1 // object.cc -- support for an object file for linking in gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <cstdarg>
28 #include "demangle.h"
29 #include "libiberty.h"
30
31 #include "gc.h"
32 #include "target-select.h"
33 #include "dwarf_reader.h"
34 #include "layout.h"
35 #include "output.h"
36 #include "symtab.h"
37 #include "cref.h"
38 #include "reloc.h"
39 #include "object.h"
40 #include "dynobj.h"
41 #include "plugin.h"
42 #include "compressed_output.h"
43 #include "incremental.h"
44
45 namespace gold
46 {
47
48 // Struct Read_symbols_data.
49
50 // Destroy any remaining File_view objects and buffers of decompressed
51 // sections.
52
~Read_symbols_data()53 Read_symbols_data::~Read_symbols_data()
54 {
55 if (this->section_headers != NULL)
56 delete this->section_headers;
57 if (this->section_names != NULL)
58 delete this->section_names;
59 if (this->symbols != NULL)
60 delete this->symbols;
61 if (this->symbol_names != NULL)
62 delete this->symbol_names;
63 if (this->versym != NULL)
64 delete this->versym;
65 if (this->verdef != NULL)
66 delete this->verdef;
67 if (this->verneed != NULL)
68 delete this->verneed;
69 }
70
71 // Class Xindex.
72
73 // Initialize the symtab_xindex_ array. Find the SHT_SYMTAB_SHNDX
74 // section and read it in. SYMTAB_SHNDX is the index of the symbol
75 // table we care about.
76
77 template<int size, bool big_endian>
78 void
initialize_symtab_xindex(Object * object,unsigned int symtab_shndx)79 Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
80 {
81 if (!this->symtab_xindex_.empty())
82 return;
83
84 gold_assert(symtab_shndx != 0);
85
86 // Look through the sections in reverse order, on the theory that it
87 // is more likely to be near the end than the beginning.
88 unsigned int i = object->shnum();
89 while (i > 0)
90 {
91 --i;
92 if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
93 && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
94 {
95 this->read_symtab_xindex<size, big_endian>(object, i, NULL);
96 return;
97 }
98 }
99
100 object->error(_("missing SHT_SYMTAB_SHNDX section"));
101 }
102
103 // Read in the symtab_xindex_ array, given the section index of the
104 // SHT_SYMTAB_SHNDX section. If PSHDRS is not NULL, it points at the
105 // section headers.
106
107 template<int size, bool big_endian>
108 void
read_symtab_xindex(Object * object,unsigned int xindex_shndx,const unsigned char * pshdrs)109 Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
110 const unsigned char* pshdrs)
111 {
112 section_size_type bytecount;
113 const unsigned char* contents;
114 if (pshdrs == NULL)
115 contents = object->section_contents(xindex_shndx, &bytecount, false);
116 else
117 {
118 const unsigned char* p = (pshdrs
119 + (xindex_shndx
120 * elfcpp::Elf_sizes<size>::shdr_size));
121 typename elfcpp::Shdr<size, big_endian> shdr(p);
122 bytecount = convert_to_section_size_type(shdr.get_sh_size());
123 contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
124 }
125
126 gold_assert(this->symtab_xindex_.empty());
127 this->symtab_xindex_.reserve(bytecount / 4);
128 for (section_size_type i = 0; i < bytecount; i += 4)
129 {
130 unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
131 // We preadjust the section indexes we save.
132 this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
133 }
134 }
135
136 // Symbol symndx has a section of SHN_XINDEX; return the real section
137 // index.
138
139 unsigned int
sym_xindex_to_shndx(Object * object,unsigned int symndx)140 Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
141 {
142 if (symndx >= this->symtab_xindex_.size())
143 {
144 object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
145 symndx);
146 return elfcpp::SHN_UNDEF;
147 }
148 unsigned int shndx = this->symtab_xindex_[symndx];
149 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
150 {
151 object->error(_("extended index for symbol %u out of range: %u"),
152 symndx, shndx);
153 return elfcpp::SHN_UNDEF;
154 }
155 return shndx;
156 }
157
158 // Class Object.
159
160 // Report an error for this object file. This is used by the
161 // elfcpp::Elf_file interface, and also called by the Object code
162 // itself.
163
164 void
error(const char * format,...) const165 Object::error(const char* format, ...) const
166 {
167 va_list args;
168 va_start(args, format);
169 char* buf = NULL;
170 if (vasprintf(&buf, format, args) < 0)
171 gold_nomem();
172 va_end(args);
173 gold_error(_("%s: %s"), this->name().c_str(), buf);
174 free(buf);
175 }
176
177 // Return a view of the contents of a section.
178
179 const unsigned char*
section_contents(unsigned int shndx,section_size_type * plen,bool cache)180 Object::section_contents(unsigned int shndx, section_size_type* plen,
181 bool cache)
182 { return this->do_section_contents(shndx, plen, cache); }
183
184 // Read the section data into SD. This is code common to Sized_relobj_file
185 // and Sized_dynobj, so we put it into Object.
186
187 template<int size, bool big_endian>
188 void
read_section_data(elfcpp::Elf_file<size,big_endian,Object> * elf_file,Read_symbols_data * sd)189 Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
190 Read_symbols_data* sd)
191 {
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193
194 // Read the section headers.
195 const off_t shoff = elf_file->shoff();
196 const unsigned int shnum = this->shnum();
197 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
198 true, true);
199
200 // Read the section names.
201 const unsigned char* pshdrs = sd->section_headers->data();
202 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
203 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);
204
205 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
206 this->error(_("section name section has wrong type: %u"),
207 static_cast<unsigned int>(shdrnames.get_sh_type()));
208
209 sd->section_names_size =
210 convert_to_section_size_type(shdrnames.get_sh_size());
211 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
212 sd->section_names_size, false,
213 false);
214 }
215
216 // If NAME is the name of a special .gnu.warning section, arrange for
217 // the warning to be issued. SHNDX is the section index. Return
218 // whether it is a warning section.
219
220 bool
handle_gnu_warning_section(const char * name,unsigned int shndx,Symbol_table * symtab)221 Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
222 Symbol_table* symtab)
223 {
224 const char warn_prefix[] = ".gnu.warning.";
225 const int warn_prefix_len = sizeof warn_prefix - 1;
226 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
227 {
228 // Read the section contents to get the warning text. It would
229 // be nicer if we only did this if we have to actually issue a
230 // warning. Unfortunately, warnings are issued as we relocate
231 // sections. That means that we can not lock the object then,
232 // as we might try to issue the same warning multiple times
233 // simultaneously.
234 section_size_type len;
235 const unsigned char* contents = this->section_contents(shndx, &len,
236 false);
237 if (len == 0)
238 {
239 const char* warning = name + warn_prefix_len;
240 contents = reinterpret_cast<const unsigned char*>(warning);
241 len = strlen(warning);
242 }
243 std::string warning(reinterpret_cast<const char*>(contents), len);
244 symtab->add_warning(name + warn_prefix_len, this, warning);
245 return true;
246 }
247 return false;
248 }
249
250 // If NAME is the name of the special section which indicates that
251 // this object was compiled with -fsplit-stack, mark it accordingly.
252
253 bool
handle_split_stack_section(const char * name)254 Object::handle_split_stack_section(const char* name)
255 {
256 if (strcmp(name, ".note.GNU-split-stack") == 0)
257 {
258 this->uses_split_stack_ = true;
259 return true;
260 }
261 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
262 {
263 this->has_no_split_stack_ = true;
264 return true;
265 }
266 return false;
267 }
268
269 // Class Relobj
270
271 // To copy the symbols data read from the file to a local data structure.
272 // This function is called from do_layout only while doing garbage
273 // collection.
274
275 void
copy_symbols_data(Symbols_data * gc_sd,Read_symbols_data * sd,unsigned int section_header_size)276 Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
277 unsigned int section_header_size)
278 {
279 gc_sd->section_headers_data =
280 new unsigned char[(section_header_size)];
281 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
282 section_header_size);
283 gc_sd->section_names_data =
284 new unsigned char[sd->section_names_size];
285 memcpy(gc_sd->section_names_data, sd->section_names->data(),
286 sd->section_names_size);
287 gc_sd->section_names_size = sd->section_names_size;
288 if (sd->symbols != NULL)
289 {
290 gc_sd->symbols_data =
291 new unsigned char[sd->symbols_size];
292 memcpy(gc_sd->symbols_data, sd->symbols->data(),
293 sd->symbols_size);
294 }
295 else
296 {
297 gc_sd->symbols_data = NULL;
298 }
299 gc_sd->symbols_size = sd->symbols_size;
300 gc_sd->external_symbols_offset = sd->external_symbols_offset;
301 if (sd->symbol_names != NULL)
302 {
303 gc_sd->symbol_names_data =
304 new unsigned char[sd->symbol_names_size];
305 memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
306 sd->symbol_names_size);
307 }
308 else
309 {
310 gc_sd->symbol_names_data = NULL;
311 }
312 gc_sd->symbol_names_size = sd->symbol_names_size;
313 }
314
315 // This function determines if a particular section name must be included
316 // in the link. This is used during garbage collection to determine the
317 // roots of the worklist.
318
319 bool
is_section_name_included(const char * name)320 Relobj::is_section_name_included(const char* name)
321 {
322 if (is_prefix_of(".ctors", name)
323 || is_prefix_of(".dtors", name)
324 || is_prefix_of(".note", name)
325 || is_prefix_of(".init", name)
326 || is_prefix_of(".fini", name)
327 || is_prefix_of(".gcc_except_table", name)
328 || is_prefix_of(".jcr", name)
329 || is_prefix_of(".preinit_array", name)
330 || (is_prefix_of(".text", name)
331 && strstr(name, "personality"))
332 || (is_prefix_of(".data", name)
333 && strstr(name, "personality"))
334 || (is_prefix_of(".sdata", name)
335 && strstr(name, "personality"))
336 || (is_prefix_of(".gnu.linkonce.d", name)
337 && strstr(name, "personality"))
338 || (is_prefix_of(".rodata", name)
339 && strstr(name, "nptl_version")))
340 {
341 return true;
342 }
343 return false;
344 }
345
346 // Finalize the incremental relocation information. Allocates a block
347 // of relocation entries for each symbol, and sets the reloc_bases_
348 // array to point to the first entry in each block. If CLEAR_COUNTS
349 // is TRUE, also clear the per-symbol relocation counters.
350
351 void
finalize_incremental_relocs(Layout * layout,bool clear_counts)352 Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
353 {
354 unsigned int nsyms = this->get_global_symbols()->size();
355 this->reloc_bases_ = new unsigned int[nsyms];
356
357 gold_assert(this->reloc_bases_ != NULL);
358 gold_assert(layout->incremental_inputs() != NULL);
359
360 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
361 for (unsigned int i = 0; i < nsyms; ++i)
362 {
363 this->reloc_bases_[i] = rindex;
364 rindex += this->reloc_counts_[i];
365 if (clear_counts)
366 this->reloc_counts_[i] = 0;
367 }
368 layout->incremental_inputs()->set_reloc_count(rindex);
369 }
370
371 // Class Sized_relobj.
372
373 // Iterate over local symbols, calling a visitor class V for each GOT offset
374 // associated with a local symbol.
375
376 template<int size, bool big_endian>
377 void
do_for_all_local_got_entries(Got_offset_list::Visitor * v) const378 Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
379 Got_offset_list::Visitor* v) const
380 {
381 unsigned int nsyms = this->local_symbol_count();
382 for (unsigned int i = 0; i < nsyms; i++)
383 {
384 Local_got_offsets::const_iterator p = this->local_got_offsets_.find(i);
385 if (p != this->local_got_offsets_.end())
386 {
387 const Got_offset_list* got_offsets = p->second;
388 got_offsets->for_all_got_offsets(v);
389 }
390 }
391 }
392
393 // Get the address of an output section.
394
395 template<int size, bool big_endian>
396 uint64_t
do_output_section_address(unsigned int shndx)397 Sized_relobj<size, big_endian>::do_output_section_address(
398 unsigned int shndx)
399 {
400 // If the input file is linked as --just-symbols, the output
401 // section address is the input section address.
402 if (this->just_symbols())
403 return this->section_address(shndx);
404
405 const Output_section* os = this->do_output_section(shndx);
406 gold_assert(os != NULL);
407 return os->address();
408 }
409
410 // Class Sized_relobj_file.
411
412 template<int size, bool big_endian>
Sized_relobj_file(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr)413 Sized_relobj_file<size, big_endian>::Sized_relobj_file(
414 const std::string& name,
415 Input_file* input_file,
416 off_t offset,
417 const elfcpp::Ehdr<size, big_endian>& ehdr)
418 : Sized_relobj<size, big_endian>(name, input_file, offset),
419 elf_file_(this, ehdr),
420 symtab_shndx_(-1U),
421 local_symbol_count_(0),
422 output_local_symbol_count_(0),
423 output_local_dynsym_count_(0),
424 symbols_(),
425 defined_count_(0),
426 local_symbol_offset_(0),
427 local_dynsym_offset_(0),
428 local_values_(),
429 local_plt_offsets_(),
430 kept_comdat_sections_(),
431 has_eh_frame_(false),
432 discarded_eh_frame_shndx_(-1U),
433 is_deferred_layout_(false),
434 deferred_layout_(),
435 deferred_layout_relocs_()
436 {
437 this->e_type_ = ehdr.get_e_type();
438 }
439
440 template<int size, bool big_endian>
~Sized_relobj_file()441 Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
442 {
443 }
444
445 // Set up an object file based on the file header. This sets up the
446 // section information.
447
448 template<int size, bool big_endian>
449 void
do_setup()450 Sized_relobj_file<size, big_endian>::do_setup()
451 {
452 const unsigned int shnum = this->elf_file_.shnum();
453 this->set_shnum(shnum);
454 }
455
456 // Find the SHT_SYMTAB section, given the section headers. The ELF
457 // standard says that maybe in the future there can be more than one
458 // SHT_SYMTAB section. Until somebody figures out how that could
459 // work, we assume there is only one.
