1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 // By downloading, copying, installing or using the software you agree to this license.
6 // If you do not agree to this license, do not download, install,
7 // copy or use the software.
8 //
9 //
10 // License Agreement
11 // For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
14 // Third party copyrights are property of their respective owners.
15 //
16 // Redistribution and use in source and binary forms, with or without modification,
17 // are permitted provided that the following conditions are met:
18 //
19 // * Redistributions of source code must retain the above copyright notice,
20 // this list of conditions and the following disclaimer.
21 //
22 // * Redistributions in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
24 // and/or other materials provided with the distribution.
25 //
26 // * The name of the copyright holders may not be used to endorse or promote products
27 // derived from this software without specific prior written permission.
28 //
29 // This software is provided by the copyright holders and contributors "as is" and
30 // any express or implied warranties, including, but not limited to, the implied
31 // warranties of merchantability and fitness for a particular purpose are disclaimed.
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
33 // indirect, incidental, special, exemplary, or consequential damages
34 // (including, but not limited to, procurement of substitute goods or services;
35 // loss of use, data, or profits; or business interruption) however caused
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
38 // the use of this software, even if advised of the possibility of such damage.
39 //
40 //M*/
41
42 #include "precomp.hpp"
43 #include <vector>
44
45 /////////////////////////////////////////////////////////////////////////////////////////
46 // Default LSD parameters
47 // SIGMA_SCALE 0.6 - Sigma for Gaussian filter is computed as sigma = sigma_scale/scale.
48 // QUANT 2.0 - Bound to the quantization error on the gradient norm.
49 // ANG_TH 22.5 - Gradient angle tolerance in degrees.
50 // LOG_EPS 0.0 - Detection threshold: -log10(NFA) > log_eps
51 // DENSITY_TH 0.7 - Minimal density of region points in rectangle.
52 // N_BINS 1024 - Number of bins in pseudo-ordering of gradient modulus.
53
54 #define M_3_2_PI (3 * CV_PI) / 2 // 3/2 pi
55 #define M_2__PI (2 * CV_PI) // 2 pi
56
57 #ifndef M_LN10
58 #define M_LN10 2.30258509299404568402
59 #endif
60
61 #define NOTDEF double(-1024.0) // Label for pixels with undefined gradient.
62
63 #define NOTUSED 0 // Label for pixels not used in yet.
64 #define USED 1 // Label for pixels already used in detection.
65
66 #define RELATIVE_ERROR_FACTOR 100.0
67
68 const double DEG_TO_RADS = CV_PI / 180;
69
70 #define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x))
71
72 struct edge
73 {
74 cv::Point p;
75 bool taken;
76 };
77
78 /////////////////////////////////////////////////////////////////////////////////////////
79
distSq(const double x1,const double y1,const double x2,const double y2)80 inline double distSq(const double x1, const double y1,
81 const double x2, const double y2)
82 {
83 return (x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1);
84 }
85
dist(const double x1,const double y1,const double x2,const double y2)86 inline double dist(const double x1, const double y1,
87 const double x2, const double y2)
88 {
89 return sqrt(distSq(x1, y1, x2, y2));
90 }
91
92 // Signed angle difference
angle_diff_signed(const double & a,const double & b)93 inline double angle_diff_signed(const double& a, const double& b)
94 {
95 double diff = a - b;
96 while(diff <= -CV_PI) diff += M_2__PI;
97 while(diff > CV_PI) diff -= M_2__PI;
98 return diff;
99 }
100
101 // Absolute value angle difference
angle_diff(const double & a,const double & b)102 inline double angle_diff(const double& a, const double& b)
103 {
104 return std::fabs(angle_diff_signed(a, b));
105 }
106
107 // Compare doubles by relative error.
double_equal(const double & a,const double & b)108 inline bool double_equal(const double& a, const double& b)
109 {
110 // trivial case
111 if(a == b) return true;
112
113 double abs_diff = fabs(a - b);
114 double aa = fabs(a);
115 double bb = fabs(b);
116 double abs_max = (aa > bb)? aa : bb;
117
118 if(abs_max < DBL_MIN) abs_max = DBL_MIN;
119
120 return (abs_diff / abs_max) <= (RELATIVE_ERROR_FACTOR * DBL_EPSILON);
121 }
122
AsmallerB_XoverY(const edge & a,const edge & b)123 inline bool AsmallerB_XoverY(const edge& a, const edge& b)
124 {
125 if (a.p.x == b.p.x) return a.p.y < b.p.y;
126 else return a.p.x < b.p.x;
127 }
128
129 /**
130 * Computes the natural logarithm of the absolute value of
131 * the gamma function of x using Windschitl method.
132 * See http://www.rskey.org/gamma.htm
133 */
log_gamma_windschitl(const double & x)134 inline double log_gamma_windschitl(const double& x)
135 {
136 return 0.918938533204673 + (x-0.5)*log(x) - x
137 + 0.5*x*log(x*sinh(1/x) + 1/(810.0*pow(x, 6.0)));
138 }
139
140 /**
141 * Computes the natural logarithm of the absolute value of
142 * the gamma function of x using the Lanczos approximation.
143 * See http://www.rskey.org/gamma.htm
144 */
log_gamma_lanczos(const double & x)145 inline double log_gamma_lanczos(const double& x)
146 {
147 static double q[7] = { 75122.6331530, 80916.6278952, 36308.2951477,
148 8687.24529705, 1168.92649479, 83.8676043424,
149 2.50662827511 };
150 double a = (x + 0.5) * log(x + 5.5) - (x + 5.5);
151 double b = 0;
152 for(int n = 0; n < 7; ++n)
153 {
154 a -= log(x + double(n));
155 b += q[n] * pow(x, double(n));
156 }
157 return a + log(b);
158 }
159 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
160
161 namespace cv{
162
163 class LineSegmentDetectorImpl : public LineSegmentDetector
164 {
165 public:
166
167 /**
168 * Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
169 *
170 * @param _refine How should the lines found be refined?
