1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of some decoding functions (idct, loop filtering).
11 //
12 // Author: somnath@google.com (Somnath Banerjee)
13 // cduvivier@google.com (Christian Duvivier)
14
15 #include "./dsp.h"
16
17 #if defined(WEBP_USE_SSE2)
18
19 // The 3-coeff sparse transform in SSE2 is not really faster than the plain-C
20 // one it seems => disable it by default. Uncomment the following to enable:
21 // #define USE_TRANSFORM_AC3
22
23 #include <emmintrin.h>
24 #include "../dec/vp8i.h"
25
26 //------------------------------------------------------------------------------
27 // Transforms (Paragraph 14.4)
28
Transform(const int16_t * in,uint8_t * dst,int do_two)29 static void Transform(const int16_t* in, uint8_t* dst, int do_two) {
30 // This implementation makes use of 16-bit fixed point versions of two
31 // multiply constants:
32 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
33 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
34 //
35 // To be able to use signed 16-bit integers, we use the following trick to
36 // have constants within range:
37 // - Associated constants are obtained by subtracting the 16-bit fixed point
38 // version of one:
39 // k = K - (1 << 16) => K = k + (1 << 16)
40 // K1 = 85267 => k1 = 20091
41 // K2 = 35468 => k2 = -30068
42 // - The multiplication of a variable by a constant become the sum of the
43 // variable and the multiplication of that variable by the associated
44 // constant:
45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
46 const __m128i k1 = _mm_set1_epi16(20091);
47 const __m128i k2 = _mm_set1_epi16(-30068);
48 __m128i T0, T1, T2, T3;
49
50 // Load and concatenate the transform coefficients (we'll do two transforms
51 // in parallel). In the case of only one transform, the second half of the
52 // vectors will just contain random value we'll never use nor store.
53 __m128i in0, in1, in2, in3;
54 {
55 in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
56 in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
57 in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
58 in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
59 // a00 a10 a20 a30 x x x x
60 // a01 a11 a21 a31 x x x x
61 // a02 a12 a22 a32 x x x x
62 // a03 a13 a23 a33 x x x x
63 if (do_two) {
64 const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
65 const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
66 const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
67 const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
68 in0 = _mm_unpacklo_epi64(in0, inB0);
69 in1 = _mm_unpacklo_epi64(in1, inB1);
70 in2 = _mm_unpacklo_epi64(in2, inB2);
71 in3 = _mm_unpacklo_epi64(in3, inB3);
72 // a00 a10 a20 a30 b00 b10 b20 b30
73 // a01 a11 a21 a31 b01 b11 b21 b31
74 // a02 a12 a22 a32 b02 b12 b22 b32
75 // a03 a13 a23 a33 b03 b13 b23 b33
76 }
77 }
78
79 // Vertical pass and subsequent transpose.
80 {
81 // First pass, c and d calculations are longer because of the "trick"
82 // multiplications.
83 const __m128i a = _mm_add_epi16(in0, in2);
84 const __m128i b = _mm_sub_epi16(in0, in2);
85 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
86 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
87 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
88 const __m128i c3 = _mm_sub_epi16(in1, in3);
89 const __m128i c4 = _mm_sub_epi16(c1, c2);
90 const __m128i c = _mm_add_epi16(c3, c4);
91 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
92 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
93 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
94 const __m128i d3 = _mm_add_epi16(in1, in3);
95 const __m128i d4 = _mm_add_epi16(d1, d2);
96 const __m128i d = _mm_add_epi16(d3, d4);
97
98 // Second pass.
99 const __m128i tmp0 = _mm_add_epi16(a, d);
100 const __m128i tmp1 = _mm_add_epi16(b, c);
101 const __m128i tmp2 = _mm_sub_epi16(b, c);
102 const __m128i tmp3 = _mm_sub_epi16(a, d);
103
104 // Transpose the two 4x4.
105 // a00 a01 a02 a03 b00 b01 b02 b03
106 // a10 a11 a12 a13 b10 b11 b12 b13
107 // a20 a21 a22 a23 b20 b21 b22 b23
108 // a30 a31 a32 a33 b30 b31 b32 b33
109 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
110 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
111 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
112 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
113 // a00 a10 a01 a11 a02 a12 a03 a13
114 // a20 a30 a21 a31 a22 a32 a23 a33
115 // b00 b10 b01 b11 b02 b12 b03 b13
116 // b20 b30 b21 b31 b22 b32 b23 b33
117 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
118 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
119 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
120 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
121 // a00 a10 a20 a30 a01 a11 a21 a31
122 // b00 b10 b20 b30 b01 b11 b21 b31
123 // a02 a12 a22 a32 a03 a13 a23 a33
124 // b02 b12 a22 b32 b03 b13 b23 b33
125 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
126 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
127 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
128 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
129 // a00 a10 a20 a30 b00 b10 b20 b30
130 // a01 a11 a21 a31 b01 b11 b21 b31
131 // a02 a12 a22 a32 b02 b12 b22 b32
132 // a03 a13 a23 a33 b03 b13 b23 b33
133 }
134
135 // Horizontal pass and subsequent transpose.
136 {
137 // First pass, c and d calculations are longer because of the "trick"
138 // multiplications.
139 const __m128i four = _mm_set1_epi16(4);
140 const __m128i dc = _mm_add_epi16(T0, four);
141 const __m128i a = _mm_add_epi16(dc, T2);
142 const __m128i b = _mm_sub_epi16(dc, T2);
143 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
144 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
145 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
146 const __m128i c3 = _mm_sub_epi16(T1, T3);
147 const __m128i c4 = _mm_sub_epi16(c1, c2);
148 const __m128i c = _mm_add_epi16(c3, c4);
149 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
150 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
151 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
152 const __m128i d3 = _mm_add_epi16(T1, T3);
153 const __m128i d4 = _mm_add_epi16(d1, d2);
154 const __m128i d = _mm_add_epi16(d3, d4);
155
156 // Second pass.
157 const __m128i tmp0 = _mm_add_epi16(a, d);
158 const __m128i tmp1 = _mm_add_epi16(b, c);
159 const __m128i tmp2 = _mm_sub_epi16(b, c);
160 const __m128i tmp3 = _mm_sub_epi16(a, d);
161 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
162 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
163 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
164 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
165
166 // Transpose the two 4x4.