460
461 template<int size, bool big_endian>
462 void
find_symtab(const unsigned char * pshdrs)463 Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
464 {
465 const unsigned int shnum = this->shnum();
466 this->symtab_shndx_ = 0;
467 if (shnum > 0)
468 {
469 // Look through the sections in reverse order, since gas tends
470 // to put the symbol table at the end.
471 const unsigned char* p = pshdrs + shnum * This::shdr_size;
472 unsigned int i = shnum;
473 unsigned int xindex_shndx = 0;
474 unsigned int xindex_link = 0;
475 while (i > 0)
476 {
477 --i;
478 p -= This::shdr_size;
479 typename This::Shdr shdr(p);
480 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
481 {
482 this->symtab_shndx_ = i;
483 if (xindex_shndx > 0 && xindex_link == i)
484 {
485 Xindex* xindex =
486 new Xindex(this->elf_file_.large_shndx_offset());
487 xindex->read_symtab_xindex<size, big_endian>(this,
488 xindex_shndx,
489 pshdrs);
490 this->set_xindex(xindex);
491 }
492 break;
493 }
494
495 // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
496 // one. This will work if it follows the SHT_SYMTAB
497 // section.
498 if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
499 {
500 xindex_shndx = i;
501 xindex_link = this->adjust_shndx(shdr.get_sh_link());
502 }
503 }
504 }
505 }
506
507 // Return the Xindex structure to use for object with lots of
508 // sections.
509
510 template<int size, bool big_endian>
511 Xindex*
do_initialize_xindex()512 Sized_relobj_file<size, big_endian>::do_initialize_xindex()
513 {
514 gold_assert(this->symtab_shndx_ != -1U);
515 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
516 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
517 return xindex;
518 }
519
520 // Return whether SHDR has the right type and flags to be a GNU
521 // .eh_frame section.
522
523 template<int size, bool big_endian>
524 bool
check_eh_frame_flags(const elfcpp::Shdr<size,big_endian> * shdr) const525 Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
526 const elfcpp::Shdr<size, big_endian>* shdr) const
527 {
528 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
529 return ((sh_type == elfcpp::SHT_PROGBITS
530 || sh_type == elfcpp::SHT_X86_64_UNWIND)
531 && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
532 }
533
534 // Find the section header with the given name.
535
536 template<int size, bool big_endian>
537 const unsigned char*
find_shdr(const unsigned char * pshdrs,const char * name,const char * names,section_size_type names_size,const unsigned char * hdr) const538 Object::find_shdr(
539 const unsigned char* pshdrs,
540 const char* name,
541 const char* names,
542 section_size_type names_size,
543 const unsigned char* hdr) const
544 {
545 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
546 const unsigned int shnum = this->shnum();
547 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
548 size_t sh_name = 0;
549
550 while (1)
551 {
552 if (hdr)
553 {
554 // We found HDR last time we were called, continue looking.
555 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
556 sh_name = shdr.get_sh_name();
557 }
558 else
559 {
560 // Look for the next occurrence of NAME in NAMES.
561 // The fact that .shstrtab produced by current GNU tools is
562 // string merged means we shouldn't have both .not.foo and
563 // .foo in .shstrtab, and multiple .foo sections should all
564 // have the same sh_name. However, this is not guaranteed
565 // by the ELF spec and not all ELF object file producers may
566 // be so clever.
567 size_t len = strlen(name) + 1;
568 const char *p = sh_name ? names + sh_name + len : names;
569 p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
570 name, len));
571 if (p == NULL)
572 return NULL;
573 sh_name = p - names;
574 hdr = pshdrs;
575 if (sh_name == 0)
576 return hdr;
577 }
578
579 hdr += shdr_size;
580 while (hdr < hdr_end)
581 {
582 typename elfcpp::Shdr<size, big_endian> shdr(hdr);
583 if (shdr.get_sh_name() == sh_name)
584 return hdr;
585 hdr += shdr_size;
586 }
587 hdr = NULL;
588 if (sh_name == 0)
589 return hdr;
590 }
591 }
592
593 // Return whether there is a GNU .eh_frame section, given the section
594 // headers and the section names.
595
596 template<int size, bool big_endian>
597 bool
find_eh_frame(const unsigned char * pshdrs,const char * names,section_size_type names_size) const598 Sized_relobj_file<size, big_endian>::find_eh_frame(
599 const unsigned char* pshdrs,
600 const char* names,
601 section_size_type names_size) const
602 {
603 const unsigned char* s = NULL;
604
605 while (1)
606 {
607 s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
608 names, names_size, s);
609 if (s == NULL)
610 return false;
611
612 typename This::Shdr shdr(s);
613 if (this->check_eh_frame_flags(&shdr))
614 return true;
615 }
616 }
617
618 // Return TRUE if this is a section whose contents will be needed in the
619 // Add_symbols task. This function is only called for sections that have
620 // already passed the test in is_compressed_debug_section(), so we know
621 // that the section name begins with ".zdebug".
622
623 static bool
need_decompressed_section(const char * name)624 need_decompressed_section(const char* name)
625 {
626 // Skip over the ".zdebug" and a quick check for the "_".
627 name += 7;
628 if (*name++ != '_')
629 return false;
630
631 #ifdef ENABLE_THREADS
632 // Decompressing these sections now will help only if we're
633 // multithreaded.
634 if (parameters->options().threads())
635 {
636 // We will need .zdebug_str if this is not an incremental link
637 // (i.e., we are processing string merge sections) or if we need
638 // to build a gdb index.
639 if ((!parameters->incremental() || parameters->options().gdb_index())
640 && strcmp(name, "str") == 0)
641 return true;
642
643 // We will need these other sections when building a gdb index.
644 if (parameters->options().gdb_index()
645 && (strcmp(name, "info") == 0
646 || strcmp(name, "types") == 0
647 || strcmp(name, "pubnames") == 0
648 || strcmp(name, "pubtypes") == 0
649 || strcmp(name, "ranges") == 0
650 || strcmp(name, "abbrev") == 0))
651 return true;
652 }
653 #endif
654
655 // Even when single-threaded, we will need .zdebug_str if this is
656 // not an incremental link and we are building a gdb index.
657 // Otherwise, we would decompress the section twice: once for
658 // string merge processing, and once for building the gdb index.
659 if (!parameters->incremental()
660 && parameters->options().gdb_index()
661 && strcmp(name, "str") == 0)
662 return true;
663
664 return false;
665 }
666
667 // Build a table for any compressed debug sections, mapping each section index
668 // to the uncompressed size and (if needed) the decompressed contents.
669
670 template<int size, bool big_endian>
671 Compressed_section_map*
build_compressed_section_map(const unsigned char * pshdrs,unsigned int shnum,const char * names,section_size_type names_size,Object * obj,bool decompress_if_needed)672 build_compressed_section_map(
673 const unsigned char* pshdrs,
674 unsigned int shnum,
675 const char* names,
676 section_size_type names_size,
677 Object* obj,
678 bool decompress_if_needed)
679 {
680 Compressed_section_map* uncompressed_map = new Compressed_section_map();
681 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
682 const unsigned char* p = pshdrs + shdr_size;
683
684 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
685 {
686 typename elfcpp::Shdr<size, big_endian> shdr(p);
687 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
688 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
689 {
690 if (shdr.get_sh_name() >= names_size)
691 {
692 obj->error(_("bad section name offset for section %u: %lu"),
693 i, static_cast<unsigned long>(shdr.get_sh_name()));
694 continue;
695 }
696
697 const char* name = names + shdr.get_sh_name();
698 if (is_compressed_debug_section(name))
699 {
700 section_size_type len;
701 const unsigned char* contents =
702 obj->section_contents(i, &len, false);
703 uint64_t uncompressed_size = get_uncompressed_size(contents, len);
704 Compressed_section_info info;
705 info.size = convert_to_section_size_type(uncompressed_size);
706 info.contents = NULL;
707 if (uncompressed_size != -1ULL)
708 {
709 unsigned char* uncompressed_data = NULL;
710 if (decompress_if_needed && need_decompressed_section(name))
711 {
712 uncompressed_data = new unsigned char[uncompressed_size];
713 if (decompress_input_section(contents, len,
714 uncompressed_data,
715 uncompressed_size))
716 info.contents = uncompressed_data;
717 else
718 delete[] uncompressed_data;
719 }
720 (*uncompressed_map)[i] = info;
721 }
722 }
723 }
724 }
725 return uncompressed_map;
726 }
727
728 // Stash away info for a number of special sections.
729 // Return true if any of the sections found require local symbols to be read.
730
731 template<int size, bool big_endian>
732 bool
do_find_special_sections(Read_symbols_data * sd)733 Sized_relobj_file<size, big_endian>::do_find_special_sections(
734 Read_symbols_data* sd)
735 {
736 const unsigned char* const pshdrs = sd->section_headers->data();
737 const unsigned char* namesu = sd->section_names->data();
738 const char* names = reinterpret_cast<const char*>(namesu);
739
740 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
741 this->has_eh_frame_ = true;
742
743 if (memmem(names, sd->section_names_size, ".zdebug_", 8) != NULL)
744 {
745 Compressed_section_map* compressed_sections =
746 build_compressed_section_map<size, big_endian>(
747 pshdrs, this->shnum(), names, sd->section_names_size, this, true);
748 if (compressed_sections != NULL)
749 this->set_compressed_sections(compressed_sections);
750 }
751
752 return (this->has_eh_frame_
753 || (!parameters->options().relocatable()
754 && parameters->options().gdb_index()
755 && (memmem(names, sd->section_names_size, "debug_info", 12) == 0
756 || memmem(names, sd->section_names_size, "debug_types",
757 13) == 0)));
758 }
759
760 // Read the sections and symbols from an object file.
761
762 template<int size, bool big_endian>
763 void
do_read_symbols(Read_symbols_data * sd)764 Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
765 {
766 this->base_read_symbols(sd);
767 }
768
769 // Read the sections and symbols from an object file. This is common
770 // code for all target-specific overrides of do_read_symbols().
771
772 template<int size, bool big_endian>
773 void
base_read_symbols(Read_symbols_data * sd)774 Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
775 {
776 this->read_section_data(&this->elf_file_, sd);
777
778 const unsigned char* const pshdrs = sd->section_headers->data();
779
780 this->find_symtab(pshdrs);
781
782 bool need_local_symbols = this->do_find_special_sections(sd);
783
784 sd->symbols = NULL;
785 sd->symbols_size = 0;
786 sd->external_symbols_offset = 0;
787 sd->symbol_names = NULL;
788 sd->symbol_names_size = 0;
789
790 if (this->symtab_shndx_ == 0)
791 {
792 // No symbol table. Weird but legal.
793 return;
794 }
795
796 // Get the symbol table section header.
797 typename This::Shdr symtabshdr(pshdrs
798 + this->symtab_shndx_ * This::shdr_size);
799 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
800
801 // If this object has a .eh_frame section, or if building a .gdb_index
802 // section and there is debug info, we need all the symbols.
803 // Otherwise we only need the external symbols. While it would be
804 // simpler to just always read all the symbols, I've seen object
805 // files with well over 2000 local symbols, which for a 64-bit
806 // object file format is over 5 pages that we don't need to read
807 // now.
808
809 const int sym_size = This::sym_size;
810 const unsigned int loccount = symtabshdr.get_sh_info();
811 this->local_symbol_count_ = loccount;
812 this->local_values_.resize(loccount);
813 section_offset_type locsize = loccount * sym_size;
814 off_t dataoff = symtabshdr.get_sh_offset();
815 section_size_type datasize =
816 convert_to_section_size_type(symtabshdr.get_sh_size());
817 off_t extoff = dataoff + locsize;
818 section_size_type extsize = datasize - locsize;
819
820 off_t readoff = need_local_symbols ? dataoff : extoff;
821 section_size_type readsize = need_local_symbols ? datasize : extsize;
822
823 if (readsize == 0)
824 {
825 // No external symbols. Also weird but also legal.
826 return;
827 }
828
829 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);
830
831 // Read the section header for the symbol names.
832 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
833 if (strtab_shndx >= this->shnum())
834 {
835 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
836 return;
837 }
838 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
839 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
840 {
841 this->error(_("symbol table name section has wrong type: %u"),
842 static_cast<unsigned int>(strtabshdr.get_sh_type()));
843 return;
844 }
845
846 // Read the symbol names.
847 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
848 strtabshdr.get_sh_size(),
849 false, true);
850
851 sd->symbols = fvsymtab;
852 sd->symbols_size = readsize;
853 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
854 sd->symbol_names = fvstrtab;
855 sd->symbol_names_size =
856 convert_to_section_size_type(strtabshdr.get_sh_size());
857 }
858
859 // Return the section index of symbol SYM. Set *VALUE to its value in
860 // the object file. Set *IS_ORDINARY if this is an ordinary section
861 // index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
862 // Note that for a symbol which is not defined in this object file,
863 // this will set *VALUE to 0 and return SHN_UNDEF; it will not return
864 // the final value of the symbol in the link.
865
866 template<int size, bool big_endian>
867 unsigned int
symbol_section_and_value(unsigned int sym,Address * value,bool * is_ordinary)868 Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
869 Address* value,
870 bool* is_ordinary)
871 {
872 section_size_type symbols_size;
873 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
874 &symbols_size,
875 false);
876
877 const size_t count = symbols_size / This::sym_size;
878 gold_assert(sym < count);
879
880 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
881 *value = elfsym.get_st_value();
882
883 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
884 }
885
886 // Return whether to include a section group in the link. LAYOUT is
887 // used to keep track of which section groups we have already seen.
888 // INDEX is the index of the section group and SHDR is the section
889 // header. If we do not want to include this group, we set bits in
890 // OMIT for each section which should be discarded.