171 * LSD_REFINE_NONE - No refinement applied.
172 * LSD_REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
173 * LSD_REFINE_ADV - Advanced refinement. Number of false alarms is calculated,
174 * lines are refined through increase of precision, decrement in size, etc.
175 * @param _scale The scale of the image that will be used to find the lines. Range (0..1].
176 * @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
177 * @param _quant Bound to the quantization error on the gradient norm.
178 * @param _ang_th Gradient angle tolerance in degrees.
179 * @param _log_eps Detection threshold: -log10(NFA) > _log_eps
180 * @param _density_th Minimal density of aligned region points in rectangle.
181 * @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
182 */
183 LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
184 double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
185 double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
186
187 /**
188 * Detect lines in the input image.
189 *
190 * @param _image A grayscale(CV_8UC1) input image.
191 * If only a roi needs to be selected, use
192 * lsd_ptr->detect(image(roi), ..., lines);
193 * lines += Scalar(roi.x, roi.y, roi.x, roi.y);
194 * @param _lines Return: A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line.
195 * Where Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
196 * Returned lines are strictly oriented depending on the gradient.
197 * @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
198 * @param prec Return: Vector of precisions with which the lines are found.
199 * @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%.
200 * The bigger the value, logarithmically better the detection.
201 * * -1 corresponds to 10 mean false alarms
202 * * 0 corresponds to 1 mean false alarm
203 * * 1 corresponds to 0.1 mean false alarms
204 * This vector will be calculated _only_ when the objects type is REFINE_ADV
205 */
206 void detect(InputArray _image, OutputArray _lines,
207 OutputArray width = noArray(), OutputArray prec = noArray(),
208 OutputArray nfa = noArray());
209
210 /**
211 * Draw lines on the given canvas.
212 *
213 * @param image The image, where lines will be drawn.
214 * Should have the size of the image, where the lines were found
215 * @param lines The lines that need to be drawn
216 */
217 void drawSegments(InputOutputArray _image, InputArray lines);
218
219 /**
220 * Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
221 *
222 * @param size The size of the image, where lines1 and lines2 were found.
223 * @param lines1 The first lines that need to be drawn. Color - Blue.
224 * @param lines2 The second lines that need to be drawn. Color - Red.
225 * @param image An optional image, where lines will be drawn.
226 * Should have the size of the image, where the lines were found
227 * @return The number of mismatching pixels between lines1 and lines2.
228 */
229 int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray());
230
231 private:
232 Mat image;
233 Mat_<double> scaled_image;
234 double *scaled_image_data;
235 Mat_<double> angles; // in rads
236 double *angles_data;
237 Mat_<double> modgrad;
238 double *modgrad_data;
239 Mat_<uchar> used;
240
241 int img_width;
242 int img_height;
243 double LOG_NT;
244
245 bool w_needed;
246 bool p_needed;
247 bool n_needed;
248
249 const double SCALE;
250 const int doRefine;
251 const double SIGMA_SCALE;
252 const double QUANT;
253 const double ANG_TH;
254 const double LOG_EPS;
255 const double DENSITY_TH;
256 const int N_BINS;
257
258 struct RegionPoint {
259 int x;
260 int y;
261 uchar* used;
262 double angle;
263 double modgrad;
264 };
265
266
267 struct coorlist
268 {
269 Point2i p;
270 struct coorlist* next;
271 };
272
273 struct rect
274 {
275 double x1, y1, x2, y2; // first and second point of the line segment
276 double width; // rectangle width
277 double x, y; // center of the rectangle
278 double theta; // angle
279 double dx,dy; // (dx,dy) is vector oriented as the line segment
280 double prec; // tolerance angle
281 double p; // probability of a point with angle within 'prec'
282 };
283
284 LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC
285
286 /**
287 * Detect lines in the whole input image.
288 *
289 * @param lines Return: A vector of Vec4f elements specifying the beginning and ending point of a line.
290 * Where Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
291 * Returned lines are strictly oriented depending on the gradient.
292 * @param widths Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
293 * @param precisions Return: Vector of precisions with which the lines are found.
294 * @param nfas Return: Vector containing number of false alarms in the line region, with precision of 10%.
295 * The bigger the value, logarithmically better the detection.
296 * * -1 corresponds to 10 mean false alarms
297 * * 0 corresponds to 1 mean false alarm
298 * * 1 corresponds to 0.1 mean false alarms
299 */
300 void flsd(std::vector<Vec4f>& lines,
301 std::vector<double>& widths, std::vector<double>& precisions,
302 std::vector<double>& nfas);
303
304 /**
305 * Finds the angles and the gradients of the image. Generates a list of pseudo ordered points.
306 *
307 * @param threshold The minimum value of the angle that is considered defined, otherwise NOTDEF
308 * @param n_bins The number of bins with which gradients are ordered by, using bucket sort.
309 * @param list Return: Vector of coordinate points that are pseudo ordered by magnitude.
310 * Pixels would be ordered by norm value, up to a precision given by max_grad/n_bins.
311 */
312 void ll_angle(const double& threshold, const unsigned int& n_bins, std::vector<coorlist>& list);
313
314 /**
315 * Grow a region starting from point s with a defined precision,
316 * returning the containing points size and the angle of the gradients.
317 *
318 * @param s Starting point for the region.
319 * @param reg Return: Vector of points, that are part of the region
320 * @param reg_size Return: The size of the region.
321 * @param reg_angle Return: The mean angle of the region.
322 * @param prec The precision by which each region angle should be aligned to the mean.
323 */
324 void region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
325 int& reg_size, double& reg_angle, const double& prec);
326
327 /**
328 * Finds the bounding rotated rectangle of a region.
329 *
330 * @param reg The region of points, from which the rectangle to be constructed from.
331 * @param reg_size The number of points in the region.
332 * @param reg_angle The mean angle of the region.
333 * @param prec The precision by which points were found.
334 * @param p Probability of a point with angle within 'prec'.
335 * @param rec Return: The generated rectangle.