167 // a00 a01 a02 a03 b00 b01 b02 b03
168 // a10 a11 a12 a13 b10 b11 b12 b13
169 // a20 a21 a22 a23 b20 b21 b22 b23
170 // a30 a31 a32 a33 b30 b31 b32 b33
171 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
172 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
173 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
174 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
175 // a00 a10 a01 a11 a02 a12 a03 a13
176 // a20 a30 a21 a31 a22 a32 a23 a33
177 // b00 b10 b01 b11 b02 b12 b03 b13
178 // b20 b30 b21 b31 b22 b32 b23 b33
179 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
180 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
181 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
182 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
183 // a00 a10 a20 a30 a01 a11 a21 a31
184 // b00 b10 b20 b30 b01 b11 b21 b31
185 // a02 a12 a22 a32 a03 a13 a23 a33
186 // b02 b12 a22 b32 b03 b13 b23 b33
187 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
188 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
189 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
190 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
191 // a00 a10 a20 a30 b00 b10 b20 b30
192 // a01 a11 a21 a31 b01 b11 b21 b31
193 // a02 a12 a22 a32 b02 b12 b22 b32
194 // a03 a13 a23 a33 b03 b13 b23 b33
195 }
196
197 // Add inverse transform to 'dst' and store.
198 {
199 const __m128i zero = _mm_setzero_si128();
200 // Load the reference(s).
201 __m128i dst0, dst1, dst2, dst3;
202 if (do_two) {
203 // Load eight bytes/pixels per line.
204 dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
205 dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
206 dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
207 dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
208 } else {
209 // Load four bytes/pixels per line.
210 dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
211 dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
212 dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
213 dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
214 }
215 // Convert to 16b.
216 dst0 = _mm_unpacklo_epi8(dst0, zero);
217 dst1 = _mm_unpacklo_epi8(dst1, zero);
218 dst2 = _mm_unpacklo_epi8(dst2, zero);
219 dst3 = _mm_unpacklo_epi8(dst3, zero);
220 // Add the inverse transform(s).
221 dst0 = _mm_add_epi16(dst0, T0);
222 dst1 = _mm_add_epi16(dst1, T1);
223 dst2 = _mm_add_epi16(dst2, T2);
224 dst3 = _mm_add_epi16(dst3, T3);
225 // Unsigned saturate to 8b.
226 dst0 = _mm_packus_epi16(dst0, dst0);
227 dst1 = _mm_packus_epi16(dst1, dst1);
228 dst2 = _mm_packus_epi16(dst2, dst2);
229 dst3 = _mm_packus_epi16(dst3, dst3);
230 // Store the results.
231 if (do_two) {
232 // Store eight bytes/pixels per line.
233 _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
234 _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
235 _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
236 _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
237 } else {
238 // Store four bytes/pixels per line.
239 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
240 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
241 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
242 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
243 }
244 }
245 }
246
247 #if defined(USE_TRANSFORM_AC3)
248 #define MUL(a, b) (((a) * (b)) >> 16)
TransformAC3(const int16_t * in,uint8_t * dst)249 static void TransformAC3(const int16_t* in, uint8_t* dst) {
250 static const int kC1 = 20091 + (1 << 16);
251 static const int kC2 = 35468;
252 const __m128i A = _mm_set1_epi16(in[0] + 4);
253 const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
254 const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
255 const int c1 = MUL(in[1], kC2);
256 const int d1 = MUL(in[1], kC1);
257 const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
258 const __m128i B = _mm_adds_epi16(A, CD);
259 const __m128i m0 = _mm_adds_epi16(B, d4);
260 const __m128i m1 = _mm_adds_epi16(B, c4);
261 const __m128i m2 = _mm_subs_epi16(B, c4);
262 const __m128i m3 = _mm_subs_epi16(B, d4);
263 const __m128i zero = _mm_setzero_si128();
264 // Load the source pixels.
265 __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
266 __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
267 __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
268 __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
269 // Convert to 16b.
270 dst0 = _mm_unpacklo_epi8(dst0, zero);
271 dst1 = _mm_unpacklo_epi8(dst1, zero);
272 dst2 = _mm_unpacklo_epi8(dst2, zero);
273 dst3 = _mm_unpacklo_epi8(dst3, zero);
274 // Add the inverse transform.
275 dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
276 dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
277 dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
278 dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
279 // Unsigned saturate to 8b.
280 dst0 = _mm_packus_epi16(dst0, dst0);
281 dst1 = _mm_packus_epi16(dst1, dst1);
282 dst2 = _mm_packus_epi16(dst2, dst2);
283 dst3 = _mm_packus_epi16(dst3, dst3);
284 // Store the results.
285 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
286 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
287 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
288 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
289 }
290 #undef MUL
291 #endif // USE_TRANSFORM_AC3
292
293 //------------------------------------------------------------------------------
294 // Loop Filter (Paragraph 15)
295
296 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
297 #define MM_ABS(p, q) _mm_or_si128( \
298 _mm_subs_epu8((q), (p)), \
299 _mm_subs_epu8((p), (q)))
300
301 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
SignedShift8b(__m128i * const x)302 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
303 const __m128i zero = _mm_setzero_si128();
304 const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
305 const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
306 const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
307 const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
308 *x = _mm_packs_epi16(lo_1, hi_1);
309 }
310
311 #define FLIP_SIGN_BIT2(a, b) { \
312 a = _mm_xor_si128(a, sign_bit); \
313 b = _mm_xor_si128(b, sign_bit); \
314 }
315
316 #define FLIP_SIGN_BIT4(a, b, c, d) { \
317 FLIP_SIGN_BIT2(a, b); \
318 FLIP_SIGN_BIT2(c, d); \
319 }
320
321 // input/output is uint8_t
GetNotHEV(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int hev_thresh,__m128i * const not_hev)322 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
323 const __m128i* const p0,
324 const __m128i* const q0,
325 const __m128i* const q1,
326 int hev_thresh, __m128i* const not_hev) {
327 const __m128i zero = _mm_setzero_si128();
328 const __m128i t_1 = MM_ABS(*p1, *p0);
329 const __m128i t_2 = MM_ABS(*q1, *q0);
330
331 const __m128i h = _mm_set1_epi8(hev_thresh);
332 const __m128i t_max = _mm_max_epu8(t_1, t_2);
333
334 const __m128i t_max_h = _mm_subs_epu8(t_max, h);
335 *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2
336 }
337
338 // input pixels are int8_t
GetBaseDelta(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,__m128i * const delta)339 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
340 const __m128i* const p0,
341 const __m128i* const q0,
342 const __m128i* const q1,
343 __m128i* const delta) {
344 // beware of addition order, for saturation!