891
892 template<int size, bool big_endian>
893 bool
include_section_group(Symbol_table * symtab,Layout * layout,unsigned int index,const char * name,const unsigned char * shdrs,const char * section_names,section_size_type section_names_size,std::vector<bool> * omit)894 Sized_relobj_file<size, big_endian>::include_section_group(
895 Symbol_table* symtab,
896 Layout* layout,
897 unsigned int index,
898 const char* name,
899 const unsigned char* shdrs,
900 const char* section_names,
901 section_size_type section_names_size,
902 std::vector<bool>* omit)
903 {
904 // Read the section contents.
905 typename This::Shdr shdr(shdrs + index * This::shdr_size);
906 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
907 shdr.get_sh_size(), true, false);
908 const elfcpp::Elf_Word* pword =
909 reinterpret_cast<const elfcpp::Elf_Word*>(pcon);
910
911 // The first word contains flags. We only care about COMDAT section
912 // groups. Other section groups are always included in the link
913 // just like ordinary sections.
914 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);
915
916 // Look up the group signature, which is the name of a symbol. ELF
917 // uses a symbol name because some group signatures are long, and
918 // the name is generally already in the symbol table, so it makes
919 // sense to put the long string just once in .strtab rather than in
920 // both .strtab and .shstrtab.
921
922 // Get the appropriate symbol table header (this will normally be
923 // the single SHT_SYMTAB section, but in principle it need not be).
924 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
925 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));
926
927 // Read the symbol table entry.
928 unsigned int symndx = shdr.get_sh_info();
929 if (symndx >= symshdr.get_sh_size() / This::sym_size)
930 {
931 this->error(_("section group %u info %u out of range"),
932 index, symndx);
933 return false;
934 }
935 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
936 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
937 false);
938 elfcpp::Sym<size, big_endian> sym(psym);
939
940 // Read the symbol table names.
941 section_size_type symnamelen;
942 const unsigned char* psymnamesu;
943 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
944 &symnamelen, true);
945 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);
946
947 // Get the section group signature.
948 if (sym.get_st_name() >= symnamelen)
949 {
950 this->error(_("symbol %u name offset %u out of range"),
951 symndx, sym.get_st_name());
952 return false;
953 }
954
955 std::string signature(psymnames + sym.get_st_name());
956
957 // It seems that some versions of gas will create a section group
958 // associated with a section symbol, and then fail to give a name to
959 // the section symbol. In such a case, use the name of the section.
960 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
961 {
962 bool is_ordinary;
963 unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
964 sym.get_st_shndx(),
965 &is_ordinary);
966 if (!is_ordinary || sym_shndx >= this->shnum())
967 {
968 this->error(_("symbol %u invalid section index %u"),
969 symndx, sym_shndx);
970 return false;
971 }
972 typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
973 if (member_shdr.get_sh_name() < section_names_size)
974 signature = section_names + member_shdr.get_sh_name();
975 }
976
977 // Record this section group in the layout, and see whether we've already
978 // seen one with the same signature.
979 bool include_group;
980 bool is_comdat;
981 Kept_section* kept_section = NULL;
982
983 if ((flags & elfcpp::GRP_COMDAT) == 0)
984 {
985 include_group = true;
986 is_comdat = false;
987 }
988 else
989 {
990 include_group = layout->find_or_add_kept_section(signature,
991 this, index, true,
992 true, &kept_section);
993 is_comdat = true;
994 }
995
996 if (is_comdat && include_group)
997 {
998 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
999 if (incremental_inputs != NULL)
1000 incremental_inputs->report_comdat_group(this, signature.c_str());
1001 }
1002
1003 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);
1004
1005 std::vector<unsigned int> shndxes;
1006 bool relocate_group = include_group && parameters->options().relocatable();
1007 if (relocate_group)
1008 shndxes.reserve(count - 1);
1009
1010 for (size_t i = 1; i < count; ++i)
1011 {
1012 elfcpp::Elf_Word shndx =
1013 this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));
1014
1015 if (relocate_group)
1016 shndxes.push_back(shndx);
1017
1018 if (shndx >= this->shnum())
1019 {
1020 this->error(_("section %u in section group %u out of range"),
1021 shndx, index);
1022 continue;
1023 }
1024
1025 // Check for an earlier section number, since we're going to get
1026 // it wrong--we may have already decided to include the section.
1027 if (shndx < index)
1028 this->error(_("invalid section group %u refers to earlier section %u"),
1029 index, shndx);
1030
1031 // Get the name of the member section.
1032 typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
1033 if (member_shdr.get_sh_name() >= section_names_size)
1034 {
1035 // This is an error, but it will be diagnosed eventually
1036 // in do_layout, so we don't need to do anything here but
1037 // ignore it.
1038 continue;
1039 }
1040 std::string mname(section_names + member_shdr.get_sh_name());
1041
1042 if (include_group)
1043 {
1044 if (is_comdat)
1045 kept_section->add_comdat_section(mname, shndx,
1046 member_shdr.get_sh_size());
1047 }
1048 else
1049 {
1050 (*omit)[shndx] = true;
1051
1052 if (is_comdat)
1053 {
1054 Relobj* kept_object = kept_section->object();
1055 if (kept_section->is_comdat())
1056 {
1057 // Find the corresponding kept section, and store
1058 // that info in the discarded section table.
1059 unsigned int kept_shndx;
1060 uint64_t kept_size;
1061 if (kept_section->find_comdat_section(mname, &kept_shndx,
1062 &kept_size))
1063 {
1064 // We don't keep a mapping for this section if
1065 // it has a different size. The mapping is only
1066 // used for relocation processing, and we don't
1067 // want to treat the sections as similar if the
1068 // sizes are different. Checking the section
1069 // size is the approach used by the GNU linker.
1070 if (kept_size == member_shdr.get_sh_size())
1071 this->set_kept_comdat_section(shndx, kept_object,
1072 kept_shndx);
1073 }
1074 }
1075 else
1076 {
1077 // The existing section is a linkonce section. Add
1078 // a mapping if there is exactly one section in the
1079 // group (which is true when COUNT == 2) and if it
1080 // is the same size.
1081 if (count == 2
1082 && (kept_section->linkonce_size()
1083 == member_shdr.get_sh_size()))
1084 this->set_kept_comdat_section(shndx, kept_object,
1085 kept_section->shndx());
1086 }
1087 }
1088 }
1089 }
1090
1091 if (relocate_group)
1092 layout->layout_group(symtab, this, index, name, signature.c_str(),
1093 shdr, flags, &shndxes);
1094
1095 return include_group;
1096 }
1097
1098 // Whether to include a linkonce section in the link. NAME is the
1099 // name of the section and SHDR is the section header.
1100
1101 // Linkonce sections are a GNU extension implemented in the original
1102 // GNU linker before section groups were defined. The semantics are
1103 // that we only include one linkonce section with a given name. The
1104 // name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
1105 // where T is the type of section and SYMNAME is the name of a symbol.
1106 // In an attempt to make linkonce sections interact well with section
1107 // groups, we try to identify SYMNAME and use it like a section group
1108 // signature. We want to block section groups with that signature,
1109 // but not other linkonce sections with that signature. We also use
1110 // the full name of the linkonce section as a normal section group
1111 // signature.
1112
1113 template<int size, bool big_endian>
1114 bool
include_linkonce_section(Layout * layout,unsigned int index,const char * name,const elfcpp::Shdr<size,big_endian> & shdr)1115 Sized_relobj_file<size, big_endian>::include_linkonce_section(
1116 Layout* layout,
1117 unsigned int index,
1118 const char* name,
1119 const elfcpp::Shdr<size, big_endian>& shdr)
1120 {
1121 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1122 // In general the symbol name we want will be the string following
1123 // the last '.'. However, we have to handle the case of
1124 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
1125 // some versions of gcc. So we use a heuristic: if the name starts
1126 // with ".gnu.linkonce.t.", we use everything after that. Otherwise
1127 // we look for the last '.'. We can't always simply skip
1128 // ".gnu.linkonce.X", because we have to deal with cases like
1129 // ".gnu.linkonce.d.rel.ro.local".
1130 const char* const linkonce_t = ".gnu.linkonce.t.";
1131 const char* symname;
1132 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
1133 symname = name + strlen(linkonce_t);
1134 else
1135 symname = strrchr(name, '.') + 1;
1136 std::string sig1(symname);
1137 std::string sig2(name);
1138 Kept_section* kept1;
1139 Kept_section* kept2;
1140 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
1141 false, &kept1);
1142 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
1143 true, &kept2);
1144
1145 if (!include2)
1146 {
1147 // We are not including this section because we already saw the
1148 // name of the section as a signature. This normally implies
1149 // that the kept section is another linkonce section. If it is
1150 // the same size, record it as the section which corresponds to
1151 // this one.
1152 if (kept2->object() != NULL
1153 && !kept2->is_comdat()
1154 && kept2->linkonce_size() == sh_size)
1155 this->set_kept_comdat_section(index, kept2->object(), kept2->shndx());
1156 }
1157 else if (!include1)
1158 {
1159 // The section is being discarded on the basis of its symbol
1160 // name. This means that the corresponding kept section was
1161 // part of a comdat group, and it will be difficult to identify
1162 // the specific section within that group that corresponds to
1163 // this linkonce section. We'll handle the simple case where
1164 // the group has only one member section. Otherwise, it's not
1165 // worth the effort.
1166 unsigned int kept_shndx;
1167 uint64_t kept_size;
1168 if (kept1->object() != NULL
1169 && kept1->is_comdat()
1170 && kept1->find_single_comdat_section(&kept_shndx, &kept_size)
1171 && kept_size == sh_size)
1172 this->set_kept_comdat_section(index, kept1->object(), kept_shndx);
1173 }
1174 else
1175 {
1176 kept1->set_linkonce_size(sh_size);
1177 kept2->set_linkonce_size(sh_size);
1178 }
1179
1180 return include1 && include2;
1181 }
1182
1183 // Layout an input section.
1184
1185 template<int size, bool big_endian>
1186 inline void
layout_section(Layout * layout,unsigned int shndx,const char * name,const typename This::Shdr & shdr,unsigned int reloc_shndx,unsigned int reloc_type)1187 Sized_relobj_file<size, big_endian>::layout_section(
1188 Layout* layout,
1189 unsigned int shndx,
1190 const char* name,
1191 const typename This::Shdr& shdr,
1192 unsigned int reloc_shndx,
1193 unsigned int reloc_type)
1194 {
1195 off_t offset;
1196 Output_section* os = layout->layout(this, shndx, name, shdr,
1197 reloc_shndx, reloc_type, &offset);
1198
1199 this->output_sections()[shndx] = os;
1200 if (offset == -1)
1201 this->section_offsets()[shndx] = invalid_address;
1202 else
1203 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1204
1205 // If this section requires special handling, and if there are
1206 // relocs that apply to it, then we must do the special handling
1207 // before we apply the relocs.
1208 if (offset == -1 && reloc_shndx != 0)
1209 this->set_relocs_must_follow_section_writes();
1210 }
1211
1212 // Layout an input .eh_frame section.
1213
1214 template<int size, bool big_endian>
1215 void
layout_eh_frame_section(Layout * layout,const unsigned char * symbols_data,section_size_type symbols_size,const unsigned char * symbol_names_data,section_size_type symbol_names_size,unsigned int shndx,const typename This::Shdr & shdr,unsigned int reloc_shndx,unsigned int reloc_type)1216 Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
1217 Layout* layout,
1218 const unsigned char* symbols_data,
1219 section_size_type symbols_size,
1220 const unsigned char* symbol_names_data,
1221 section_size_type symbol_names_size,
1222 unsigned int shndx,
1223 const typename This::Shdr& shdr,
1224 unsigned int reloc_shndx,
1225 unsigned int reloc_type)
1226 {
1227 gold_assert(this->has_eh_frame_);
1228
1229 off_t offset;
1230 Output_section* os = layout->layout_eh_frame(this,
1231 symbols_data,
1232 symbols_size,
1233 symbol_names_data,
1234 symbol_names_size,
1235 shndx,
1236 shdr,
1237 reloc_shndx,
1238 reloc_type,
1239 &offset);
1240 this->output_sections()[shndx] = os;
1241 if (os == NULL || offset == -1)
1242 {
1243 // An object can contain at most one section holding exception
1244 // frame information.
1245 gold_assert(this->discarded_eh_frame_shndx_ == -1U);
1246 this->discarded_eh_frame_shndx_ = shndx;
1247 this->section_offsets()[shndx] = invalid_address;
1248 }
1249 else
1250 this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);
1251
1252 // If this section requires special handling, and if there are
1253 // relocs that aply to it, then we must do the special handling
1254 // before we apply the relocs.
1255 if (os != NULL && offset == -1 && reloc_shndx != 0)
1256 this->set_relocs_must_follow_section_writes();
1257 }
1258
1259 // Lay out the input sections. We walk through the sections and check
1260 // whether they should be included in the link. If they should, we
1261 // pass them to the Layout object, which will return an output section
1262 // and an offset.
1263 // This function is called twice sometimes, two passes, when mapping
1264 // of input sections to output sections must be delayed.
1265 // This is true for the following :
1266 // * Garbage collection (--gc-sections): Some input sections will be
1267 // discarded and hence the assignment must wait until the second pass.
1268 // In the first pass, it is for setting up some sections as roots to
1269 // a work-list for --gc-sections and to do comdat processing.
1270 // * Identical Code Folding (--icf=<safe,all>): Some input sections
1271 // will be folded and hence the assignment must wait.
1272 // * Using plugins to map some sections to unique segments: Mapping
1273 // some sections to unique segments requires mapping them to unique
1274 // output sections too. This can be done via plugins now and this
1275 // information is not available in the first pass.
