gradient no defined
574             {
575                 angles_data[addr] = NOTDEF;
576             }
577             else
578             {
579                 angles_data[addr] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS;  // gradient angle computation
580                 if (norm > max_grad) { max_grad = norm; }
581             }
582 
583         }
584     }
585 
586     // Compute histogram of gradient values
587     list = std::vector<coorlist>(img_width * img_height);
588     std::vector<coorlist*> range_s(n_bins);
589     std::vector<coorlist*> range_e(n_bins);
590     unsigned int count = 0;
591     double bin_coef = (max_grad > 0) ? double(n_bins - 1) / max_grad : 0; // If all image is smooth, max_grad <= 0
592 
593     for(int y = 0; y < img_height - 1; ++y)
594     {
595         const double* norm = modgrad_data + y * img_width;
596         for(int x = 0; x < img_width - 1; ++x, ++norm)
597         {
598             // Store the point in the right bin according to its norm
599             int i = int((*norm) * bin_coef);
600             if(!range_e[i])
601             {
602                 range_e[i] = range_s[i] = &list[count];
603                 ++count;
604             }
605             else
606             {
607                 range_e[i]->next = &list[count];
608                 range_e[i] = &list[count];
609                 ++count;
610             }
611             range_e[i]->p = Point(x, y);
612             range_e[i]->next = 0;
613         }
614     }
615 
616     // Sort
617     int idx = n_bins - 1;
618     for(;idx > 0 && !range_s[idx]; --idx);
619     coorlist* start = range_s[idx];
620     coorlist* end = range_e[idx];
621     if(start)
622     {
623         while(idx > 0)
624         {
625             --idx;
626             if(range_s[idx])
627             {
628                 end->next = range_s[idx];
629                 end = range_e[idx];
630             }
631         }
632     }
633 }
634 
region_grow(const Point2i & s,std::vector<RegionPoint> & reg,int & reg_size,double & reg_angle,const double & prec)635 void LineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
636                                       int& reg_size, double& reg_angle, const double& prec)
637 {
638     // Point to this region
639     reg_size = 1;
640     reg[0].x = s.x;
641     reg[0].y = s.y;
642     int addr = s.x + s.y * img_width;
643     reg[0].used = used.ptr() + addr;
644     reg_angle = angles_data[addr];
645     reg[0].angle = reg_angle;
646     reg[0].modgrad = modgrad_data[addr];
647 
648     float sumdx = float(std::cos(reg_angle));
649     float sumdy = float(std::sin(reg_angle));
650     *reg[0].used = USED;
651 
652     //Try neighboring regions
653     for(int i = 0; i < reg_size; ++i)
654     {
655         const RegionPoint& rpoint = reg[i];
656         int xx_min = std::max(rpoint.x - 1, 0), xx_max = std::min(rpoint.x + 1, img_width - 1);
657         int yy_min = std::max(rpoint.y - 1, 0), yy_max = std::min(rpoint.y + 1, img_height - 1);
658         for(int yy = yy_min; yy <= yy_max; ++yy)
659         {
660             int c_addr = xx_min + yy * img_width;
661             for(int xx = xx_min; xx <= xx_max; ++xx, ++c_addr)
662             {
663                 if((used.ptr()[c_addr] != USED) &&
664                    (isAligned(c_addr, reg_angle, prec)))
665                 {
666                     // Add point
667                     used.ptr()[c_addr] = USED;
668                     RegionPoint& region_point = reg[reg_size];
669                     region_point.x = xx;
670                     region_point.y = yy;
671                     region_point.used = &(used.ptr()[c_addr]);
672                     region_point.modgrad = modgrad_data[c_addr];
673                     const double& angle = angles_data[c_addr];
674                     region_point.angle = angle;
675                     ++reg_size;
676 
677                     // Update region's angle
678                     sumdx += cos(float(angle));
679                     sumdy += sin(float(angle));
680                     // reg_angle is used in the isAligned, so it needs to be updates?