345 const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
346 const __m128i q0_p0 = _mm_subs_epi8(*q0, *p0); // q0 - p0
347 const __m128i s1 = _mm_adds_epi8(p1_q1, q0_p0); // p1 - q1 + 1 * (q0 - p0)
348 const __m128i s2 = _mm_adds_epi8(q0_p0, s1); // p1 - q1 + 2 * (q0 - p0)
349 const __m128i s3 = _mm_adds_epi8(q0_p0, s2); // p1 - q1 + 3 * (q0 - p0)
350 *delta = s3;
351 }
352
353 // input and output are int8_t
DoSimpleFilter(__m128i * const p0,__m128i * const q0,const __m128i * const fl)354 static WEBP_INLINE void DoSimpleFilter(__m128i* const p0, __m128i* const q0,
355 const __m128i* const fl) {
356 const __m128i k3 = _mm_set1_epi8(3);
357 const __m128i k4 = _mm_set1_epi8(4);
358 __m128i v3 = _mm_adds_epi8(*fl, k3);
359 __m128i v4 = _mm_adds_epi8(*fl, k4);
360
361 SignedShift8b(&v4); // v4 >> 3
362 SignedShift8b(&v3); // v3 >> 3
363 *q0 = _mm_subs_epi8(*q0, v4); // q0 -= v4
364 *p0 = _mm_adds_epi8(*p0, v3); // p0 += v3
365 }
366
367 // Updates values of 2 pixels at MB edge during complex filtering.
368 // Update operations:
369 // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)]
370 // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip).
Update2Pixels(__m128i * const pi,__m128i * const qi,const __m128i * const a0_lo,const __m128i * const a0_hi)371 static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi,
372 const __m128i* const a0_lo,
373 const __m128i* const a0_hi) {
374 const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7);
375 const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7);
376 const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi);
377 const __m128i sign_bit = _mm_set1_epi8(0x80);
378 *pi = _mm_adds_epi8(*pi, delta);
379 *qi = _mm_subs_epi8(*qi, delta);
380 FLIP_SIGN_BIT2(*pi, *qi);
381 }
382
383 // input pixels are uint8_t
NeedsFilter(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,__m128i * const mask)384 static WEBP_INLINE void NeedsFilter(const __m128i* const p1,
385 const __m128i* const p0,
386 const __m128i* const q0,
387 const __m128i* const q1,
388 int thresh, __m128i* const mask) {
389 const __m128i m_thresh = _mm_set1_epi8(thresh);
390 const __m128i t1 = MM_ABS(*p1, *q1); // abs(p1 - q1)
391 const __m128i kFE = _mm_set1_epi8(0xFE);
392 const __m128i t2 = _mm_and_si128(t1, kFE); // set lsb of each byte to zero
393 const __m128i t3 = _mm_srli_epi16(t2, 1); // abs(p1 - q1) / 2
394
395 const __m128i t4 = MM_ABS(*p0, *q0); // abs(p0 - q0)
396 const __m128i t5 = _mm_adds_epu8(t4, t4); // abs(p0 - q0) * 2
397 const __m128i t6 = _mm_adds_epu8(t5, t3); // abs(p0-q0)*2 + abs(p1-q1)/2
398
399 const __m128i t7 = _mm_subs_epu8(t6, m_thresh); // mask <= m_thresh
400 *mask = _mm_cmpeq_epi8(t7, _mm_setzero_si128());
401 }
402
403 //------------------------------------------------------------------------------
404 // Edge filtering functions
405
406 // Applies filter on 2 pixels (p0 and q0)
DoFilter2(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,int thresh)407 static WEBP_INLINE void DoFilter2(__m128i* const p1, __m128i* const p0,
408 __m128i* const q0, __m128i* const q1,
409 int thresh) {
410 __m128i a, mask;
411 const __m128i sign_bit = _mm_set1_epi8(0x80);
412 // convert p1/q1 to int8_t (for GetBaseDelta)
413 const __m128i p1s = _mm_xor_si128(*p1, sign_bit);
414 const __m128i q1s = _mm_xor_si128(*q1, sign_bit);
415
416 NeedsFilter(p1, p0, q0, q1, thresh, &mask);
417
418 FLIP_SIGN_BIT2(*p0, *q0);
419 GetBaseDelta(&p1s, p0, q0, &q1s, &a);
420 a = _mm_and_si128(a, mask); // mask filter values we don't care about
421 DoSimpleFilter(p0, q0, &a);
422 FLIP_SIGN_BIT2(*p0, *q0);
423 }
424
425 // Applies filter on 4 pixels (p1, p0, q0 and q1)
DoFilter4(__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,const __m128i * const mask,int hev_thresh)426 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
427 __m128i* const q0, __m128i* const q1,
428 const __m128i* const mask, int hev_thresh) {
429 const __m128i zero = _mm_setzero_si128();
430 const __m128i sign_bit = _mm_set1_epi8(0x80);
431 const __m128i k64 = _mm_set1_epi8(64);
432 const __m128i k3 = _mm_set1_epi8(3);
433 const __m128i k4 = _mm_set1_epi8(4);
434 __m128i not_hev;
435 __m128i t1, t2, t3;
436
437 // compute hev mask
438 GetNotHEV(p1, p0, q0, q1, hev_thresh, ¬_hev);
439
440 // convert to signed values
441 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
442
443 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
444 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
445 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
446 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
447 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
448 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
449 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
450
451 t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3
452 t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4
453 SignedShift8b(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
454 SignedShift8b(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
455 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
456 *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3
457 FLIP_SIGN_BIT2(*p0, *q0);
458
459 // this is equivalent to signed (a + 1) >> 1 calculation
460 t2 = _mm_add_epi8(t3, sign_bit);
461 t3 = _mm_avg_epu8(t2, zero);
462 t3 = _mm_sub_epi8(t3, k64);
463
464 t3 = _mm_and_si128(not_hev, t3); // if !hev
465 *q1 = _mm_subs_epi8(*q1, t3); // q1 -= t3
466 *p1 = _mm_adds_epi8(*p1, t3); // p1 += t3
467 FLIP_SIGN_BIT2(*p1, *q1);
468 }
469
470 // Applies filter on 6 pixels (p2, p1, p0, q0, q1 and q2)
DoFilter6(__m128i * const p2,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1,__m128i * const q2,const __m128i * const mask,int hev_thresh)471 static WEBP_INLINE void DoFilter6(__m128i* const p2, __m128i* const p1,
472 __m128i* const p0, __m128i* const q0,
473 __m128i* const q1, __m128i* const q2,
474 const __m128i* const mask, int hev_thresh) {
475 const __m128i zero = _mm_setzero_si128();
476 const __m128i sign_bit = _mm_set1_epi8(0x80);
477 __m128i a, not_hev;