1276
1277 template<int size, bool big_endian>
1278 void
do_layout(Symbol_table * symtab,Layout * layout,Read_symbols_data * sd)1279 Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
1280 Layout* layout,
1281 Read_symbols_data* sd)
1282 {
1283 const unsigned int shnum = this->shnum();
1284
1285 /* Should this function be called twice? */
1286 bool is_two_pass = (parameters->options().gc_sections()
1287 || parameters->options().icf_enabled()
1288 || layout->is_unique_segment_for_sections_specified());
1289
1290 /* Only one of is_pass_one and is_pass_two is true. Both are false when
1291 a two-pass approach is not needed. */
1292 bool is_pass_one = false;
1293 bool is_pass_two = false;
1294
1295 Symbols_data* gc_sd = NULL;
1296
1297 /* Check if do_layout needs to be two-pass. If so, find out which pass
1298 should happen. In the first pass, the data in sd is saved to be used
1299 later in the second pass. */
1300 if (is_two_pass)
1301 {
1302 gc_sd = this->get_symbols_data();
1303 if (gc_sd == NULL)
1304 {
1305 gold_assert(sd != NULL);
1306 is_pass_one = true;
1307 }
1308 else
1309 {
1310 if (parameters->options().gc_sections())
1311 gold_assert(symtab->gc()->is_worklist_ready());
1312 if (parameters->options().icf_enabled())
1313 gold_assert(symtab->icf()->is_icf_ready());
1314 is_pass_two = true;
1315 }
1316 }
1317
1318 if (shnum == 0)
1319 return;
1320
1321 if (is_pass_one)
1322 {
1323 // During garbage collection save the symbols data to use it when
1324 // re-entering this function.
1325 gc_sd = new Symbols_data;
1326 this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
1327 this->set_symbols_data(gc_sd);
1328 }
1329
1330 const unsigned char* section_headers_data = NULL;
1331 section_size_type section_names_size;
1332 const unsigned char* symbols_data = NULL;
1333 section_size_type symbols_size;
1334 const unsigned char* symbol_names_data = NULL;
1335 section_size_type symbol_names_size;
1336
1337 if (is_two_pass)
1338 {
1339 section_headers_data = gc_sd->section_headers_data;
1340 section_names_size = gc_sd->section_names_size;
1341 symbols_data = gc_sd->symbols_data;
1342 symbols_size = gc_sd->symbols_size;
1343 symbol_names_data = gc_sd->symbol_names_data;
1344 symbol_names_size = gc_sd->symbol_names_size;
1345 }
1346 else
1347 {
1348 section_headers_data = sd->section_headers->data();
1349 section_names_size = sd->section_names_size;
1350 if (sd->symbols != NULL)
1351 symbols_data = sd->symbols->data();
1352 symbols_size = sd->symbols_size;
1353 if (sd->symbol_names != NULL)
1354 symbol_names_data = sd->symbol_names->data();
1355 symbol_names_size = sd->symbol_names_size;
1356 }
1357
1358 // Get the section headers.
1359 const unsigned char* shdrs = section_headers_data;
1360 const unsigned char* pshdrs;
1361
1362 // Get the section names.
1363 const unsigned char* pnamesu = (is_two_pass
1364 ? gc_sd->section_names_data
1365 : sd->section_names->data());
1366
1367 const char* pnames = reinterpret_cast<const char*>(pnamesu);
1368
1369 // If any input files have been claimed by plugins, we need to defer
1370 // actual layout until the replacement files have arrived.
1371 const bool should_defer_layout =
1372 (parameters->options().has_plugins()
1373 && parameters->options().plugins()->should_defer_layout());
1374 unsigned int num_sections_to_defer = 0;
1375
1376 // For each section, record the index of the reloc section if any.
1377 // Use 0 to mean that there is no reloc section, -1U to mean that
1378 // there is more than one.
1379 std::vector<unsigned int> reloc_shndx(shnum, 0);
1380 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
1381 // Skip the first, dummy, section.
1382 pshdrs = shdrs + This::shdr_size;
1383 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1384 {
1385 typename This::Shdr shdr(pshdrs);
1386
1387 // Count the number of sections whose layout will be deferred.
1388 if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1389 ++num_sections_to_defer;
1390
1391 unsigned int sh_type = shdr.get_sh_type();
1392 if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
1393 {
1394 unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
1395 if (target_shndx == 0 || target_shndx >= shnum)
1396 {
1397 this->error(_("relocation section %u has bad info %u"),
1398 i, target_shndx);
1399 continue;
1400 }
1401
1402 if (reloc_shndx[target_shndx] != 0)
1403 reloc_shndx[target_shndx] = -1U;
1404 else
1405 {
1406 reloc_shndx[target_shndx] = i;
1407 reloc_type[target_shndx] = sh_type;
1408 }
1409 }
1410 }
1411
1412 Output_sections& out_sections(this->output_sections());
1413 std::vector<Address>& out_section_offsets(this->section_offsets());
1414
1415 if (!is_pass_two)
1416 {
1417 out_sections.resize(shnum);
1418 out_section_offsets.resize(shnum);
1419 }
1420
1421 // If we are only linking for symbols, then there is nothing else to
1422 // do here.
1423 if (this->input_file()->just_symbols())
1424 {
1425 if (!is_pass_two)
1426 {
1427 delete sd->section_headers;
1428 sd->section_headers = NULL;
1429 delete sd->section_names;
1430 sd->section_names = NULL;
1431 }
1432 return;
1433 }
1434
1435 if (num_sections_to_defer > 0)
1436 {
1437 parameters->options().plugins()->add_deferred_layout_object(this);
1438 this->deferred_layout_.reserve(num_sections_to_defer);
1439 this->is_deferred_layout_ = true;
1440 }
1441
1442 // Whether we've seen a .note.GNU-stack section.
1443 bool seen_gnu_stack = false;
1444 // The flags of a .note.GNU-stack section.
1445 uint64_t gnu_stack_flags = 0;
1446
1447 // Keep track of which sections to omit.
1448 std::vector<bool> omit(shnum, false);
1449
1450 // Keep track of reloc sections when emitting relocations.
1451 const bool relocatable = parameters->options().relocatable();
1452 const bool emit_relocs = (relocatable
1453 || parameters->options().emit_relocs());
1454 std::vector<unsigned int> reloc_sections;
1455
1456 // Keep track of .eh_frame sections.
1457 std::vector<unsigned int> eh_frame_sections;
1458
1459 // Keep track of .debug_info and .debug_types sections.
1460 std::vector<unsigned int> debug_info_sections;
1461 std::vector<unsigned int> debug_types_sections;
1462
1463 // Skip the first, dummy, section.
1464 pshdrs = shdrs + This::shdr_size;
1465 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
1466 {
1467 typename This::Shdr shdr(pshdrs);
1468
1469 if (shdr.get_sh_name() >= section_names_size)
1470 {
1471 this->error(_("bad section name offset for section %u: %lu"),
1472 i, static_cast<unsigned long>(shdr.get_sh_name()));
1473 return;
1474 }
1475
1476 const char* name = pnames + shdr.get_sh_name();
1477
1478 if (!is_pass_two)
1479 {
1480 if (this->handle_gnu_warning_section(name, i, symtab))
1481 {
1482 if (!relocatable && !parameters->options().shared())
1483 omit[i] = true;
1484 }
1485
1486 // The .note.GNU-stack section is special. It gives the
1487 // protection flags that this object file requires for the stack
1488 // in memory.
1489 if (strcmp(name, ".note.GNU-stack") == 0)
1490 {
1491 seen_gnu_stack = true;
1492 gnu_stack_flags |= shdr.get_sh_flags();
1493 omit[i] = true;
1494 }
1495
1496 // The .note.GNU-split-stack section is also special. It
1497 // indicates that the object was compiled with
1498 // -fsplit-stack.
1499 if (this->handle_split_stack_section(name))
1500 {
1501 if (!relocatable && !parameters->options().shared())
1502 omit[i] = true;
1503 }
1504
1505 // Skip attributes section.
1506 if (parameters->target().is_attributes_section(name))
1507 {
1508 omit[i] = true;
1509 }
1510
1511 bool discard = omit[i];
1512 if (!discard)
1513 {
1514 if (shdr.get_sh_type() == elfcpp::SHT_GROUP)
1515 {
1516 if (!this->include_section_group(symtab, layout, i, name,
1517 shdrs, pnames,
1518 section_names_size,
1519 &omit))
1520 discard = true;
1521 }
1522 else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
1523 && Layout::is_linkonce(name))
1524 {
1525 if (!this->include_linkonce_section(layout, i, name, shdr))
1526 discard = true;
1527 }
1528 }
1529
1530 // Add the section to the incremental inputs layout.
1531 Incremental_inputs* incremental_inputs = layout->incremental_inputs();
1532 if (incremental_inputs != NULL
1533 && !discard
1534 && can_incremental_update(shdr.get_sh_type()))
1535 {
1536 off_t sh_size = shdr.get_sh_size();
1537 section_size_type uncompressed_size;
1538 if (this->section_is_compressed(i, &uncompressed_size))
1539 sh_size = uncompressed_size;
1540 incremental_inputs->report_input_section(this, i, name, sh_size);
1541 }
1542
1543 if (discard)
1544 {
1545 // Do not include this section in the link.
1546 out_sections[i] = NULL;
1547 out_section_offsets[i] = invalid_address;
1548 continue;
1549 }
1550 }
1551
1552 if (is_pass_one && parameters->options().gc_sections())
1553 {
1554 if (this->is_section_name_included(name)
1555 || layout->keep_input_section (this, name)
1556 || shdr.get_sh_type() == elfcpp::SHT_INIT_ARRAY
1557 || shdr.get_sh_type() == elfcpp::SHT_FINI_ARRAY)
1558 {
1559 symtab->gc()->worklist().push(Section_id(this, i));
1560 }
1561 // If the section name XXX can be represented as a C identifier
1562 // it cannot be discarded if there are references to
1563 // __start_XXX and __stop_XXX symbols. These need to be
1564 // specially handled.
1565 if (is_cident(name))
1566 {
1567 symtab->gc()->add_cident_section(name, Section_id(this, i));
1568 }
1569 }
1570
1571 // When doing a relocatable link we are going to copy input
1572 // reloc sections into the output. We only want to copy the
1573 // ones associated with sections which are not being discarded.
1574 // However, we don't know that yet for all sections. So save
1575 // reloc sections and process them later. Garbage collection is
1576 // not triggered when relocatable code is desired.
1577 if (emit_relocs
1578 && (shdr.get_sh_type() == elfcpp::SHT_REL
1579 || shdr.get_sh_type() == elfcpp::SHT_RELA))
1580 {
1581 reloc_sections.push_back(i);
1582 continue;
1583 }
1584
1585 if (relocatable && shdr.get_sh_type() == elfcpp::SHT_GROUP)
1586 continue;
1587
1588 // The .eh_frame section is special. It holds exception frame
1589 // information that we need to read in order to generate the
1590 // exception frame header. We process these after all the other
1591 // sections so that the exception frame reader can reliably
1592 // determine which sections are being discarded, and discard the
1593 // corresponding information.
1594 if (!relocatable
1595 && strcmp(name, ".eh_frame") == 0
1596 && this->check_eh_frame_flags(&shdr))
1597 {
1598 if (is_pass_one)
1599 {
1600 if (this->is_deferred_layout())
1601 out_sections[i] = reinterpret_cast<Output_section*>(2);
1602 else
1603 out_sections[i] = reinterpret_cast<Output_section*>(1);
1604 out_section_offsets[i] = invalid_address;
1605 }
1606 else if (this->is_deferred_layout())
1607 this->deferred_layout_.push_back(Deferred_layout(i, name,
1608 pshdrs,
1609 reloc_shndx[i],
1610 reloc_type[i]));
1611 else
1612 eh_frame_sections.push_back(i);
1613 continue;
1614 }
1615
1616 if (is_pass_two && parameters->options().gc_sections())
1617 {
1618 // This is executed during the second pass of garbage
1619 // collection. do_layout has been called before and some
1620 // sections have been already discarded. Simply ignore
1621 // such sections this time around.
1622 if (out_sections[i] == NULL)
1623 {
1624 gold_assert(out_section_offsets[i] == invalid_address);
1625 continue;
1626 }
1627 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1628 && symtab->gc()->is_section_garbage(this, i))
1629 {
1630 if (parameters->options().print_gc_sections())
1631 gold_info(_("%s: removing unused section from '%s'"
1632 " in file '%s'"),
1633 program_name, this->section_name(i).c_str(),
1634 this->name().c_str());
1635 out_sections[i] = NULL;
1636 out_section_offsets[i] = invalid_address;
1637 continue;
1638 }
1639 }
1640
1641 if (is_pass_two && parameters->options().icf_enabled())
1642 {
1643 if (out_sections[i] == NULL)
1644 {
1645 gold_assert(out_section_offsets[i] == invalid_address);
1646 continue;
1647 }
1648 if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1649 && symtab->icf()->is_section_folded(this, i))
1650 {
1651 if (parameters->options().print_icf_sections())
1652 {
1653 Section_id folded =
1654 symtab->icf()->get_folded_section(this, i);
1655 Relobj* folded_obj =
1656 reinterpret_cast<Relobj*>(folded.first);
1657 gold_info(_("%s: ICF folding section '%s' in file '%s' "
1658 "into '%s' in file '%s'"),
1659 program_name, this->section_name(i).c_str(),
1660 this->name().c_str(),
1661 folded_obj->section_name(folded.second).c_str(),
1662 folded_obj->name().c_str());
1663 }
1664 out_sections[i] = NULL;
1665 out_section_offsets[i] = invalid_address;
1666 continue;
1667 }
1668 }
1669
1670 // Defer layout here if input files are claimed by plugins. When gc
1671 // is turned on this function is called twice; we only want to do this
1672 // on the first pass.
1673 if (!is_pass_two
1674 && this->is_deferred_layout()
1675 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1676 {
1677 this->deferred_layout_.push_back(Deferred_layout(i, name,
1678 pshdrs,
1679 reloc_shndx[i],
1680 reloc_type[i]));
1681 // Put dummy values here; real values will be supplied by
1682 // do_layout_deferred_sections.
1683 out_sections[i] = reinterpret_cast<Output_section*>(2);
1684 out_section_offsets[i] = invalid_address;
1685 continue;
1686 }
1687
1688 // During gc_pass_two if a section that was previously deferred is
1689 // found, do not layout the section as layout_deferred_sections will
1690 // do it later from gold.cc.