681                     reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
682                 }
683             }
684         }
685     }
686 }
687 
region2rect(const std::vector<RegionPoint> & reg,const int reg_size,const double reg_angle,const double prec,const double p,rect & rec) const688 void LineSegmentDetectorImpl::region2rect(const std::vector<RegionPoint>& reg, const int reg_size,
689                                       const double reg_angle, const double prec, const double p, rect& rec) const
690 {
691     double x = 0, y = 0, sum = 0;
692     for(int i = 0; i < reg_size; ++i)
693     {
694         const RegionPoint& pnt = reg[i];
695         const double& weight = pnt.modgrad;
696         x += double(pnt.x) * weight;
697         y += double(pnt.y) * weight;
698         sum += weight;
699     }
700 
701     // Weighted sum must differ from 0
702     CV_Assert(sum > 0);
703 
704     x /= sum;
705     y /= sum;
706 
707     double theta = get_theta(reg, reg_size, x, y, reg_angle, prec);
708 
709     // Find length and width
710     double dx = cos(theta);
711     double dy = sin(theta);
712     double l_min = 0, l_max = 0, w_min = 0, w_max = 0;
713 
714     for(int i = 0; i < reg_size; ++i)
715     {
716         double regdx = double(reg[i].x) - x;
717         double regdy = double(reg[i].y) - y;
718 
719         double l = regdx * dx + regdy * dy;
720         double w = -regdx * dy + regdy * dx;
721 
722         if(l > l_max) l_max = l;
723         else if(l < l_min) l_min = l;
724         if(w > w_max) w_max = w;
725         else if(w < w_min) w_min = w;
726     }
727 
728     // Store values
729     rec.x1 = x + l_min * dx;
730     rec.y1 = y + l_min * dy;
731     rec.x2 = x + l_max * dx;
732     rec.y2 = y + l_max * dy;
733     rec.width = w_max - w_min;
734     rec.x = x;
735     rec.y = y;
736     rec.theta = theta;
737     rec.dx = dx;
738     rec.dy = dy;
739     rec.prec = prec;
740     rec.p = p;
741 
742     // Min width of 1 pixel
743     if(rec.width < 1.0) rec.width = 1.0;
744 }
745 
get_theta(const std::vector<RegionPoint> & reg,const int & reg_size,const double & x,const double & y,const double & reg_angle,const double & prec) const746 double LineSegmentDetectorImpl::get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
747                                       const double& y, const double& reg_angle, const double& prec) const
748 {
749     double Ixx = 0.0;
750     double Iyy = 0.0;
751     double Ixy = 0.0;
752 
753     // Compute inertia matrix
754     for(int i = 0; i < reg_size; ++i)
755     {
756         const double& regx = reg[i].x;
757         const double& regy = reg[i].y;
758         const double& weight = reg[i].modgrad;
759         double dx = regx - x;
760         double dy = regy - y;
761         Ixx += dy * dy * weight;
762         Iyy += dx * dx * weight;
763         Ixy -= dx * dy * weight;
764     }
765 
766     // Check if inertia matrix is null
767     CV_Assert(!(double_equal(Ixx, 0) && double_equal(Iyy, 0) && double_equal(Ixy, 0)));
768 
769     // Compute smallest eigenvalue
770     double lambda = 0.5 * (Ixx + Iyy - sqrt((Ixx - Iyy) * (Ixx - Iyy) + 4.0 * Ixy * Ixy));
771 
772     // Compute angle
773     double theta = (fabs(Ixx)>fabs(Iyy))?