478
479 // compute hev mask
480 GetNotHEV(p1, p0, q0, q1, hev_thresh, ¬_hev);
481
482 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
483 FLIP_SIGN_BIT2(*p2, *q2);
484 GetBaseDelta(p1, p0, q0, q1, &a);
485
486 { // do simple filter on pixels with hev
487 const __m128i m = _mm_andnot_si128(not_hev, *mask);
488 const __m128i f = _mm_and_si128(a, m);
489 DoSimpleFilter(p0, q0, &f);
490 }
491
492 { // do strong filter on pixels with not hev
493 const __m128i k9 = _mm_set1_epi16(0x0900);
494 const __m128i k63 = _mm_set1_epi16(63);
495
496 const __m128i m = _mm_and_si128(not_hev, *mask);
497 const __m128i f = _mm_and_si128(a, m);
498
499 const __m128i f_lo = _mm_unpacklo_epi8(zero, f);
500 const __m128i f_hi = _mm_unpackhi_epi8(zero, f);
501
502 const __m128i f9_lo = _mm_mulhi_epi16(f_lo, k9); // Filter (lo) * 9
503 const __m128i f9_hi = _mm_mulhi_epi16(f_hi, k9); // Filter (hi) * 9
504
505 const __m128i a2_lo = _mm_add_epi16(f9_lo, k63); // Filter * 9 + 63
506 const __m128i a2_hi = _mm_add_epi16(f9_hi, k63); // Filter * 9 + 63
507
508 const __m128i a1_lo = _mm_add_epi16(a2_lo, f9_lo); // Filter * 18 + 63
509 const __m128i a1_hi = _mm_add_epi16(a2_hi, f9_hi); // Filter * 18 + 63
510
511 const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63
512 const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63
513
514 Update2Pixels(p2, q2, &a2_lo, &a2_hi);
515 Update2Pixels(p1, q1, &a1_lo, &a1_hi);
516 Update2Pixels(p0, q0, &a0_lo, &a0_hi);
517 }
518 }
519
520 // reads 8 rows across a vertical edge.
Load8x4(const uint8_t * const b,int stride,__m128i * const p,__m128i * const q)521 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
522 __m128i* const p, __m128i* const q) {
523 // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
524 // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
525 const __m128i A0 = _mm_set_epi32(
526 WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
527 WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
528 const __m128i A1 = _mm_set_epi32(
529 WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
530 WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
531
532 // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
533 // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
534 const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
535 const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
536
537 // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
538 // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
539 const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
540 const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
541
542 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
543 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
544 *p = _mm_unpacklo_epi32(C0, C1);
545 *q = _mm_unpackhi_epi32(C0, C1);
546 }
547
Load16x4(const uint8_t * const r0,const uint8_t * const r8,int stride,__m128i * const p1,__m128i * const p0,__m128i * const q0,__m128i * const q1)548 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
549 const uint8_t* const r8,
550 int stride,
551 __m128i* const p1, __m128i* const p0,
552 __m128i* const q0, __m128i* const q1) {
553 // Assume the pixels around the edge (|) are numbered as follows
554 // 00 01 | 02 03
555 // 10 11 | 12 13
556 // ... | ...
557 // e0 e1 | e2 e3
558 // f0 f1 | f2 f3
559 //
560 // r0 is pointing to the 0th row (00)
561 // r8 is pointing to the 8th row (80)
562
563 // Load
564 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
565 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
566 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
567 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
568 Load8x4(r0, stride, p1, q0);
569 Load8x4(r8, stride, p0, q1);
570
571 {
572 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
573 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
574 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
575 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
576 const __m128i t1 = *p1;
577 const __m128i t2 = *q0;
578 *p1 = _mm_unpacklo_epi64(t1, *p0);
579 *p0 = _mm_unpackhi_epi64(t1, *p0);
580 *q0 = _mm_unpacklo_epi64(t2, *q1);
581 *q1 = _mm_unpackhi_epi64(t2, *q1);
582 }
583 }
584
Store4x4(__m128i * const x,uint8_t * dst,int stride)585 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
586 int i;
587 for (i = 0; i < 4; ++i, dst += stride) {
588 WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
589 *x = _mm_srli_si128(*x, 4);
590 }
591 }
592
593 // Transpose back and store
Store16x4(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,uint8_t * r0,uint8_t * r8,int stride)594 static WEBP_INLINE void Store16x4(const __m128i* const p1,
595 const __m128i* const p0,
596 const __m128i* const q0,
597 const __m128i* const q1,
598 uint8_t* r0, uint8_t* r8,
599 int stride) {
600 __m128i t1, p1_s, p0_s, q0_s, q1_s;
601
602 // p0 = 71 70 61 60 51 50 41 40 31 30 21 20 11 10 01 00
603 // p1 = f1 f0 e1 e0 d1 d0 c1 c0 b1 b0 a1 a0 91 90 81 80
604 t1 = *p0;
605 p0_s = _mm_unpacklo_epi8(*p1, t1);
606 p1_s = _mm_unpackhi_epi8(*p1, t1);
607
608 // q0 = 73 72 63 62 53 52 43 42 33 32 23 22 13 12 03 02
609 // q1 = f3 f2 e3 e2 d3 d2 c3 c2 b3 b2 a3 a2 93 92 83 82
610 t1 = *q0;
611 q0_s = _mm_unpacklo_epi8(t1, *q1);
612 q1_s = _mm_unpackhi_epi8(t1, *q1);
613
614 // p0 = 33 32 31 30 23 22 21 20 13 12 11 10 03 02 01 00
615 // q0 = 73 72 71 70 63 62 61 60 53 52 51 50 43 42 41 40
616 t1 = p0_s;
617 p0_s = _mm_unpacklo_epi16(t1, q0_s);
618 q0_s = _mm_unpackhi_epi16(t1, q0_s);
619
620 // p1 = b3 b2 b1 b0 a3 a2 a1 a0 93 92 91 90 83 82 81 80
621 // q1 = f3 f2 f1 f0 e3 e2 e1 e0 d3 d2 d1 d0 c3 c2 c1 c0
622 t1 = p1_s;
623 p1_s = _mm_unpacklo_epi16(t1, q1_s);
624 q1_s = _mm_unpackhi_epi16(t1, q1_s);
625
626 Store4x4(&p0_s, r0, stride);
627 r0 += 4 * stride;
628 Store4x4(&q0_s, r0, stride);
629
630 Store4x4(&p1_s, r8, stride);
631 r8 += 4 * stride;
632 Store4x4(&q1_s, r8, stride);
633 }
634
635 //------------------------------------------------------------------------------
636 // Simple In-loop filtering (Paragraph 15.2)