1691 if (is_pass_two
1692 && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
1693 continue;
1694
1695 if (is_pass_one)
1696 {
1697 // This is during garbage collection. The out_sections are
1698 // assigned in the second call to this function.
1699 out_sections[i] = reinterpret_cast<Output_section*>(1);
1700 out_section_offsets[i] = invalid_address;
1701 }
1702 else
1703 {
1704 // When garbage collection is switched on the actual layout
1705 // only happens in the second call.
1706 this->layout_section(layout, i, name, shdr, reloc_shndx[i],
1707 reloc_type[i]);
1708
1709 // When generating a .gdb_index section, we do additional
1710 // processing of .debug_info and .debug_types sections after all
1711 // the other sections for the same reason as above.
1712 if (!relocatable
1713 && parameters->options().gdb_index()
1714 && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
1715 {
1716 if (strcmp(name, ".debug_info") == 0
1717 || strcmp(name, ".zdebug_info") == 0)
1718 debug_info_sections.push_back(i);
1719 else if (strcmp(name, ".debug_types") == 0
1720 || strcmp(name, ".zdebug_types") == 0)
1721 debug_types_sections.push_back(i);
1722 }
1723 }
1724 }
1725
1726 if (!is_pass_two)
1727 layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
1728
1729 // Handle the .eh_frame sections after the other sections.
1730 gold_assert(!is_pass_one || eh_frame_sections.empty());
1731 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
1732 p != eh_frame_sections.end();
1733 ++p)
1734 {
1735 unsigned int i = *p;
1736 const unsigned char* pshdr;
1737 pshdr = section_headers_data + i * This::shdr_size;
1738 typename This::Shdr shdr(pshdr);
1739
1740 this->layout_eh_frame_section(layout,
1741 symbols_data,
1742 symbols_size,
1743 symbol_names_data,
1744 symbol_names_size,
1745 i,
1746 shdr,
1747 reloc_shndx[i],
1748 reloc_type[i]);
1749 }
1750
1751 // When doing a relocatable link handle the reloc sections at the
1752 // end. Garbage collection and Identical Code Folding is not
1753 // turned on for relocatable code.
1754 if (emit_relocs)
1755 this->size_relocatable_relocs();
1756
1757 gold_assert(!is_two_pass || reloc_sections.empty());
1758
1759 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
1760 p != reloc_sections.end();
1761 ++p)
1762 {
1763 unsigned int i = *p;
1764 const unsigned char* pshdr;
1765 pshdr = section_headers_data + i * This::shdr_size;
1766 typename This::Shdr shdr(pshdr);
1767
1768 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1769 if (data_shndx >= shnum)
1770 {
1771 // We already warned about this above.
1772 continue;
1773 }
1774
1775 Output_section* data_section = out_sections[data_shndx];
1776 if (data_section == reinterpret_cast<Output_section*>(2))
1777 {
1778 if (is_pass_two)
1779 continue;
1780 // The layout for the data section was deferred, so we need
1781 // to defer the relocation section, too.
1782 const char* name = pnames + shdr.get_sh_name();
1783 this->deferred_layout_relocs_.push_back(
1784 Deferred_layout(i, name, pshdr, 0, elfcpp::SHT_NULL));
1785 out_sections[i] = reinterpret_cast<Output_section*>(2);
1786 out_section_offsets[i] = invalid_address;
1787 continue;
1788 }
1789 if (data_section == NULL)
1790 {
1791 out_sections[i] = NULL;
1792 out_section_offsets[i] = invalid_address;
1793 continue;
1794 }
1795
1796 Relocatable_relocs* rr = new Relocatable_relocs();
1797 this->set_relocatable_relocs(i, rr);
1798
1799 Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
1800 rr);
1801 out_sections[i] = os;
1802 out_section_offsets[i] = invalid_address;
1803 }
1804
1805 // When building a .gdb_index section, scan the .debug_info and
1806 // .debug_types sections.
1807 gold_assert(!is_pass_one
1808 || (debug_info_sections.empty() && debug_types_sections.empty()));
1809 for (std::vector<unsigned int>::const_iterator p
1810 = debug_info_sections.begin();
1811 p != debug_info_sections.end();
1812 ++p)
1813 {
1814 unsigned int i = *p;
1815 layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
1816 i, reloc_shndx[i], reloc_type[i]);
1817 }
1818 for (std::vector<unsigned int>::const_iterator p
1819 = debug_types_sections.begin();
1820 p != debug_types_sections.end();
1821 ++p)
1822 {
1823 unsigned int i = *p;
1824 layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
1825 i, reloc_shndx[i], reloc_type[i]);
1826 }
1827
1828 if (is_pass_two)
1829 {
1830 delete[] gc_sd->section_headers_data;
1831 delete[] gc_sd->section_names_data;
1832 delete[] gc_sd->symbols_data;
1833 delete[] gc_sd->symbol_names_data;
1834 this->set_symbols_data(NULL);
1835 }
1836 else
1837 {
1838 delete sd->section_headers;
1839 sd->section_headers = NULL;
1840 delete sd->section_names;
1841 sd->section_names = NULL;
1842 }
1843 }
1844
1845 // Layout sections whose layout was deferred while waiting for
1846 // input files from a plugin.
1847
1848 template<int size, bool big_endian>
1849 void
do_layout_deferred_sections(Layout * layout)1850 Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
1851 {
1852 typename std::vector<Deferred_layout>::iterator deferred;
1853
1854 for (deferred = this->deferred_layout_.begin();
1855 deferred != this->deferred_layout_.end();
1856 ++deferred)
1857 {
1858 typename This::Shdr shdr(deferred->shdr_data_);
1859
1860 if (!parameters->options().relocatable()
1861 && deferred->name_ == ".eh_frame"
1862 && this->check_eh_frame_flags(&shdr))
1863 {
1864 // Checking is_section_included is not reliable for
1865 // .eh_frame sections, because they do not have an output
1866 // section. This is not a problem normally because we call
1867 // layout_eh_frame_section unconditionally, but when
1868 // deferring sections that is not true. We don't want to
1869 // keep all .eh_frame sections because that will cause us to
1870 // keep all sections that they refer to, which is the wrong
1871 // way around. Instead, the eh_frame code will discard
1872 // .eh_frame sections that refer to discarded sections.
1873
1874 // Reading the symbols again here may be slow.
1875 Read_symbols_data sd;
1876 this->base_read_symbols(&sd);
1877 this->layout_eh_frame_section(layout,
1878 sd.symbols->data(),
1879 sd.symbols_size,
1880 sd.symbol_names->data(),
1881 sd.symbol_names_size,
1882 deferred->shndx_,
1883 shdr,
1884 deferred->reloc_shndx_,
1885 deferred->reloc_type_);
1886 continue;
1887 }
1888
1889 // If the section is not included, it is because the garbage collector
1890 // decided it is not needed. Avoid reverting that decision.
1891 if (!this->is_section_included(deferred->shndx_))
1892 continue;
1893
1894 this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
1895 shdr, deferred->reloc_shndx_,
1896 deferred->reloc_type_);
1897 }
1898
1899 this->deferred_layout_.clear();
1900
1901 // Now handle the deferred relocation sections.
1902
1903 Output_sections& out_sections(this->output_sections());
1904 std::vector<Address>& out_section_offsets(this->section_offsets());
1905
1906 for (deferred = this->deferred_layout_relocs_.begin();
1907 deferred != this->deferred_layout_relocs_.end();
1908 ++deferred)
1909 {
1910 unsigned int shndx = deferred->shndx_;
1911 typename This::Shdr shdr(deferred->shdr_data_);
1912 unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
1913
1914 Output_section* data_section = out_sections[data_shndx];
1915 if (data_section == NULL)
1916 {
1917 out_sections[shndx] = NULL;
1918 out_section_offsets[shndx] = invalid_address;
1919 continue;
1920 }
1921
1922 Relocatable_relocs* rr = new Relocatable_relocs();
1923 this->set_relocatable_relocs(shndx, rr);
1924
1925 Output_section* os = layout->layout_reloc(this, shndx, shdr,
1926 data_section, rr);
1927 out_sections[shndx] = os;
1928 out_section_offsets[shndx] = invalid_address;
1929 }
1930 }
1931
1932 // Add the symbols to the symbol table.
1933
1934 template<int size, bool big_endian>
1935 void
do_add_symbols(Symbol_table * symtab,Read_symbols_data * sd,Layout *)1936 Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
1937 Read_symbols_data* sd,
1938 Layout*)
1939 {
1940 if (sd->symbols == NULL)
1941 {
1942 gold_assert(sd->symbol_names == NULL);
1943 return;
1944 }
1945
1946 const int sym_size = This::sym_size;
1947 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1948 / sym_size);
1949 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
1950 {
1951 this->error(_("size of symbols is not multiple of symbol size"));
1952 return;
1953 }
1954
1955 this->symbols_.resize(symcount);
1956
1957 const char* sym_names =
1958 reinterpret_cast<const char*>(sd->symbol_names->data());
1959 symtab->add_from_relobj(this,
1960 sd->symbols->data() + sd->external_symbols_offset,
1961 symcount, this->local_symbol_count_,
1962 sym_names, sd->symbol_names_size,
1963 &this->symbols_,
1964 &this->defined_count_);
1965
1966 delete sd->symbols;
1967 sd->symbols = NULL;
1968 delete sd->symbol_names;
1969 sd->symbol_names = NULL;
1970 }
1971
1972 // Find out if this object, that is a member of a lib group, should be included
1973 // in the link. We check every symbol defined by this object. If the symbol
1974 // table has a strong undefined reference to that symbol, we have to include
1975 // the object.
1976
1977 template<int size, bool big_endian>
1978 Archive::Should_include
do_should_include_member(Symbol_table * symtab,Layout * layout,Read_symbols_data * sd,std::string * why)1979 Sized_relobj_file<size, big_endian>::do_should_include_member(
1980 Symbol_table* symtab,
1981 Layout* layout,
1982 Read_symbols_data* sd,
1983 std::string* why)
1984 {
1985 char* tmpbuf = NULL;
1986 size_t tmpbuflen = 0;
1987 const char* sym_names =
1988 reinterpret_cast<const char*>(sd->symbol_names->data());
1989 const unsigned char* syms =
1990 sd->symbols->data() + sd->external_symbols_offset;
1991 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1992 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
1993 / sym_size);
1994
1995 const unsigned char* p = syms;
1996
1997 for (size_t i = 0; i < symcount; ++i, p += sym_size)
1998 {
1999 elfcpp::Sym<size, big_endian> sym(p);
2000 unsigned int st_shndx = sym.get_st_shndx();
2001 if (st_shndx == elfcpp::SHN_UNDEF)
2002 continue;
2003
2004 unsigned int st_name = sym.get_st_name();
2005 const char* name = sym_names + st_name;
2006 Symbol* symbol;
2007 Archive::Should_include t = Archive::should_include_member(symtab,
2008 layout,
2009 name,
2010 &symbol, why,
2011 &tmpbuf,
2012 &tmpbuflen);
2013 if (t == Archive::SHOULD_INCLUDE_YES)
2014 {
2015 if (tmpbuf != NULL)
2016 free(tmpbuf);
2017 return t;
2018 }
2019 }
2020 if (tmpbuf != NULL)
2021 free(tmpbuf);
2022 return Archive::SHOULD_INCLUDE_UNKNOWN;
2023 }
2024
2025 // Iterate over global defined symbols, calling a visitor class V for each.
2026
2027 template<int size, bool big_endian>
2028 void
do_for_all_global_symbols(Read_symbols_data * sd,Library_base::Symbol_visitor_base * v)2029 Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
2030 Read_symbols_data* sd,
2031 Library_base::Symbol_visitor_base* v)
2032 {
2033 const char* sym_names =
2034 reinterpret_cast<const char*>(sd->symbol_names->data());
2035 const unsigned char* syms =
2036 sd->symbols->data() + sd->external_symbols_offset;
2037 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2038 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
2039 / sym_size);
2040 const unsigned char* p = syms;
2041
2042 for (size_t i = 0; i < symcount; ++i, p += sym_size)
2043 {
2044 elfcpp::Sym<size, big_endian> sym(p);
2045 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
2046 v->visit(sym_names + sym.get_st_name());
2047 }
2048 }
2049
2050 // Return whether the local symbol SYMNDX has a PLT offset.
2051
2052 template<int size, bool big_endian>
2053 bool
local_has_plt_offset(unsigned int symndx) const2054 Sized_relobj_file<size, big_endian>::local_has_plt_offset(
2055 unsigned int symndx) const
2056 {
2057 typename Local_plt_offsets::const_iterator p =
2058 this->local_plt_offsets_.find(symndx);
2059 return p != this->local_plt_offsets_.end();
2060 }
2061
2062 // Get the PLT offset of a local symbol.
2063
2064 template<int size, bool big_endian>
2065 unsigned int
do_local_plt_offset(unsigned int symndx) const2066 Sized_relobj_file<size, big_endian>::do_local_plt_offset(
2067 unsigned int symndx) const
2068 {
2069 typename Local_plt_offsets::const_iterator p =
2070 this->local_plt_offsets_.find(symndx);
2071 gold_assert(p != this->local_plt_offsets_.end());
2072 return p->second;
2073 }
2074
2075 // Set the PLT offset of a local symbol.
2076
2077 template<int size, bool big_endian>
2078 void
set_local_plt_offset(unsigned int symndx,unsigned int plt_offset)2079 Sized_relobj_file<size, big_endian>::set_local_plt_offset(
2080 unsigned int symndx, unsigned int plt_offset)
2081 {
2082 std::pair<typename Local_plt_offsets::iterator, bool> ins =
2083 this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
2084 gold_assert(ins.second);
2085 }
2086
2087 // First pass over the local symbols. Here we add their names to
2088 // *POOL and *DYNPOOL, and we store the symbol value in
2089 // THIS->LOCAL_VALUES_. This function is always called from a
2090 // singleton thread. This is followed by a call to
2091 // finalize_local_symbols.