336 */
337 void region2rect(const std::vector<RegionPoint>& reg, const int reg_size, const double reg_angle,
338 const double prec, const double p, rect& rec) const;
339
340 /**
341 * Compute region's angle as the principal inertia axis of the region.
342 * @return Regions angle.
343 */
344 double get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
345 const double& y, const double& reg_angle, const double& prec) const;
346
347 /**
348 * An estimation of the angle tolerance is performed by the standard deviation of the angle at points
349 * near the region's starting point. Then, a new region is grown starting from the same point, but using the
350 * estimated angle tolerance. If this fails to produce a rectangle with the right density of region points,
351 * 'reduce_region_radius' is called to try to satisfy this condition.
352 */
353 bool refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
354 const double prec, double p, rect& rec, const double& density_th);
355
356 /**
357 * Reduce the region size, by elimination the points far from the starting point, until that leads to
358 * rectangle with the right density of region points or to discard the region if too small.
359 */
360 bool reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
361 const double prec, double p, rect& rec, double density, const double& density_th);
362
363 /**
364 * Try some rectangles variations to improve NFA value. Only if the rectangle is not meaningful (i.e., log_nfa <= log_eps).
365 * @return The new NFA value.
366 */
367 double rect_improve(rect& rec) const;
368
369 /**
370 * Calculates the number of correctly aligned points within the rectangle.
371 * @return The new NFA value.
372 */
373 double rect_nfa(const rect& rec) const;
374
375 /**
376 * Computes the NFA values based on the total number of points, points that agree.
377 * n, k, p are the binomial parameters.
378 * @return The new NFA value.
379 */
380 double nfa(const int& n, const int& k, const double& p) const;
381
382 /**
383 * Is the point at place 'address' aligned to angle theta, up to precision 'prec'?
384 * @return Whether the point is aligned.
385 */
386 bool isAligned(const int& address, const double& theta, const double& prec) const;
387 };
388
389 /////////////////////////////////////////////////////////////////////////////////////////
390
createLineSegmentDetector(int _refine,double _scale,double _sigma_scale,double _quant,double _ang_th,double _log_eps,double _density_th,int _n_bins)391 CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetector(
392 int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
393 double _log_eps, double _density_th, int _n_bins)
394 {
395 return makePtr<LineSegmentDetectorImpl>(
396 _refine, _scale, _sigma_scale, _quant, _ang_th,
397 _log_eps, _density_th, _n_bins);
398 }
399
400 /////////////////////////////////////////////////////////////////////////////////////////
401
LineSegmentDetectorImpl(int _refine,double _scale,double _sigma_scale,double _quant,double _ang_th,double _log_eps,double _density_th,int _n_bins)402 LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
403 double _ang_th, double _log_eps, double _density_th, int _n_bins)
404 :SCALE(_scale), doRefine(_refine), SIGMA_SCALE(_sigma_scale), QUANT(_quant),
405 ANG_TH(_ang_th), LOG_EPS(_log_eps), DENSITY_TH(_density_th), N_BINS(_n_bins)
406 {
407 CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
408 _ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
409 _n_bins > 0);
410 }
411
detect(InputArray _image,OutputArray _lines,OutputArray _width,OutputArray _prec,OutputArray _nfa)412 void LineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines,
413 OutputArray _width, OutputArray _prec, OutputArray _nfa)
414 {
415 Mat_<double> img = _image.getMat();
416 CV_Assert(!img.empty() && img.channels() == 1);
417
418 // Convert image to double
419 img.convertTo(image, CV_64FC1);
420
421 std::vector<Vec4f> lines;
422 std::vector<double> w, p, n;
423 w_needed = _width.needed();
424 p_needed = _prec.needed();
425 if (doRefine < LSD_REFINE_ADV)
426 n_needed = false;
427 else
428 n_needed = _nfa.needed();
429
430 flsd(lines, w, p, n);
431
432 Mat(lines).copyTo(_lines);
433 if(w_needed) Mat(w).copyTo(_width);
434 if(p_needed) Mat(p).copyTo(_prec);
435 if(n_needed) Mat(n).copyTo(_nfa);
436 }
437
flsd(std::vector<Vec4f> & lines,std::vector<double> & widths,std::vector<double> & precisions,std::vector<double> & nfas)438 void LineSegmentDetectorImpl::flsd(std::vector<Vec4f>& lines,
439 std::vector<double>& widths, std::vector<double>& precisions,
440 std::vector<double>& nfas)
441 {
442 // Angle tolerance
443 const double prec = CV_PI * ANG_TH / 180;
444 const double p = ANG_TH / 180;
445 const double rho = QUANT / sin(prec); // gradient magnitude threshold
446
447 std::vector<coorlist> list;
448 if(SCALE != 1)
449 {
450 Mat gaussian_img;
451 const double sigma = (SCALE < 1)?(SIGMA_SCALE / SCALE):(SIGMA_SCALE);
452 const double sprec = 3;
453 const unsigned int h = (unsigned int)(ceil(sigma * sqrt(2 * sprec * log(10.0))));
454 Size ksize(1 + 2 * h, 1 + 2 * h); // kernel size
455 GaussianBlur(image, gaussian_img, ksize, sigma);
456 // Scale image to needed size
457 resize(gaussian_img, scaled_image, Size(), SCALE, SCALE);
458 ll_angle(rho, N_BINS, list);
459 }
460 else
461 {
462 scaled_image = image;
463 ll_angle(rho, N_BINS, list);
464 }
465
466 LOG_NT = 5 * (log10(double(img_width)) + log10(double(img_height))) / 2 + log10(11.0);
467 const int min_reg_size = int(-LOG_NT/log10(p)); // minimal number of points in region that can give a meaningful event
468
469 // // Initialize region only when needed
470 // Mat region = Mat::zeros(scaled_image.size(), CV_8UC1);
471 used = Mat_<uchar>::zeros(scaled_image.size()); // zeros = NOTUSED
472 std::vector<RegionPoint> reg(img_width * img_height);
473
474 // Search for line segments
475 unsigned int ls_count = 0;
476 for(size_t i = 0, list_size = list.size(); i < list_size; ++i)
477 {
478 unsigned int adx = list[i].p.x + list[i].p.y * img_width;
479 if((used.ptr()[adx] == NOTUSED) && (angles_data[adx] != NOTDEF))
480 {
481 int reg_size;
482 double reg_angle;
483 region_grow(list[i].p, reg, reg_size, reg_angle, prec);
484
485 // Ignore small regions
486 if(reg_size < min_reg_size) { continue; }
487
488 // Construct rectangular approximation for the region
489 rect rec;
490 region2rect(reg, reg_size, reg_angle, prec, p, rec);
491
492 double log_nfa = -1;
493 if(doRefine > LSD_REFINE_NONE)
494 {
495 // At least REFINE_STANDARD lvl.