637
SimpleVFilter16(uint8_t * p,int stride,int thresh)638 static void SimpleVFilter16(uint8_t* p, int stride, int thresh) {
639 // Load
640 __m128i p1 = _mm_loadu_si128((__m128i*)&p[-2 * stride]);
641 __m128i p0 = _mm_loadu_si128((__m128i*)&p[-stride]);
642 __m128i q0 = _mm_loadu_si128((__m128i*)&p[0]);
643 __m128i q1 = _mm_loadu_si128((__m128i*)&p[stride]);
644
645 DoFilter2(&p1, &p0, &q0, &q1, thresh);
646
647 // Store
648 _mm_storeu_si128((__m128i*)&p[-stride], p0);
649 _mm_storeu_si128((__m128i*)&p[0], q0);
650 }
651
SimpleHFilter16(uint8_t * p,int stride,int thresh)652 static void SimpleHFilter16(uint8_t* p, int stride, int thresh) {
653 __m128i p1, p0, q0, q1;
654
655 p -= 2; // beginning of p1
656
657 Load16x4(p, p + 8 * stride, stride, &p1, &p0, &q0, &q1);
658 DoFilter2(&p1, &p0, &q0, &q1, thresh);
659 Store16x4(&p1, &p0, &q0, &q1, p, p + 8 * stride, stride);
660 }
661
SimpleVFilter16i(uint8_t * p,int stride,int thresh)662 static void SimpleVFilter16i(uint8_t* p, int stride, int thresh) {
663 int k;
664 for (k = 3; k > 0; --k) {
665 p += 4 * stride;
666 SimpleVFilter16(p, stride, thresh);
667 }
668 }
669
SimpleHFilter16i(uint8_t * p,int stride,int thresh)670 static void SimpleHFilter16i(uint8_t* p, int stride, int thresh) {
671 int k;
672 for (k = 3; k > 0; --k) {
673 p += 4;
674 SimpleHFilter16(p, stride, thresh);
675 }
676 }
677
678 //------------------------------------------------------------------------------
679 // Complex In-loop filtering (Paragraph 15.3)
680
681 #define MAX_DIFF1(p3, p2, p1, p0, m) do { \
682 m = MM_ABS(p1, p0); \
683 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \
684 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
685 } while (0)
686
687 #define MAX_DIFF2(p3, p2, p1, p0, m) do { \
688 m = _mm_max_epu8(m, MM_ABS(p1, p0)); \
689 m = _mm_max_epu8(m, MM_ABS(p3, p2)); \
690 m = _mm_max_epu8(m, MM_ABS(p2, p1)); \
691 } while (0)
692
693 #define LOAD_H_EDGES4(p, stride, e1, e2, e3, e4) { \
694 e1 = _mm_loadu_si128((__m128i*)&(p)[0 * stride]); \
695 e2 = _mm_loadu_si128((__m128i*)&(p)[1 * stride]); \
696 e3 = _mm_loadu_si128((__m128i*)&(p)[2 * stride]); \
697 e4 = _mm_loadu_si128((__m128i*)&(p)[3 * stride]); \
698 }
699
700 #define LOADUV_H_EDGE(p, u, v, stride) do { \
701 const __m128i U = _mm_loadl_epi64((__m128i*)&(u)[(stride)]); \
702 const __m128i V = _mm_loadl_epi64((__m128i*)&(v)[(stride)]); \
703 p = _mm_unpacklo_epi64(U, V); \
704 } while (0)
705
706 #define LOADUV_H_EDGES4(u, v, stride, e1, e2, e3, e4) { \
707 LOADUV_H_EDGE(e1, u, v, 0 * stride); \
708 LOADUV_H_EDGE(e2, u, v, 1 * stride); \
709 LOADUV_H_EDGE(e3, u, v, 2 * stride); \
710 LOADUV_H_EDGE(e4, u, v, 3 * stride); \
711 }
712
713 #define STOREUV(p, u, v, stride) { \
714 _mm_storel_epi64((__m128i*)&u[(stride)], p); \
715 p = _mm_srli_si128(p, 8); \
716 _mm_storel_epi64((__m128i*)&v[(stride)], p); \
717 }
718
ComplexMask(const __m128i * const p1,const __m128i * const p0,const __m128i * const q0,const __m128i * const q1,int thresh,int ithresh,__m128i * const mask)719 static WEBP_INLINE void ComplexMask(const __m128i* const p1,
720 const __m128i* const p0,
721 const __m128i* const q0,
722 const __m128i* const q1,
723 int thresh, int ithresh,
724 __m128i* const mask) {
725 const __m128i it = _mm_set1_epi8(ithresh);
726 const __m128i diff = _mm_subs_epu8(*mask, it);
727 const __m128i thresh_mask = _mm_cmpeq_epi8(diff, _mm_setzero_si128());
728 __m128i filter_mask;
729 NeedsFilter(p1, p0, q0, q1, thresh, &filter_mask);
730 *mask = _mm_and_si128(thresh_mask, filter_mask);
731 }
732
733 // on macroblock edges
VFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)734 static void VFilter16(uint8_t* p, int stride,
735 int thresh, int ithresh, int hev_thresh) {
736 __m128i t1;
737 __m128i mask;
738 __m128i p2, p1, p0, q0, q1, q2;
739
740 // Load p3, p2, p1, p0
741 LOAD_H_EDGES4(p - 4 * stride, stride, t1, p2, p1, p0);
742 MAX_DIFF1(t1, p2, p1, p0, mask);
743
744 // Load q0, q1, q2, q3
745 LOAD_H_EDGES4(p, stride, q0, q1, q2, t1);
746 MAX_DIFF2(t1, q2, q1, q0, mask);
747
748 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
749 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
750
751 // Store
752 _mm_storeu_si128((__m128i*)&p[-3 * stride], p2);
753 _mm_storeu_si128((__m128i*)&p[-2 * stride], p1);
754 _mm_storeu_si128((__m128i*)&p[-1 * stride], p0);
755 _mm_storeu_si128((__m128i*)&p[+0 * stride], q0);
756 _mm_storeu_si128((__m128i*)&p[+1 * stride], q1);
757 _mm_storeu_si128((__m128i*)&p[+2 * stride], q2);
758 }
759
HFilter16(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)760 static void HFilter16(uint8_t* p, int stride,
761 int thresh, int ithresh, int hev_thresh) {
762 __m128i mask;
763 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
764
765 uint8_t* const b = p - 4;
766 Load16x4(b, b + 8 * stride, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
767 MAX_DIFF1(p3, p2, p1, p0, mask);
768
769 Load16x4(p, p + 8 * stride, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
770 MAX_DIFF2(q3, q2, q1, q0, mask);
771
772 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
773 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
774
775 Store16x4(&p3, &p2, &p1, &p0, b, b + 8 * stride, stride);
776 Store16x4(&q0, &q1, &q2, &q3, p, p + 8 * stride, stride);
777 }
778
779 // on three inner edges
VFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)780 static void VFilter16i(uint8_t* p, int stride,
781 int thresh, int ithresh, int hev_thresh) {
782 int k;
783 __m128i p3, p2, p1, p0; // loop invariants
784
785 LOAD_H_EDGES4(p, stride, p3, p2, p1, p0); // prologue
786
787 for (k = 3; k > 0; --k) {
788 __m128i mask, tmp1, tmp2;
789 uint8_t* const b = p + 2 * stride; // beginning of p1
790 p += 4 * stride;
791
792 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask
793 LOAD_H_EDGES4(p, stride, p3, p2, tmp1, tmp2);
794 MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
795
796 // p3 and p2 are not just temporary variables here: they will be
797 // re-used for next span. And q2/q3 will become p1/p0 accordingly.