2092
2093 template<int size, bool big_endian>
2094 void
do_count_local_symbols(Stringpool * pool,Stringpool * dynpool)2095 Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
2096 Stringpool* dynpool)
2097 {
2098 gold_assert(this->symtab_shndx_ != -1U);
2099 if (this->symtab_shndx_ == 0)
2100 {
2101 // This object has no symbols. Weird but legal.
2102 return;
2103 }
2104
2105 // Read the symbol table section header.
2106 const unsigned int symtab_shndx = this->symtab_shndx_;
2107 typename This::Shdr symtabshdr(this,
2108 this->elf_file_.section_header(symtab_shndx));
2109 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2110
2111 // Read the local symbols.
2112 const int sym_size = This::sym_size;
2113 const unsigned int loccount = this->local_symbol_count_;
2114 gold_assert(loccount == symtabshdr.get_sh_info());
2115 off_t locsize = loccount * sym_size;
2116 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2117 locsize, true, true);
2118
2119 // Read the symbol names.
2120 const unsigned int strtab_shndx =
2121 this->adjust_shndx(symtabshdr.get_sh_link());
2122 section_size_type strtab_size;
2123 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2124 &strtab_size,
2125 true);
2126 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2127
2128 // Loop over the local symbols.
2129
2130 const Output_sections& out_sections(this->output_sections());
2131 unsigned int shnum = this->shnum();
2132 unsigned int count = 0;
2133 unsigned int dyncount = 0;
2134 // Skip the first, dummy, symbol.
2135 psyms += sym_size;
2136 bool strip_all = parameters->options().strip_all();
2137 bool discard_all = parameters->options().discard_all();
2138 bool discard_locals = parameters->options().discard_locals();
2139 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2140 {
2141 elfcpp::Sym<size, big_endian> sym(psyms);
2142
2143 Symbol_value<size>& lv(this->local_values_[i]);
2144
2145 bool is_ordinary;
2146 unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2147 &is_ordinary);
2148 lv.set_input_shndx(shndx, is_ordinary);
2149
2150 if (sym.get_st_type() == elfcpp::STT_SECTION)
2151 lv.set_is_section_symbol();
2152 else if (sym.get_st_type() == elfcpp::STT_TLS)
2153 lv.set_is_tls_symbol();
2154 else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
2155 lv.set_is_ifunc_symbol();
2156
2157 // Save the input symbol value for use in do_finalize_local_symbols().
2158 lv.set_input_value(sym.get_st_value());
2159
2160 // Decide whether this symbol should go into the output file.
2161
2162 if ((shndx < shnum && out_sections[shndx] == NULL)
2163 || shndx == this->discarded_eh_frame_shndx_)
2164 {
2165 lv.set_no_output_symtab_entry();
2166 gold_assert(!lv.needs_output_dynsym_entry());
2167 continue;
2168 }
2169
2170 if (sym.get_st_type() == elfcpp::STT_SECTION
2171 || !this->adjust_local_symbol(&lv))
2172 {
2173 lv.set_no_output_symtab_entry();
2174 gold_assert(!lv.needs_output_dynsym_entry());
2175 continue;
2176 }
2177
2178 if (sym.get_st_name() >= strtab_size)
2179 {
2180 this->error(_("local symbol %u section name out of range: %u >= %u"),
2181 i, sym.get_st_name(),
2182 static_cast<unsigned int>(strtab_size));
2183 lv.set_no_output_symtab_entry();
2184 continue;
2185 }
2186
2187 const char* name = pnames + sym.get_st_name();
2188
2189 // If needed, add the symbol to the dynamic symbol table string pool.
2190 if (lv.needs_output_dynsym_entry())
2191 {
2192 dynpool->add(name, true, NULL);
2193 ++dyncount;
2194 }
2195
2196 if (strip_all
2197 || (discard_all && lv.may_be_discarded_from_output_symtab()))
2198 {
2199 lv.set_no_output_symtab_entry();
2200 continue;
2201 }
2202
2203 // If --discard-locals option is used, discard all temporary local
2204 // symbols. These symbols start with system-specific local label
2205 // prefixes, typically .L for ELF system. We want to be compatible
2206 // with GNU ld so here we essentially use the same check in
2207 // bfd_is_local_label(). The code is different because we already
2208 // know that:
2209 //
2210 // - the symbol is local and thus cannot have global or weak binding.
2211 // - the symbol is not a section symbol.
2212 // - the symbol has a name.
2213 //
2214 // We do not discard a symbol if it needs a dynamic symbol entry.
2215 if (discard_locals
2216 && sym.get_st_type() != elfcpp::STT_FILE
2217 && !lv.needs_output_dynsym_entry()
2218 && lv.may_be_discarded_from_output_symtab()
2219 && parameters->target().is_local_label_name(name))
2220 {
2221 lv.set_no_output_symtab_entry();
2222 continue;
2223 }
2224
2225 // Discard the local symbol if -retain_symbols_file is specified
2226 // and the local symbol is not in that file.
2227 if (!parameters->options().should_retain_symbol(name))
2228 {
2229 lv.set_no_output_symtab_entry();
2230 continue;
2231 }
2232
2233 // Add the symbol to the symbol table string pool.
2234 pool->add(name, true, NULL);
2235 ++count;
2236 }
2237
2238 this->output_local_symbol_count_ = count;
2239 this->output_local_dynsym_count_ = dyncount;
2240 }
2241
2242 // Compute the final value of a local symbol.
2243
2244 template<int size, bool big_endian>
2245 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
compute_final_local_value_internal(unsigned int r_sym,const Symbol_value<size> * lv_in,Symbol_value<size> * lv_out,bool relocatable,const Output_sections & out_sections,const std::vector<Address> & out_offsets,const Symbol_table * symtab)2246 Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
2247 unsigned int r_sym,
2248 const Symbol_value<size>* lv_in,
2249 Symbol_value<size>* lv_out,
2250 bool relocatable,
2251 const Output_sections& out_sections,
2252 const std::vector<Address>& out_offsets,
2253 const Symbol_table* symtab)
2254 {
2255 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
2256 // we may have a memory leak.
2257 gold_assert(lv_out->has_output_value());
2258
2259 bool is_ordinary;
2260 unsigned int shndx = lv_in->input_shndx(&is_ordinary);
2261
2262 // Set the output symbol value.
2263
2264 if (!is_ordinary)
2265 {
2266 if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
2267 lv_out->set_output_value(lv_in->input_value());
2268 else
2269 {
2270 this->error(_("unknown section index %u for local symbol %u"),
2271 shndx, r_sym);
2272 lv_out->set_output_value(0);
2273 return This::CFLV_ERROR;
2274 }
2275 }
2276 else
2277 {
2278 if (shndx >= this->shnum())
2279 {
2280 this->error(_("local symbol %u section index %u out of range"),
2281 r_sym, shndx);
2282 lv_out->set_output_value(0);
2283 return This::CFLV_ERROR;
2284 }
2285
2286 Output_section* os = out_sections[shndx];
2287 Address secoffset = out_offsets[shndx];
2288 if (symtab->is_section_folded(this, shndx))
2289 {
2290 gold_assert(os == NULL && secoffset == invalid_address);
2291 // Get the os of the section it is folded onto.
2292 Section_id folded = symtab->icf()->get_folded_section(this,
2293 shndx);
2294 gold_assert(folded.first != NULL);
2295 Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
2296 <Sized_relobj_file<size, big_endian>*>(folded.first);
2297 os = folded_obj->output_section(folded.second);
2298 gold_assert(os != NULL);
2299 secoffset = folded_obj->get_output_section_offset(folded.second);
2300
2301 // This could be a relaxed input section.
2302 if (secoffset == invalid_address)
2303 {
2304 const Output_relaxed_input_section* relaxed_section =
2305 os->find_relaxed_input_section(folded_obj, folded.second);
2306 gold_assert(relaxed_section != NULL);
2307 secoffset = relaxed_section->address() - os->address();
2308 }
2309 }
2310
2311 if (os == NULL)
2312 {
2313 // This local symbol belongs to a section we are discarding.
2314 // In some cases when applying relocations later, we will
2315 // attempt to match it to the corresponding kept section,
2316 // so we leave the input value unchanged here.
2317 return This::CFLV_DISCARDED;
2318 }
2319 else if (secoffset == invalid_address)
2320 {
2321 uint64_t start;
2322
2323 // This is a SHF_MERGE section or one which otherwise
2324 // requires special handling.
2325 if (shndx == this->discarded_eh_frame_shndx_)
2326 {
2327 // This local symbol belongs to a discarded .eh_frame
2328 // section. Just treat it like the case in which
2329 // os == NULL above.
2330 gold_assert(this->has_eh_frame_);
2331 return This::CFLV_DISCARDED;
2332 }
2333 else if (!lv_in->is_section_symbol())
2334 {
2335 // This is not a section symbol. We can determine
2336 // the final value now.
2337 lv_out->set_output_value(
2338 os->output_address(this, shndx, lv_in->input_value()));
2339 }
2340 else if (!os->find_starting_output_address(this, shndx, &start))
2341 {
2342 // This is a section symbol, but apparently not one in a
2343 // merged section. First check to see if this is a relaxed
2344 // input section. If so, use its address. Otherwise just
2345 // use the start of the output section. This happens with
2346 // relocatable links when the input object has section
2347 // symbols for arbitrary non-merge sections.
2348 const Output_section_data* posd =
2349 os->find_relaxed_input_section(this, shndx);
2350 if (posd != NULL)
2351 {
2352 Address relocatable_link_adjustment =
2353 relocatable ? os->address() : 0;
2354 lv_out->set_output_value(posd->address()
2355 - relocatable_link_adjustment);
2356 }
2357 else
2358 lv_out->set_output_value(os->address());
2359 }
2360 else
2361 {
2362 // We have to consider the addend to determine the
2363 // value to use in a relocation. START is the start
2364 // of this input section. If we are doing a relocatable
2365 // link, use offset from start output section instead of
2366 // address.
2367 Address adjusted_start =
2368 relocatable ? start - os->address() : start;
2369 Merged_symbol_value<size>* msv =
2370 new Merged_symbol_value<size>(lv_in->input_value(),
2371 adjusted_start);
2372 lv_out->set_merged_symbol_value(msv);
2373 }
2374 }
2375 else if (lv_in->is_tls_symbol()
2376 || (lv_in->is_section_symbol()
2377 && (os->flags() & elfcpp::SHF_TLS)))
2378 lv_out->set_output_value(os->tls_offset()
2379 + secoffset
2380 + lv_in->input_value());
2381 else
2382 lv_out->set_output_value((relocatable ? 0 : os->address())
2383 + secoffset
2384 + lv_in->input_value());
2385 }
2386 return This::CFLV_OK;
2387 }
2388
2389 // Compute final local symbol value. R_SYM is the index of a local
2390 // symbol in symbol table. LV points to a symbol value, which is
2391 // expected to hold the input value and to be over-written by the
2392 // final value. SYMTAB points to a symbol table. Some targets may want
2393 // to know would-be-finalized local symbol values in relaxation.
2394 // Hence we provide this method. Since this method updates *LV, a
2395 // callee should make a copy of the original local symbol value and
2396 // use the copy instead of modifying an object's local symbols before
2397 // everything is finalized. The caller should also free up any allocated
2398 // memory in the return value in *LV.
2399 template<int size, bool big_endian>
2400 typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
compute_final_local_value(unsigned int r_sym,const Symbol_value<size> * lv_in,Symbol_value<size> * lv_out,const Symbol_table * symtab)2401 Sized_relobj_file<size, big_endian>::compute_final_local_value(
2402 unsigned int r_sym,
2403 const Symbol_value<size>* lv_in,
2404 Symbol_value<size>* lv_out,
2405 const Symbol_table* symtab)
2406 {
2407 // This is just a wrapper of compute_final_local_value_internal.
2408 const bool relocatable = parameters->options().relocatable();
2409 const Output_sections& out_sections(this->output_sections());
2410 const std::vector<Address>& out_offsets(this->section_offsets());
2411 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
2412 relocatable, out_sections,
2413 out_offsets, symtab);
2414 }
2415
2416 // Finalize the local symbols. Here we set the final value in
2417 // THIS->LOCAL_VALUES_ and set their output symbol table indexes.
2418 // This function is always called from a singleton thread. The actual
2419 // output of the local symbols will occur in a separate task.
2420
2421 template<int size, bool big_endian>
2422 unsigned int
do_finalize_local_symbols(unsigned int index,off_t off,Symbol_table * symtab)2423 Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
2424 unsigned int index,
2425 off_t off,
2426 Symbol_table* symtab)
2427 {
2428 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2429
2430 const unsigned int loccount = this->local_symbol_count_;
2431 this->local_symbol_offset_ = off;
2432
2433 const bool relocatable = parameters->options().relocatable();
2434 const Output_sections& out_sections(this->output_sections());
2435 const std::vector<Address>& out_offsets(this->section_offsets());
2436
2437 for (unsigned int i = 1; i < loccount; ++i)
2438 {
2439 Symbol_value<size>* lv = &this->local_values_[i];
2440
2441 Compute_final_local_value_status cflv_status =
2442 this->compute_final_local_value_internal(i, lv, lv, relocatable,
2443 out_sections, out_offsets,
2444 symtab);
2445 switch (cflv_status)
2446 {
2447 case CFLV_OK:
2448 if (!lv->is_output_symtab_index_set())
2449 {
2450 lv->set_output_symtab_index(index);
2451 ++index;
2452 }
2453 break;
2454 case CFLV_DISCARDED:
2455 case CFLV_ERROR:
2456 // Do nothing.
2457 break;
2458 default:
2459 gold_unreachable();
2460 }
2461 }
2462 return index;
2463 }
2464
2465 // Set the output dynamic symbol table indexes for the local variables.