496 if(!refine(reg, reg_size, reg_angle, prec, p, rec, DENSITY_TH)) { continue; }
497
498 if(doRefine >= LSD_REFINE_ADV)
499 {
500 // Compute NFA
501 log_nfa = rect_improve(rec);
502 if(log_nfa <= LOG_EPS) { continue; }
503 }
504 }
505 // Found new line
506 ++ls_count;
507
508 // Add the offset
509 rec.x1 += 0.5; rec.y1 += 0.5;
510 rec.x2 += 0.5; rec.y2 += 0.5;
511
512 // scale the result values if a sub-sampling was performed
513 if(SCALE != 1)
514 {
515 rec.x1 /= SCALE; rec.y1 /= SCALE;
516 rec.x2 /= SCALE; rec.y2 /= SCALE;
517 rec.width /= SCALE;
518 }
519
520 //Store the relevant data
521 lines.push_back(Vec4f(float(rec.x1), float(rec.y1), float(rec.x2), float(rec.y2)));
522 if(w_needed) widths.push_back(rec.width);
523 if(p_needed) precisions.push_back(rec.p);
524 if(n_needed && doRefine >= LSD_REFINE_ADV) nfas.push_back(log_nfa);
525
526
527 // //Add the linesID to the region on the image
528 // for(unsigned int el = 0; el < reg_size; el++)
529 // {
530 // region.data[reg[i].x + reg[i].y * width] = ls_count;
531 // }
532 }
533 }
534 }
535
ll_angle(const double & threshold,const unsigned int & n_bins,std::vector<coorlist> & list)536 void LineSegmentDetectorImpl::ll_angle(const double& threshold,
537 const unsigned int& n_bins,
538 std::vector<coorlist>& list)
539 {
540 //Initialize data
541 angles = Mat_<double>(scaled_image.size());
542 modgrad = Mat_<double>(scaled_image.size());
543
544 angles_data = angles.ptr<double>(0);
545 modgrad_data = modgrad.ptr<double>(0);
546 scaled_image_data = scaled_image.ptr<double>(0);
547
548 img_width = scaled_image.cols;
549 img_height = scaled_image.rows;
550
551 // Undefined the down and right boundaries
552 angles.row(img_height - 1).setTo(NOTDEF);
553 angles.col(img_width - 1).setTo(NOTDEF);
554
555 // Computing gradient for remaining pixels
556 CV_Assert(scaled_image.isContinuous() &&
557 modgrad.isContinuous() &&
558 angles.isContinuous()); // Accessing image data linearly
559
560 double max_grad = -1;
561 for(int y = 0; y < img_height - 1; ++y)
562 {
563 for(int addr = y * img_width, addr_end = addr + img_width - 1; addr < addr_end; ++addr)
564 {
565 double DA = scaled_image_data[addr + img_width + 1] - scaled_image_data[addr];
566 double BC = scaled_image_data[addr + 1] - scaled_image_data[addr + img_width];
567 double gx = DA + BC; // gradient x component
568 double gy = DA - BC; // gradient y component
569 double norm = std::sqrt((gx * gx + gy * gy) / 4); // gradient norm
570
571 modgrad_data[addr] = norm; // store gradient
572
573 if (norm <= threshold) // norm too small, gradient no defined
574 {
575 angles_data[addr] = NOTDEF;
576 }
577 else
578 {
579 angles_data[addr] = fastAtan2(float(gx), float(-gy)) * DEG_TO_RADS; // gradient angle computation
580 if (norm > max_grad) { max_grad = norm; }
581 }
582
583 }
584 }
585
586 // Compute histogram of gradient values
587 list = std::vector<coorlist>(img_width * img_height);
588 std::vector<coorlist*> range_s(n_bins);
589 std::vector<coorlist*> range_e(n_bins);
590 unsigned int count = 0;
591 double bin_coef = (max_grad > 0) ? double(n_bins - 1) / max_grad : 0; // If all image is smooth, max_grad <= 0
592
593 for(int y = 0; y < img_height - 1; ++y)
594 {
595 const double* norm = modgrad_data + y * img_width;
596 for(int x = 0; x < img_width - 1; ++x, ++norm)
597 {
598 // Store the point in the right bin according to its norm
599 int i = int((*norm) * bin_coef);
600 if(!range_e[i])
601 {
602 range_e[i] = range_s[i] = &list[count];
603 ++count;
604 }
605 else
606 {
607 range_e[i]->next = &list[count];
608 range_e[i] = &list[count];
609 ++count;
610 }
611 range_e[i]->p = Point(x, y);
612 range_e[i]->next = 0;
613 }
614 }
615
616 // Sort
617 int idx = n_bins - 1;
618 for(;idx > 0 && !range_s[idx]; --idx);
619 coorlist* start = range_s[idx];
620 coorlist* end = range_e[idx];
621 if(start)
622 {
623 while(idx > 0)
624 {
625 --idx;
626 if(range_s[idx])
627 {
628 end->next = range_s[idx];
629 end = range_e[idx];
630 }
631 }
632 }
633 }
634
region_grow(const Point2i & s,std::vector<RegionPoint> & reg,int & reg_size,double & reg_angle,const double & prec)635 void LineSegmentDetectorImpl::region_grow(const Point2i& s, std::vector<RegionPoint>& reg,
636 int& reg_size, double& reg_angle, const double& prec)