798 ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
799 DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
800
801 // Store
802 _mm_storeu_si128((__m128i*)&b[0 * stride], p1);
803 _mm_storeu_si128((__m128i*)&b[1 * stride], p0);
804 _mm_storeu_si128((__m128i*)&b[2 * stride], p3);
805 _mm_storeu_si128((__m128i*)&b[3 * stride], p2);
806
807 // rotate samples
808 p1 = tmp1;
809 p0 = tmp2;
810 }
811 }
812
HFilter16i(uint8_t * p,int stride,int thresh,int ithresh,int hev_thresh)813 static void HFilter16i(uint8_t* p, int stride,
814 int thresh, int ithresh, int hev_thresh) {
815 int k;
816 __m128i p3, p2, p1, p0; // loop invariants
817
818 Load16x4(p, p + 8 * stride, stride, &p3, &p2, &p1, &p0); // prologue
819
820 for (k = 3; k > 0; --k) {
821 __m128i mask, tmp1, tmp2;
822 uint8_t* const b = p + 2; // beginning of p1
823
824 p += 4; // beginning of q0 (and next span)
825
826 MAX_DIFF1(p3, p2, p1, p0, mask); // compute partial mask
827 Load16x4(p, p + 8 * stride, stride, &p3, &p2, &tmp1, &tmp2);
828 MAX_DIFF2(p3, p2, tmp1, tmp2, mask);
829
830 ComplexMask(&p1, &p0, &p3, &p2, thresh, ithresh, &mask);
831 DoFilter4(&p1, &p0, &p3, &p2, &mask, hev_thresh);
832
833 Store16x4(&p1, &p0, &p3, &p2, b, b + 8 * stride, stride);
834
835 // rotate samples
836 p1 = tmp1;
837 p0 = tmp2;
838 }
839 }
840
841 // 8-pixels wide variant, for chroma filtering
VFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)842 static void VFilter8(uint8_t* u, uint8_t* v, int stride,
843 int thresh, int ithresh, int hev_thresh) {
844 __m128i mask;
845 __m128i t1, p2, p1, p0, q0, q1, q2;
846
847 // Load p3, p2, p1, p0
848 LOADUV_H_EDGES4(u - 4 * stride, v - 4 * stride, stride, t1, p2, p1, p0);
849 MAX_DIFF1(t1, p2, p1, p0, mask);
850
851 // Load q0, q1, q2, q3
852 LOADUV_H_EDGES4(u, v, stride, q0, q1, q2, t1);
853 MAX_DIFF2(t1, q2, q1, q0, mask);
854
855 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
856 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
857
858 // Store
859 STOREUV(p2, u, v, -3 * stride);
860 STOREUV(p1, u, v, -2 * stride);
861 STOREUV(p0, u, v, -1 * stride);
862 STOREUV(q0, u, v, 0 * stride);
863 STOREUV(q1, u, v, 1 * stride);
864 STOREUV(q2, u, v, 2 * stride);
865 }
866
HFilter8(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)867 static void HFilter8(uint8_t* u, uint8_t* v, int stride,
868 int thresh, int ithresh, int hev_thresh) {
869 __m128i mask;
870 __m128i p3, p2, p1, p0, q0, q1, q2, q3;
871
872 uint8_t* const tu = u - 4;
873 uint8_t* const tv = v - 4;
874 Load16x4(tu, tv, stride, &p3, &p2, &p1, &p0); // p3, p2, p1, p0
875 MAX_DIFF1(p3, p2, p1, p0, mask);
876
877 Load16x4(u, v, stride, &q0, &q1, &q2, &q3); // q0, q1, q2, q3
878 MAX_DIFF2(q3, q2, q1, q0, mask);
879
880 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
881 DoFilter6(&p2, &p1, &p0, &q0, &q1, &q2, &mask, hev_thresh);
882
883 Store16x4(&p3, &p2, &p1, &p0, tu, tv, stride);
884 Store16x4(&q0, &q1, &q2, &q3, u, v, stride);
885 }
886
VFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)887 static void VFilter8i(uint8_t* u, uint8_t* v, int stride,
888 int thresh, int ithresh, int hev_thresh) {
889 __m128i mask;
890 __m128i t1, t2, p1, p0, q0, q1;
891
892 // Load p3, p2, p1, p0
893 LOADUV_H_EDGES4(u, v, stride, t2, t1, p1, p0);
894 MAX_DIFF1(t2, t1, p1, p0, mask);
895
896 u += 4 * stride;
897 v += 4 * stride;
898
899 // Load q0, q1, q2, q3
900 LOADUV_H_EDGES4(u, v, stride, q0, q1, t1, t2);
901 MAX_DIFF2(t2, t1, q1, q0, mask);
902
903 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
904 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
905
906 // Store
907 STOREUV(p1, u, v, -2 * stride);
908 STOREUV(p0, u, v, -1 * stride);
909 STOREUV(q0, u, v, 0 * stride);
910 STOREUV(q1, u, v, 1 * stride);
911 }
912
HFilter8i(uint8_t * u,uint8_t * v,int stride,int thresh,int ithresh,int hev_thresh)913 static void HFilter8i(uint8_t* u, uint8_t* v, int stride,
914 int thresh, int ithresh, int hev_thresh) {
915 __m128i mask;
916 __m128i t1, t2, p1, p0, q0, q1;
917 Load16x4(u, v, stride, &t2, &t1, &p1, &p0); // p3, p2, p1, p0
918 MAX_DIFF1(t2, t1, p1, p0, mask);
919
920 u += 4; // beginning of q0
921 v += 4;
922 Load16x4(u, v, stride, &q0, &q1, &t1, &t2); // q0, q1, q2, q3
923 MAX_DIFF2(t2, t1, q1, q0, mask);
924
925 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
926 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
927
928 u -= 2; // beginning of p1
929 v -= 2;
930 Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
931 }
932
933 //------------------------------------------------------------------------------
934 // 4x4 predictions
935
936 #define DST(x, y) dst[(x) + (y) * BPS]
937 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
938
939 // We use the following 8b-arithmetic tricks:
940 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
941 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
942 // and:
943 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
944 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
945 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
946
VE4(uint8_t * dst)947 static void VE4(uint8_t* dst) { // vertical
948 const __m128i one = _mm_set1_epi8(1);
949 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
950 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
951 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
952 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
953 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
954 const __m128i b = _mm_subs_epu8(a, lsb);
955 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
956 const uint32_t vals = _mm_cvtsi128_si32(avg);
957 int i;
958 for (i = 0; i < 4; ++i) {
959 WebPUint32ToMem(dst + i * BPS, vals);
960 }
961 }
962
LD4(uint8_t * dst)963 static void LD4(uint8_t* dst) { // Down-Left
964 const __m128i one = _mm_set1_epi8(1);
965 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
966 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
967 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