774                     double(fastAtan2(float(lambda - Ixx), float(Ixy))):
775                     double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
776     theta *= DEG_TO_RADS;
777 
778     // Correct angle by 180 deg if necessary
779     if(angle_diff(theta, reg_angle) > prec) { theta += CV_PI; }
780 
781     return theta;
782 }
783 
refine(std::vector<RegionPoint> & reg,int & reg_size,double reg_angle,const double prec,double p,rect & rec,const double & density_th)784 bool LineSegmentDetectorImpl::refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
785                                  const double prec, double p, rect& rec, const double& density_th)
786 {
787     double density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
788 
789     if (density >= density_th) { return true; }
790 
791     // Try to reduce angle tolerance
792     double xc = double(reg[0].x);
793     double yc = double(reg[0].y);
794     const double& ang_c = reg[0].angle;
795     double sum = 0, s_sum = 0;
796     int n = 0;
797 
798     for (int i = 0; i < reg_size; ++i)
799     {
800         *(reg[i].used) = NOTUSED;
801         if (dist(xc, yc, reg[i].x, reg[i].y) < rec.width)
802         {
803             const double& angle = reg[i].angle;
804             double ang_d = angle_diff_signed(angle, ang_c);
805             sum += ang_d;
806             s_sum += ang_d * ang_d;
807             ++n;
808         }
809     }
810     double mean_angle = sum / double(n);
811     // 2 * standard deviation
812     double tau = 2.0 * sqrt((s_sum - 2.0 * mean_angle * sum) / double(n) + mean_angle * mean_angle);
813 
814     // Try new region
815     region_grow(Point(reg[0].x, reg[0].y), reg, reg_size, reg_angle, tau);
816 
817     if (reg_size < 2) { return false; }
818 
819     region2rect(reg, reg_size, reg_angle, prec, p, rec);
820     density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
821 
822     if (density < density_th)
823     {
824         return reduce_region_radius(reg, reg_size, reg_angle, prec, p, rec, density, density_th);
825     }
826     else
827     {
828         return true;
829     }
830 }
831 
reduce_region_radius(std::vector<RegionPoint> & reg,int & reg_size,double reg_angle,const double prec,double p,rect & rec,double density,const double & density_th)832 bool LineSegmentDetectorImpl::reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
833                 const double prec, double p, rect& rec, double density, const double& density_th)
834 {
835     // Compute region's radius
836     double xc = double(reg[0].x);
837     double yc = double(reg[0].y);
838     double radSq1 = distSq(xc, yc, rec.x1, rec.y1);
839     double radSq2 = distSq(xc, yc, rec.x2, rec.y2);
840     double radSq = radSq1 > radSq2 ? radSq1 : radSq2;
841 
842     while(density < density_th)
843     {
844         radSq *= 0.75*0.75; // Reduce region's radius to 75% of its value
845         // Remove points from the region and update 'used' map
846         for(int i = 0; i < reg_size; ++i)
847         {
848             if(distSq(xc, yc, double(reg[i].x), double(reg[i].y)) > radSq)
849             {
850                 // Remove point from the region
851                 *(reg[i].used) = NOTUSED;
852                 std::swap(reg[i], reg[reg_size - 1]);
853                 --reg_size;
854                 --i; // To avoid skipping one point
855             }
856         }
857 
858         if(reg_size < 2) { return false; }
859 
860         // Re-compute rectangle
861         region2rect(reg, reg_size ,reg_angle, prec, p, rec);
862 
863         // Re-compute region points density
864         density = double(reg_size) /
865                   (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
866     }
867 
868     return true;
869 }
870 
rect_improve(rect & rec) const871 double LineSegmentDetectorImpl::rect_improve(rect& rec) const
872 {
873     double delta = 0.5;
874     double delta_2 = delta / 2.0;
875 
876     double log_nfa = rect_nfa(rec);
877 
878     if(log_nfa > LOG_EPS) return log_nfa; // Good rectangle
879 
880     // Try to improve
881     // Finer precision
882     rect r = rect(rec); // Copy
883     for(int n = 0; n < 5; ++n)
884     {
885         r.p /= 2;
886         r.prec = r.p * CV_PI;
887         double log_nfa_new = rect_nfa(r);
888         if(log_nfa_new > log_nfa)
889         {
890             log_nfa = log_nfa_new;
891             rec = rect(r);
892         }
893     }
894     if(log_nfa > LOG_EPS) return log_nfa;
895 
896     // Try to reduce width
897     r = rect(rec);
898     for(unsigned int n = 0; n < 5; ++n)
899     {
900         if((r.width - delta) >= 0.5)
901         {
902             r.width -= delta;
903             double log_nfa_new = rect_nfa(r);