637 {
638 // Point to this region
639 reg_size = 1;
640 reg[0].x = s.x;
641 reg[0].y = s.y;
642 int addr = s.x + s.y * img_width;
643 reg[0].used = used.ptr() + addr;
644 reg_angle = angles_data[addr];
645 reg[0].angle = reg_angle;
646 reg[0].modgrad = modgrad_data[addr];
647
648 float sumdx = float(std::cos(reg_angle));
649 float sumdy = float(std::sin(reg_angle));
650 *reg[0].used = USED;
651
652 //Try neighboring regions
653 for(int i = 0; i < reg_size; ++i)
654 {
655 const RegionPoint& rpoint = reg[i];
656 int xx_min = std::max(rpoint.x - 1, 0), xx_max = std::min(rpoint.x + 1, img_width - 1);
657 int yy_min = std::max(rpoint.y - 1, 0), yy_max = std::min(rpoint.y + 1, img_height - 1);
658 for(int yy = yy_min; yy <= yy_max; ++yy)
659 {
660 int c_addr = xx_min + yy * img_width;
661 for(int xx = xx_min; xx <= xx_max; ++xx, ++c_addr)
662 {
663 if((used.ptr()[c_addr] != USED) &&
664 (isAligned(c_addr, reg_angle, prec)))
665 {
666 // Add point
667 used.ptr()[c_addr] = USED;
668 RegionPoint& region_point = reg[reg_size];
669 region_point.x = xx;
670 region_point.y = yy;
671 region_point.used = &(used.ptr()[c_addr]);
672 region_point.modgrad = modgrad_data[c_addr];
673 const double& angle = angles_data[c_addr];
674 region_point.angle = angle;
675 ++reg_size;
676
677 // Update region's angle
678 sumdx += cos(float(angle));
679 sumdy += sin(float(angle));
680 // reg_angle is used in the isAligned, so it needs to be updates?
681 reg_angle = fastAtan2(sumdy, sumdx) * DEG_TO_RADS;
682 }
683 }
684 }
685 }
686 }
687
region2rect(const std::vector<RegionPoint> & reg,const int reg_size,const double reg_angle,const double prec,const double p,rect & rec) const688 void LineSegmentDetectorImpl::region2rect(const std::vector<RegionPoint>& reg, const int reg_size,
689 const double reg_angle, const double prec, const double p, rect& rec) const
690 {
691 double x = 0, y = 0, sum = 0;
692 for(int i = 0; i < reg_size; ++i)
693 {
694 const RegionPoint& pnt = reg[i];
695 const double& weight = pnt.modgrad;
696 x += double(pnt.x) * weight;
697 y += double(pnt.y) * weight;
698 sum += weight;
699 }
700
701 // Weighted sum must differ from 0
702 CV_Assert(sum > 0);
703
704 x /= sum;
705 y /= sum;
706
707 double theta = get_theta(reg, reg_size, x, y, reg_angle, prec);
708
709 // Find length and width
710 double dx = cos(theta);
711 double dy = sin(theta);
712 double l_min = 0, l_max = 0, w_min = 0, w_max = 0;
713
714 for(int i = 0; i < reg_size; ++i)
715 {
716 double regdx = double(reg[i].x) - x;
717 double regdy = double(reg[i].y) - y;
718
719 double l = regdx * dx + regdy * dy;
720 double w = -regdx * dy + regdy * dx;
721
722 if(l > l_max) l_max = l;
723 else if(l < l_min) l_min = l;
724 if(w > w_max) w_max = w;
725 else if(w < w_min) w_min = w;
726 }
727
728 // Store values
729 rec.x1 = x + l_min * dx;
730 rec.y1 = y + l_min * dy;
731 rec.x2 = x + l_max * dx;
732 rec.y2 = y + l_max * dy;
733 rec.width = w_max - w_min;
734 rec.x = x;
735 rec.y = y;
736 rec.theta = theta;
737 rec.dx = dx;
738 rec.dy = dy;
739 rec.prec = prec;
740 rec.p = p;
741
742 // Min width of 1 pixel
743 if(rec.width < 1.0) rec.width = 1.0;
744 }
745
get_theta(const std::vector<RegionPoint> & reg,const int & reg_size,const double & x,const double & y,const double & reg_angle,const double & prec) const746 double LineSegmentDetectorImpl::get_theta(const std::vector<RegionPoint>& reg, const int& reg_size, const double& x,
747 const double& y, const double& reg_angle, const double& prec) const
748 {
749 double Ixx = 0.0;
750 double Iyy = 0.0;
751 double Ixy = 0.0;
752
753 // Compute inertia matrix
754 for(int i = 0; i < reg_size; ++i)
755 {
756 const double& regx = reg[i].x;
757 const double& regy = reg[i].y;
758 const double& weight = reg[i].modgrad;
759 double dx = regx - x;
760 double dy = regy - y;
761 Ixx += dy * dy * weight;
762 Iyy += dx * dx * weight;
763 Ixy -= dx * dy * weight;
764 }
765
766 // Check if inertia matrix is null
767 CV_Assert(!(double_equal(Ixx, 0) && double_equal(Iyy, 0) && double_equal(Ixy, 0)));
768
769 // Compute smallest eigenvalue
770 double lambda = 0.5 * (Ixx + Iyy - sqrt((Ixx - Iyy) * (Ixx - Iyy) + 4.0 * Ixy * Ixy));
771
772 // Compute angle
773 double theta = (fabs(Ixx)>fabs(Iyy))?