2466
2467 template<int size, bool big_endian>
2468 unsigned int
do_set_local_dynsym_indexes(unsigned int index)2469 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
2470 unsigned int index)
2471 {
2472 const unsigned int loccount = this->local_symbol_count_;
2473 for (unsigned int i = 1; i < loccount; ++i)
2474 {
2475 Symbol_value<size>& lv(this->local_values_[i]);
2476 if (lv.needs_output_dynsym_entry())
2477 {
2478 lv.set_output_dynsym_index(index);
2479 ++index;
2480 }
2481 }
2482 return index;
2483 }
2484
2485 // Set the offset where local dynamic symbol information will be stored.
2486 // Returns the count of local symbols contributed to the symbol table by
2487 // this object.
2488
2489 template<int size, bool big_endian>
2490 unsigned int
do_set_local_dynsym_offset(off_t off)2491 Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
2492 {
2493 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
2494 this->local_dynsym_offset_ = off;
2495 return this->output_local_dynsym_count_;
2496 }
2497
2498 // If Symbols_data is not NULL get the section flags from here otherwise
2499 // get it from the file.
2500
2501 template<int size, bool big_endian>
2502 uint64_t
do_section_flags(unsigned int shndx)2503 Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
2504 {
2505 Symbols_data* sd = this->get_symbols_data();
2506 if (sd != NULL)
2507 {
2508 const unsigned char* pshdrs = sd->section_headers_data
2509 + This::shdr_size * shndx;
2510 typename This::Shdr shdr(pshdrs);
2511 return shdr.get_sh_flags();
2512 }
2513 // If sd is NULL, read the section header from the file.
2514 return this->elf_file_.section_flags(shndx);
2515 }
2516
2517 // Get the section's ent size from Symbols_data. Called by get_section_contents
2518 // in icf.cc
2519
2520 template<int size, bool big_endian>
2521 uint64_t
do_section_entsize(unsigned int shndx)2522 Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
2523 {
2524 Symbols_data* sd = this->get_symbols_data();
2525 gold_assert(sd != NULL);
2526
2527 const unsigned char* pshdrs = sd->section_headers_data
2528 + This::shdr_size * shndx;
2529 typename This::Shdr shdr(pshdrs);
2530 return shdr.get_sh_entsize();
2531 }
2532
2533 // Write out the local symbols.
2534
2535 template<int size, bool big_endian>
2536 void
write_local_symbols(Output_file * of,const Stringpool * sympool,const Stringpool * dynpool,Output_symtab_xindex * symtab_xindex,Output_symtab_xindex * dynsym_xindex,off_t symtab_off)2537 Sized_relobj_file<size, big_endian>::write_local_symbols(
2538 Output_file* of,
2539 const Stringpool* sympool,
2540 const Stringpool* dynpool,
2541 Output_symtab_xindex* symtab_xindex,
2542 Output_symtab_xindex* dynsym_xindex,
2543 off_t symtab_off)
2544 {
2545 const bool strip_all = parameters->options().strip_all();
2546 if (strip_all)
2547 {
2548 if (this->output_local_dynsym_count_ == 0)
2549 return;
2550 this->output_local_symbol_count_ = 0;
2551 }
2552
2553 gold_assert(this->symtab_shndx_ != -1U);
2554 if (this->symtab_shndx_ == 0)
2555 {
2556 // This object has no symbols. Weird but legal.
2557 return;
2558 }
2559
2560 // Read the symbol table section header.
2561 const unsigned int symtab_shndx = this->symtab_shndx_;
2562 typename This::Shdr symtabshdr(this,
2563 this->elf_file_.section_header(symtab_shndx));
2564 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
2565 const unsigned int loccount = this->local_symbol_count_;
2566 gold_assert(loccount == symtabshdr.get_sh_info());
2567
2568 // Read the local symbols.
2569 const int sym_size = This::sym_size;
2570 off_t locsize = loccount * sym_size;
2571 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
2572 locsize, true, false);
2573
2574 // Read the symbol names.
2575 const unsigned int strtab_shndx =
2576 this->adjust_shndx(symtabshdr.get_sh_link());
2577 section_size_type strtab_size;
2578 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
2579 &strtab_size,
2580 false);
2581 const char* pnames = reinterpret_cast<const char*>(pnamesu);
2582
2583 // Get views into the output file for the portions of the symbol table
2584 // and the dynamic symbol table that we will be writing.
2585 off_t output_size = this->output_local_symbol_count_ * sym_size;
2586 unsigned char* oview = NULL;
2587 if (output_size > 0)
2588 oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
2589 output_size);
2590
2591 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
2592 unsigned char* dyn_oview = NULL;
2593 if (dyn_output_size > 0)
2594 dyn_oview = of->get_output_view(this->local_dynsym_offset_,
2595 dyn_output_size);
2596
2597 const Output_sections& out_sections(this->output_sections());
2598
2599 gold_assert(this->local_values_.size() == loccount);
2600
2601 unsigned char* ov = oview;
2602 unsigned char* dyn_ov = dyn_oview;
2603 psyms += sym_size;
2604 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2605 {
2606 elfcpp::Sym<size, big_endian> isym(psyms);
2607
2608 Symbol_value<size>& lv(this->local_values_[i]);
2609
2610 bool is_ordinary;
2611 unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
2612 &is_ordinary);
2613 if (is_ordinary)
2614 {
2615 gold_assert(st_shndx < out_sections.size());
2616 if (out_sections[st_shndx] == NULL)
2617 continue;
2618 st_shndx = out_sections[st_shndx]->out_shndx();
2619 if (st_shndx >= elfcpp::SHN_LORESERVE)
2620 {
2621 if (lv.has_output_symtab_entry())
2622 symtab_xindex->add(lv.output_symtab_index(), st_shndx);
2623 if (lv.has_output_dynsym_entry())
2624 dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
2625 st_shndx = elfcpp::SHN_XINDEX;
2626 }
2627 }
2628
2629 // Write the symbol to the output symbol table.
2630 if (lv.has_output_symtab_entry())
2631 {
2632 elfcpp::Sym_write<size, big_endian> osym(ov);
2633
2634 gold_assert(isym.get_st_name() < strtab_size);
2635 const char* name = pnames + isym.get_st_name();
2636 osym.put_st_name(sympool->get_offset(name));
2637 osym.put_st_value(this->local_values_[i].value(this, 0));
2638 osym.put_st_size(isym.get_st_size());
2639 osym.put_st_info(isym.get_st_info());
2640 osym.put_st_other(isym.get_st_other());
2641 osym.put_st_shndx(st_shndx);
2642
2643 ov += sym_size;
2644 }
2645
2646 // Write the symbol to the output dynamic symbol table.
2647 if (lv.has_output_dynsym_entry())
2648 {
2649 gold_assert(dyn_ov < dyn_oview + dyn_output_size);
2650 elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
2651
2652 gold_assert(isym.get_st_name() < strtab_size);
2653 const char* name = pnames + isym.get_st_name();
2654 osym.put_st_name(dynpool->get_offset(name));
2655 osym.put_st_value(this->local_values_[i].value(this, 0));
2656 osym.put_st_size(isym.get_st_size());
2657 osym.put_st_info(isym.get_st_info());
2658 osym.put_st_other(isym.get_st_other());
2659 osym.put_st_shndx(st_shndx);
2660
2661 dyn_ov += sym_size;
2662 }
2663 }
2664
2665
2666 if (output_size > 0)
2667 {
2668 gold_assert(ov - oview == output_size);
2669 of->write_output_view(symtab_off + this->local_symbol_offset_,
2670 output_size, oview);
2671 }
2672
2673 if (dyn_output_size > 0)
2674 {
2675 gold_assert(dyn_ov - dyn_oview == dyn_output_size);
2676 of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
2677 dyn_oview);
2678 }
2679 }
2680
2681 // Set *INFO to symbolic information about the offset OFFSET in the
2682 // section SHNDX. Return true if we found something, false if we
2683 // found nothing.
2684
2685 template<int size, bool big_endian>
2686 bool
get_symbol_location_info(unsigned int shndx,off_t offset,Symbol_location_info * info)2687 Sized_relobj_file<size, big_endian>::get_symbol_location_info(
2688 unsigned int shndx,
2689 off_t offset,
2690 Symbol_location_info* info)
2691 {
2692 if (this->symtab_shndx_ == 0)
2693 return false;
2694
2695 section_size_type symbols_size;
2696 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
2697 &symbols_size,
2698 false);
2699
2700 unsigned int symbol_names_shndx =
2701 this->adjust_shndx(this->section_link(this->symtab_shndx_));
2702 section_size_type names_size;
2703 const unsigned char* symbol_names_u =
2704 this->section_contents(symbol_names_shndx, &names_size, false);
2705 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);
2706
2707 const int sym_size = This::sym_size;
2708 const size_t count = symbols_size / sym_size;
2709
2710 const unsigned char* p = symbols;
2711 for (size_t i = 0; i < count; ++i, p += sym_size)
2712 {
2713 elfcpp::Sym<size, big_endian> sym(p);
2714
2715 if (sym.get_st_type() == elfcpp::STT_FILE)
2716 {
2717 if (sym.get_st_name() >= names_size)
2718 info->source_file = "(invalid)";
2719 else
2720 info->source_file = symbol_names + sym.get_st_name();
2721 continue;
2722 }
2723
2724 bool is_ordinary;
2725 unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
2726 &is_ordinary);
2727 if (is_ordinary
2728 && st_shndx == shndx
2729 && static_cast<off_t>(sym.get_st_value()) <= offset
2730 && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
2731 > offset))
2732 {
2733 info->enclosing_symbol_type = sym.get_st_type();
2734 if (sym.get_st_name() > names_size)
2735 info->enclosing_symbol_name = "(invalid)";
2736 else
2737 {
2738 info->enclosing_symbol_name = symbol_names + sym.get_st_name();
2739 if (parameters->options().do_demangle())
2740 {
2741 char* demangled_name = cplus_demangle(
2742 info->enclosing_symbol_name.c_str(),
2743 DMGL_ANSI | DMGL_PARAMS);
2744 if (demangled_name != NULL)
2745 {
2746 info->enclosing_symbol_name.assign(demangled_name);
2747 free(demangled_name);
2748 }
2749 }
2750 }
2751 return true;
2752 }
2753 }
2754
2755 return false;
2756 }
2757
2758 // Look for a kept section corresponding to the given discarded section,
2759 // and return its output address. This is used only for relocations in
2760 // debugging sections. If we can't find the kept section, return 0.
2761
2762 template<int size, bool big_endian>
2763 typename Sized_relobj_file<size, big_endian>::Address
map_to_kept_section(unsigned int shndx,bool * found) const2764 Sized_relobj_file<size, big_endian>::map_to_kept_section(
2765 unsigned int shndx,
2766 bool* found) const
2767 {
2768 Relobj* kept_object;
2769 unsigned int kept_shndx;
2770 if (this->get_kept_comdat_section(shndx, &kept_object, &kept_shndx))
2771 {
2772 Sized_relobj_file<size, big_endian>* kept_relobj =
2773 static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
2774 Output_section* os = kept_relobj->output_section(kept_shndx);
2775 Address offset = kept_relobj->get_output_section_offset(kept_shndx);
2776 if (os != NULL && offset != invalid_address)
2777 {
2778 *found = true;
2779 return os->address() + offset;
2780 }
2781 }
2782 *found = false;
2783 return 0;
2784 }
2785
2786 // Get symbol counts.
2787
2788 template<int size, bool big_endian>
2789 void
do_get_global_symbol_counts(const Symbol_table *,size_t * defined,size_t * used) const2790 Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
2791 const Symbol_table*,
2792 size_t* defined,
2793 size_t* used) const
2794 {
2795 *defined = this->defined_count_;
2796 size_t count = 0;
2797 for (typename Symbols::const_iterator p = this->symbols_.begin();
2798 p != this->symbols_.end();
2799 ++p)
2800 if (*p != NULL
2801 && (*p)->source() == Symbol::FROM_OBJECT
2802 && (*p)->object() == this
2803 && (*p)->is_defined())
2804 ++count;
2805 *used = count;
2806 }
2807
2808 // Return a view of the decompressed contents of a section. Set *PLEN
2809 // to the size. Set *IS_NEW to true if the contents need to be freed
2810 // by the caller.
2811
2812 const unsigned char*
decompressed_section_contents(unsigned int shndx,section_size_type * plen,bool * is_new)2813 Object::decompressed_section_contents(
2814 unsigned int shndx,
2815 section_size_type* plen,
2816 bool* is_new)
2817 {
2818 section_size_type buffer_size;
2819 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
2820 false);
2821
2822 if (this->compressed_sections_ == NULL)
2823 {
2824 *plen = buffer_size;
2825 *is_new = false;
2826 return buffer;
2827 }
2828
2829 Compressed_section_map::const_iterator p =
2830 this->compressed_sections_->find(shndx);
2831 if (p == this->compressed_sections_->end())
2832 {
2833 *plen = buffer_size;
2834 *is_new = false;
2835 return buffer;
2836 }
2837
2838 section_size_type uncompressed_size = p->second.size;
2839 if (p->second.contents != NULL)
2840 {
2841 *plen = uncompressed_size;
2842 *is_new = false;
2843 return p->second.contents;
2844 }
2845
2846 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
2847 if (!decompress_input_section(buffer,
2848 buffer_size,
2849 uncompressed_data,
2850 uncompressed_size))
2851 this->error(_("could not decompress section %s"),
2852 this->do_section_name(shndx).c_str());
2853
2854 // We could cache the results in p->second.contents and store
2855 // false in *IS_NEW, but build_compressed_section_map() would
2856 // have done so if it had expected it to be profitable. If
2857 // we reach this point, we expect to need the contents only
2858 // once in this pass.
2859 *plen = uncompressed_size;
2860 *is_new = true;
2861 return uncompressed_data;
2862 }
2863
2864 // Discard any buffers of uncompressed sections. This is done
2865 // at the end of the Add_symbols task.
2866
2867 void
discard_decompressed_sections()2868 Object::discard_decompressed_sections()
2869 {
2870 if (this->compressed_sections_ == NULL)
2871 return;
2872
2873 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
2874 p != this->compressed_sections_->end();
2875 ++p)
2876 {
2877 if (p->second.contents != NULL)
2878 {
2879 delete[] p->second.contents;
2880 p->second.contents = NULL;
2881 }
2882 }
2883 }
2884
2885 // Input_objects methods.