968 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
969 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
970 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
971 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
972 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
973 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
974 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
975 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
976 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
977 }
978
VR4(uint8_t * dst)979 static void VR4(uint8_t* dst) { // Vertical-Right
980 const __m128i one = _mm_set1_epi8(1);
981 const int I = dst[-1 + 0 * BPS];
982 const int J = dst[-1 + 1 * BPS];
983 const int K = dst[-1 + 2 * BPS];
984 const int X = dst[-1 - BPS];
985 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
986 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
987 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
988 const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
989 const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
990 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
991 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
992 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
993 const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
994 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
995 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
996 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
997 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
998
999 // these two are hard to implement in SSE2, so we keep the C-version:
1000 DST(0, 2) = AVG3(J, I, X);
1001 DST(0, 3) = AVG3(K, J, I);
1002 }
1003
VL4(uint8_t * dst)1004 static void VL4(uint8_t* dst) { // Vertical-Left
1005 const __m128i one = _mm_set1_epi8(1);
1006 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
1007 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
1008 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
1009 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
1010 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
1011 const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
1012 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
1013 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
1014 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
1015 const __m128i abbc = _mm_or_si128(ab, bc);
1016 const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
1017 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
1018 const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
1019 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
1020 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
1021 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
1022 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
1023
1024 // these two are hard to get and irregular
1025 DST(3, 2) = (extra_out >> 0) & 0xff;
1026 DST(3, 3) = (extra_out >> 8) & 0xff;
1027 }
1028
RD4(uint8_t * dst)1029 static void RD4(uint8_t* dst) { // Down-right
1030 const __m128i one = _mm_set1_epi8(1);
1031 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
1032 const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
1033 const uint32_t I = dst[-1 + 0 * BPS];
1034 const uint32_t J = dst[-1 + 1 * BPS];
1035 const uint32_t K = dst[-1 + 2 * BPS];
1036 const uint32_t L = dst[-1 + 3 * BPS];
1037 const __m128i LKJI_____ =
1038 _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
1039 const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
1040 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
1041 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
1042 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
1043 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
1044 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1045 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1046 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
1047 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1048 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1049 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1050 }
1051
1052 #undef DST
1053 #undef AVG3
1054
1055 //------------------------------------------------------------------------------
1056 // Luma 16x16
1057
TrueMotion(uint8_t * dst,int size)1058 static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) {
1059 const uint8_t* top = dst - BPS;
1060 const __m128i zero = _mm_setzero_si128();
1061 int y;
1062 if (size == 4) {
1063 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
1064 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1065 for (y = 0; y < 4; ++y, dst += BPS) {
1066 const int val = dst[-1] - top[-1];
1067 const __m128i base = _mm_set1_epi16(val);
1068 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1069 WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
1070 }
1071 } else if (size == 8) {
1072 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1073 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1074 for (y = 0; y < 8; ++y, dst += BPS) {
1075 const int val = dst[-1] - top[-1];
1076 const __m128i base = _mm_set1_epi16(val);
1077 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1078 _mm_storel_epi64((__m128i*)dst, out);
1079 }
1080 } else {
1081 const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1082 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1083 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1084 for (y = 0; y < 16; ++y, dst += BPS) {
1085 const int val = dst[-1] - top[-1];
1086 const __m128i base = _mm_set1_epi16(val);
1087 const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1088 const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1089 const __m128i out = _mm_packus_epi16(out_0, out_1);
1090 _mm_storeu_si128((__m128i*)dst, out);
1091 }
1092 }
1093 }
1094
TM4(uint8_t * dst)1095 static void TM4(uint8_t* dst) { TrueMotion(dst, 4); }