904             if(log_nfa_new > log_nfa)
905             {
906                 rec = rect(r);
907                 log_nfa = log_nfa_new;
908             }
909         }
910     }
911     if(log_nfa > LOG_EPS) return log_nfa;
912 
913     // Try to reduce one side of rectangle
914     r = rect(rec);
915     for(unsigned int n = 0; n < 5; ++n)
916     {
917         if((r.width - delta) >= 0.5)
918         {
919             r.x1 += -r.dy * delta_2;
920             r.y1 +=  r.dx * delta_2;
921             r.x2 += -r.dy * delta_2;
922             r.y2 +=  r.dx * delta_2;
923             r.width -= delta;
924             double log_nfa_new = rect_nfa(r);
925             if(log_nfa_new > log_nfa)
926             {
927                 rec = rect(r);
928                 log_nfa = log_nfa_new;
929             }
930         }
931     }
932     if(log_nfa > LOG_EPS) return log_nfa;
933 
934     // Try to reduce other side of rectangle
935     r = rect(rec);
936     for(unsigned int n = 0; n < 5; ++n)
937     {
938         if((r.width - delta) >= 0.5)
939         {
940             r.x1 -= -r.dy * delta_2;
941             r.y1 -=  r.dx * delta_2;
942             r.x2 -= -r.dy * delta_2;
943             r.y2 -=  r.dx * delta_2;
944             r.width -= delta;
945             double log_nfa_new = rect_nfa(r);
946             if(log_nfa_new > log_nfa)
947             {
948                 rec = rect(r);
949                 log_nfa = log_nfa_new;
950             }
951         }
952     }
953     if(log_nfa > LOG_EPS) return log_nfa;
954 
955     // Try finer precision
956     r = rect(rec);
957     for(unsigned int n = 0; n < 5; ++n)
958     {
959         if((r.width - delta) >= 0.5)
960         {
961             r.p /= 2;
962             r.prec = r.p * CV_PI;
963             double log_nfa_new = rect_nfa(r);
964             if(log_nfa_new > log_nfa)
965             {
966                 rec = rect(r);
967                 log_nfa = log_nfa_new;
968             }
969         }
970     }
971 
972     return log_nfa;
973 }
974 
rect_nfa(const rect & rec) const975 double LineSegmentDetectorImpl::rect_nfa(const rect& rec) const
976 {
977     int total_pts = 0, alg_pts = 0;
978     double half_width = rec.width / 2.0;
979     double dyhw = rec.dy * half_width;
980     double dxhw = rec.dx * half_width;
981 
982     std::vector<edge> ordered_x(4);
983     edge* min_y = &ordered_x[0];
984     edge* max_y = &ordered_x[0]; // Will be used for loop range
985 
986     ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false;
987     ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false;
988     ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false;
989     ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false;
990 
991     std::sort(ordered_x.begin(), ordered_x.end(), AsmallerB_XoverY);
992 
993     // Find min y. And mark as taken. find max y.
994     for(unsigned int i = 1; i < 4; ++i)
995     {
996         if(min_y->p.y > ordered_x[i].p.y) {min_y = &ordered_x[i]; }
997         if(max_y->p.y < ordered_x[i].p.y) {max_y = &ordered_x[i]; }
998     }
999     min_y->taken = true;
1000 
1001     // Find leftmost untaken point;
1002     edge* leftmost = 0;
1003     for(unsigned int i = 0; i < 4; ++i)
1004     {
1005         if(!ordered_x[i].taken)
1006         {
1007             if(!leftmost) // if uninitialized
1008             {
1009                 leftmost = &ordered_x[i];
1010             }
1011             else if (leftmost->p.x > ordered_x[i].p.x)
1012             {
1013                 leftmost = &ordered_x[i];
1014             }
1015         }
1016     }
1017     leftmost->taken = true;
1018 
1019     // Find rightmost untaken point;
1020     edge* rightmost = 0;
1021     for(unsigned int i = 0; i < 4; ++i)
1022     {
1023         if(!ordered_x[i].taken)
1024         {
1025             if(!rightmost) // if uninitialized
1026             {
1027                 rightmost = &ordered_x[i];
1028             }
1029             else if (rightmost->p.x < ordered_x[i].p.x)
1030             {
1031                 rightmost = &ordered_x[i];
1032             }
1033         }
1034     }
1035     rightmost->taken = true;
1036 
1037     // Find last untaken point;
1038     edge* tailp = 0;
1039     for(unsigned int i = 0; i < 4; ++i)
1040     {
1041         if(!ordered_x[i].taken)
1042         {
1043             if(!tailp) // if uninitialized
1044             {
1045                 tailp = &ordered_x[i];
1046             }
1047             else if (tailp->p.x > ordered_x[i].p.x)
1048             {
1049                 tailp = &ordered_x[i];
1050             }
1051         }
1052     }
1053     tailp->taken = true;
1054 
1055     double flstep = (min_y->p.y != leftmost->p.y) ?