2886
2887 // Add a regular relocatable object to the list. Return false if this
2888 // object should be ignored.
2889
2890 bool
add_object(Object * obj)2891 Input_objects::add_object(Object* obj)
2892 {
2893 // Print the filename if the -t/--trace option is selected.
2894 if (parameters->options().trace())
2895 gold_info("%s", obj->name().c_str());
2896
2897 if (!obj->is_dynamic())
2898 this->relobj_list_.push_back(static_cast<Relobj*>(obj));
2899 else
2900 {
2901 // See if this is a duplicate SONAME.
2902 Dynobj* dynobj = static_cast<Dynobj*>(obj);
2903 const char* soname = dynobj->soname();
2904
2905 std::pair<Unordered_set<std::string>::iterator, bool> ins =
2906 this->sonames_.insert(soname);
2907 if (!ins.second)
2908 {
2909 // We have already seen a dynamic object with this soname.
2910 return false;
2911 }
2912
2913 this->dynobj_list_.push_back(dynobj);
2914 }
2915
2916 // Add this object to the cross-referencer if requested.
2917 if (parameters->options().user_set_print_symbol_counts()
2918 || parameters->options().cref())
2919 {
2920 if (this->cref_ == NULL)
2921 this->cref_ = new Cref();
2922 this->cref_->add_object(obj);
2923 }
2924
2925 return true;
2926 }
2927
2928 // For each dynamic object, record whether we've seen all of its
2929 // explicit dependencies.
2930
2931 void
check_dynamic_dependencies() const2932 Input_objects::check_dynamic_dependencies() const
2933 {
2934 bool issued_copy_dt_needed_error = false;
2935 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
2936 p != this->dynobj_list_.end();
2937 ++p)
2938 {
2939 const Dynobj::Needed& needed((*p)->needed());
2940 bool found_all = true;
2941 Dynobj::Needed::const_iterator pneeded;
2942 for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
2943 {
2944 if (this->sonames_.find(*pneeded) == this->sonames_.end())
2945 {
2946 found_all = false;
2947 break;
2948 }
2949 }
2950 (*p)->set_has_unknown_needed_entries(!found_all);
2951
2952 // --copy-dt-needed-entries aka --add-needed is a GNU ld option
2953 // that gold does not support. However, they cause no trouble
2954 // unless there is a DT_NEEDED entry that we don't know about;
2955 // warn only in that case.
2956 if (!found_all
2957 && !issued_copy_dt_needed_error
2958 && (parameters->options().copy_dt_needed_entries()
2959 || parameters->options().add_needed()))
2960 {
2961 const char* optname;
2962 if (parameters->options().copy_dt_needed_entries())
2963 optname = "--copy-dt-needed-entries";
2964 else
2965 optname = "--add-needed";
2966 gold_error(_("%s is not supported but is required for %s in %s"),
2967 optname, (*pneeded).c_str(), (*p)->name().c_str());
2968 issued_copy_dt_needed_error = true;
2969 }
2970 }
2971 }
2972
2973 // Start processing an archive.
2974
2975 void
archive_start(Archive * archive)2976 Input_objects::archive_start(Archive* archive)
2977 {
2978 if (parameters->options().user_set_print_symbol_counts()
2979 || parameters->options().cref())
2980 {
2981 if (this->cref_ == NULL)
2982 this->cref_ = new Cref();
2983 this->cref_->add_archive_start(archive);
2984 }
2985 }
2986
2987 // Stop processing an archive.
2988
2989 void
archive_stop(Archive * archive)2990 Input_objects::archive_stop(Archive* archive)
2991 {
2992 if (parameters->options().user_set_print_symbol_counts()
2993 || parameters->options().cref())
2994 this->cref_->add_archive_stop(archive);
2995 }
2996
2997 // Print symbol counts
2998
2999 void
print_symbol_counts(const Symbol_table * symtab) const3000 Input_objects::print_symbol_counts(const Symbol_table* symtab) const
3001 {
3002 if (parameters->options().user_set_print_symbol_counts()
3003 && this->cref_ != NULL)
3004 this->cref_->print_symbol_counts(symtab);
3005 }
3006
3007 // Print a cross reference table.
3008
3009 void
print_cref(const Symbol_table * symtab,FILE * f) const3010 Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
3011 {
3012 if (parameters->options().cref() && this->cref_ != NULL)
3013 this->cref_->print_cref(symtab, f);
3014 }
3015
3016 // Relocate_info methods.
3017
3018 // Return a string describing the location of a relocation when file
3019 // and lineno information is not available. This is only used in
3020 // error messages.
3021
3022 template<int size, bool big_endian>
3023 std::string
location(size_t,off_t offset) const3024 Relocate_info<size, big_endian>::location(size_t, off_t offset) const
3025 {
3026 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
3027 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
3028 if (!ret.empty())
3029 return ret;
3030
3031 ret = this->object->name();
3032
3033 Symbol_location_info info;
3034 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
3035 {
3036 if (!info.source_file.empty())
3037 {
3038 ret += ":";
3039 ret += info.source_file;
3040 }
3041 ret += ":";
3042 if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
3043 ret += _("function ");
3044 ret += info.enclosing_symbol_name;
3045 return ret;
3046 }
3047
3048 ret += "(";
3049 ret += this->object->section_name(this->data_shndx);
3050 char buf[100];
3051 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
3052 ret += buf;
3053 return ret;
3054 }
3055
3056 } // End namespace gold.
3057
3058 namespace
3059 {
3060
3061 using namespace gold;
3062
3063 // Read an ELF file with the header and return the appropriate
3064 // instance of Object.
3065
3066 template<int size, bool big_endian>
3067 Object*
make_elf_sized_object(const std::string & name,Input_file * input_file,off_t offset,const elfcpp::Ehdr<size,big_endian> & ehdr,bool * punconfigured)3068 make_elf_sized_object(const std::string& name, Input_file* input_file,
3069 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
3070 bool* punconfigured)
3071 {
3072 Target* target = select_target(input_file, offset,
3073 ehdr.get_e_machine(), size, big_endian,
3074 ehdr.get_e_ident()[elfcpp::EI_OSABI],
3075 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
3076 if (target == NULL)
3077 gold_fatal(_("%s: unsupported ELF machine number %d"),
3078 name.c_str(), ehdr.get_e_machine());
3079
3080 if (!parameters->target_valid())
3081 set_parameters_target(target);
3082 else if (target != ¶meters->target())
3083 {
3084 if (punconfigured != NULL)
3085 *punconfigured = true;
3086 else
3087 gold_error(_("%s: incompatible target"), name.c_str());
3088 return NULL;
3089 }
3090
3091 return target->make_elf_object<size, big_endian>(name, input_file, offset,
3092 ehdr);
3093 }
3094
3095 } // End anonymous namespace.
3096
3097 namespace gold
3098 {
3099
3100 // Return whether INPUT_FILE is an ELF object.
3101
3102 bool
is_elf_object(Input_file * input_file,off_t offset,const unsigned char ** start,int * read_size)3103 is_elf_object(Input_file* input_file, off_t offset,
3104 const unsigned char** start, int* read_size)
3105 {
3106 off_t filesize = input_file->file().filesize();
3107 int want = elfcpp::Elf_recognizer::max_header_size;
3108 if (filesize - offset < want)
3109 want = filesize - offset;
3110
3111 const unsigned char* p = input_file->file().get_view(offset, 0, want,
3112 true, false);
3113 *start = p;
3114 *read_size = want;
3115
3116 return elfcpp::Elf_recognizer::is_elf_file(p, want);
3117 }
3118
3119 // Read an ELF file and return the appropriate instance of Object.
3120
3121 Object*
make_elf_object(const std::string & name,Input_file * input_file,off_t offset,const unsigned char * p,section_offset_type bytes,bool * punconfigured)3122 make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
3123 const unsigned char* p, section_offset_type bytes,
3124 bool* punconfigured)
3125 {
3126 if (punconfigured != NULL)
3127 *punconfigured = false;
3128
3129 std::string error;
3130 bool big_endian = false;
3131 int size = 0;
3132 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
3133 &big_endian, &error))
3134 {
3135 gold_error(_("%s: %s"), name.c_str(), error.c_str());
3136 return NULL;
3137 }
3138
3139 if (size == 32)
3140 {
3141 if (big_endian)
3142 {
3143 #ifdef HAVE_TARGET_32_BIG
3144 elfcpp::Ehdr<32, true> ehdr(p);
3145 return make_elf_sized_object<32, true>(name, input_file,
3146 offset, ehdr, punconfigured);
3147 #else
3148 if (punconfigured != NULL)
3149 *punconfigured = true;
3150 else
3151 gold_error(_("%s: not configured to support "
3152 "32-bit big-endian object"),
3153 name.c_str());
3154 return NULL;
3155 #endif
3156 }
3157 else
3158 {
3159 #ifdef HAVE_TARGET_32_LITTLE
3160 elfcpp::Ehdr<32, false> ehdr(p);
3161 return make_elf_sized_object<32, false>(name, input_file,
3162 offset, ehdr, punconfigured);
3163 #else
3164 if (punconfigured != NULL)
3165 *punconfigured = true;
3166 else
3167 gold_error(_("%s: not configured to support "
3168 "32-bit little-endian object"),
3169 name.c_str());
3170 return NULL;
3171 #endif
3172 }
3173 }
3174 else if (size == 64)
3175 {
3176 if (big_endian)
3177 {
3178 #ifdef HAVE_TARGET_64_BIG
3179 elfcpp::Ehdr<64, true> ehdr(p);
3180 return make_elf_sized_object<64, true>(name, input_file,
3181 offset, ehdr, punconfigured);
3182 #else
3183 if (punconfigured != NULL)
3184 *punconfigured = true;
3185 else
3186 gold_error(_("%s: not configured to support "
3187 "64-bit big-endian object"),
3188 name.c_str());
3189 return NULL;
3190 #endif
3191 }
3192 else
3193 {
3194 #ifdef HAVE_TARGET_64_LITTLE
3195 elfcpp::Ehdr<64, false> ehdr(p);
3196 return make_elf_sized_object<64, false>(name, input_file,
3197 offset, ehdr, punconfigured);
3198 #else
3199 if (punconfigured != NULL)
3200 *punconfigured = true;
3201 else
3202 gold_error(_("%s: not configured to support "
3203 "64-bit little-endian object"),
3204 name.c_str());
3205 return NULL;
3206 #endif
3207 }
3208 }
3209 else
3210 gold_unreachable();
3211 }
3212
3213 // Instantiate the templates we need.
3214
3215 #ifdef HAVE_TARGET_32_LITTLE
3216 template
3217 void
3218 Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
3219 Read_symbols_data*);
3220 template
3221 const unsigned char*
3222 Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
3223 section_size_type, const unsigned char*) const;
3224 #endif
3225
3226 #ifdef HAVE_TARGET_32_BIG
3227 template
3228 void
3229 Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
3230 Read_symbols_data*);
3231 template
3232 const unsigned char*
3233 Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
3234 section_size_type, const unsigned char*) const;
3235 #endif
3236
3237 #ifdef HAVE_TARGET_64_LITTLE
3238 template
3239 void
3240 Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
3241 Read_symbols_data*);
3242 template
3243 const unsigned char*
3244 Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
3245 section_size_type, const unsigned char*) const;
3246 #endif
3247
3248 #ifdef HAVE_TARGET_64_BIG
3249 template
3250 void
3251 Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
3252 Read_symbols_data*);
3253 template
3254 const unsigned char*
3255 Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
3256 section_size_type, const unsigned char*) const;
3257 #endif
3258
3259 #ifdef HAVE_TARGET_32_LITTLE
3260 template
3261 class Sized_relobj<32, false>;
3262
3263 template
3264 class Sized_relobj_file<32, false>;
3265 #endif
3266
3267 #ifdef HAVE_TARGET_32_BIG
3268 template
3269 class Sized_relobj<32, true>;
3270
3271 template
3272 class Sized_relobj_file<32, true>;
3273 #endif
3274
3275 #ifdef HAVE_TARGET_64_LITTLE
3276 template
3277 class Sized_relobj<64, false>;
3278
3279 template
3280 class Sized_relobj_file<64, false>;
3281 #endif
3282
3283 #ifdef HAVE_TARGET_64_BIG
3284 template
3285 class Sized_relobj<64, true>;
3286
3287 template
3288 class Sized_relobj_file<64, true>;
3289 #endif
3290
3291 #ifdef HAVE_TARGET_32_LITTLE
3292 template
3293 struct Relocate_info<32, false>;
3294 #endif
3295
3296 #ifdef HAVE_TARGET_32_BIG
3297 template
3298 struct Relocate_info<32, true>;
3299 #endif
3300
3301 #ifdef HAVE_TARGET_64_LITTLE
3302 template
3303 struct Relocate_info<64, false>;
3304 #endif
3305
3306 #ifdef HAVE_TARGET_64_BIG
3307 template
3308 struct Relocate_info<64, true>;
3309 #endif
3310
3311 #ifdef HAVE_TARGET_32_LITTLE
3312 template
3313 void
3314 Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);
3315
3316 template
3317 void
3318 Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
3319 const unsigned char*);
3320 #endif
3321
3322 #ifdef HAVE_TARGET_32_BIG
3323 template
3324 void
3325 Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);
3326
3327 template
3328 void
3329 Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
3330 const unsigned char*);
3331 #endif
3332
3333 #ifdef HAVE_TARGET_64_LITTLE
3334 template
3335 void
3336 Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);
3337
3338 template
3339 void
3340 Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
3341 const unsigned char*);
3342 #endif
3343
3344 #ifdef HAVE_TARGET_64_BIG
3345 template
3346 void
3347 Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);
3348
3349 template
3350 void
3351 Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
3352 const unsigned char*);
3353 #endif
3354
3355 } // End namespace gold.
3356