TM8uv(uint8_t * dst)1096 static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); }
TM16(uint8_t * dst)1097 static void TM16(uint8_t* dst) { TrueMotion(dst, 16); }
1098
VE16(uint8_t * dst)1099 static void VE16(uint8_t* dst) {
1100 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1101 int j;
1102 for (j = 0; j < 16; ++j) {
1103 _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1104 }
1105 }
1106
HE16(uint8_t * dst)1107 static void HE16(uint8_t* dst) { // horizontal
1108 int j;
1109 for (j = 16; j > 0; --j) {
1110 const __m128i values = _mm_set1_epi8(dst[-1]);
1111 _mm_storeu_si128((__m128i*)dst, values);
1112 dst += BPS;
1113 }
1114 }
1115
Put16(uint8_t v,uint8_t * dst)1116 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
1117 int j;
1118 const __m128i values = _mm_set1_epi8(v);
1119 for (j = 0; j < 16; ++j) {
1120 _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1121 }
1122 }
1123
DC16(uint8_t * dst)1124 static void DC16(uint8_t* dst) { // DC
1125 const __m128i zero = _mm_setzero_si128();
1126 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1127 const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1128 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1129 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1130 int left = 0;
1131 int j;
1132 for (j = 0; j < 16; ++j) {
1133 left += dst[-1 + j * BPS];
1134 }
1135 {
1136 const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1137 Put16(DC >> 5, dst);
1138 }
1139 }
1140
DC16NoTop(uint8_t * dst)1141 static void DC16NoTop(uint8_t* dst) { // DC with top samples not available
1142 int DC = 8;
1143 int j;
1144 for (j = 0; j < 16; ++j) {
1145 DC += dst[-1 + j * BPS];
1146 }
1147 Put16(DC >> 4, dst);
1148 }
1149
DC16NoLeft(uint8_t * dst)1150 static void DC16NoLeft(uint8_t* dst) { // DC with left samples not available
1151 const __m128i zero = _mm_setzero_si128();
1152 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1153 const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1154 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1155 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1156 const int DC = _mm_cvtsi128_si32(sum) + 8;
1157 Put16(DC >> 4, dst);
1158 }
1159
DC16NoTopLeft(uint8_t * dst)1160 static void DC16NoTopLeft(uint8_t* dst) { // DC with no top and left samples
1161 Put16(0x80, dst);
1162 }
1163
1164 //------------------------------------------------------------------------------
1165 // Chroma
1166
VE8uv(uint8_t * dst)1167 static void VE8uv(uint8_t* dst) { // vertical
1168 int j;
1169 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1170 for (j = 0; j < 8; ++j) {
1171 _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1172 }
1173 }
1174
HE8uv(uint8_t * dst)1175 static void HE8uv(uint8_t* dst) { // horizontal
1176 int j;
1177 for (j = 0; j < 8; ++j) {
1178 const __m128i values = _mm_set1_epi8(dst[-1]);
1179 _mm_storel_epi64((__m128i*)dst, values);
1180 dst += BPS;
1181 }
1182 }
1183
1184 // helper for chroma-DC predictions
Put8x8uv(uint8_t v,uint8_t * dst)1185 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
1186 int j;
1187 const __m128i values = _mm_set1_epi8(v);
1188 for (j = 0; j < 8; ++j) {
1189 _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1190 }
1191 }
1192
DC8uv(uint8_t * dst)1193 static void DC8uv(uint8_t* dst) { // DC
1194 const __m128i zero = _mm_setzero_si128();
1195 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1196 const __m128i sum = _mm_sad_epu8(top, zero);
1197 int left = 0;
1198 int j;
1199 for (j = 0; j < 8; ++j) {
1200 left += dst[-1 + j * BPS];
1201 }
1202 {
1203 const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1204 Put8x8uv(DC >> 4, dst);
1205 }
1206 }
1207
DC8uvNoLeft(uint8_t * dst)1208 static void DC8uvNoLeft(uint8_t* dst) { // DC with no left samples
1209 const __m128i zero = _mm_setzero_si128();
1210 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1211 const __m128i sum = _mm_sad_epu8(top, zero);
1212 const int DC = _mm_cvtsi128_si32(sum) + 4;
1213 Put8x8uv(DC >> 3, dst);
1214 }
1215
DC8uvNoTop(uint8_t * dst)1216 static void DC8uvNoTop(uint8_t* dst) { // DC with no top samples
1217 int dc0 = 4;
1218 int i;
1219 for (i = 0; i < 8; ++i) {
1220 dc0 += dst[-1 + i * BPS];
1221 }
1222 Put8x8uv(dc0 >> 3, dst);
1223 }
1224
DC8uvNoTopLeft(uint8_t * dst)1225 static void DC8uvNoTopLeft(uint8_t* dst) { // DC with nothing
1226 Put8x8uv(0x80, dst);
1227 }
1228
1229 //------------------------------------------------------------------------------
1230 // Entry point
1231
1232 extern void VP8DspInitSSE2(void);
1233
VP8DspInitSSE2(void)1234 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
1235 VP8Transform = Transform;
1236 #if defined(USE_TRANSFORM_AC3)
1237 VP8TransformAC3 = TransformAC3;
1238 #endif
1239
1240 VP8VFilter16 = VFilter16;
1241 VP8HFilter16 = HFilter16;
1242 VP8VFilter8 = VFilter8;
1243 VP8HFilter8 = HFilter8;
1244 VP8VFilter16i = VFilter16i;
1245 VP8HFilter16i = HFilter16i;
1246 VP8VFilter8i = VFilter8i;
1247 VP8HFilter8i = HFilter8i;
1248
1249 VP8SimpleVFilter16 = SimpleVFilter16;
1250 VP8SimpleHFilter16 = SimpleHFilter16;
1251 VP8SimpleVFilter16i = SimpleVFilter16i;
1252 VP8SimpleHFilter16i = SimpleHFilter16i;
1253
1254 VP8PredLuma4[1] = TM4;
1255 VP8PredLuma4[2] = VE4;
1256 VP8PredLuma4[4] = RD4;
1257 VP8PredLuma4[5] = VR4;
1258 VP8PredLuma4[6] = LD4;
1259 VP8PredLuma4[7] = VL4;
1260
1261 VP8PredLuma16[0] = DC16;
1262 VP8PredLuma16[1] = TM16;
1263 VP8PredLuma16[2] = VE16;
1264 VP8PredLuma16[3] = HE16;
1265 VP8PredLuma16[4] = DC16NoTop;
1266 VP8PredLuma16[5] = DC16NoLeft;
1267 VP8PredLuma16[6] = DC16NoTopLeft;
1268
1269 VP8PredChroma8[0] = DC8uv;
1270 VP8PredChroma8[1] = TM8uv;
1271 VP8PredChroma8[2] = VE8uv;
1272 VP8PredChroma8[3] = HE8uv;
1273 VP8PredChroma8[4] = DC8uvNoTop;
1274 VP8PredChroma8[5] = DC8uvNoLeft;
1275 VP8PredChroma8[6] = DC8uvNoTopLeft;
1276 }
1277
1278 #else // !WEBP_USE_SSE2
1279
1280 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1281
1282 #endif // WEBP_USE_SSE2
1283