1056                     (min_y->p.x - leftmost->p.x) / (min_y->p.y - leftmost->p.y) : 0; //first left step
1057     double slstep = (leftmost->p.y != tailp->p.x) ?
1058                     (leftmost->p.x - tailp->p.x) / (leftmost->p.y - tailp->p.x) : 0; //second left step
1059 
1060     double frstep = (min_y->p.y != rightmost->p.y) ?
1061                     (min_y->p.x - rightmost->p.x) / (min_y->p.y - rightmost->p.y) : 0; //first right step
1062     double srstep = (rightmost->p.y != tailp->p.x) ?
1063                     (rightmost->p.x - tailp->p.x) / (rightmost->p.y - tailp->p.x) : 0; //second right step
1064 
1065     double lstep = flstep, rstep = frstep;
1066 
1067     double left_x = min_y->p.x, right_x = min_y->p.x;
1068 
1069     // Loop around all points in the region and count those that are aligned.
1070     int min_iter = min_y->p.y;
1071     int max_iter = max_y->p.y;
1072     for(int y = min_iter; y <= max_iter; ++y)
1073     {
1074         if (y < 0 || y >= img_height) continue;
1075 
1076         int adx = y * img_width + int(left_x);
1077         for(int x = int(left_x); x <= int(right_x); ++x, ++adx)
1078         {
1079             if (x < 0 || x >= img_width) continue;
1080 
1081             ++total_pts;
1082             if(isAligned(adx, rec.theta, rec.prec))
1083             {
1084                 ++alg_pts;
1085             }
1086         }
1087 
1088         if(y >= leftmost->p.y) { lstep = slstep; }
1089         if(y >= rightmost->p.y) { rstep = srstep; }
1090 
1091         left_x += lstep;
1092         right_x += rstep;
1093     }
1094 
1095     return nfa(total_pts, alg_pts, rec.p);
1096 }
1097 
nfa(const int & n,const int & k,const double & p) const1098 double LineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const
1099 {
1100     // Trivial cases
1101     if(n == 0 || k == 0) { return -LOG_NT; }
1102     if(n == k) { return -LOG_NT - double(n) * log10(p); }
1103 
1104     double p_term = p / (1 - p);
1105 
1106     double log1term = (double(n) + 1) - log_gamma(double(k) + 1)
1107                 - log_gamma(double(n-k) + 1)
1108                 + double(k) * log(p) + double(n-k) * log(1.0 - p);
1109     double term = exp(log1term);
1110 
1111     if(double_equal(term, 0))
1112     {
1113         if(k > n * p) return -log1term / M_LN10 - LOG_NT;
1114         else return -LOG_NT;
1115     }
1116 
1117     // Compute more terms if needed
1118     double bin_tail = term;
1119     double tolerance = 0.1; // an error of 10% in the result is accepted
1120     for(int i = k + 1; i <= n; ++i)
1121     {
1122         double bin_term = double(n - i + 1) / double(i);
1123         double mult_term = bin_term * p_term;
1124         term *= mult_term;
1125         bin_tail += term;
1126         if(bin_term < 1)
1127         {
1128             double err = term * ((1 - pow(mult_term, double(n-i+1))) / (1 - mult_term) - 1);
1129             if(err < tolerance * fabs(-log10(bin_tail) - LOG_NT) * bin_tail) break;
1130         }
1131 
1132     }
1133     return -log10(bin_tail) - LOG_NT;
1134 }
1135 
isAligned(const int & address,const double & theta,const double & prec) const1136 inline bool LineSegmentDetectorImpl::isAligned(const int& address, const double& theta, const double& prec) const
1137 {
1138     if(address < 0) { return false; }
1139     const double& a = angles_data[address];
1140     if(a == NOTDEF) { return false; }
1141 
1142     // It is assumed that 'theta' and 'a' are in the range [-pi,pi]
1143     double n_theta = theta - a;