774 double(fastAtan2(float(lambda - Ixx), float(Ixy))):
775 double(fastAtan2(float(Ixy), float(lambda - Iyy))); // in degs
776 theta *= DEG_TO_RADS;
777
778 // Correct angle by 180 deg if necessary
779 if(angle_diff(theta, reg_angle) > prec) { theta += CV_PI; }
780
781 return theta;
782 }
783
refine(std::vector<RegionPoint> & reg,int & reg_size,double reg_angle,const double prec,double p,rect & rec,const double & density_th)784 bool LineSegmentDetectorImpl::refine(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
785 const double prec, double p, rect& rec, const double& density_th)
786 {
787 double density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
788
789 if (density >= density_th) { return true; }
790
791 // Try to reduce angle tolerance
792 double xc = double(reg[0].x);
793 double yc = double(reg[0].y);
794 const double& ang_c = reg[0].angle;
795 double sum = 0, s_sum = 0;
796 int n = 0;
797
798 for (int i = 0; i < reg_size; ++i)
799 {
800 *(reg[i].used) = NOTUSED;
801 if (dist(xc, yc, reg[i].x, reg[i].y) < rec.width)
802 {
803 const double& angle = reg[i].angle;
804 double ang_d = angle_diff_signed(angle, ang_c);
805 sum += ang_d;
806 s_sum += ang_d * ang_d;
807 ++n;
808 }
809 }
810 double mean_angle = sum / double(n);
811 // 2 * standard deviation
812 double tau = 2.0 * sqrt((s_sum - 2.0 * mean_angle * sum) / double(n) + mean_angle * mean_angle);
813
814 // Try new region
815 region_grow(Point(reg[0].x, reg[0].y), reg, reg_size, reg_angle, tau);
816
817 if (reg_size < 2) { return false; }
818
819 region2rect(reg, reg_size, reg_angle, prec, p, rec);
820 density = double(reg_size) / (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
821
822 if (density < density_th)
823 {
824 return reduce_region_radius(reg, reg_size, reg_angle, prec, p, rec, density, density_th);
825 }
826 else
827 {
828 return true;
829 }
830 }
831
reduce_region_radius(std::vector<RegionPoint> & reg,int & reg_size,double reg_angle,const double prec,double p,rect & rec,double density,const double & density_th)832 bool LineSegmentDetectorImpl::reduce_region_radius(std::vector<RegionPoint>& reg, int& reg_size, double reg_angle,
833 const double prec, double p, rect& rec, double density, const double& density_th)
834 {
835 // Compute region's radius
836 double xc = double(reg[0].x);
837 double yc = double(reg[0].y);
838 double radSq1 = distSq(xc, yc, rec.x1, rec.y1);
839 double radSq2 = distSq(xc, yc, rec.x2, rec.y2);
840 double radSq = radSq1 > radSq2 ? radSq1 : radSq2;
841
842 while(density < density_th)
843 {
844 radSq *= 0.75*0.75; // Reduce region's radius to 75% of its value
845 // Remove points from the region and update 'used' map
846 for(int i = 0; i < reg_size; ++i)
847 {
848 if(distSq(xc, yc, double(reg[i].x), double(reg[i].y)) > radSq)
849 {
850 // Remove point from the region
851 *(reg[i].used) = NOTUSED;
852 std::swap(reg[i], reg[reg_size - 1]);
853 --reg_size;
854 --i; // To avoid skipping one point
855 }
856 }
857
858 if(reg_size < 2) { return false; }
859
860 // Re-compute rectangle
861 region2rect(reg, reg_size ,reg_angle, prec, p, rec);
862
863 // Re-compute region points density
864 density = double(reg_size) /
865 (dist(rec.x1, rec.y1, rec.x2, rec.y2) * rec.width);
866 }
867
868 return true;
869 }
870
rect_improve(rect & rec) const871 double LineSegmentDetectorImpl::rect_improve(rect& rec) const
872 {
873 double delta = 0.5;
874 double delta_2 = delta / 2.0;
875
876 double log_nfa = rect_nfa(rec);
877
878 if(log_nfa > LOG_EPS) return log_nfa; // Good rectangle
879
880 // Try to improve
881 // Finer precision
882 rect r = rect(rec); // Copy
883 for(int n = 0; n < 5; ++n)
884 {
885 r.p /= 2;
886 r.prec = r.p * CV_PI;
887 double log_nfa_new = rect_nfa(r);
888 if(log_nfa_new > log_nfa)
889 {
890 log_nfa = log_nfa_new;
891 rec = rect(r);
892 }
893 }
894 if(log_nfa > LOG_EPS) return log_nfa;
895
896 // Try to reduce width
897 r = rect(rec);
898 for(unsigned int n = 0; n < 5; ++n)
899 {
900 if((r.width - delta) >= 0.5)
901 {
902 r.width -= delta;
903 double log_nfa_new = rect_nfa(r);
904 if(log_nfa_new > log_nfa)
905 {
906 rec = rect(r);
907 log_nfa = log_nfa_new;
908 }
909 }
910 }
911 if(log_nfa > LOG_EPS) return log_nfa;
912
913 // Try to reduce one side of rectangle
914 r = rect(rec);
915 for(unsigned int n = 0; n < 5; ++n)
916 {
917 if((r.width - delta) >= 0.5)
918 {
919 r.x1 += -r.dy * delta_2;
920 r.y1 += r.dx * delta_2;
921 r.x2 += -r.dy * delta_2;
922 r.y2 += r.dx * delta_2;
923 r.width -= delta;
924 double log_nfa_new = rect_nfa(r);
925 if(log_nfa_new > log_nfa)
926 {
927 rec = rect(r);
928 log_nfa = log_nfa_new;
929 }
930 }
931 }
932 if(log_nfa > LOG_EPS) return log_nfa;
933
934 // Try to reduce other side of rectangle
935 r = rect(rec);
936 for(unsigned int n = 0; n < 5; ++n)
937 {
938 if((r.width - delta) >= 0.5)
939 {
940 r.x1 -= -r.dy * delta_2;
941 r.y1 -= r.dx * delta_2;
942 r.x2 -= -r.dy * delta_2;
943 r.y2 -= r.dx * delta_2;
944 r.width -= delta;
945 double log_nfa_new = rect_nfa(r);
946 if(log_nfa_new > log_nfa)
947 {
948 rec = rect(r);
949 log_nfa = log_nfa_new;
950 }
951 }
952 }
953 if(log_nfa > LOG_EPS) return log_nfa;
954
955 // Try finer precision
956 r = rect(rec);
957 for(unsigned int n = 0; n < 5; ++n)
958 {
959 if((r.width - delta) >= 0.5)
960 {
961 r.p /= 2;
962 r.prec = r.p * CV_PI;
963 double log_nfa_new = rect_nfa(r);
964 if(log_nfa_new > log_nfa)
965 {
966 rec = rect(r);
967 log_nfa = log_nfa_new;
968 }
969 }
970 }
971
972 return log_nfa;
973 }
974
rect_nfa(const rect & rec) const975 double LineSegmentDetectorImpl::rect_nfa(const rect& rec) const
976 {
977 int total_pts = 0, alg_pts = 0;
978 double half_width = rec.width / 2.0;
979 double dyhw = rec.dy * half_width;
980 double dxhw = rec.dx * half_width;
981
982 std::vector<edge> ordered_x(4);
983 edge* min_y = &ordered_x[0];
984 edge* max_y = &ordered_x[0]; // Will be used for loop range
985
986 ordered_x[0].p.x = int(rec.x1 - dyhw); ordered_x[0].p.y = int(rec.y1 + dxhw); ordered_x[0].taken = false;
987 ordered_x[1].p.x = int(rec.x2 - dyhw); ordered_x[1].p.y = int(rec.y2 + dxhw); ordered_x[1].taken = false;
988 ordered_x[2].p.x = int(rec.x2 + dyhw); ordered_x[2].p.y = int(rec.y2 - dxhw); ordered_x[2].taken = false;
989 ordered_x[3].p.x = int(rec.x1 + dyhw); ordered_x[3].p.y = int(rec.y1 - dxhw); ordered_x[3].taken = false;
990
991 std::sort(ordered_x.begin(), ordered_x.end(), AsmallerB_XoverY);
992
993 // Find min y. And mark as taken. find max y.
994 for(unsigned int i = 1; i < 4; ++i)
995 {
996 if(min_y->p.y > ordered_x[i].p.y) {min_y = &ordered_x[i]; }
997 if(max_y->p.y < ordered_x[i].p.y) {max_y = &ordered_x[i]; }
998 }
999 min_y->taken = true;
1000
1001 // Find leftmost untaken point;
1002 edge* leftmost = 0;
1003 for(unsigned int i = 0; i < 4; ++i)
1004 {
1005 if(!ordered_x[i].taken)
1006 {
1007 if(!leftmost) // if uninitialized
1008 {
1009 leftmost = &ordered_x[i];
1010 }
1011 else if (leftmost->p.x > ordered_x[i].p.x)
1012 {
1013 leftmost = &ordered_x[i];
1014 }
1015 }
1016 }
1017 leftmost->taken = true;
1018
1019 // Find rightmost untaken point;
1020 edge* rightmost = 0;
1021 for(unsigned int i = 0; i < 4; ++i)
1022 {
1023 if(!ordered_x[i].taken)
1024 {
1025 if(!rightmost) // if uninitialized
1026 {
1027 rightmost = &ordered_x[i];
1028 }
1029 else if (rightmost->p.x < ordered_x[i].p.x)
1030 {
1031 rightmost = &ordered_x[i];
1032 }
1033 }
1034 }
1035 rightmost->taken = true;
1036
1037 // Find last untaken point;
1038 edge* tailp = 0;
1039 for(unsigned int i = 0; i < 4; ++i)
1040 {
1041 if(!ordered_x[i].taken)
1042 {
1043 if(!tailp) // if uninitialized
1044 {
1045 tailp = &ordered_x[i];
1046 }
1047 else if (tailp->p.x > ordered_x[i].p.x)
1048 {
1049 tailp = &ordered_x[i];
1050 }
1051 }
1052 }
1053 tailp->taken = true;
1054
1055 double flstep = (min_y->p.y != leftmost->p.y) ?
1056 (min_y->p.x - leftmost->p.x) / (min_y->p.y - leftmost->p.y) : 0; //first left step
1057 double slstep = (leftmost->p.y != tailp->p.x) ?
1058 (leftmost->p.x - tailp->p.x) / (leftmost->p.y - tailp->p.x) : 0; //second left step
1059
1060 double frstep = (min_y->p.y != rightmost->p.y) ?
1061 (min_y->p.x - rightmost->p.x) / (min_y->p.y - rightmost->p.y) : 0; //first right step
1062 double srstep = (rightmost->p.y != tailp->p.x) ?
1063 (rightmost->p.x - tailp->p.x) / (rightmost->p.y - tailp->p.x) : 0; //second right step
1064
1065 double lstep = flstep, rstep = frstep;
1066
1067 double left_x = min_y->p.x, right_x = min_y->p.x;
1068
1069 // Loop around all points in the region and count those that are aligned.