1144     if(n_theta < 0) { n_theta = -n_theta; }
1145     if(n_theta > M_3_2_PI)
1146     {
1147         n_theta -= M_2__PI;
1148         if(n_theta < 0) n_theta = -n_theta;
1149     }
1150 
1151     return n_theta <= prec;
1152 }
1153 
1154 
drawSegments(InputOutputArray _image,InputArray lines)1155 void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines)
1156 {
1157     CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
1158 
1159     Mat gray;
1160     if (_image.channels() == 1)
1161     {
1162         gray = _image.getMatRef();
1163     }
1164     else if (_image.channels() == 3)
1165     {
1166         cvtColor(_image, gray, CV_BGR2GRAY);
1167     }
1168 
1169     // Create a 3 channel image in order to draw colored lines
1170     std::vector<Mat> planes;
1171     planes.push_back(gray);
1172     planes.push_back(gray);
1173     planes.push_back(gray);
1174 
1175     merge(planes, _image);
1176 
1177     Mat _lines;
1178     _lines = lines.getMat();
1179     int N = _lines.checkVector(4);
1180 
1181     // Draw segments
1182     for(int i = 0; i < N; ++i)
1183     {
1184         const Vec4f& v = _lines.at<Vec4f>(i);
1185         Point2f b(v[0], v[1]);
1186         Point2f e(v[2], v[3]);
1187         line(_image.getMatRef(), b, e, Scalar(0, 0, 255), 1);
1188     }
1189 }
1190 
1191 
compareSegments(const Size & size,InputArray lines1,InputArray lines2,InputOutputArray _image)1192 int LineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image)
1193 {
1194     Size sz = size;
1195     if (_image.needed() && _image.size() != size) sz = _image.size();
1196     CV_Assert(sz.area());
1197 
1198     Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
1199     Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
1200 
1201     Mat _lines1;
1202     Mat _lines2;
1203     _lines1 = lines1.getMat();
1204     _lines2 = lines2.getMat();
1205     int N1 = _lines1.checkVector(4);
1206     int N2 = _lines2.checkVector(4);
1207 
1208     // Draw segments
1209     for(int i = 0; i < N1; ++i)
1210     {
1211         Point2f b(_lines1.at<Vec4f>(i)[0], _lines1.at<Vec4f>(i)[1]);
1212         Point2f e(_lines1.at<Vec4f>(i)[2], _lines1.at<Vec4f>(i)[3]);
1213         line(I1, b, e, Scalar::all(255), 1);
1214     }
1215     for(int i = 0; i < N2; ++i)
1216     {
1217         Point2f b(_lines2.at<Vec4f>(i)[0], _lines2.at<Vec4f>(i)[1]);
1218         Point2f e(_lines2.at<Vec4f>(i)[2], _lines2.at<Vec4f>(i)[3]);
1219         line(I2, b, e, Scalar::all(255), 1);
1220     }
1221 
1222     // Count the pixels that don't agree
1223     Mat Ixor;
1224     bitwise_xor(I1, I2, Ixor);
1225     int N = countNonZero(Ixor);
1226 
1227     if (_image.needed())
1228     {
1229         CV_Assert(_image.channels() == 3);
1230         Mat img = _image.getMatRef();
1231         CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous());
1232 
1233         for (unsigned int i = 0; i < I1.total(); ++i)
1234         {
1235             uchar i1 = I1.ptr()[i];
1236             uchar i2 = I2.ptr()[i];
1237             if (i1 || i2)
1238             {
1239                 unsigned int base_idx = i * 3;
1240                 if (i1) img.ptr()[base_idx] = 255;
1241                 else img.ptr()[base_idx] = 0;
1242                 img.ptr()[base_idx + 1] = 0;
1243                 if (i2) img.ptr()[base_idx + 2] = 255;
1244                 else img.ptr()[base_idx + 2] = 0;
1245             }
1246         }
1247     }
1248 
1249     return N;
1250 }
1251 
1252 } // namespace cv
1253