1070 int min_iter = min_y->p.y;
1071 int max_iter = max_y->p.y;
1072 for(int y = min_iter; y <= max_iter; ++y)
1073 {
1074 if (y < 0 || y >= img_height) continue;
1075
1076 int adx = y * img_width + int(left_x);
1077 for(int x = int(left_x); x <= int(right_x); ++x, ++adx)
1078 {
1079 if (x < 0 || x >= img_width) continue;
1080
1081 ++total_pts;
1082 if(isAligned(adx, rec.theta, rec.prec))
1083 {
1084 ++alg_pts;
1085 }
1086 }
1087
1088 if(y >= leftmost->p.y) { lstep = slstep; }
1089 if(y >= rightmost->p.y) { rstep = srstep; }
1090
1091 left_x += lstep;
1092 right_x += rstep;
1093 }
1094
1095 return nfa(total_pts, alg_pts, rec.p);
1096 }
1097
nfa(const int & n,const int & k,const double & p) const1098 double LineSegmentDetectorImpl::nfa(const int& n, const int& k, const double& p) const
1099 {
1100 // Trivial cases
1101 if(n == 0 || k == 0) { return -LOG_NT; }
1102 if(n == k) { return -LOG_NT - double(n) * log10(p); }
1103
1104 double p_term = p / (1 - p);
1105
1106 double log1term = (double(n) + 1) - log_gamma(double(k) + 1)
1107 - log_gamma(double(n-k) + 1)
1108 + double(k) * log(p) + double(n-k) * log(1.0 - p);
1109 double term = exp(log1term);
1110
1111 if(double_equal(term, 0))
1112 {
1113 if(k > n * p) return -log1term / M_LN10 - LOG_NT;
1114 else return -LOG_NT;
1115 }
1116
1117 // Compute more terms if needed
1118 double bin_tail = term;
1119 double tolerance = 0.1; // an error of 10% in the result is accepted
1120 for(int i = k + 1; i <= n; ++i)
1121 {
1122 double bin_term = double(n - i + 1) / double(i);
1123 double mult_term = bin_term * p_term;
1124 term *= mult_term;
1125 bin_tail += term;
1126 if(bin_term < 1)
1127 {
1128 double err = term * ((1 - pow(mult_term, double(n-i+1))) / (1 - mult_term) - 1);
1129 if(err < tolerance * fabs(-log10(bin_tail) - LOG_NT) * bin_tail) break;
1130 }
1131
1132 }
1133 return -log10(bin_tail) - LOG_NT;
1134 }
1135
isAligned(const int & address,const double & theta,const double & prec) const1136 inline bool LineSegmentDetectorImpl::isAligned(const int& address, const double& theta, const double& prec) const
1137 {
1138 if(address < 0) { return false; }
1139 const double& a = angles_data[address];
1140 if(a == NOTDEF) { return false; }
1141
1142 // It is assumed that 'theta' and 'a' are in the range [-pi,pi]
1143 double n_theta = theta - a;
1144 if(n_theta < 0) { n_theta = -n_theta; }
1145 if(n_theta > M_3_2_PI)
1146 {
1147 n_theta -= M_2__PI;
1148 if(n_theta < 0) n_theta = -n_theta;
1149 }
1150
1151 return n_theta <= prec;
1152 }
1153
1154
drawSegments(InputOutputArray _image,InputArray lines)1155 void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines)
1156 {
1157 CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
1158
1159 Mat gray;
1160 if (_image.channels() == 1)
1161 {
1162 gray = _image.getMatRef();
1163 }
1164 else if (_image.channels() == 3)
1165 {
1166 cvtColor(_image, gray, CV_BGR2GRAY);
1167 }
1168
1169 // Create a 3 channel image in order to draw colored lines
1170 std::vector<Mat> planes;
1171 planes.push_back(gray);
1172 planes.push_back(gray);
1173 planes.push_back(gray);
1174
1175 merge(planes, _image);
1176
1177 Mat _lines;
1178 _lines = lines.getMat();
1179 int N = _lines.checkVector(4);
1180
1181 // Draw segments
1182 for(int i = 0; i < N; ++i)
1183 {
1184 const Vec4f& v = _lines.at<Vec4f>(i);
1185 Point2f b(v[0], v[1]);
1186 Point2f e(v[2], v[3]);
1187 line(_image.getMatRef(), b, e, Scalar(0, 0, 255), 1);
1188 }
1189 }
1190
1191
compareSegments(const Size & size,InputArray lines1,InputArray lines2,InputOutputArray _image)1192 int LineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image)
1193 {
1194 Size sz = size;
1195 if (_image.needed() && _image.size() != size) sz = _image.size();
1196 CV_Assert(sz.area());
1197
1198 Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
1199 Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
1200
1201 Mat _lines1;
1202 Mat _lines2;
1203 _lines1 = lines1.getMat();
1204 _lines2 = lines2.getMat();
1205 int N1 = _lines1.checkVector(4);
1206 int N2 = _lines2.checkVector(4);
1207
1208 // Draw segments
1209 for(int i = 0; i < N1; ++i)
1210 {
1211 Point2f b(_lines1.at<Vec4f>(i)[0], _lines1.at<Vec4f>(i)[1]);
1212 Point2f e(_lines1.at<Vec4f>(i)[2], _lines1.at<Vec4f>(i)[3]);
1213 line(I1, b, e, Scalar::all(255), 1);
1214 }
1215 for(int i = 0; i < N2; ++i)
1216 {
1217 Point2f b(_lines2.at<Vec4f>(i)[0], _lines2.at<Vec4f>(i)[1]);
1218 Point2f e(_lines2.at<Vec4f>(i)[2], _lines2.at<Vec4f>(i)[3]);
1219 line(I2, b, e, Scalar::all(255), 1);
1220 }
1221
1222 // Count the pixels that don't agree
1223 Mat Ixor;
1224 bitwise_xor(I1, I2, Ixor);
1225 int N = countNonZero(Ixor);
1226
1227 if (_image.needed())
1228 {
1229 CV_Assert(_image.channels() == 3);
1230 Mat img = _image.getMatRef();
1231 CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous());
1232
1233 for (unsigned int i = 0; i < I1.total(); ++i)
1234 {
1235 uchar i1 = I1.ptr()[i];
1236 uchar i2 = I2.ptr()[i];
1237 if (i1 || i2)
1238 {
1239 unsigned int base_idx = i * 3;
1240 if (i1) img.ptr()[base_idx] = 255;
1241 else img.ptr()[base_idx] = 0;
1242 img.ptr()[base_idx + 1] = 0;
1243 if (i2) img.ptr()[base_idx + 2] = 255;
1244 else img.ptr()[base_idx + 2] = 0;
1245 }
1246 }
1247 }
1248
1249 return N;
1250 }
1251
1252 } // namespace cv
1253